Interactive Pen-and-Ink lllustration

Mike Salisbury, Sean Anderson, Ronen Bafz8lavid Salesin
Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195

*Pixar
1001 West Cutting Boulevard
Richmond, California 94804

Technical Report 94-01-07b
April 1994

I nter active Pen-and-1 nk Illustration

Michael P. Salisbury Sean E. Anderson

Ronen Barzdbavid H. Salesin

Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195

*Pixar
1001 West Cutting Blvd
Richmond, California 94804

Abstract

We present an interactive system for creating pen-andiirgtia-
tions. The system usesdroke textures-collections of strokes ar-
ranged in different patterns—to generate texture and foimeuser
“paints” with a desired stroke texture to achieve a desioee tand
the computer draws all of the individual strokes.

The system includes support for using scanned or renderagiis
for reference to provide the user with guides for outline tore.

By following these guides closely, the illustration systean be

used for interactive digital halftoning, in which stroketieres are
applied to convey details that would otherwise be lost ia Hiack-

and-white medium.

By removing the burden of placing individual strokes frora tiser,
the illustration system makes it possible to create finekstwork
with a purely mouse-based interface. Thus, this approadisho
promise for bringing high-quality black-and-white illuation to the
world of personal computing and desktop publishing.

CR Categoriesand Subject Descriptors: 1.3.2 [Computer Graph-
ics]: Picture/Image Generation - Display algorithms;8.8Com-
puter Graphics]: Methodology and Techniques - Interactemh-
nigues; 1.4.3 [Image Processing]: Enhancement.

Additional Key Words: Comprehensible rendering, non-photorea-
listic rendering, prioritized stroke textures.

1 Introduction

Pen-and-ink is an extremely limited medium, allowing omigiivid-
ual monochromatic strokes of the pen. However, despitertital
tions of the medium, beautiful pen-and-ink illustrationsarporat-
ing a wealth of textures, tones, and styles can be createkillyds
artists. Indeed, partly because of their simplicity andnecoy, pen-
and-ink illustrations are widely used in textbooks, repa@nuals,
advertising, and many other forms of printed media.

Part of the appeal and utility of pen-and-inkillustratiaashat they
can be easily printed alongside text, using the same inke@adme
paper, without any degradation. For the same reasons,bimk-

style illustrations could also be useful in the domain ofdeg pub-
lishing and laser printers—especially if the illustratowere gen-
erated and manipulated directly on a computer.

While the problem of painting full-color images on a compitas
received considerable attention in the computer graphiosntu-
nity, the requirements of an interactive pen-and-inkesiiflistra-
tion system are different enough to merit special study-&retink
illustrations have two major properties that distinguisérh from
other art media:

1. Every stroke contributes both tone (darkness) and tex8iree
tone and texture are not independent parameters, the pen art
must take care to convey both of these qualities simultagsigou

2. Strokeswork collectivelin general, no single stroke is of critical
importance; instead, strokes work together to expressadaode
texture.

This paper describes an interactive pen-and-ink-stylestifation
system. The overall goal of the system is to enable a usersityea
generate effective and attractive illustrations direotlya computer.
In this work, we are not concerned with creating purely cotapu
generated images; rather, the computer is utilized as atdoeh-
hance the speed and ease with which a user can create tluséra

The interactive illustration system allows a variety oftteing in
order to achieve the same range of style and expressiveyahdit
is possible with a physical pen and ink. We do not want to |thnit
user to any specific algorithmic “look.”

The system places a particular emphasis on using contiriongs
images as a reference for the user, and thus provides a fofim- of
teractive digital halftoning” in which the user can intraduexture
as an integral part of the resulting illustration. In thisise, the vi-
sual artifacts that are necessarily produced in quantazgrgyscale
image can be given an artistic or expressive nature. Alspraufti-
cal significance, photocopying does not degrade pen-aadtiie
images to the same extent as conventionally-halftonedésag

1.1 Background: Pen-and-ink illustration

We give here a brief description of some of the salient festur
and terminology of hand-drawn pen illustration, relevantte de-
sign of an interactive system. For further discussion arsthc-
tion, interested readers should consult Guptill [6], a cozhpn-
sive text on pen and ink illustration. In addition, Simmoi$]
provides instruction on illustrating using a “technicahgewhich
draws strokes of constant width. Both books contain dozestsio-
ning examples. A discussion of pen-and-ink principles ag thlate
to purely computer-generated imagery can be found in Wib&eh
et al. [20].

Because texture in an illustration is the collective restathany pen
strokes, each individual stroke is not critical and needoeadrawn
precisely. Indeed, a certain amount of irregularity in estrbke is

desirable to keep the resulting texture from appearingigid or
mechanical.

The most commonly used textures includtching formed by
roughly parallel linesgross-hatchingformed by overlapped hatch-
ing in several directions; arstippling, formed by small dots or very
short lines. Textures can also be wavy, scribbly, or gedmatrd
can appear hard or soft, mechanical or organic.

The perceived grey level tonein an illustration dependslargely on
how dense the strokes are in aregion (just like the dots itheid
halftone image). Although grey-level ramps can be achi®ysd-
diciously increasing stroke density, fine-art illustrasotypically
emphasize contrast between adjacent regions, and ofteloyap
very limited number of distinct grey levels.

Shapes in an illustration can be defineddaline strokes. These
strokes are exceptional in that they may be long and indailgu
significant. Often the outline is left implicit by a changetone
or texture. The choice of whether or not to use outlines igelyr
an aesthetic one, made by the artist, and used to achievéi@upar
lar effect. For example, explicit outlines are typicallyeddor hard
surfaces, while implied outlines generally convey a saftemore
organic object.

Producing fine-art-quality, hand-drawn pen-and-ink tlagons re-
quires a great deal of creativity and artistic ability. Inddibn, it

requires a great deal of technical skill and patience. Apealand
ink have no undo!

1.2 Related work

Most of the published work on “digital painting” is concethaith

the problem of emulating traditional artists’ tools. Onlyfeav of

these works take an approach similar to ours of creatinganitgvel
interactive tools that can produce the same results as pheite-
cessors: Lewis [10] describes brushes that lay down texfpant;
Haeberli [7] shows how scanned or rendered image informam
be used as a starting point for “painting by numbers;” andiddde
and Segal [8] use hardware texture-mapping for paintingasal
mention 3D halftoning effects.

Considerable work has also been done for creating black-and

white illustrations, generally for engineering or gragiidesign
work. The earliest such system was Sutherland’s “SketcHn8¢
Gangnet et al. [5] use planar decomposition to manipuladecin
geometric objects. Pavlidis [11] provides a method for&dieg up”
schematic drawings by removing hand-drawn irregulariti@site
the opposite (and more along the lines of our work), the Psgmi
Corporation markets a commercial product, “Squiggle,”] [ttt
adds waviness and irregularities to CAD output to augmeessli
with extra information and to make the results appear morglha
drawn. Saito and Takahashi [14] produce automated bladk-an
white illustrations of 3D objects.

Our research group is exploring several different aspdttegen-
and-ink illustration problem. This paper discusses thedsof in-
teractively creating pen-and-ink illustrations, with anghasis on
using 2D greyscale images as a starting point. A second gapars
how principles of illustration can be incorporated into atoenated
system for rendering 3D models [20]. A third paper examihes t
issues involved in representing, editing, and renderiegridivid-
ual strokes that are the building blocks of any line illuitna sys-
tem [4].

Figure 1:A closeup view of several individual pen strokes, with var-
ious amounts of curve and waviness.

1.3 Overview

The next section discusses the overall design of our systemell

as its individual capabilities and features. Section 3 gmessome
example illustrations and describes our experience withguhe

system. Section 4 suggests directions for future reseatah pri-

mary data structures and algorithms of our prototype impletar

tion are outlined in appendix A.

2 Thelllustration System

Full-color paint systems often support direct simulatiofisradi-
tional artist tools, such as brushes and paint [3, 17]. Harewr
our application, there is little purpose in providing theuwith a
simulated “ink pen” to draw the pen strokes, for severaloaas

¢ Amouse-based interface does not support the fine contrdetke
for detailed stroke work.

e The strokes of an illustration are not of great individuapon
tance.

¢ Drawing individual strokes is tedious, and we would like sys-
tem to reduce much of that tedium.

Thus, rather than focus on the individual strokes, the sy#ties to
directly support the higher-level cumulative effect tha strokes
can achieve: texture, tone, and shape. The user “paintst) wisk-
tures and tones, and the computer draws the individualesrok

The illustration system cannot completely ignore indiatstrokes,
however. Outlines are the most notable example of strolefittve
individual significance; in addition, an artist might ocicaslly

need to touch up fine details of textured work. Thereforestistem
also allows users to draw individual strokes and providegrots

for modifying stroke character through smoothing and thfothe
substitution of various stroke styles [4].

To further aid users in creating illustrations, the systdiows
scanned, rendered, or painted images to be used as a reféoenc
tone and shape. The system also supports edge extractintinfro
ages, which is useful for outlining. Finally, a range of eujtca-
pabilities is supported so that users are free to experioremake
mistakes.

The following sections discuss the capabilities and wagkiof the
system in greater detail.

2.1 Strokes

It is important that the strokes automatically generatethieysys-
tem be irregular. Uneven strokes make an illustration loofkes,
more natural, and hand-drawn, whereas regular strokesdinte
mechanical-looking texture. The use of irregular strokes be
compared to the introduction of randomnessin image ditlgg1i9].

ETE

S=

N\

AR
A
A\

\
\§\§
\\\\\\@

7
-

C

N\

_
o

7

7

G

V—

=

V=
\ \% M

Y

>
A

S N7 =/

Figure 3:A single texture drawn with several tone values.

We cannot simply draw strokes in completely random direxstjo
however—the stroke direction is one of the key elements fiméde
ing a texture. Instead, the system perturbs the strokesamiety of
small ways (see Figure 1): strokes can be drawn with a sligd w
gle (a wave with slightly randomized frequency and phaseight
strokes can be given a slight overall curvature; and strerkgth and
direction can be jiggled slightly. Section A.3 describes #troke-
drawing algorithm in greater detail. Currently, strokeseim system
are each of constant width, as per a “technical pen” [16].

2.2 Textures

The user paints by rubbing a “brush” overthe illustratidre strokes

that appear in the region under the brush are generated based
a user-selectestroke texturgsee Figure 2). The system supports

a library of user-definedtoredstroke textures, as well as several
built-in proceduralstroke textures. In this way, a wide variety of il-
lustration styles can be achieved. These two types of steodteres
are described in more detail below.

Stored stroketextures

A stored texture is simply a collection of strokes. Drawirtgxture
ata given darknessis a matter of choosing from the colleetigub-
setthat has enough strokes to reach the desired tone. (8rimees
may be inherently too light—they may not have enough stroes
make dark tones.)

For textures such as stipples and scribbles, the choiceakest to
draw for a given tonality is not critical. In these cases, distem
simply selects strokes from the texture in a random sequeece
erating candidate strokes and testing the tonal effect odlidate
strokes as described in Section A.3. Candidate strokep#satthe
tests are drawn, and those that fail are discarded (seeeR3jur

For other textures, however, the system supports a predgfiine

ority for each stroke, which specifies an order to use in generating

and testing candidate strokes. For example, Figure 4réitex a
texture in which only horizontal hatches are drawn for ligirtes,

Figure 4:A prioritized texture. Only the most significant strokes are
drawn for light tone values; less important strokes are tylotin to
darken the texture.

while cross-hatching strokes are used for darker tonesthenex-
ample would be a texture in which larger scribbles are dragforie
smaller ones.

Creating a good prioritized stroke texture is not alwayyeasome
design iteration may be required before the strokes and phier-
ities work well together. Once a texture has been creategpand
fected, however, it can be archived for repeated use. Theraysts
the user draw textures interactively and can also suppxitres
that are computed programmatically or that are taken frogeed
extracted from scanned images.

Procedural stroketextures

Many interesting texture effects can be computed procdgiLifae
system currently supports three types of procedural texgustip-
pling (randomly distributed points or short strokes), flaféatch-
ing, and curved strokes. The latter two textures can follmaor
against the gradient of a reference image. Since these et
textures truly built into the system, they are the basiading blocks
from which user-drawn stored textures are formed.

To draw procedural stroke textures, the system simply geesap-
propriate candidate strokes under the region of the brudhests
them, as discussed in detail in Section A.3. More intricaierp

tized procedural stroke textures, such as “brick,” “woait,"shin-
gle” textures, can also be defined [20], although they arecapt
rently implemented in our interactive system.

2.3 Referenceimages

A scanned, rendered, or digitally painted continuous-boage can
be underlaid “beneath” the illustration being drawn, arsptiiyed
faintly. This reference image can be used in several waysKigp
ure 5):

Figure 5:Using a grey scale image for reference. Left to right: Orig-
inal grey scale image; extracted edges; curved hatchings&the
gradient.

e As a visual reference for the artist.

e As atone reference for painting, in which case the texturk-da
ness will match that of the image.

e As asourceimage from which edges are extracted to use for out
lining and clipping. The user can select edges correspagrtdin
versions of the image at various resolutions.

e As aprogenitor oftencils The user can interactively define sten-
cils by specifying ranges of intensities in the referencagen
strokes are drawn only where the reference image valuetiéwit
the specified ranges.

e As a reference for determining stroke and texture oriemati
Textures that follow the reference gradient can be pagityl
useful for conveying curved surfaces.

Note that its extensive support for reference images mdieeg-t
lustration system a particularly effective tool for intetige digital
halftoning. However, it does not provide automatic haliibgp—it
is up to the user to choose which stroke textures to applyrevive
apply them, and how dark to make them, based on the usen# inte
and aesthetic sense for the final illustration. One couldyin@an
automated system to extract texture from an image, but therat
always enough information in the image to achieve the degfe
fect. For example, the original reference photograph fergbose
in Figure 9 does not show feathers in any great detail; thst antist
choose textures and introduce tone variation to conveyahsesof
feathering.

2.4 Detail manipulation

The illustration system supports multiresolution curgs gllow-

ing users to add or remove detail from strokes and edges.»or e
ample, an illustration can be initially made using smootblsts,
which can later be adjusted in subtle or not so subtle waysgus
variety of wiggly or scribbly detail. Alternatively, detaian be re-
moved from an edge extracted from the tone reference in ¢oder
yield smoother outlines (see Figure 6).

25 Clipping

The user can specify outlines, which may or may not be drawn in
the final illustration, but against which strokes (and strtéxtures)

are clipped. Outlines can be drawn by hand or can be taken from
edges in reference images.

Just as individual strokes should not be too regular, tippelil ends
of textures should in general be slightly ragged. The systém-
duces a small amount of random variation by clipping strakes
soon or allowing them to spill beyond the edge of the clippggjon
(see Figure 7).

Figure 6:Manipulating curve detail. Left to right: Teapot edges from
Figure 5, with detail removed; alternate details appliedhe curves.

Wi

Figure 7:Strokes clipped to an outline. Left: The outline is drawn.
Center: The outline has been removed; notice the hard edgsech
by exact clipping. Right: A small amount of random sloppénae-
ates a softer edge.

2.6 Individual strokes

Sometimes individual strokes are important enough to bemlizy
hand; for example, the hairs in Figure 11 were individuatlyated.
The user can draw individual strokes with a mouse or with ketab
These strokes can be given waviness and clipped in the same ma
ner as automatically-generated strokes. To overcome these'®
lack of smoothness, unwanted detail can be removed via thte mu
tiresolution curve mechanism, or prestored “artisticegularities
can be introduced, as described in Section 2.4.

2.7 Editing collections of strokes

In addition to modifying individual strokes, the user cait edllec-
tions of strokes. Editing operations can be applied to edk&s, to
those generated from a given texture, or to strokes selé@utdc-
tively.

Perhaps the most interesting editing operation is the téighop-

eration. Rather than simply erasing all strokes under thestr
“lighten” incrementally removes strokes. Thus, a texturegion

that is too dark can be made lighter without destroying thexgrity

of the texture, instilling pen-and-ink with qualities of algractive
medium. For example, in the lower left-hand drawing of Fey8r
the mottled effect in the background was created by paimticrgss-
hatch texture to a uniform darkness, then slightly lighterin a few
places with touches of the brush.

3 Results

The pen-and-inkillustration systemis implemented in Cret aINS
at interactive speed on an SGI Indigo2 workstation, witteowyt ad-
ditional hardware assistance. The system has proven aquitess-
ful at assisting users in easily producing a variety of tHatons.
All figures in this paper were drawn using the illustratiorstgyn;
only a few minutes were required for the simplest figures zafedv
hours were required for the goose in Figure 9. All figures veere

Figure 8:A single scene, drawn in a variety of styles. Pitz [12] suggdsawing this scene with varying styles, as an exercisetiotdent
illustrators. The three drawings on top and left are attesnot closely follow examples given in the book, while the tavght is our own
stylistic expression. The illustrations were created gsin image of a simple 3D model as a tone reference.

put in PostScript by our system and printed with the text orCLG
SelectPress 1200dpi printer.

To test the range and quality of the system, we chose to tagkle
cises and mimic drawings from illustration texts. Figure8 8nd 10
show some of the results. We must admit that the target pdrirkn
drawings in the textbooks are generally finer than ours. Hewe
when we consider that our illustrations were made on a bittigp
play, using only a mouse, by programmers who are not traikred i
lustrators, and in a matter of minutes for the simpler drasjwe
find our results very encouraging.

4 Futurework

The illustration system we have built suggests a numbeeafsior
future research:

e Experimenting with better interaction techniqude control
panel of our prototype system has a button or slider for gear
ery low-level operation and parameter in the program andd&en
is somewhat cumbersome to use. A better interface would pro-
vide support for common illustrator techniques, such asdul
outlines and stippled edges. In addition, we would like tplese
adding much higher-level controls for producing illusivas, in-
cluding commands to “increase contrast” or “focus atteritam
certain regions of the illustration.

o More sophisticated strokes and stroke textuf@st simple pro-
cedural and stored textures do not yet provide all of thelstybt
and variety available to the pen. For example, we would like t
include the ability to vary the thickness along a stroke,clitis
supported in other pen-and-ink work [4, 20].

¢ Resolution-independencehe user should be able to work at a
convenient screen resolution, while the final output shbale
strokes drawn with the highest resolution the printer caopstt.
However, changing resolution in a naive fashion may chamge t
appearance of strokes and stroke textures in undesiralye. wa
We would like to explore methods of storing illustrations ae
collections of strokes, but as higher-level descriptiohtoae,
texture, and clipping information that could be used to getee
the image appropriately at any arbitrary resolution.

e Combining with 3DWe would like to interface our interactive
system with an automatic renderer for creating pen-andhirgk
trations from 3D models [20] to create an integrated intiérac
2D and 3D illustration system.

Acknowledgements

We would like to thank Adam Finkelstein for helping us incorgte
his stroke detail research into our editor, and Georges &ihkch
and Tony DeRose for their useful discussion of illustratwimci-
ples. We would also like to thank SGI for loaning us several ma
chines in order to meet our deadlines.

This work was supported by an NSF National Young Investigato
award (CCR-9357790), by the University of Washington Geddu
Research and Royalty Research Funds (75-1721 and 65-%ir#il),
by industrial gifts from Adobe, Aldus, and Xerox.

References

[1] Brian Cabral and Leith (Casey) Leedom. Imaging Vectelds Using

Line Integral Convolution. Proceedings of SIGGRAPH 93 (Aei,

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

Figure 9:A Canada goose. Simmons [16] uses the goose as a worked exaftight technical pen drawing from a reference photograpd
attempted to mimic the author’s final result with our systesing only a mouse. The book includes a reproduction of ttieoas own reference

photograph, which we scanned to use as a tone reference.

California, August 1-6, 1993). I€omputer GraphicsAnnual Con-
ference Series, 1993, pages 263-272.

John Canny. A Computational Approach To Edge DetectlarRan-
gachar Kasturi and Ramesh C. Jain, edit@smputer Vision: Prin-

ciples pages 112-131. IEEE Computer Society Press, Los Alamitos,

California, 1991. Reprinted fromEEE Transactions on Pattern Anal-
ysis and Machine Intelligenc8(6):679-698, November 1986.

Tunde Cockshott, John Patterson, and David England. élliad the
Texture of Paint. IrProceedings of EUROGRAPHICS '92ages C—
217 to C-226, September 1992.

Adam Finkelstein and David H. Salesin. MultiresolutiGarves. Pro-
ceedings of SIGGRAPH 94 (Orlando, Florida, July 24-29, 3984
Computer GraphicsAnnual Conference Series, 1994.

Michel Gangnet, Jean-Claude Herve, Thierry Pudet, asend
Manuel Van Thong. Incremental Computation of Planar Maps- P
ceedings of SIGGRAPH 89 (Boston, Massachusetts, July Biyuat
4,1989). InComputer Graphic&3, 3 (August 1989), pages 345-354.

Arthur L. Guptill. Rendering in Pen and IniVatson-Guptill Publica-
tions, New York, 1976.

Paul Haeberli. Paint by Numbers: Abstract Image Repredions.
Proceedings of SIGGRAPH '90 (Dallas, Texas, August 6—-100)9
In Computer Graphic24, 4 (August 1990), pages 207-214.

Paul Haeberli and Mark Segal. Texture Mapping as a Furetam
tal Drawing Primitive. InProceedings of the Fourth Annual EURO-
GRAPHICS Workshop on Renderjpgges 259-266, Paris, June 1993.
Ecole Normale Superieure.

Douglas Kirkland.Icons Collins Publishers San Francisco, San Fran-
cisco, California, 1993.

John-Peter Lewis. Texture Synthesis for Digital Paipt Proceedings
of SIGGRAPH '84 (Minneapolis, Minnesota, July 23-27, 1984)
Computer Graphic48, 3 (July 1984), pages 245-252.

Theo Pavlidis. An Automatic Beautifier for Drawings dfidstrations.
Proceedings of SIGGRAPH '85 (San Francisco, Californidy 22—
26, 1985). InComputer Graphic49, 3 (July 1985), pages 225-230.

[12]

[13]
[14]

[15]
[16]

(17]

(18]

(19]

(20]

A

Henry C. Pitz.Ink Drawing TechniquesNatson-Guptill Publications,
New York, 1957.

The Premisys Corporation, Chicagéquiggle 1993.

Takafumi Saito and Tokiichiro Takahashi. ComprehklesRendering
of 3D Shapes. Proceedings of SIGGRAPH '90 (Dallas, Texaguati
6-10, 1990). IlcComputer Graphicg4, 4 (August 1990), pages 197—
206.

Robert Sedgewick.Algorithms Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1983.

Gary SimmonsThe Technical PelWatson-Guptill Publications, New
York, 1992.

Steve Strassman. Hairy Brushes. Proceedings of SIGARA86
(Dallas, Texas, August 18-22,1986)Computer Graphic20, 4 (Au-
gust 1986), pages 225-232.

Ivan E. Sutherland. Sketchpad: A Man-Machine GrapBiocenmuni-
cation System. IfProceedings of the Spring Joint Computer Confer-
ence pages 329-346, 1963.

Robert Ulichney. Digital Halftoning. The MIT Press, Cambridge,
1987.

Georges Winkenbachand David H. Salesin. Computere@ead Pen-
and-Ink lllustration. Proceedings of SIGGRAPH 94 (Orlarfelorida,
July 24-29, 1994). Il€omputer GraphicsAnnual Conference Series,
1994.

Implementation details

This appendix outlines the implementation of our prototypa-and-ink il-
lustration system. We will focus on the most significant feas: the data
structures allowing quick updating and editing of the iiation, and the
stroke generation and testing algorithms.

Section A.1 describesthe data types used in the systenpS&c? presents
the global data items maintained. The process of generatijusing
strokes is discussed in Section A.3.

Figure 10:Close-up of the goose head.

A.1 DataTypes

The two basic data structures used by the illustration syste thestroke
and thestroke database

Stroke

The data type at the heart of the system isShake. Each stroke includes
the following fields:

o pixels: An arbitrary-size array ofx,y) pixel coordinate pairs.
o length: The size of theixels array.

o width: The width of the stroke, in pixels.

e bbox: The rectangular bounding box of the stroke’s pixels.
o id: The texture from which the stroke was derived.

e priority: The ranking of a stroke, if in a prioritized texture.

The entries of theixels array contiguously trace the path of the stroke:
x andy never change by more thari from one entry to the next.

The operations supported by tl#roke type include: testing to see if a
stroke intersects a given rectangular region, circulaibre@r other stroke;
decreasindength by trimming entries off the ends gfixels; merging two
contiguous strokes into a single stroke; and returning thetfin the stroke
that is closest to a given pixel.

A stroke can be manipulated as a multiresolution curve [4EHEentry in
pixelsis used as a control point of an interpolating spline, whisubject
to multiresolution analysis and can have its detail editedeplaced. The
resulting curve is scan-converted to recover the contiggaxels entries
required by theStroke type.

Stroke database

A stroke database maintains a collectionSefoke instances, supporting
addition and deletion of strokes, and various queries. itjsortant that
the database operations and queries be quick enough to gdimting and
editing at interactive speed.

We implement the stroke database using a modified k-D tree (se
Sedgewick [15]). Each node of the tree corresponds to amegithe image;

the children of the node partition that region. The pantitie always hori- [0
zontal or vertical and is chosen so as to distribute as evanpossible the
strokes of a region between the two children. Each leaf nod&ins a list of

the strokes that intersect its region. For performanceqregp, a limit of 10
strokes per leaf and a minimum sizefok 5 pixels per leaf are maintained
(with the area restriction having precedence).

In the modified k-D tree, a given stroke may be referenced bgrat¢leaves
since a stroke can cross partitions of the tree. The straictlows us to
quickly find all strokes that may overlap a specified regiornh®yusual re-
cursion along the limbs of the tree that include the regioimdviextra book-
keeping is required when iterating through the strokesérig¢hves to ensure
that a stroke is not visited multiple times.

The queries supported by a stroke database include: fintistgokes within

a givenrectangular or circular region; finding all strokestbverlap a given
stroke; and finding the stroke nearest a given pixel. Eachygquay spec-
ify criteria such as a particuldd value. These queries allow the system to
perform operations such as deleting a stroke and updatinsciteen as fol-
lows: first, find the stroke nearest the cursor; next, deleetroke from the
database and erase it from the screen; finally, find all ssrtiia overlap the
deleted stroke and redraw them.

A.2 Global data objects

The system maintains several global data objects to supipoihteractive
illustration processes:

o Main stroke database and image bitmdphe illustration is maintained
in a dual representation: a stroke database maintains fleetian of
Stroke instances that make up the illustration; and an image bitatap
lows the system to quickly determine if a pixel has been drayvane or
more strokes. When storing to disk, only the stroke databesds to be
saved; the image bitmap can be recreated by traversing thbatze and
drawing all the strokes.

o Clip-edge database and clip-edge bitma&p allow fast clipping of drawn
strokes to outline edges, the system maintains a globahbitnto which
all clipping edges are drawn (clipping is discussed in $ecfi.3). The
clip edges can come from edge detection of the referencedmiafjom
freehand drawing. To allow the user to activate and dedetimdges, the
edges are stored &8roke instances in a stroke database.

o Stored stroke textureThe system loads stored stroke textures on de-
mand from a library on disk. A stored texture is defined as taregular
region with toroidal wrap-around, so that the texture camdessly tile
the illustration plane. Each texture is maintained in thetesy as a stroke
database. For a prioritized texture, each stroke has agiasstpriority
value. The stroke database of a stored stroke texture igegueaut is not
modified when the texture is used.

o Reference imag&he system stores the reference image in memory, al-

lowing quick pixel-by-pixel tone reference and stencilibignlike the im-

age bitmap of the illustration, the reference image is aiit 8reyscale.
When areference image is loaded from disk, the detectedséalgee im-

age are added to a clip-edge database and bitmap. We use p &ty
extractor [2] to detect edges at severalimage resolutidris.potentially
time-consuming processing is only done the first time a greéerence
image is used; the resulting edges are saved on disk alonhgheitmage,

so that they can be loaded quickly in the future.

A.3 Drawingstrokes

The process to “paint” with strokes is similar for the sugpdrmprocedural
textures—stippling, straight hatching, and curved hatghi-and for stored
stroke textures. The following pseudocode outlines thigess:

Paint:
for each brush positio®
while S — GenerateCandidateStroke(P)
ClipStroke(S)
if TestStrokeTone(S) then
DrawStroke(S)
end if
end while
end for

The steps of this process are described below.

GenerateCandidateStroke(P). At each brush positiorP, the system
may in general try to draw many strokes. Each invocatiofizefierate-
CandidateStroke returns the next stroke instance from a set of candidates.
The next stroke returned may be generated dynamically lwaste success

of the previous strokes. The generation of candidate strdkpends on the
texture:

o Stippling.There is only a single candidate: a stipple dot at a random lo-
cation under the brush (chosen with uniform distributiottia brush’s
polar coordinates). The stipple dot is generated as a leéingfitoke.

o Straight hatchingThe system tries a sequence of line segments with de-

creasing length, until a segmentis drawn or a minimum leisgtrached.
The midpoint of each stroke is a random location under thsfhrand the
direction and initial length are specified by the user. Theation may be
fixed or aligned relative to the gradient of the referencegeadhe user
may request a small randomization of the direction and tenfte user
may also specify that only full-length strokes be used, iricivitase if
the initial candidate is not drawn, no further strokes aterapted. Each
candidate stroke is a perturbed line segment, generatétktfpltowing
pseudocode:

PerturbedLineSegment(z1, y1, z2, ¥2,a,w, c):
; (@1, y1) and(z2, y2) are the endpoints of the line segment.
; a is the magnitude ang the base frequency of waviness.
; ¢ is the magnitude of curviness.
; random() value has uniform distribution ojo, 1].
; gaussian() value has normal distribution ofs-1, 1].
dr — x93 — x1
dy — y2 — 1

s — \/dx2—|—dy2

§ — 2nw(l+4 igaussian())

v o= %5gaussian()
i — 0, j « 0, ¢ — 2rrandom() O
for « — 0to1 step 1/ max(|dz|, |dy]|)
; perturb line with sine waviness and quarter-wave curve.
b — asin(¢)/s+ c(cos(2 a— Z) - 1)
pixelsi] — (1 4+ ads +bdy, y1 + ady + bdx)
; occasionally shift the sine wave frequency.
if j6> 2 % then
v - %5gaussian()
7 <0
end if
; update for next pixel.
¢ — o+ 6+
i++, j++
end for

and gaussian() >

When needed, intermediate pixels are inserted in order fotaia the
contiguity requirement of th8trokes type.

o Curved hatchingSimilar to straight hatching, the system tries strokes
of decreasing length until one is accepted. The user spetifEinitial
length and direction relative to the reference image gradie curved
stroke is generated by following the image gradient as aovdild
(much as was done by Cabral and Leedom [1]) forward and backwa
for the given length.

o Stored StrokesThe system queries the texture’s database for a list of
strokes that lie under the brush, modulo tiling of the imatgme with
the texture. The strokes of the resulting list are tried innity order for
prioritized textures, or random order for non-prioritizectures. A pri-
oritized texture may be flagged ssictly prioritized, in which case if a
candidate stroke fails the tone test, the remaining lowerify strokes
are not considered. Each candidate stroke is generatedrisfating the
stored stroke’pixels to the propertile in the image. Our system does not
currently add any randomness to the strokes beyond thahwids used
when the texture was originally defined. Tiling artifacte &rpically not
objectionable if the illustration feature size is smallear the tile size,
but could be alleviated through random stroke perturbation

0 ClipStroke(S): The candidate stroké is subjected to a series of clipping

operations:

1. To the bounds of the overallimage.

2. To the brushClip the strokes to the brush for stored stroke textures to
give the user a traditional “textured paint.” This clippistgp is not per-
formed for procedural textures; in this case, the candidatikes are
generated starting under the brush but may extend beyohdutsds.

3. To clip-edgesTrace from the center of the stroke out to each end, exam-
ining the corresponding pixels of the global clip-edge lifmstopping
when an edge is met.

4. To a reference-image stencllrace from the center of the stroke out to
each end, examining the corresponding pixels of the referénage.
Can stop at black, white, or any of a number of user-definedasiof
image intensities.

The clipping operations return a “first” and a “last” indexdrthe stroke’s
pixels array, but before actually trimming the stroke, these iediare per-
turbed up or down by a small random amount to achieve ragdgguirnt) as
described in Section 2.5. The magnitude of the perturbagiadjustable by
the user. If the stroke is clipped to zero length, it can hedtly rejected at
this point.

0 TestStrokeTone(S): Two tests are performed to see how strakaffects

the image. First, the stroke’s pixels in the image buffertasted: if all the
pixels are already drawn, the stroke has no effect on thedraad is trivially

rejected. Next, the effect of the stroke on the image toneisrchined: the
stroke is temporarily drawn into the image bitmap and theltieg) tone is

computed pixel-by-pixel along its length, by low-pass filig each pixel's
neighborhood. Depending on the user’s specification, tsgetktone may
be determined from the reference image’s value (via sirfolarpass filter-
ing along the stroke), or may simply be a constant value. Tioke fails

if it makes the image tone darker than the desired tone amgndieng its
length.

DrawStroke(S): To draw strokes, its pixels in the image bitmap are set,
the display is updated, and an instanceSois added to the main stroke
database. For stored stroke textures, the system checke tih the new
stroke S overlays an existing instance of the same stroke—such amr-occ
rence could happen, forexample, if the earlier stroke wippet to the brush
and the user has now moved the brush slightly. Rather thaingtite new
stroke, the previously-drawn stroke is extended to inclin@enew stroke’s
pixels in order to avoid overwhelming the data structuregeNhat for a new
instance of a stroke to align with a previous instance, atageandomness
should be exactly repeatable; the values for the strokefrtions should
be derived from a pseudorandom function over the illugiragilane.

AN
P

| \\\\\\\\\

\ \\\\\\\

e Amm,mw

\\\

o |

N\

N

N\

Figure 11:An illustrated portrait. The reference image was a photo-
graph by Douglas Kirkland [9].

