Multiresolution Curves

Adam Finkelstein and David H. Salesin
Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195

April 1994
Technical Report 94-01-06b

Multiresolution Curves

Adam Finkelstein

David H. Salesin

Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195

Abstract

We describe a multiresolution curve representation, basesdavelets, that
conveniently supports a variety of operations: smoothirgive; editing
the overall form of a curve while preserving its details; apgproximating
a curve within any given error tolerance for scan conversiga present
methods to support continuous levels of smoothing as wellrast manip-
ulation of an arbitrary portion of the curve; the controlsi as well as the
discrete nature of the underlying hierarchical repregemacan be hidden
from the user. The multiresolution representation regui@ extra storage
beyond that of the original control points, and the alganigrusing the rep-
resentation are both simple and fast.

CR Categories and Subject Descriptorst.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling — Curve, Surfaa#idSand
Object Representations; 1.3.6 [Computer Graphics]: Metthagy and Tech-
nigues — Interaction Techniques.

Additional Key Words: curve compression, curve editing, curve fitting,
curve smoothing, direct manipulation, scan conversiongles.

1 Introduction

A good representation for curves should allow for flexibléird, smooth-
ing, and scan conversion. In particular, a representatorcdrves should
support:

o the ability to change the overall “sweep” of a curve while ntaining its
fine details, or “character” (Figure 3);

o the ability to change a curve’s “character” without affagtiits overall
“sweep” (Figure 6);

o the ability to edit a curve at any continuous level of detaibwing an
arbitrary portion of the curve to be affected through dimaenipulation
(Figure 4);

e continuous levels of smoothing, in which undesirable fesgtare re-
moved from a curve (Figure 2);

e curve approximation, or “fitting,” within a guaranteed m@xim error tol-
erance, for scan conversion and other applications (Figiend 9).

In this paper, we show howmultiresolutioncurve representation can pro-
vide a single, unified framework for addressing all of theseés. It requires

no extra storage beyond that of the originalcontrol points, and the algo-

rithms that use it are both simple and fast, typically linieat:.

There are many applications of multiresolution curveduiding computer-
aided design, in which cross-sectional curves are fredyuesed in the spec-
ification of surfaces; keyframe animation, in which curvesissed to control
parameter interpolation; 3D modeling and animation, inchittbackbone”
curves are manipulated to specify object deformationglgcadesign, in

which curves are used to describe regions of constant cotexture; font
design, in which curves representthe outlines of charsi@ed pen-and-ink
illustration, in which curves are the basic elements of thisffied piece. In
all of these situations, the editing, smoothing, and apipnation techniques
we describe can be powerful tools.

1.1 Related work

Some of the algorithms supported by multiresolution cuarescompletely
new, to our knowledge, such as the ability to edit a curve gtcamtinuous
level of detail, and the ability to change a curve’s chanagtthout affecting

its overall sweep. However, the majority of applicationsaéed in this
paper have already been addressed in one form or anothkaugl the
algorithms we describe compare favorably, in and of themeselwith most
of this previous work, it is the convenience with which theltinesolution

representation supports such a wide variety of operatioaismakes it so
useful. Here we survey some of these previous techniques.

Forsey and Bartels [13] employ hierarchical B-splines tdrads the prob-
lem of editing the overall form of a surface while maintamiits details.

Their original formulation requires the user to design apliex hierarchy

into the model. In later work [14], they describe a method-&mursively fit-

ting a hierarchical surface to a set of data by first fitting aree approxima-
tion and then refining in areas where the residual is largis. ddnstruction
is similar in spirit to the filter bank process used in muliskition analy-
sis, as described in Section 2.1. One significant differéadbat in their

formulation there are an infinite number of possible reprt®ns for the
same surface, whereas the multiresolution curve reprasemts unique for
a given shape. Fowler [15] and Witkin and Welch [28] also désaneth-

ods in which editing can be performed over narrower or broestgions of

a surface; however, in neither of these works is there amatt®o preserve
the higher-resolution detail beneath the edited region.

Curve and surface smoothing algorithms that minimize verienergy
norms have also been studied; these are surveyed in Hosolddkaaser
[16]. One example is the work of Celniker and Gossard [7], imch a fair-
ness functional is applied to hand-drawn curves, as web asitfaces. The
method we describe is really a least-squares type of snrapthihich is
much simpler but supports continuous levels of smoothiagiikhaves quite
reasonably and intuitively in practice.

Many schemes for approximating curves within specifiedreoterances
have also been explored [2, 20, 23, 27]. Most of this reselaasicentered
on various forms of knot removal for representing curveieffitly with

non-uniform B-splines. In this paper, we look at the verygtial con-

cern of producing a small number of Bézier segments thatequpate the
curve well, since these segments are the standard repaéiearior curves
in PostScript [1], the most common page description langu@gr require-
ments are also somewhat different than those of most preiowe-fitting

methods. In particular, for our application of scan conigersve do not re-
quire any particular continuity constraints for the appmeating curve. Re-
laxing this condition allows for potentially much highenmopression rates.

1.2 Overview

The next section discusses the theory of multiresolutiahyais, and devel-
ops a multiresolution representation for B-spline cur@estions 3, 4, and 5
describe how this representation can be used to supporeaffamoothing,

editing, and scan conversion. Finally, Section 6 suggestesareas for fu-
ture research. The details of the multiresolution curvenidation can be
found in the appendices.

2 Theory of multiresolution curves

In this section, we discuss the theory of wavelets and neglilution analy-
sis, and we show how it can be applied to representing entipdérpolating
B-spline curves.

2.1 Wavelets and multiresolution analysis

Wavelets are a simple mathematical tool that have found a wadiety of
applications in recent years, including signal analysij,[Enage process-
ing [11], and numerical analysis [6]. In this section, wetskehe basic ideas
behind wavelets and multiresolution analysis. Rather th@senting the
classical multiresolution analysis developed by Mall&j[2ve present here
a slightly generalized version of the theory, following lnsieryet al.[19],
that is more convenient for our application of representipgn curves.

Consider a discrete signal™, expressed as a column vector of samples
[ely..es ¢1". In our application, the sample$ could be thought of as a
curve’s control points idR 2.

Suppose we wish to create a low-resolution vergigi! of ¢ with a
fewer number of samples’. The standard approach for creating thé
samples of2”~1 is to use some form of filtering and downsampling on
them samples of2™. This process can be expressed as a matrix equation

On—l Videld (1)
whereA™ is anm’ x m matrix.
SinceC'™~1 contains fewer samples thar?, it is intuitively clear that some

amountof detail is lostin this filtering processAf is appropriately chosen,
it is possible to capture the lost detail as another sigiat!, computed by

Dn—l BrC™ (2)
whereB™ is an(m — m’) x m matrix, which is related to matrixd™.
The pair of matricesti”™ and B™ are calledanalysis filters The process of

splitting a signatC'™ into a low-resolution version'”~1 and detailD™ 1
is calleddecomposition

If A™ andB™ are chosen correctly, then the original sighi&l can be recov-
ered fromC™~1 andD™~1 by using another pair of matricé¥® andQ",
calledsynthesis filtersas follows:

o Pncn—l + QnDn—l
Recoverings™ from ¢»~1 andD™~! is calledreconstruction

©)

Note that the procedure for splitting™ into a low-resolution parC™—!
and a detail parb™~! can be applied recursively to the new sigadl—1.
Thus, the original signal can be expressed as a hierarclyvwefiresolution
signalsC?,...,c"~1 and detailsD?, ..., D®~1, as shown in Figure 1.
This recursive process is known afileer bank

-1 1
Cn An Cnfl An Cn72 A CO
anl Dn72 DD

Figure 1:The filter bank.

Since the original signal’™ can be recovered from the sequett® D°,
D', ..., D"~1, this sequence can be thought of as a transform of the orig-
inal signal, known as aavelet transformNote that the total size of the

1The more general theory described here differs from Mallatiginal formulation
by relaxing his condition that the basis functions must bedtates and scales of one
another.

transformc?, DO, ..., D»~1 is the same as that of the original sign#t,
S0 no extra storage is required.

Wavelet transforms have a number of properties that make #itractive

for signal processing. First, if the filtes’ , B7, P7, and@” are constructed

to be sparse, then the filter bank operation can be perforemayuickly —
often inO(m) time. Second, for many of the signals encountered in prac-
tice, alarge percentage of the entries in the wavelet toammsére negligible.
Wavelet compression methods can therefore approximateigieal set of
samples inC'™ by storing only the significant coefficients of the wavelet
transform. Impressive compression ratios have been eghot univariate
signals as well as for images [11].

As suggested by the treatment above, all that is needed féorpeng a
wavelet transform is an appropriate set of analysis andheyi filters4”,

B, P7, and@’. To see how to construct these filters, we associate with
each signal’™ a functionf™(«) with € [0, 1] given by

S (w) 4)

whered ™ (v) is arow matrix of basis functiofg?* (u), . . ., ¢, ()], called
scaling functionsin our application, for example, the scaling functions are
the endpoint-interpolating B-splines basis functionsylrch case the func-
tion f™(w) would be an endpoint-interpolating B-spline cufve.

= ®"(u)C"

The scaling functions are required to tedinable that is, for all; in [1, n]
there must exist a matri®’ such that

oIt

— dI pPI (5)

In other words, each scaling function at leyel 1 must be expressible as
a linear combination of “finer” scaling functions at leyelAs suggested by
the notation, the refinement matrix in equation (5) turnstoutte the same
as the synthesis filtepP’ .

Next, letV'? be the linear space spanned by the set of scaling functiéns
The refinement condition o’ implies that these linear spaces are nested:
Vo c vt ¢ C V™. Choosing an inner product for the ba-
sis functions inV’? allows us to defind¥’ as theorthogonal comple-
mentof V7 in VI+1, that is, the spac®/’ whose basis functiong’ =

(] (w),. .. 97 ()] are such tha®’ and ¥’ together form a basis

m—m/!
for V7+1, and everyp! (u) is orthogonal to every? () under the chosen
inner product. The basis functiong (v) are calledvavelets

We can now construct the synthesis filigt as the matrix that satisfies
(6)

Equations (5) and (6) can be expressed as a single equatimmbgtenating
the matrices together:

g1

I QY

[@/=1 | w1] o [P | Q7] @)

Finally, the analysis filtersi? andB7 are formed by the matrices satisfying
the inverse relation:

A
BJ

dI

[qu—l | qm—l] (8)

Note that[Pi| Qi] and [AV | B]T are both square matrices. Thus,

A J i1t 9
= = [P7] Q7] ©)

from which it is easy to prove a number of useful identities:
AlQ? = BIPP = 0 (10)

A pl BIQI P4 + QB = 1

where0 and1 are the matrix of zeros and the identity matrix, respecyivel

2For simplicity of notation, we often omit the explicit defgmce or, whenwrit-
ing f™ and®™.

2.2 Multiresolution endpoint-interpolating B-splines

In our application, we build a multiresolution analysis Bxspline curves.
In this paper, we restrict our attention to the common caseloit B-splines
defined on a knot sequence that is uniformly spaced evergnarept at
its ends, where its knots have multiplicity 4. Such B-spdiaee commonly
referred to agndpoint-interpolatingubic B-splines. These curves are dis-
cussed in detail in many texts on computer-aided desigrZ{418].

The multiresolution framework described in Section 2.1@spgeneral. To
construct oumultiresolution curvesrom endpoint-interpolating cubic B-
splines, we need to make several choices, as enumerated belo

1. Choose the scaling functiods’ (v) for all 7 in [0, n].
This choice determines the synthesis filtérs. For each level;, we
would like a basis for the endpoint-interpolating cubicBise curves
with 27 interior segments. The basis functions for these curvethare
27 4+ 3 endpoint-interpolating cubic B-splines, which are refiealas
required by equation (5).

2. Select an inner product for any two functiofpgndg in V7.
This choice determines the orthogonal complement spatesiVe use

the standard fornif , g) = [f(u)g(u)du.

3. Select a set of wavelels’ () that sparii’J.
This choice determines the synthesis filt€}s. Together, the synthe-
sis filters P7 and @7 determine the analysis filterd? and B’ by
equation (9). We use the set ®f minimally-supportedunctions that
spani¥7.

Appendix A contains more details on the specific wavelets seeand their
derivation. A similar construction has also been indepatigeproposed
by Chui and Quak [9]. Note that multiresolution construci@an be built
for other types of splines as well, such as uniform B-splii@&sand non-
uniform B-splines with arbitrary knot sequences [21]. Aeetconstruction
applicable to subdivision surfaces is discussed by Louysiel.[19].

Note that because both the scaling functions and waveletgiconstruction
have compact support, the synthesis filtBfsand@’ have a banded struc-
ture, allowing reconstruction i@ () time. However, a potential weakness
of our construction is that the analysis filte4s and B7 are dense, which
would seemto imply af (2)-time decomposition algorithm. Fortunately,
there is a clever trick, due to Quak and Weyrich [25], for perfing the
decomposition in linear time. The implementation of thégoaithm is de-
scribed in Appendix B.

3 Smoothing

In this section, we address the following proble@iven a curve withn
control pointsC', construct a best least-squares-error approximating eurv
with m’ control pointsC’, wherem’ < m. Here, we will assume that both
curves are endpoint-interpolating uniform B-spline csrve

The multiresolution analysis framework allows this proble® be solved
trivially, for certain values ofn andm’. Assume for the moment that =
29 + 3andm’ = 23" + 3 for some nonnegative integejs < 5. Then the
control pointsC” of the approximating curve are given by

o = AL pi0
In other words, we simply run the decomposition algorithedascribed by
equation (1), until a curve with just’ control points is reached. Note that

this process can be performed at interactive speeds forradsdf control
points using the linear-time algorithm described in Appigii]

One notable aspect of the multiresolution curve repretients its discrete
nature. Thus, in our application it is easy to construct apipnating curves
with 4, 5, 7, 11, or any’ + 3 control points efficiently, for anynteger
level ;. However, there is no obvious way to quickly construct certfat
have “levels” of smoothness in between.

The best solution we have foundis to defirfesational-levekurvef 7t (w)
forsomeon < ¢t < 1interms of alinear interpolation between its two nearest

integer-level curveg? (u) andf3+1 (u), as follows:

) = (=0 () + ()
(1= ®(u)C7 + t&IT () I+

sz

(11

These fractional-level curves allow for continuous lev&lsmoothing. In
our application a user can move a control slider and see tive ttansform
continuously from its smoothest (4 control point) form, ogts finest ¢

control point) version. Some fractional-level curves dreven in Figure 2.

Figure 2:Smoothinga curve continuously. From left to right: the v curve
at level 8.0, and smoother versions at levels 5.4 and 3.1.

4 Editing

Suppose we have a curg€® and all of its low-resolution and detail parts
cO,...,cr~1 andDP, ..., D"~1. Multiresolution analysis allows for
two very different kinds of curve editing. If we modify soma\-resolution
versionC’ and then add back in the detaW , D7+1, ... D™~1 we will
have modified the overall sweep of the curve (Figure 3). Orother hand,
if we modify the set of detail function®?, DI+, ..., D™~ but leave
the low-resolution versiong?, ..., 7 intact, we will have modified the
character of the curve, without affecting its overall swé@gure 6). These
two types of editing are explored more fully below.

4.1 Editing the sweep

Editing the sweep of a curve at an integer level of the wavedgisform is
simple. LetC™ be the control points of the original cury&®(u), let C7
be a low-resolution version af™, and letC7 be an edited version af’,
given by@ﬂ = C7 4+ ACY. The edited version of the highest-resolution
curveC = ¢ + AC™ can be computed through reconstruction:

cn = O™+ AC™
c® 4 prprTlo pitlac

Note that editing the sweep of the curve at lower levels ofctiniag ; af-
fects larger portions of the high-resolution curi/e(«). At the lowest level,
when; = 0, the entire curve is affected; at the highest level, when n,
only the narrow portion influenced by one original controijiés affected.
The kind of flexibility that this multiresolution editing lalws is suggested
in Figures 3 and 4.

In addition to editing at integer levels of resolution, itnatural to ascribe
meaning to editing at fractional levels as well. We wouleltke portion of
the curve affected when editing at fractional leye} ¢ to interpolate the
portions affected at levelsand; + 1. Thus, ag increases from 0 to 1, the
portion affected should gradually narrow down from thatenfdl ; to that
of level; + 1, as demonstrated in the lower part of Figure 4.

Consider a fractional-level cury® ¢ () given by equation (11). Let?+¢
be the set of control points associated with this curve;ithat

fJ+t(u) @J‘l‘l(u) cItt

We can obtain an expression fo¥ +¢ by equating the right-hand sides of
equations (11) and (12), and then applying equations (5{&nd

(12)

citt — (1_t)PJ+1 I 4+ oIt

pitl oo + tQH'l D?

Suppose now that one of the control poiﬁié‘t is modified by the user.
In order to allow the portion of the curve affected to depend: dn the
manner described above, the system will have to automigticalve some
of the nearby control points Whejﬁ"‘t is modified. The distance that each
of these control points is moved is inversely proportiopat for example,

(@) ® © @
Figure 3:Changingthe overall sweep of a curve without affectingti@racter.
Given the original curve (a), the system extracts the ovemep (b). If the
user modifies the sweep (c), the system can reapply the (@tail

Figure 4:The middle of the dark curve is pulled. Upper: Editing at gge
levels 1, 2, 3, and 4. Lower: Editing at fractional levelsweén 2.0 and 3.0.

whent is near 0, the control points i@7+¢ are moved in conjunction so
that the overall effect approaches that of editing a singletrol point at
level ; whent = 1, the nearby control points are not moved at all, since
the modified curve should correspond to moving just a singigrel point
atlevel; 4 1.

Let AC7t¢ be a vector describing how each control point of the fraetion
level curve is modified: the-th entry ofaC7+¢ is the user’s change to the
i-th control point; the other entries reflect the computed emoents of the
other control points. Rather than solving faf'7 +¢ explicitly, our approach
will be to break this vector into two components, a veaaor’ of changes
to the control points at level, and a vectonD? of changes to the wavelet
coefficients at levej:
ACITE = pItL A 4 QI ADY (13)
Next, defineaC’** to be the user’s change to the control points at level
j + t, that is, a vector whosgth entry iSAcg"'t, and whose other entries
are 0. Define also a new vecta€? as a change to control points at leyel
necessary to make the modified control p@izn“tt move to its new position.
We choose the vector that is 0 everywhere, except for one oreiries,
depending on the inde>of the modified control point. By examining thigh
row of the refinement matri®’+1, we can determine whether the modified
control point is maximally influenced by eithenecontrol pointci"'1 or
two control pointse)t* and Cii
. +t +1 . .
setaé) to beac! /Pl{k -Inthe latter case, we s} andad; |, to be

I+t 1o pgtl
Acy /2PMC .

at level; 4 1. In the former case, we

Note that applying either change alon&;7*+* or AC, would cause the se-
lected control point to move to its new position; howevee, lgitter change
would cause a larger portion of the curve to move. In orderdeeha
“breadth” of change that gradually decreasesgrses from Oto 1, we can in-
terpolate between these two vectors, using some inteipolainctiong (¢):

At = (1= g() PPt AC? 4+ g(r)acitt (14)
Thus,aC7+¢ will still move the selected control point to its new positjo
and it will also now control the “breadth” of change as a fumebf .

Finally, equating the right-hand sides of equations (18))(@4), multiplying
with either47+1 or Bi+1, and employing the identities (10) yields the two
expressions we need:

Nol (1—g(¥))aC? + g(t) ATt aCI+t

(15)

AD 9(t) gi+1 pdutt
¢

We now have the choice of any functigit) that allowsAD/ to increase
monotonically from 0 to 1. The functiof(t):=¢2 is an obvious choice that
we have found to work well in practice.

The changes to the high-resolution control points are theanstructed us-
ing a straightforward application of equation (3):

ACT = prpnTlopitZ(pitlacy 4 @iTlADY) (16)
The fractional-level editing defined here works quite welpractice. Vary-
ing the editing level continuously gives a smooth and inteikind of change
in the region of the curve affected, as suggested by FiguBedause the
algorithmic complexity is jusOQ (m), the update is easily performed at in-
teractive rates, even for curves with hundreds of controitso

4.1.1 Editing with direct manipulation

The fractional-level editing described above can be ea&sitgnded to ac-
commodateadirect manipulationjn which the user tugs on the smoothed
curve directly rather than on its defining control points13, 15, 18]. To
use direct manipulation when editing at leyel ¢, we make use of the
pseudo-inverse of the scaling functions at leyedsd; + 1.

More precisely, suppose the user drags a point of the cti¥é(wy) to a
new positionfI+¢(ug) 4+ 6. We can compute the least-squares change to
the control pointsx(? andaCy+t at levels; and; + ¢ using the pseudo-
inverseg®7)* and(®’*1)* as follows:

(7 (uo))* 6
(®7F (uo))* 6

These two equations should be interpreted as applying todiaension:
andy separately. That i should be a scalar (say, the change)nand the
left-hand side and the pseudo-inverses should both be eotuatrices of
scalars. The modified control points of the highest-regmhuturve can then
be computed in the same fashion outlined for control-poemipulation, by
applying equations (15) and (16).

ACT =
Aé’]+t

1n

Note that the first step of the construction, equation (1&), flee computed
in constanttime, since for cubic B-splines at most four efehtries of each
pseudo-inverse are non-zero. The issue of finding the paeanedueu, at
which the curve passes closest to the selection point is lastuelied prob-
lem in root-finding, which can be handled in a number of wayg.[l our
implementation, we scan-convert the curve once to find itarpater value
at every illuminated pixel. This approach is easy to impletmand appears
to provide a good trade-off between speed and accuracy fortaractive
system.

For some applications, it may be more intuitive to drag orhiga-resolution
curve directly, rather than on the smoothed version of timeecun this case,
even when the curve’s display resolution is at its highestllaét may still
be useful to be able to tug on the curve at a lower editing ugisal. In this
way, varying levels of detail on the curve can be manipulatedragging a
single point: as the editing resolution is lowered, more@ode of the curve
is affected. This type of control can be supported quitdghgisettingé to
be the change in the high-resolution curve at the dragged pdi«), and
using the same equations (17) above.

4.1.2 Editing a desired portion of the curve

One difficulty with curve manipulation methods is that theffect often
depends on the parameterization of the curve, which doesetassarily
correspond to the curve’s geometric embedding in an iniftishion. The
manipulation that we have described so far suffers fromstaise difficulty:
dragging at a particular (possibly fractional) levek= ; + ¢ on different
points along the curve will not necessarily affect constangth portions of
the curve. However, we can use the multiresolution editmgfol to com-
pensate for this defect in direct manipulation, as follofigre 5).

Let i be a parameter, specified by the user, that describes tiredlésigth
of the editable portion of the curve. The paramétean be specified using
any type of physical units, such as screen pixels, inchepemrentage of

(a) Non-uniform pararameterization. (b) On left, change is narrow.

(d) Equal-breadth changes.

Figure 5:Curve (a) has a parameterization thatis non-uniform witsprect to

its length. Direct manipulation on the left part of the cu(g affects a much
smaller fraction of the curve than does direct manipulatdthe same level
in the middle (c). The last figure (d) shows that a specifiectiva of the curve
can be edited, with the system determining the appropriiting level.

the overall curve length. The system computes an appreyaifiting level
that will affect a portion of the curve of aboktunits in length, centered at
the pointf™ (ug) being dragged.

We estimate/ as follows. For each integer-level editing resolutigriet
h? (uo) denote the length of () affected by editing the curve at the
point f™(ug). The lengtth? (v) is easily estimated by scan-converting the

curve f™(u) to determine the approximate lengths of its polynomial seg-

ments, and then summing over the lengths of the segmentdedfevhen
editing the curve at levej and parameter position,. Next, define;j_
andj4 to be, respectively, the smallest and largest valuegfof which
h?=(ug) > h > h?+(ug). To choose the editing levé| we use linear
interpolation between these two bounding levelsandy :

h — R+
SR ¥Ry
Finally, by representing in terms of an integer level and fractional off-
sett, we can again apply equation (17), followed by equationy#h8 (16),
as before. Though in general this construction doepretiselycover the
desired portiork, in practice it yields an intuitive and meaningful control.
Figure 5 demonstrates this type of editing for a curve witheatremely
non-uniform geometric embedding.

4.2 Editing the character of the curve

Another form of editing that is naturally supported by nméltolution curves
is one of editing the character of a curve, without affecttagverall sweep.
Let C™ be the control points of a curve, and &f, ..., c?~1, D%, ..,
D7~1 denote the components of its multiresolution decompasitaliting
the character of the curve is simply a matter of replacingetkisting set
of detail functionsD?, . .., D=1 with some new seb7, ..., D*~1, and
reconstructing.

With this approach, we have been able to develop a “curveactenlibrary”
that contains different detail functions, which can bericibengeably applied
to any set of curves. The detail functions in the library hbeen extracted
from hand-drawn strokes; other (for example, procedurethmds of gener-
ating detail functions are also possible. Figure 6 dematestthow the char-
acter of curvesin an illustration can be modified with the sgan different)
detail styles. The interactive illustration system usedreate this figure is
described in a separate paper [26].

~—
&

e

=

(

Figure 6:Changing the character of a curve without affecting its gwee

4.3 Orientation of detail

A parametric curve in two dimensions is most naturally repre¢ed as two
separate functions, one inand one iny: f(u) = (fz(u), fy(u)). Thus,
it seems reasonable to represent both the control poih&nd detail func-
tions D7 using matrices with separate columnsdéandy. However, encod-
ing the detail functionsin this manner embeds all of theitletéhe curvein
a particular:y-orientation. As demonstrated in Figure 7, this represama
does not always provide the most intuitive control wheniedithe sweep
of the curve.

Original curve. Fixed xy-orientation. Detail relative to the tangent.

Figure 7:Editing the sweep of a curve using a fixeg-orientation of detail
versus orientation relative to the tangent of the curve.

As an alternative, we employ a method similar to that of Fpesed Bar-
tels [13] for representing detail with respect to the tangerd normal to
the curve at a coarser level. Specifically, for computing&ference frame
for orienting a detail coeﬁicierttg, we use the tangent and normal of the
curve f2~1(ug) at a parameter position, corresponding to the maximum
value of the wavelet? (u). Note that the curvg (u) is no longer a simple
linear combination of the scaling functiod¥ and wavelet®7; instead, a
change of coordinates must be performed at each level ofisérution for
the wavelet coefficient®’. However, this process is linear in the number
of control points, so it does notincrease the computatiomaplexity of the
algorithm.

We have experimented with both normalized and unnormalieesions of
the reference frame; the two alternative versions yielfétéht but equally
reasonable behavior. Figure 6 uses the unnormalized t&géiereas the
rest of the figures in this paper use normalized tangents.

5 Scan conversion and curve compression

Using “curve character libraries” and other multiresautediting features,
it is easy to create very complex curves with hundreds orriatiéy thou-
sands of control points. In many cases (such as in this papesg curves are
printed in a very small form. Conventional scan conversiethuds that use
all the complexity of these curves are wasteful, both in teofrthe network
traffic to send such large files to the printer, and in term$efgrocessing
time required by the printer to render curves of many comgoahts within
a few square pixels. We therefore explore a form of curve aesgion that
is suitable for the purposes of scan conversion. The algariequires an
approximate curve to have a guaranteed error tolerancetrimstof printer
pixels, from the original curve. However, it does not requany particular
continuity constraints, as are usually required in datadjtapplications.

As discussed in Section 3, the simple removal of waveletfivierfits can
be used to achieve a least-squared, drerror metric between an original
curve and its approximate versions. However, for scan omiwe, anZ.?
error metric is not very useful for measuring the degree pfaximation: an

approximate curvg (v) can be arbitrarily far from an original curyé® ()
and still achieve a particuldr? error bound, as long as it deviates from the
original over a small enough segment. In order to scan com@veurve to
some guaranteed precision—measured, say, in terms of rmaxdeviation

in printer pixels—we need to use &t norm on the error. There are many
ways to achieve such abound. The method described hereripkesind fast
one, although methods with higher compression ratios atain possible.

Let s? (with 0 < ¢ < 27 — 1) be a segment of the cubic B-spline curve
f7(u), defined by the four control points, ..., ¢/ ,. Note that each seg-
7 t+3

ments? correspondsto exactly two segmes#g ' ands2}!

et atlevel;j +1.

Figure 8:Scan-converting a curve within a guaranteed
maximum error tolerance. From left to right, the figures
used 5%, 21%, 46%, and 78% of the possible number of
Bézier segments. Error is less than 1/400 inch.

IAVERVERVERN

Figure 9:Same curves as above, but drawn at constant size.

Our objective s to build a new approximating cur}(v(m) for f(w) by choos-

ing different segments at different levels such thgtu) — /™ (u)||,, IS
less than some user-specifiefbr all values ofu.

Assume, for the moment, that we have some funcEeBound(s?) that
returns a bound on th&®® error incurred from using the segmegjt of
some approximate curv€ () in place of the original segments ¢f* ()
to which it corresponds. We can scan-convert a curve to ity error
tolerance: by passing to the recursive routibeawSegmenthe single seg-
mentsg corresponding to the lowest-level cury®(x). This routine recur-
sively dividesthe segmentto varying levels so that thesctithbn of segments
it produces approximates the curve to within

procedure DrawSegmerts?):
if ErrBound(s’) < e then
Output segmend’ as a portion off (u)

else
DrawSegmerits} !); DrawSegmer(ts} ',)
end if

end procedure

To construct thé&ErrBound routine, letAf? be the B-spline-to-Bézier-basis
conversion matrix [4] for curves wit? + 3 control points, and lek”? be a
column vector with entries! defined by

B =

M? Q) DIt (18)

The vectorE? provides a measure of the distance that the Bézier control
points migrate when reconstructing the more detailed catvevel; from

the approximate curve at levgl— 1. Since Bézier curves are contained
within the convex hull of their control points, the magniésdf the entries

of E7 provide conservative bounds on approximations to the cduesto
truncating wavelet coefficients.

A boundé? on theL* error incurred by replacing segmesdtwith its ap-
proximation at levelj — 1 is given by
6 < maxgrcipa {[[e], } (19)

TheErrBoundroutine can then be described recursively as follows:

procedure ErrBound(s?):
if = nthen
return O
else
return max{ErrBound(s}*)+831", ErBound(s3 !)+631)
end if
end procedure

An efficient implementation of th&rrBound routine would use dynamic
programming or an iterative (rather than recursive) pracedo avoid re-

computing error bounds. In practice, the routine is fasugian its recur-

sive form that we have not found this optimization to be neass at least
for scan converting curves with hundreds of control points.

The approximate curvg(w) is described by a set of Bézier segments, which
we use to generate a PostScript file [1]. Note that the scamersion algo-
rithm, as described, produces approximate cuﬂeﬁ) that are not eve@®
continuous where two segments of different levels abuteSime are only
concerned with the absolute error in the final set of pixetelpced, relax-
ing the continuity of the original curve is reasonable farsconversion. We
can achieve® continuity, however, without increasing the prescribeder
tolerance, by simply averaging together the end contraltsdor adjacent
Bézier segments as a post-process. We have found thatiRemeves look
slightly better than the discontinuous curves; they ala@izemore compact
representation in PostScript. Figures 8 and 9 demonstatpression of the
same curve rendered at different sizes.

6 Extensions and future work

This paper describes a multiresolution representatioefalpoint-interpo-
lating B-spline curves, and shows how this single reprediemt supports a
variety of display and editing operations in a simple ancigffit manner.
We believe that the operations described are very genedlaambe readily
extended to other types of objects described by a multiisol analysis.

There are many directions for future research, including:

Handling discontinuities. An important extension is to generalize the mul-
tiresolution curve representation and editing operationgspect discon-
tinuities of various orders that have been intentionalycpl into a curve
by the designer. This extension would allow the techniqodset applied
more readily to font design, among other applications. Q@ @ach is to
try using the multiresolution analysis defined on non-umif@-splines by
Daehlen and Lyche [10].

Sparse representationsOur algorithms have so far used ordgmplete
wavelet decompositions of the curve’s original controljisi However, in
order to support curve editing at an arbitrarily high resioly, it would be
convenient to have a mechanism in place for extending thelgtvepre-
sentation to a higher level of detail in certain higher-feon portions of
the curve than in others. One such sparse representatidn osg pruned
binary trees to keep track of the various wavelet coeffisiantifferent lev-
els of refinement, in a manner very similar to the one used lssnBeet al.
for representing multiresolution images [5].

Textured strokes.For illustrations, it is useful to associate other proerti
with curves, such as color, thickness, texture, and traesigg, as demon-
strated by Hsu and Lee [17]. These quantities may be corsidadtra di-
mensions in the data associated with each control pointhvfiche ma-
chinery for multiresolution editing should be applicaldetich curves. As a
preliminary test of this idea, we have extended our curv®ediith athick-
nessdimension. The thickness along the curve is governed byhic&-t

nolle So5

Figure 10:Two curves of varying thickness.

nesses defined at the control points. It is possible to matify param-
eter at any level of resolution, just as one edits the positibthe curve.
Figure 10 shows curves with varying thickness. Ultimatelg, would like

to combine stroke editing with multiresolution image etiti[5], perhaps
providing a unified framework for object-oriented (“MacDrdike”) and

image-oriented (“MacPaint-like”") interactive design grams.

Surfaces.Another obvious extension of these techniques is to susfae
a test of multiresolution surface editing, we built a suefaditor that allows
a user to modify a bicubic tensor-product B-spline surfdcd 2, 16] at dif-
ferent levels of detail. Figure 11 shows several manipofetiapplied to a
surface over 1225 control points modeling a human face.Wwagh not-
ing that tensor-product surfaces are limited in the kindshafpes they can
model seamlessly. Lounsbegyal.[19] discuss a multiresolution represen-
tation for subdivision surfaces of arbitrary topology. Manf the techniques
describedin this paper should extend directly to theirame$ as well. In par-
ticular, fractional-level display and editing are appbtain the same way
as for curves and tensor-product surfaces. In additiorgdhgression tech-
nigue for scan-converting curves might also be used foregnd simplified
versions of polyhedra within guaranteed error tolerances.

Figure 11:Surface manipulation at different levels of detail. Froft e right:
original, narrow change, medium change, broad change.

Acknowledgements

We would like to thank Tony DeRose, Ronen Barzel, and LeeadaM
Reissell for very helpful discussions during the developnoé these ideas,
and Sean Anderson for implementing the tensor-productliBesggurface
editor.

This work was supported by an NSF National Young Investigateard
(CCR-9357790), by the University of Washington Graduatsg@ech and
Royalty Research Funds (75-1721 and 65-9731), and by indlgifts from
Adobe, Aldus, and Xerox.

References

[1] PostScript Language Reference Manuatidison-Wesley Publishing
Company, Inc., 1985.

[2] M. J.Banks and E. Cohen. Realtime spline curves fronrautively
sketched dataComputer Graphic24(2):99-107, 1990.

[3] R. Bartels and J. Beatty. A technique for the direct mafdpon of
spline curves. IProceedings of the 1989 Graphics Interface Confer-
ence pages 33—-39, London, Ontario, Canada, June 1989.

[4] R.Bartels, J. Beatty, and B. Barskdn Introduction to Splines for Use
in Computer Graphics and Geometric Modelifgorgan Kaufmann,
1987.

[5] D. Berman, J. Bartell, and D. Salesin. Multiresoluticsinting and
compositing. Proceedings of SIGGRAPH 94 Gomputer Graphics,
Annual Conference Series, 1994.

[6] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet tsforms and
numerical algorithms ICommunications on Pure and Applied Math-
ematics44:141-183, 1991.

[7] G. Celniker and D. Gossard. Deformable curve and surfimdte el-

ements for free-form shape desig@omputer Graphics25(4):257—
265, July 1991.

[8] C.K.Chui.An Introductionto Waveleté\cademic Press, Inc., Boston,
1992,

[9] C.K.ChuiandE. Quak. Wavelets on a bounded interval. IBiaess
and L. L. Schumaker, editordlumerical Methods in Approximation
Theory volume 9, pages 53-75. Birkhauser Verlag, Basel, 1992.

[10] M. Daehlen and T. Lyche. Decomposition of splines. In¥{icthe and
L. L. Schumaker, editordylathematical Methods in Computer Aided

Geometric Design |l pages 135-160. Academic Press, New York,

1992.

[11] R. DeVore, B. Jawerth, and B. Lucier. Image compress$imaugh
wavelet transform codindEEE Transactions on Information Theory
38(2):719-746, March 1992.

[12] G. Farin.Curves and Surfaces for Computer Aided Geometric Design

Academic Press, third edition, 1992.

[13] D. Forsey and R. Bartels. Hierarchical B-spline refiretnComputer
Graphics 22(4):205-212, 1988.

[14] D. Forsey and R. Bartels. Tensor products and hiereatfitting. In
Curves and Surfaces in Computer Vision and Graphics |, S®RtE
ceedings Vol. 161(ages 88-96, 1991.

[15] B. Fowler. Geometric manipulation of tensor producfaces. InPro-
ceedings of the 1992 Symposium on Interactive 3D GrapMesch
1992. Available as Computer Graphics, Vol. 26, No. 2.

[16] J. Hoschek and D. Lassdfundamentals of Computer Aided Geomet-
ric Design A K Peters, Ltd., Wellesley, Massachusetts, third edjtion

1992.

[17] S.Hsuandl. Lee. Skeletal strokes. Proceedings of RGEH 94. In
Computer GraphicsAnnual Conference Series, 1994.

[18] W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct manigalaof
free-form deformationsComputer Graphic26(2):177-184, 1992.

[19] M. Lounsbery, T. DeRose, and J. Warren. Multiresoluorfaces of
arbitrary topological type. Technical Report 93-10-05Bj\érsity of
Washington, Department of Computer Science and Engingelan-
uary 1994.

[20] T.Lyche andK. Mgrken. Knotremoval for parametric Bisp curves
and surfacesComputer Aided Geometric Desigt(3):217-230, 1987.

[21] T. Lyche and K. Marken. Spline-wavelets of minimal sopp In
D.BraessandL. L. Schumaker, editddsimerical Methods in Approx-

imation Theoryvolume 9, pages 177-194. Birkhauser Verlag, Basel,

1992.

[22] S. Mallat. A theory for multiresolution signal decongition: The
wavelet representationEEE Transactions on Pattern Analysis and
Machine Intelligencel1(7):674-693, July 1989.

[23] M.Plass and M. Stone. Curve-fitting with piecewise pae#ric cubics.
Computer Graphicsl7(3):229-239, July 1983.

[24] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. Ttétéihg. Nu-

merical RecipesCambridge University Press, Cambridge, second edi-

tion, 1992.

[25] E. Quak and N. Weyrich. Decomposition and reconstarctlgo-
rithms for spline wavelets on a bounded interval. CAT Re[26¢4,
Center for Approximation Theory, Texas A&M University, Air993.

[26] M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H. Sale In-
teractive pen-and-ink illustration. Proceedings of SIGERI 94. In
Computer GraphicsAnnual Conference Series, 1994.

[27] P. J. Schneider. Phoenix: An interactive curve desygtesn based on
the automatic fitting of hand-sketched curves. Master'sih®epart-
ment of Computer Science and Engineering, University of Wes
ton, 1988.

[28] W. Welch and A. Witkin. Variational surface modelingcomputer
Graphics 26(2):157-166, 1992.

0.5 0.5 0.5 0.5

N A/\A /\/\/\ /\/\/\
V TV AR l vy

o 3 -0.5 -0.5 -0.5
Figure 12:The B-spline scaling functions and the first four waveletewatl 3.
16 0 0 0 16 0 0 0 0 0
. . . . 8 8 0 0 8 8 0 0 0 0
A Wavelets for endpoint-interpolating B-splines Pl=ol| o s s o 012 4 0 0 o0
16 o o 8 8 0 311 2 0 0
. L 0 0 0 16 o o0 8 8 0 0.
As discussed in Section 2.1, a multiresolution analysi@mmetely deter- 16 0 0 o0 o piza_ 1| o o0 212 200
mined by an initial set of scaling functiods’ and a pair of synthesis filters T Yl o 0 0 212 2
PJ and@’ for every level; in [1,r]. This appendix supplies these func- P2 = % 0o 310 3 0 o000 88
tions and matrices for endpoint-interpolating cubic Bisgs, and outlines o o Az o
their derivation. Figure 12 shows some examples of thesgliBesscaling 0 0 0 016 :
1 —1368 0
functions and wavelets.) e b
. 1 -2 1 —1793 —691
Initial scaling functions are given by the four cubic Begistpolynomials: Ql==z| s Q2= 1053 1053
0 3 2 2 3 3 -2 2064 —691 —1793
) = [(1-w)?, 3u(l - w)?, 3u>(1 - u), u°] 1 240 2064
The matriced”’ and@’ appearin Figure 13. Note th&¥ is a matrix with Siedre 0 0 0
dimensiong2? + 3) x (297! + 3) whose middle columns, for > 3, are 166160
given by vertical translates of the fourth column, shiftenvt by 2 places ! 28124263 0 0
for each column. Matrix@’ has the same structure fpr> 4, except with —33030599 333497715 6908335 0
. . —1 - 41383080 478112471 478112471
dimensiong2’ 4 3) x 2771
633094403 —881412943 —T74736797 27877
. . . . 1655323200 956224942 956224942 1655323200
The P matrix is straightforward to derive from the Cox-de Booruesion onssadl ssaa6T eiisr
formula [12]; it encodes how each endpoint-interpolating@ine can be 137943600 ! 28124265 213830800
expressed as a linear combination of B-splines that arealalfide. To de- 0% = 4681957 —689203555 —689203555 4681957
. . . . - 165532320 956224942 956224942 165532320
rive the? matrix, we use some new notation. Given two row vectors of
. . . —864187 8833647 —19083341
functionsX andY’, let[{X | Y)] be the matrix of inner produc{sy;, , Y;). T13830800 28124263 ! 157943600
Since, by definition, scaling functions and wavelets at traeslevel; are 27877 —74736797 —881412943 633094403
Orthogonal, we haVe 1655323200 956224942 956224942 1655323200
0 6908335 333497715 —33030599
[(q)] ||1;J>] — [(q)J |<I>J+1>] QJ+1 = 0, 178112471 478112471 41383080
0 0 —T7166160 1
so the columns of)7+! span the null space c{f(qﬂ | @1)] . We choose 28124268
a basis for this null space by finding the matt}¢+! that has columns © © © sTives |
with the shortest runs of non-zero coefficients; this matixresponds to [—3904762 o o o]
. 574765
the wavelets with minimal support. The entries of the innedpct matrix 050072520
can be computed exactly with symbolic integration; thus, ftiactions re- ! 2056633377 © ©
ported in Figure 13 are exact (though ugly). —33030599 2096854390 307090 o
41383080 2989435167 19335989
633094403 —11070246427 —6643465 =1
. . - . 1655323200 11957740668 77343956 24264
B Linear-time filter-bank algorithm
—19083341 1 6646005 31
137943600 19335989 6066
Section 2.2 notes that the obvious filter-bank decompasélgorithm for 4681957 —157389496903 —29839177 —559
endpoint-interpolating B-spline curves takéém?)-time becauset’ and 1655920207 221218202558 SBOTIVTS 8088
. . —864187 1732435193 988
B7 are dense. However, Quak and Weyrich [25] describe an &hgoffor 113830800 5821531641 1 3053
performing the algorithm in linear time, using a transfotimato the “dual 27877 —27809640281 —58651607 —9241

space.” The derivation of this idea is beyond the scope sfgiper; how- T | 1655525200 442456404716 77345956 12152
171326708 6261828

ever, for completeness, we summarize here how the lineer-dilgorithm 0 EeotEes Toaieies 1
can be implemented.

0 el
Let 17 and.j’ be the inner product matriceg®’ |q>J)] and[(\IN |‘1N)], 0 0 98208 988
respectively. Equations (1) and (2) can then be rewritten: 19335989 3033
Pt = (PJ)TIJCJ © © 19g;§9289 gusssg
Ji—lpi—1 (QJ)TIJCJ 0 0 0 age
SinceP?,)7, andl’ are banded matrices, the right-hand side of these equa- 0 0 0 STt
tions can be computed in linear time. What remains are twal{thagonal
systems of equations, which can also be solved in lineartisieg LU de- :
Composition [24], 1440 882 1$6 12 0 0
882 2232 1575 348 3 0
The matriceg” for ; > 3 are givenin Figure 13. Note that is a symmetric R e
matrix with dimensiong27 + 3) x (27 4 3) whose middle columns, for .) 03 239 2382 4832 2382
j > 3, are given by vertical translates of the sixth column. Thenatrices =% = o0 27 0 0 0 2 240 2382
for ; < 3 and theJ? matrices may be found by: o o o o 22
= (PJ+1)TIJ+1PJ+1
J = (QJ+1)TIJ+1QJ+1

Figure 13The synthesis filter®? and@Q’ and the inner product matrice’ .

