
An Algorithm for Exact Bounds

on the Time Separation of Events

in Concurrent Systems

1

Henrik Hulgaard, Steven M. Burns,

Tod Amon

2

, and Gaetano Borriello

Department of Computer Science and Engineering, FR{35

University of Washington

Seattle, WA 98195

Technical Report 94-02-02

February 9, 1994

1

Submitted to IEEE Transactions on Computers.

2

Department of Computer Science, Southwest Texas State.

1

An Algorithm for Exact Bounds on the Time Separation of

Events in Concurrent Systems

1

Henrik Hulgaard, Steven M. Burns, Tod Amon

�

, and Gaetano Borriello

Department of Computer Science and Engineering, FR{35

University of Washington

Seattle, WA 98195

E-mail: fhenrik,burns,gaetanog@cs.washington.edu

�

Department of Computer Science

Southwest Texas State

San Marcos, TX 78666{4616

E-mail: ta02@academia.swt.edu

Submitted to IEEE Transactions on Computers

February 9, 1994

Abstract

Determining the time separation of events is a fundamental problem in the analysis, synthesis, and

optimization of concurrent systems. Applications range from logic optimization of asynchronous

digital circuits to evaluation of execution times of programs for real-time systems. We present an

e�cient algorithm to �nd exact (tight) bounds on the separation time of events in an arbitrary pro-

cess graph without conditional behavior. This result is more general than the methods presented in

several previously published papers as it handles cyclic graphs and yields the tightest possible bounds

on event separations. The algorithm is based on a functional decomposition technique that permits

the implicit evaluation of an in�nitely unfolded process graph. Examples are presented that demon-

strate the utility and e�ciency of the solution. The algorithm will form a basis for exploration of

timing-constrained synthesis techniques.

Index terms: Abstract algebra, asynchronous systems, concurrent systems, discrete event

systems, time separation of events, timing veri�cation.

1 Introduction

Computer systems are becoming increasingly more concurrent. This is true with regards to both

their implementation and their speci�cation. Implementations are becoming more concurrent be-

cause the concurrency provides a mechanism for improving response time by performing multiple

computations at the same time. Speci�cations are often concurrent, because the concurrency pro-

vides a means by which the design's complexity can be broken up into smaller components that

interact with one another. Unfortunately, concurrent systems are notoriously di�cult to design.

Managing the large number of interactions occurring concurrently necessitates the development of

formal methods for specifying and analyzing the behavior of these systems.

For these reasons there is a growing interest in formal veri�cation. Veri�cation tools are used

to formally reason about system correctness, and reasoning about complex system behavior often

involves reasoning about time. Since design automation tools are working with higher levels of

design abstraction, timing issues are becoming especially important. Many aspects of a system's

behavior are not under the control of the designer. Systems must conform to the environment in

which they will be placed. The environment may demand that particular timing relationships be

respected. If synthesized designs need to be integrated into pre-existing systems, then synthesis

tools must accommodate the environment and the timing relationships that need to be satis�ed.

When a design is speci�ed at a high level, important trade-o�s are made during synthesis. There

are many possible implementations; it may be that part of the design can be in hardware and part

in software. One important criterion that can be used in making such decisions is an analysis of

the resulting timing behavior of a system and whether it will meet the timing constraints provided

by the designer. Veri�cation tools are thus needed not only after synthesis (i.e., implementation

veri�cation) but also during synthesis, for they can provide guarantees that will enable synthesis

algorithms to make good choices and discover possible optimizations. For example, timing infor-

mation can be used to help determine an appropriate partitioning for a design, and is also of vital

importance in scheduling.

Related work in timing veri�cation comes from a variety of di�erent research communities, and

is quite extensive. One aspect which much of the research has in common is its focus on analyzing

very general systems. This is true for approaches based on decision procedures (e.g., [16, 17]),

model checking (e.g., [7, 18]), exhaustive simulation (e.g., [20]), language containment (e.g., [2, 26]),

deductive proofs techniques (e.g., [27]) and theorem proving (e.g., [12]). For this reason, the timing

analysis is usually at least of exponential time complexity and is often undecidable [15]. Because

these approaches do not yield practical and e�cient algorithms they are not particularly useful for

synthesis purposes. In contrast, some synthesis and timing veri�cation tools greatly restrict the

classes of behavior which can be analyzed in favor of e�cient veri�cation algorithms.

Interface veri�cation algorithms attempt to determine minimum and maximum separation times

between system events given the propagation delays of the speci�ed system. An event can be

thought of as an execution point in the system (i.e., a completion or initiation of a computation or

a synchronization). Depending on the level of abstraction in the speci�cation, events may represent

low-level signal transitions at a circuit interface or abstract behavioral control ow.

This paper presents an algorithm that determines tight upper and lower bounds on the sep-

aration in time of an arbitrary pair of events in a concurrent system. The algorithm achieves

its e�ciency by restricting the class of concurrent systems to those without conditional behavior.

Fortunately, that still leaves a large and useful class of deterministic concurrent speci�cations to

which our analysis applies. To illustrate the kinds of systems that can be analyzed, consider the

1

following concurrent system consisting of three processes that synchronize over two channels a and

b, and perform some internal computation (delay ranges speci�ed in brackets):

Process 1 ::

repeat f

Synchronize a;

Compute [4, 10];

g

Process 2 ::

repeat f

Synchronize a;

Compute [1, 2];

Synchronize b;

Compute [1, 6];

g

Process 3 ::

repeat f

Synchronize b;

Compute [5, 20];

g

There are many questions regarding the temporal behavior of this system that we might ask:

\How slowly might the �rst process cycle?", or \How long might the second process be idle waiting

on the third process?", or \How can we best speed-up the performance of our system?" and \Which

delays impact performance the most?" To answer such questions we need to be able to determine

how the inter-process synchronizations a�ect the temporal behavior of our concurrent system. For

example, the �rst process could obviously have a cycle period of at least 10 time units (the upper

bound on the computation time) but how much more delay might be incurred as a result of the

synchronization with the second process?

Other approaches to the problem of e�ciently �nding bounds on the separation in time of two

events have either been inexact or based on a more restrictive graph topology. Loose bounds that

may not enable all possible optimizations were obtained by [25]. Both [24] and [30] handle only

acyclic graphs. However, they provide a theoretical foundation upon which our solution is built.

Both [8] and [6] use cyclic graph models but they deal only with �xed delays between events.

Several veri�ers have been developed for speci�c applications [3, 5, 21].

This paper is composed of six sections. We follow this introduction with a formalization of

the timing analysis and in Section 3 we present an algorithm that solves the maximum separation

problem for acyclic graphs. This algorithm is then extended in Section 4 to handle cyclic graphs

by introducing a functional algebra that allows us to implicitly analyze an in�nite graph. Section 5

presents four applications of the timing analysis and �nally Section 6 summarizes the contributions.

2 Problem Formalization

2.1 The Process Graph

We represent a concurrent system as a directed graph, called the process graph. The process graph

is a simple modi�cation of the event{rule system developed in [6]. The model can also be viewed

as an extension of [24] and [30], where we consider cyclic max-only or type-2 graphs, respectively.

Process graphs are similar to timed event graphs [4], marked graphs or decision free Petri nets. Let

G

0

= hE

0

; R

0

i denote a process graph composed of

� a �nite set of events, E

0

, the vertices of the graph.

� a �nite set of rule templates, R

0

, the edges of the graph.

Each edge is labelled with two objects, a delay range [d;D] with integer bounds (0 � d � D), and

", an integer (usually non-negative) described in Section 2.3. The set of events, E

0

, always contains

2

a unique event, root , which is used to specify the startup behavior of the system. For the example

in Figure 1, which corresponds to the three-process example in the introduction, we have

E

0

= froot ; a; bg and

R

0

= froot

[0;0];0

7�! a; a

[4;10];1

7�! a; a

[1;2];0

7�! b; b

[1;6];1

7�! a; b

[5;20];1

7�! bg :

[1; 2]

b

a

[1; 6]

[4; 10] [5; 20]

root

[0; 0]

Figure 1: A process graph with three events, root , a and b. The number of lines drawn

through an edge indicates the value of the occurrence index o�set, ", for the edge (e.g.,

b

[1;6];1

7�! a constrains a

k

relative to b

k�1

).

We restrict our analysis to well-formed graphs, that is, graphs that are connected and have

"(c) > 0 for all cycles c in the graph, where "(c) is the sum of the " values for all edges in the cycle

c. Furthermore, root must have zero indegree, and for all other events v, there must be a path from

root to v, i.e., only root has indegree of zero.

2.2 The Unfolded Process Graph

Consider the process graph G

0

= hE

0

; R

0

i. We denote the k

th

occurrence of event v 2 E

0

as v

k

,

and refer to k as the occurrence index of v

k

. We can represent each of the iterations of the process

graph explicitly by unfolding the process graph. Let E be the set of all event occurrences (in�nite

in one direction) and let R be the set of rules generated by instantiating each rule template of R

0

for each of the event occurrences in E. We call the in�nite directed graph constructed from the

vertex set E and the edge set R the unfolded process graph, denoted by G = hE;Ri. G is a directed

acyclic graph (DAG) that represents the in�nite execution of the process graph, G

0

. The set of

event occurrences E can be de�ned recursively from the basis clause E = froot

0

g and the inductive

clause

if u

k

2 E and u

[d;D];"

7�! v 2 R

0

; then v

k+"

2 E :

The set of edges in the unfolded process graph R is de�ned as:

R =

�

u

k

[d;D]

7�! v

k+"

�

�

�
u

[d;D];"

7�! v 2 R

0

and u

k

; v

k+"

2 E

�

:

Figure 2 shows a portion of the unfolded process graph for the example in Figure 1.

3

root

a

0

b

0

a

1

b

1

a

2

b

2

a

3

b

3

[0, 0]

[0, 0]

[4, 10] [4, 10] [4, 10] [4, 10]

[5, 20] [5, 20] [5, 20] [5, 20]

[1,6][1,6][1,6] [1,6]

[1,2] [1,2][1,2] [1,2]

a

4

Figure 2: A portion of the unfolded process graph for the process graph in Figure 1.

Events can be characterized as repeatable or non-repeatable corresponding to whether there

is a cycle in the process graph containing the event. The event root is non-repeatable as it has

indegree of zero. A non-repeatable event will occur at most once in the unfolded process graph

while a repeatable event occurs an in�nite number of times. Non-repeating events arise because

a non-trivial DAG can be used for specifying the startup behavior. For convenience, we drop the

occurrence index (zero) when referring to occurrences of non-repeating events (e.g., we write root

instead of root

0

).

2.3 Execution Model

An execution of a process graph is the consistent assignment of time values to event occurrences.

A timing assignment, � , maps event occurrences to global time, thus �(v

k

) is the time of the k

th

occurrence of event v. The delay information in R restricts the set of possible timing assignments.

Formally, we de�ne constraints on the time values introduced by each event occurrence, i.e., a

consistent timing assignment satis�es:

max

�

�(u

k�"

) + d

�

�

�
u

k�"

[d;D]

7�! v

k

2 R

�

� �(v

k

) � max

�

�(u

k�"

) +D

�

�

�
u

k�"

[d;D]

7�! v

k

2 R

�

: (1)

The constraints on �(v

k

) embody the underlying semantics of a process graph's execution, i.e., an

event can occur only when all of its incident events have occurred. Each incident event is delayed

by some number in a bounded interval ([d;D]). Thus, the earliest time at which v

k

can occur is

constrained by d values, the latest by D values. Figure 3 shows a possible timing assignment for

the graph in Figure 2 obtained by choosing the upper bound, D, for all delays.

0 10 28 48 68

2 22 42 62

root

a

0

b

0

a

1

b

1

a

2

b

2

a

3

b

3

[0, 0]

[0, 0]

[4, 10] [4, 10] [4, 10] [4, 10]

[5, 20] [5, 20] [5, 20] [5, 20]

[1,6][1,6][1,6] [1,6]

[1,2] [1,2][1,2] [1,2]

a

4

0

Figure 3: A portion of the unfolded process graph for the process graph in Figure 1. The

vertices are annotated with the timing assignment � (v

k

) obtained by choosing the upper

bound, D, for all delays.

2.4 Problem De�nition

The problem we address in this paper is: given two events, s and t in E

0

, and a separation in

occurrence index �, determine the largest � and the smallest � such that 8k � max(0; �):

� � �(t

k

)� �(s

k��

) � � :

4

We address only the problem of �nding the maximum separation, since the minimum separation,

�, can be obtained from a maximum separation analysis of 8k � max(0;��):

�� � �(s

k

)� �(t

k�(��)

) � �� :

To determine the bounds on the time separation between two consecutive a events, we would

set s = t = a and � = 1, and consider the bounds on �(a

k

) � �(a

k�1

). The timing assignment in

Figure 3 indicates that the separation between two consecutive a events for the process graph in

Figure 1 is between 10 and 20, i.e., that 10 � �(a

k

) � �(a

k�1

) � 20. However, it turns out that

there exists a timing assignment such that �(a

k

)��(a

k�1

) = 4 (for some k) and another assignment

such that �(a

k

) � �(a

k�1

) = 25. These are the extreme cases and thus the tightest bounds are

� = 4 and � = 25.

The following two sections describe the theory and implementation of an e�cient algorithm for

determining the maximum separation, i.e., for �nding �. However, the reader may want to skip

ahead to Section 5 for some applications of this kind of timing analysis before examining the details

of the Time Separation of Events (tse) algorithm.

3 Algorithm for an Acyclic Graph

Our algorithm for analyzing a process graph is based on an algorithm that determines the maximum

separation in an acyclic graph [24], i.e., for a �nite portion of the unfolded process graph. In

Section 4 we will generalize this algorithm for in�nite unfolded graphs.

Consider a particular event occurrence of the event t, t

�

. Let �

�

be the strongest bound for

the separation problem given the occurrence index �, i.e.,

�(t

�

)� �(s

���

) � �

�

:

We can determine �

�

from a �nite portion of the unfolded process graph created by only including

the vertices for which there is a path to either t

�

or s

���

. Name the resulting graph G

�

. The

algorithm consists of two simple phases. We �rst compute m(v

k

), the longest path from v

k

to s

���

using the lower delay bounds of the edges:

m(v

k

) = max

n

d(h)

�

�

�
all paths v

k

h

; s

���

o

;

where d(h) is sum of the d values of the edges on the path h. We can compute the m-values by a

reverse topological traversal starting from s

���

. If there is no path from v

k

to s

���

, denoted by

v

k

6; s

���

, we can assign an arbitrary constant to m(v

k

). Normally, we use m(v

k

) = 0 although it

sometimes is advantageous to choose di�erent constants for the various v

k

|see Section 4.7.

Second, we compute M -values using the D values by assigning M(root) = 0 and then for all

other occurrences in (normal) topological order:

M(v

k

) = max

�

X

r

�

�

�
r = u

k�"

[d;D]

7�! v

k

; r 2 G

�

�

(2)

where

X

r

=

8

<

:

min(0;M(u

k�"

) +D �m(u

k�"

) +m(v

k

)) if v

k

; s

���

M(u

k�"

) +D �m(u

k�"

) +m(v

k

) if v

k

6; s

���

5

Theorem 1

�

�

= M(t

�

)�m(t

�

) is an achievable upper bound on the time separation between s

���

and t

�

.

Proof: (Sketch, full proof in Appendix A.) The proof consists of two parts. We �rst prove that

for any consistent timing assignment � , we have

�(t

�

)� �(s

���

) �M(t

�

)�m(t

�

) :

Then we show that the class of timing assignments

�(v

k

) = M(v

k

)�m(v

k

) + c ;

where c is an arbitrary constant, correspond to legal executions, and

�(t

�

)� �(s

���

) = M(t

�

)�m(t

�

) :

2

Acyclic-Tse(G

�

; s

���

; t

�

)

1 for u

j

in reverse topological order of G

�

2 m(u

j

)

8

>

>

<

>

>

:

0 if u

j

= s

���

An arbitrary constant if u

j

6; s

���

max

�

m(v

k

) + d

�

�

�
u

j

[d;D]

7�! v

k

2 G

�

and v

k

; s

���

�

if u

j

; s

���

3 M(root) 0

4 for v

k

in normal topological order of G

�

5 if v

k

; s

���

then

6 M(v

k

) max

�

min(0;M(u

j

) +D �m(u

j

) +m(v

k

))

�

�

�
u

j

[d;D]

7�! v

k

2 G

�

�

7 else

8 M(v

k

) max

�

M(u

j

) +D �m(u

j

) +m(v

k

)

�

�

�
u

j

[d;D]

7�! v

k

2 G

�

�

9 return M(t

�

)�m(t

�

)

Figure 4: Algorithm for determining the maximum separation between events occurrences

s

���

and t

�

. G

�

is a �nite acyclic graph, i.e., a �nite portion of the unfolded process graph.

The pseudo-code for the acyclic algorithm is shown in Figure 4. Informally, the algorithm works

as follows: To maximize the value of �(t

�

)� �(s

���

) we need to �nd an execution that maximizes

�(t

�

) and minimizes �(s

���

). In the �rst pass the algorithm determines the minimum separation

from any event to s

���

. In the second pass, events are delayed as much as possible using D-values.

However, the delay for a given edge can not be assigned both d and D, and this is ensured by the

minimization with zero in line 8.

Applying the algorithm to the example in Figure 1 (see Figure 5 for the computation of �

2

)

yields the following maximum separations:

� (a

k

)� � (a

k�1

) � �

k

�

1

�

2

�

3

�

>3

10 24 25 25

6

root

a

0

b

0

a

1

b

1

a

2

a

2

b

1

a

1

b

0

a

0

root

44

5

11

1 1

0

0

04 0

01

4

10

20

10

0

0

2 2

6 6

18�1

0 240

0

(a) (b)

Figure 5: Finite acyclic graph, G

2

, for obtaining �

2

for the process graph in Figure 1 given

the parameters s = t = a and � = 1, i.e., s

���

= a

1

and t

�

= a

2

. In (a), the edges

are labeled with the d values, and the vertices are labelled with the m-values obtained in

the �rst phase of the algorithm. In (b), the edges are labeled with the D values, and the

vertices are labelled with the M -values obtained in the second phase. We obtain �

2

=

M (a

2

)�m(a

2

) = 24� 0 = 24.

To compute �, the maximum separation in time over all occurrences of s and t, separated in

occurrence index by �, we maximize �

k

over all values of k:

� = max

n

�

k

�

�

�

k � max(0; �)

o

:

For the example in Figure 1 we thus have � = maxf10; 24; 25; 25; : : :g = 25. The problem, of

course, is that this requires an in�nite number of applications of the algorithm.

Before we present an algebraic solution that allows us to analyze the in�nite unfolded graph, we

present two additional examples constructed to illustrate both the simplicity and the complexity

of the required analysis. Section 5 presents realistic applications of the timing analysis.

a

[1; 2]

e d

c

[1; 2]

b

root

Figure 6: A process graph that represents two coupled pipelines. All unspeci�ed delay

ranges are [0; 0].

The �rst example, in Figure 6, is a process graph that represents two coupled pipelines. If the

pipelines were not coupled at c, the maximum separation between a and e would be unbounded.

This is because the �rst pipeline (choosing a delay of 2 units between consecutive a occurrences)

could be arbitrarily slower than the second pipeline (choosing the delay of 1 unit between consecutive

e occurrences). The coupling of the pipelines forces one pipeline to wait for the other if it gets too

7

far ahead. For all k � 0, it can be shown that �(a

k

)� �(e

k

) � 4:

�

0

�

1

�

2

�

3

�

4

�

>4

0 1 2 3 4 4

This arises because we can have �(a

0

) = 0, �(a

1

) = 2, �(a

2

) = 4, �(a

3

) = 6, �(a

4

) = 8, �(a

5

) = 10

along with �(e

0

) = 0, �(e

1

) = 1, �(e

2

) = 2, �(e

3

) = 3, �(e

4

) = 4, but we cannot have �(e

5

) = 5

because of the dependency requiring �(e

5

) to occur no earlier than �(a

3

) = 6 (the path a

[0;0];0

7�!

b

[0;0];0

7�! c

[0;0];1

7�! d

[0;0];1

7�! e). Adding more stages to both pipelines (before the synchronization, c)

would allow e to get further ahead of a.

f

e

[�; �]
d

c

b

a

[3; 3]

[3; 3]

[3; 3]

[3; 3]

[0; 0]

root

Figure 7: A process graph with unusual timing behavior. All unspeci�ed delay ranges are

[1; 1].

Our second example, in Figure 7, exhibits interesting behavior. If � = 6 then �(a

k

)��(a

k�1

) �

8:

�

1

�

2

�

3

�

4

�

odd

�

even

4 8 4 8 4 8

If we change � = 9 then �(a

k

)� �(a

k�1

) � 9:

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

>8

4 8 4 8 4 8 8 9 9

As the process graph is a repetitive system, presumably the �

k

values will eventually reach a

steady state, for example, �

k+1

= �

k

for large k. Unfortunately, as the last example illustrates, the

behavior of the �

k

values can be non-monotonic and periodic, and might even start out periodic and

then later stabilize to a constant value. In light of these examples, we believe no simple termination

criteria exists for this approach.

4 The tse Algorithm

Our solution to the problem is based on a structural decomposition of the unfolded process graph

that exploits its repetitive nature. By dividing the unfolded process graph up into segments and

representing the computation of the �nite graph algorithm in a symbolic manner we can reuse the

computations for each segment.

8

4.1 Introducing Functions

We introduce a symbolic execution of the acyclic algorithm in Figure 4. Instead of computing the

numeric M -values in (2), we compute functions that relate M -values with one another. We intro-

duce the algebraic structure

1

(F ;�;
; 0; 1). Each element in F is a piecewise-linear, monotonicly

non-decreasing function represented by a set of pairs. The singleton set, fhl; wig, represents the

function f(x) = min(x+ l; w). In general, the set

fhl

1

; w

1

i; hl

2

; w

2

i; : : : ; hl

n

; w

n

ig (3)

corresponds to the function

f(x) = max fmin(x+ l

i

; w

i

) j 1 � i � ng : (4)

We associate two binary operators with functions: function maximization, f � g, and function

composition, f
 g. It follows from (4) that function maximization is de�ned as set union: f � g =

f[g. Function composition, f = g
h, is de�ned as f(x) = h(g(x)). Notice that we use left-to-right

function composition [14]. For g = fhl

1

; w

1

ig and h = fhl

2

; w

2

ig we have

(g
 h)(x) = h(g(x)) = min(g(x) + l

2

; w

2

)

= min(min(x+ l

1

; w

1

) + l

2

; w

2

)

= min(x+ l

1

+ l

2

;min(w

1

+ l

2

; w

2

))

= fhl

1

+ l

2

;min(w

1

+ l

2

; w

2

)ig : (5)

In general, let

g = g

1

� � � � � g

n

and

h = h

1

� � � � � h

m

;

where g

i

and h

i

are singleton sets. Function composition is performed using distributivity:

g
 h =

M

n

g

i

 h

j

�

�

�
1 � i � n; 1 � j � m

o

:

The elements 0 and 1 are the identity elements for function maximization and composition, respec-

tively. We choose 0 = fg and 1 = fh0;1ig. Note that 0 is an annihilator for function composition,

i.e., f
 0 = 0
 f = 0 for all f 2 F (even when f is a constant function). The algebraic structure

(F ;�;
; 0; 1) forms a closed semiring, that is, (F ;�; 0) and (F ;
; 1) are monoids (i.e., are closed,

associative, and have an identity), 0 is an annihilator (i.e., a
0 = 0
a = 0), � is commutative, and

 distributes over � (including in�nite summaries). Except for distributivity, these properties are

trivially satis�ed. Distributivity relies on the monotonicly non-decreasing nature of the functions

in F . Notice that function composition (
) is not commutative.

1

Similar to a (max;+)-algebra [9, 4]. The main di�erences are that the elements of F are functions instead of

numbers, the max-operator maximizes functions, and the +-operator composes functions.

9

4.2 Functional Formulation of Acyclic Algorithm

We can now express phase 2 of the acyclic algorithm in terms of functions. We associate a function,

f

r

, with each edge u

k�"

[d;D]

7�! v

k

in the unfolded process graph:

f

r

=

(

fhl

r

; 0ig if v

k

; s

���

fhl

r

;1ig if v

k

6; s

���

(6)

where l

r

= D�m(u

k�"

)+m(v

k

). Let u

k�"

f

r

7�! v

k

denote this association. Notice that f

r

(M(u

k�"

))

is equal to X

r

in (2).

Using function composition and function maximization, we can create a function f that relates

M(root) to M(v

k

), i.e., M(v

k

) = f(M(root)). Let F

u

j

7!v

k

denote the function relating M(u

j

) to

M(v

k

). For all event occurrences, v

k

, F

v

k

7!v

k

is the identity function, 1. In general, the function

F

root 7!v

k

is de�ned recursively as

F

root 7!v

k

=

M

�

F

root 7!u

k�"

 f

r

�

�

�

u

k�"

f

r

7�! v

k

2 R

�

: (7)

The separation between s

���

and t

�

is �

�

= M(t

�

)�m(t

�

) where M(t

�

) = F

root 7!v

k

(M(root)) =

F

root 7!v

k

(0).

root

a

0

b

0

a

1

b

1

a

2

f

7

f

4

f

6

f

3

f

5

f

9

f

8

f

2

f

1

Figure 8: Fragment of unfolded process graph annotated with functions corresponding to

each edge (the m-values are given in Figure 5 (a)).

For the example in Figure 5 (see Figure 8), we relate M(root) to M(b

0

) with the function

F

root 7!b

0

= f

1

f

3

� f

2

= fh0; 0ig
fh�1; 0ig � fh�3; 0ig = fh�1;�1i; h�3; 0ig. Evaluating the

function at M(root) = 0 yields �1, which is the value obtained for M(b

0

) in Figure 5 (b). The

functions F

root 7!b

0

and F

root 7!a

0

are then used to relate M(root) to M(a

1

), etc., until a function

that relates M(root) to M(t

�

) is created. In our example, t

�

= a

2

and the construction produces

F

root 7!a

2

= fh22; 25i; h24; 24ig. We get �

2

= F

root 7!a

2

(0) � 0 = 24, where F

root 7!a

2

is evaluated

according to (4).

4.3 Incrementally Computing �

k

Values

The algorithm for an acyclic graph (see Figure 4) can be used to determine �

k

for a speci�c value of

k. However, we are interested in the maximum value of �

k

over all k. The functional representation

of the acyclic algorithm allows us to e�ciently compute �

k

for increasing k-values by reusing the

functions.

Assume we have constructed the function F

root 7!t

�

for the graphG

k

. Note that because functions

are associative, they can be composed in any order. Following (7), we can construct F

root 7!t

�

either

starting from root going forward in the graph, or starting from t

�

going backwards. Starting from

the root node causes the function F

root 7!v

k

to be constructed for each node v

k

. On the other hand,

starting from t

�

causes the function F

v

k

7!t

�

to be constructed.

10

Because m-values are compute backward from s

���

and each f

r

depends on the m-values at

the event occurrences named in the rule r, we can reuse functions only if we apply the backward

method. This motivates a change in the numbering of event occurrences. Instead of numbering

events starting with zero and increasing as the process graph is unfolded (forward), events are

numbered relative to a reference event. We use t

�

as the reference event and let the relative

occurrence index for node v

k

to be �� k, written v

(k)

. By de�nition, the relative occurrence index

for t

�

is 0. Relative occurrence indices are positive for nodes topologically left of t

�

in the unfolded

process graph and negative for nodes topologically right of t

�

. Figure 9 shows the graph segment

from Figure 8 using relative occurrences indices.

root

(2)

a

(2)

b

(2)

a

(1)

b

(1)

a

(0)

f

7

f

4

f

6

f

3

f

5

f

9

f

8

f

2

f

1

Figure 9: Fragment of unfolded process graph using relative occurrence indices.

A �nite portion of the unfolded process graph including only event occurrences with relative

occurrence index no larger than k is denoted by G

(k)

. The graph in Figure 9 is denoted G

(2)

. We

can �nd �

k

from the function F

root

(k)

7!t

(0)

in the graph G

(k)

, since �

k

= F

root

(k)

7!t

(0)

(0)�m(t

(0)

).

Now consider �nding the next separation value, �

k+1

. Instead of starting over from scratch,

rebuilding the graph G

(k+1)

and then forming the function for this graph, we choose to reuse

the work done in the computation of �

k

and instead extend G

(k)

by the addition of jE

0

j new

event occurrences (and jR

0

j new rules) with relative occurrence index k + 1. This is illustrated

in Figure 10. Functions for the nodes in G

(k+1)

that are also in G

(k)

are unchanged since the

t

(0)

v

(k)

root

(k)

(a) (b)

root

(k+1)

v

(k)

t

(0)

v

(k+1)

root

(k)

Figure 10: To the left a generic graph, G

(k)

. To the right the graph G

(k+1)

.

m-values for these nodes have not changed. Computing the functions F

v

(k+1)

7!t

�

for the new v

(k+1)

nodes can accomplished using O(jR

0

j) scalar function operations. This results in an e�cient one

pass algorithm for computing values for �

k

for increasing values of k. Figure 11 shows G

(k)

for the

example in Figure 1 for k = 1; 2; 3 and the corresponding functions for the added nodes.

This incremental way of computing �

k

leads to a partially correct algorithm for computing

�, the maximum separation over all �

k

values. Compute the �

k

values starting from the graph

G

(max(0;�))

and maximize over �

k

values for increasing k. Bounds on � from above and from

below can be determined for each iteration. If the bounds converge, we can stop and report the

result. The algorithm is only partially correct because the derived bounds may not converge. This

is discussed below.

11

a

(0)

b

(1)

a

(1)

a

(1)

b

(1)

a

(0)

b

(2)

a

(2)

1

fh10;1ig

fh6;1ig

fh10; 10ig

fh24; 24ig

fh25;1ig

fh24; 24ig

fh40; 25ig

fh40; 25ig

fh40; 25ig

root

(1)

a

(2)

b

(2)

a

(1)

b

(1)

a

(0)

G

(1)

G

(2)

root

(2)

G

(3)

a

(3)

b

(3)

root

(3)

root

(1)

root

(1)

root

(2)

Figure 11: The graphs G

(1)

, G

(2)

, and G

(3)

and corresponding functions for computing

�

1

= 10, �

2

= 24, and �

3

= 25, respectively. Only the solid edges are added in each

iteration.

Computing a lower bound on �, �

?

, is straightforward. Because � is the maximum of �

k

values over all k � max(0; �)g, the maximum of any subset of �

k

values is a lower bound on �.

In order to compute an upper bound on � we need to introduce a cut of the graph G

(k)

. The

cut is de�ned by a cutset, a set of relative event occurrences (members of G

(k)

) such that for each

further unfolding, G

(j)

, j � k, every path from root

(j)

to t

(0)

goes through an element of the cutset.

For a given cutset X for G

(k)

, the function from root

(k)

to t

(0)

can be expressed as

M

n

F

root

(k)

7!u

j

 F

u

j

7!t

(0)

�

�

�
u

(j)

2 X

o

: (8)

For further unfoldings of the process graph, only the functions to the left of the \
" symbol in

(8) change. By replacing the functions F

root

(k)

7!u

j

with \worst case" functions, we can compute an

upper bound on �, �

>

. The following lemma is used to bound the codomain of functions.

Lemma 2

Let f be a function constructed for a sub-graph where all nodes have a path to s

(�)

. Then 8x :

f(x) � 0.

Proof: As all nodes have a path to s

(�)

, f is constructed from pairs of the form hl; 0i, where l is

any integer. From (5) it follows that all pairs in f , hl; wi, have w � 0 (from a simple induction on

the number of compositions). The result then follows from (4). 2

By evaluating the functions F

v

k

7!t

(0)

at 0, i.e., replacing F

root 7!v

k

with 0 in (8), we obtain an

upper bound on �:

�

>

= max

n

F

v

k

7!t

(0)

(0)

�

�

�
v

(k)

2 X

o

�m(t

(0)

) : (9)

The upper bound may improve when further unfolding the graph and choosing a new cutset X

that separates the graph so that more nodes are included to the right of the cut. Note that only

when all nodes v

(k)

topologically left of the nodes in X have a path to s

(�)

does (9) compute an

upper bound on �. If v

(k)

6; s

(�)

, the functions left of X may not be constructed from pairs of the

form hl; 0i (but rather of pairs of the form hl;1i) and Lemma 2 does not apply.

Each time a new �

k

value is computed the bounds are updated and if the bounds converge

the algorithm terminates. For the example in Figure 11, the lower bound is 10, 24, and 25 for

the three unfoldings, respectively. An upper bound is found from the cutset X = fa

(1)

; b

(1)

g. For

G

(1)

, no upper bound can be computed, i.e., �

>

= 1. For G

(2)

, we choose X = fa

(2)

; b

(2)

g.

12

An upper bound is found by maximizing the function at the nodes in the cutset evaluated at 0:

max(min(24+0; 24);min(25+0;1)) = 25. This is also the upper bound for G

(3)

. Thus, after three

unfoldings the bounds converge and the maximum separation of 25 can be reported.

A subtle point is that the lower bound �

?

can be larger than the upper bound �

>

. The

reason is that the bound �

>

for a given graph G

(k)

is a bound on all further unfoldings, i.e.,

8j > k : �

j

� �

>

. But there may be some initial transient behavior that forces the �rst event

occurrences to be separated by more than can be achieved later. For example, by changing the

initial edge root

[0;0];0

7�! b to root

[0;94];0

7�! b for the process graph in Figure 1, we get �

1

= 100, but

8j > 1 : �

j

= 25. After one unfolding we have �

?

= 100 and �

>

= �

>1

= 25.

Unfold(G; s; t; �; k

max

)

1 k max(0; �)

2 �

?

 �1

3 �

>

 1

4 while (�

?

< �

>

^ k < k

max

) f

5 Construct G

(k)

6 �

k

 F

root

(k)

7!t

(0)

(0)�m(t

(0)

)

6 X Cutset[G

(k)

]

7 �

?

 max(�

?

;�

k

)

8 �

>

 maxfF

v

k

7!t

(0)

(0) j v

(k)

2 Xg �m(t

(0)

)

9 k k + 1

10 g

11 return(�

?

;�

>

; X)

Figure 12: Algorithm for unfolding the process graph and computing bounds on �.

The pseudo-code for the procedure Unfold is shown in Figure 12. The process graph is unfolded

until either the bounds converge or an upper limit on the number of unfoldings, k

max

, is reached.

For each unfolding, the graph is extended with O(jE

0

j) new nodes and their functions. Given a

cutset X for the graph, the bounds on � are determined. This approach for �nding the maximum

separation between two events is e�cient on some examples [25], but has two major drawbacks.

First, we know of no necessary condition for determining when to stop unfolding the graph and

report the result, i.e., the bounds derived above may not converge. A simple example is shown in

Figure 13. The two startup rules determine the maximum separation between a

k

and e

k

to be

0 for all k � 0. This example demonstrates that the startup rules can determine the maximum

separation at every point in the in�nite execution. The start-up rules are ignored when computing

the upper bound and in this case the upper bound will never converge to the correct result.

Second, even if a necessary termination condition is developed, the approach may be ine�cient.

There are examples where it is necessary to unfold the process graph many times before the bounds

converge and the necessary number of unfoldings depend on the delay values in the process graph.

The process graph in Figure 14 requires 149 unfoldings before the bounds converge and the number

of unfoldings can be made arbitrarily large by changing the delay values of the process graph.

13

b

a

d

e

c

[10; 10] [10; 10][5; 5]

[1; 3]

[1; 2] [1; 2]

[5; 5]

[1; 3]

root

[0; 0][0; 0]

Figure 13: Two processes synchronizing at c.

[10; 10]

b

a

[10; 99] [10; 50]

c

[10; 10] [10; 10]

[10; 10] [100; 200]

g

[10; 10]

d

[10; 10]

e

[10; 10]

f

[90; 101] [10; 10]

Figure 14: A 6-stage pipeline that needs to be unfolded 149 times before the bounds converge

for the separation analysis � (b

k

)� � (d

k�2

). The startup rules, root

[0;0];0

7�! a, root

[210;210];0

7�! e,

root

[310;310];0

7�! g, have been left out for clarity.

We now consider the structure of the m-values. It turns out that after a number of unfoldings

they enter a regular and repetitive pattern. This can be used to implicitly analyze the in�nite

unfolded process graph, leading to an e�cient algorithm that addresses the two problems just

described.

4.4 Repetition of the m-values

Recall thatm(v

k

) is the longest path v

(k)

; s

(�)

using the lower delay bound on the edges, d. Since

the m-values are constructed from a repetitive system (the process graph) the values eventually are

determined by the maximum ratio cycles in the process graph [19]. A maximum ratio cycle c is a

cycle with ratio d(c)="(c) equal to that of the maximum ratio r:

r = max

�

d(c)

"(c)

�

�

�
c a simple cycle in G

0

�

:

Intuitively, when the m-values for all event occurrences are determined repetitively using using

maximum ratio cycles, we say the m-values repeat. Formally, for a strongly connected process

graph there exists integers k

?

and "

?

such that for all k � k

?

+ � and all v 2 E

0

m(v

(k+"

?

)

)�m(v

(k)

) = r"

?

; (10)

where k

?

is the number of unfoldings of the process graph (backwards relative to s

���

) before all

of the m-values repeat and "

?

is the occurrence period of this repetition.

Figure 15 illustrates the behavior of the m-values for the process graph in Figure 1. Both k

?

and "

?

are values speci�c to a particular process graph. For example, changing the delays [4; 10]

and [5; 20] to [999,1000] and [1000,1000], respectively, changes

2

k

?

from 3 to 998.

Algorithms for computing k

?

, "

?

, and r are described in Section B.2.

2

Note that only the lower delay bounds a�ect k

?

.

14

b

(5)

b

(4)

a

(4)

a

(3)

b

(3)

a

(2)

b

(2)

a

(1)

a

(5)

0481217

16 11 6 1

a

(6)

b

(6)

21

22

a

(0)

b

(1)

b

(0)

Figure 15: A portion of the unfolded process graph for the process graph in Figure 1 labeled

with m-values (s

(�)

= a

(1)

). The m-values repeat when m(a

(4)

)�m(a

(3)

) = r"

?

= 5 which

occurs after three unfoldings relative to a

(1)

, thus k

?

= 3. The occurrence period of the

repetition is one, i.e., "

?

= 1.

4.5 Introducing Matrices

The notion of a cutset was introduced in computing an upper bound on �. We now expand on the

use of cutsets. A node v

(k)

is left of (or in) the cutset X , denoted v

(k)

� X , if

9u

(j)

2 X : v

(k)

; u

(j)

or v

(k)

2 X :

A cutset X is left of (or equal to) the cutset Y , X � Y , if

8v

(k)

2 X : v

(k)

� Y :

Finally, X

�!

denotes a cutset X shifted to the left by !:

X

�!

=

n

v

(k+!)

�

�

�
v

(k)

2 X

o

:

Now consider two cutsets for the graph G

(k)

, X and Y . We overload F to denote a matrix of

functions: F

X 7!Y

denotes the jX j�jY jmatrix containing functions relatingM -values at nodes in X

to M -values at nodes in Y . Using (�;
) matrix multiplication, that is, function maximization for

scalar addition, and function composition for scalar multiplication, we can decompose F

root

(k)

7!t

(0)

as

F

root

(k)

7!t

(0)

= F

root

(k)

7!X

F

X 7!Y

F

Y 7!t

(0)

;

where F

root

(k)

7!X

is a row-vector, F

X 7!Y

is a jX j � jY j matrix, and F

Y 7!t

(0)

is a column-vector.

The result of multiplying the three matrices is a 1� 1 matrix whose single element is the function

F

root

(k)

7!t

(0)

.

For the graph in Figure 9, a possible decomposition is X = fa

(2)

; b

(2)

g and Y = fa

(1)

; b

(1)

g

yielding

F

root

(2)

7!X

F

X 7!Y

F

Y 7!t

(0)

=

�

f

1

f

1

f

3

� f

2

�

f

4

f

4

f

8

f

5

f

5

f

8

� f

6

!

f

7

f

9

!

:

4.6 Putting it All Together

A key observation is that when the m-values repeat, i.e., (10) holds, the di�erence in m-values

between any two nodes is the same as the di�erence for the same nodes "

?

occurrences further back

in the unfolded process graph. Let X

0

denote a cutset such that the m-values for all nodes left of

X

0

repeat. Then, for all edges u

(j)

[d;D]

7�! v

(k)

, where v

(k)

� X

0

, (10) implies that

m(u

(j+"

?

)

)�m(v

(k+"

?

)

) = m(u

(j)

)�m(v

(k)

) : (11)

15

From (6) and (11) it follows that the function for the edge u

(j+"

?

)

[d;D]

7�! v

(k+"

?

)

is the same as

for the edge u

(j)

[d;D]

7�! v

(k)

. Therefore, considering a segment de�ned by two cutsets, X and Y ,

the functions relating the M -values of the nodes in the cutsets are the same as those relating the

M -values of nodes in the cutsets shifted to the left by any multiple of "

?

:

8n � 0 : F

X

�n"

? 7!Y

�n"

?

� F

X 7!Y

(12)

as long as Y � X

0

. By choosing the cutsets X and Y appropriately, we can construct the functions

for one segment and reuse this segment for later occurrences. Let X � X

0

and let T be a jX j � 1

matrix de�ned as

T = F

X 7!t

(0)

:

We let R

i

denote a 1� jX j matrix de�ned as

R

i

= F

root

(k

0

+i)

7!X

�i

;

where i is a non-negative integer parameter and k

0

is such that R

0

T is the function for the graph

G

(k

0

)

. Finally, S

i

denotes the square matrix

S

i

= F

X

�i+1

7!X

�i

:

Thus, R

i

represents the initial segment and the matrix S

i

represents one \unfolding" of G

0

, i.e.,

the functions for a portion of the graph de�ned by X

�i+1

and X

�i

. We overload F and use F

[n]

to denote the function for the graph G

(k

0

+n)

for n � 0, i.e.,

F

[n]

= F

root

(k

0

+n)

7!t

(0)

= R

n

S

n�1

S

n�2

� � �S

2

S

1

S

0

T :

Figure 16 illustrates how F

[n]

for n = 1; 2; 3 is obtained by piecing together an R

i

segment and

F

[0]

F

[1]

F

[2]

t

(0)

T

X

S

0

R

1

X

�1

R

0

X

T

t

(0)

X

�1

S

1

X

�2

R

2

S

0

X

T

t

(0)

Figure 16: Construction of F

[n]

for increasing n. The function F

[n]

for n � 0 is constructed

from R

n

S

n�1

S

n�2

� � �S

1

S

0

T. The �gure shows the three graphs for the construction of

F

[0]

, F

[1]

, and F

[2]

.

multiple S

i

segments. From (12) it follows that some of the R

i

and S

i

matrices are the same. In

particular, all S

i

matrices separated by a multiple of "

?

are identical:

8i � 0 : S

i

� S

i mod "

?

;

16

and this is also true of every R

i

separated by "

?

. This property can be used to �nd every "

?

'th

function e�ciently, i.e., F

[n"

?

]

for any n � 0 is computed as

F

[n"

?

]

= R

n"

?

S

n"

?

�1

S

n"

?

�2

� � � S

1

S

0

T = R

0

(S)

n

T ; (13)

where the square matrix S is de�ned as

S = S

"

?

�1

S

"

?

�2

� � �S

1

S

0

:

Note that if "

?

= 1, the S

i

matrices are independent of i and we get S = S

0

. The maximum of

F

[n"

?

]

over all n � 0 is found directly from (13):

M

n�0

F

[n"

?

]

= R

0

T�R

0

ST�R

0

S

2

T �R

0

S

3

T �R

0

S

4

T� � � � ; (14)

which by matrix algebra can be rewritten as

R

0

�

I� S� S

2

� S

3

� S

4

� � � �

�

T ; (15)

where I is the identity matrix. By de�ning R to be the maximum over "

?

unfoldings

R =

M

n

R

i

S

i�1

S

i�2

� � �S

1

S

0

�

�

�
0 � i < "

?

o

;

we can �nd the maximum of F

[n]

over all n � 0 from

M

n�0

F

[n]

= R

�

I� S � S

2

� S

3

� S

4

� � � �

�

T = RS

�

T ; (16)

where S

�

is the matrix closure of S. A matrix closure algorithm [1] can be used to compute

S

�

because (F ;�;
; 0; 1) forms a closed semiring. This is the key observation that allows us to

implicitly analyze the in�nite unfolded process graph. Evaluating the function computed byRS

�

T

at 0 and subtracting m(t

(0)

) computes

�

�k

0

= max f�

k

j k � k

0

g :

The matrices R and S can be computed in a single sweep, unfolding the process graph "

?

times

backwards, starting from X � X

0

. This is done by adding root to the cutset X . Then a single

unfolding from X

�i

to X

�i+1

computes both R

i

and S

i

simultaneously:

F

X

�i+1

7!X

�i

=

S

i

0

R

i

1

!

:

As before, S

i

relates the M -values at nodes in X

�i+1

(without the root node) toM -values at nodes

in X

�i

(also without the root node). The 0-vector represents the fact that there are no paths from

nodes in X

�i+1

to root . The row-vector R

i

relates the root node to nodes in X

�i

. Finally, setting

the last position to 1 causes the product to maximize over the root -nodes. After "

?

unfoldings we

get:

O

"

?

>i�0

S

i

0

R

i

1

!

=

S

"

?

�1

S

"

?

�2

� � �S

1

S

0

0

L

n

R

i

S

i�1

S

i�2

� � �S

1

S

0

�

�

�
0 � i < "

?

o

1

!

=

S 0

R 1

!

: (17)

17

Thus, unfolding "

?

times back we get exactly R and S which are needed to compute (16).

The pseudo-code for the tse-algorithm is shown in Figure 17. Details of performing function

operations and forming the matrix closure are described in Appendix B. Note that for a strongly

connected process graph the tse algorithm is guaranteed to terminate and �nd the tightest possible

bound. The matrix closure in (16) implicitly performs an in�nite analysis, thus producing an exact

bound in �nite time.

Tse(G

0

; s; t; �)

1 k

?

 Compute-k

?

[G

0

; s]

2 "

?

 Compute-"

?

[G

0

; s]

3 (�

?

;�

>

; X) Unfold[G

0

; s; t; �; k

?

+ �]

4 if �

?

� �

>

then return �

?

5 T F

X 7!t

(0)

6 for i 0; 1; : : : ; "

?

� 1 f

7 R

i

 F

root

(k

0

+i)

7!X

�i

8 S

i

 F

X

�i+1

7!X

�i

9 g

10

S 0

R 1

!

N

"

?

>i�0

S

i

0

R

i

1

!

11 F RS

�

T

12 �

�k

?

+�

 F (0)�m(t

(0)

)

13 return max(�

�k

?

+�

;�

?

)

Figure 17: Algorithm for determining the maximum separation between events s and t

separated by � in occurrence index. G

0

is a well-formed strongly connected process graph.

4.7 Non-strongly Connected Process Graphs

The tse algorithm requires the process graph G

0

to be strongly connected. Otherwise the m-values

may not all eventually repeat. However, there are some classes of non-strongly connected process

graphs that can be handled by the tse algorithm with minor modi�cations.

In a strongly connected process graph, all nodes have a path to a maximum ratio cycle, and

all maximum ratio cycles have a path to the node s. This guarantees that m-values for all nodes

eventually are determined repetitively using maximum ratio cycles and thus eventually repeat. For a

non-strongly connected process graph the behavior of the m-value for a node v can be characterized

as one of the following two:

1. m(v

(k)

) eventually repeat with period r(v) and occurrence period "

?

(v), i.e., 8k � k

?

(v):

m(v

(k+"

?

(v))

)�m(v

(k)

) = r(v)"

?

(v) :

Note that r(v) may be less than the maximum ratio r.

18

2. There is no path from v

(k)

to s

(�)

, i.e., 8k : v

(k)

6; s

(�)

.

Depending on the behavior of the m-values, we have three classes of non-strongly connected process

graphs:

1. For all nodes v, v

(k)

; s

(�)

and furthermore all the m-values for all nodes repeat with the

same periods, r(v) and "

?

(v) (though not necessarily with r and "

?

). The tse algorithm can

be used without modi�cations.

2. For all nodes v, if v

(k)

; s

(�)

them-values repeat with the same period (though not necessarily

with the maximum ratio, r). However, some nodes may not have a path to s

(�)

. We can make

a simple modi�cation to the tse algorithm to handle this case. Recall that when v

(k)

6; s

(�)

,

we can assign an arbitrary constant to m(v

(k)

), line 2 of the algorithm in Figure 4. In

particular, we choose these m-values such that r(v) and "

?

(v) are equal to the period of

the events that have a path to s

(�)

. This ensures that the matrix S is independent of the

number of unfoldings and we can use the closure of S to analyze the in�nite graph. A simple

non-strongly connected process graph is shown in Figure 18.

ca

[1; 1] [5; 5]

b

[3; 3]

Figure 18: A non-strongly process graph. If s = b, nodes a

(k)

and c

(k)

do not have a

path to s

(�)

and we can assign an arbitrary constants to m(a

(k)

) and m(c

(k)

). As r(b) = 3

and "

?

(b) = 1, by chosing m(a

(k)

) to 3 +m(a

(k�1)

) and similarly for m(c

(k)

), all m-values

repeat with the same period and the tse algorithm can be applied for �nding the maximum

separation. Note that in this example the maximum ratio cycle is c

[5;5];1

7�! c with the ratio

r = 5.

3. There exist nodes whosem-values repeat with di�erent ratios, i.e., r(v) is di�erent for di�erent

nodes. A simple example in this category is shown in Figure 19. This class of non-strongly

connected process graphs can be handled by introducing a more complex functional algebra

(the elements of the algebra are functions in two variables). We do not describe this algebra

because it is not needed for the subsequent applications.

b

a

[5; 5] [3; 3]

[0; 0]

Figure 19: A non-strongly process graph where the m-values for di�erent nodes repeat with

di�erent values. For s = b, we have r(a) = 5 and r(b) = 3.

4.8 E�ciency Considerations

There are two potential ine�ciencies associated with the tse algorithm. These ine�ciencies are

not usually encountered in practical applications.

19

1. Both "

?

and k

?

depend on the delay ranges and are not polynomial in the size of the process

graph.

2. The size of the representation of a particular function may be as large as the number of paths

between the two events related by the function.

Point 1 is potentially serious, however in most realistic process graphs, "

?

= 1 (see [6]). k

?

is

more of a concern because it can be large if there exists a cycle c such that d(c)="(c) is almost

equal to r.

Although the time required to perform the scalar operations is linear in the size of the operands,

this does not imply that a polynomial number of scalar semiring operations can be performed in

polynomial time. In fact, the size of the functions can potentially be as large as the number of

paths between the vertices that the functions relate. In practice the functions can be e�ciently

pruned (see Section B.1) and the size of the functions seems to grow linearly with respect to the

size of the process graph.

4.9 Examples

The details of the tse algorithm are applied to some simple examples. The �rst example is from

Figure 1 for s = t = a and � = 1. The m-values repeat after three unfolding relative to the s

(�)

node (k

?

= 3) or k

?

+ � = 4 unfoldings relative to the t

(0)

node (see Figure 15). The repetition

period is 1, i.e., "

?

= 1. Calling Unfold causes the construction of G

(i)

for i = 1; 2; 3, as illustrated

in Figure 11. The bounds computed for these three graphs are:

i [�

?

;�

>

]

1 [10;1]

2 [24; 25]

3 [25; 25]

Thus after three unfoldings the bounds converge and the maximum separation of � = 25 is reported.

For this separation analysis it is not necessary to constructR and S and perform the closure, i.e., the

tse algorithm will stop at line 4. However, for the sake of illustration, we show the decomposition

and the corresponding matrices constructed if the bounds had not converged in line 4.

s

(�)

t

(0)

b

(4)

b

(3)

a

(3)

a

(1)

b

(1)

a

(5)

b

(5)

root

(5)

a

(0)

b

(4)

a

(4)

a

(4)

b

(5)

a

(5)

a

(2)

b

(2)

TSR

Figure 20: A decomposed unfolded process graph corresponding to the process graph in

Figure 1.

Figure 20 shows the unfolded process graph. The segment represented by the matrix T is

unfolded k

?

+ � = 4 times. We chose the cutset X

0

= fa

(4)

; b

(4)

g such that the m-values for all

nodes left of X

0

repeat. Because "

?

= 1, we have that R = R

i

and S = S

i

for i � 0. The matrices

are

R =

�

fh0; 0ig fh1; 0ig

�

20

S =

fh5; 0ig fh6; 0ig

fh2; 0ig fh15; 0ig

!

T =

fh46; 25ig

fh55; 25ig

!

The closure of S is:

S

�

=

1� fh1; 0ig fh1; 0ig

fh1; 0ig 1� fh1; 0ig

!

yielding the �nal product

F = RS

�

T = (fh1; 25ig) :

The maximum separation between a

k�1

and a

k

for k � 4 is computed from the function F =

fh1; 25ig, i.e., �

�4

= F (M(root

(5)

))�m(a

(0)

) = F (0)� 0, yielding 25.

In Figure 13 we presented an example where the bounds on � do not converge. We now show the

details of this example. We have s = a, t = e, and � = 0. We get k

?

= 1 and "

?

= 1. Figure 21 shows

a portion of the unfolded process graph. The functions at b

(0)

and d

(0)

are fh0; 0ig and fh3;1ig,

s

(�)

t

(0)

root

(0)

e

(0)

a

(0)

d

(0)

c

(0)

b

(0)

b

(1)

c

(1)

d

(1)

a

(1)

e

(1)

e

(2)

a

(2)

d

(2)

c

(2)

b

(2)

root

(1)

root

(2)

� � �

� � �

Figure 21: Portion of the unfolded process graph for the examples in Figure 13.

respectively. One unfolding back, the functions are F

b

(1)

7!e

(0)

= fh0; 0ig and F

d

(1)

7!e

(0)

= fh3; 3ig.

These functions will remain the same for all larger relative occurrence indices as k

?

+ � = 1 and

"

?

= 1, i.e., for all i � 1:

F

b

(i)

7!e

(0)

= fh0; 0ig

F

d

(i)

7!e

(0)

= fh3; 3ig :

For all unfoldings k, F

root

(k)

7!e

(0)

= fh0; 0ig, resulting in �

k

= F

root

(k)

7!e

(0)

(0) � m(e

(0)

) = 0 � 0,

i.e., �

?

= 0 for all k � 1. The upper bound is obtained from the cutset X = fb

(k)

; d

(k)

g. We get

�

>

= max(0; 3)� 0 = 3 for all k � 1. Thus, the bounds never converge.

However, by computing R and S, we can analyze the in�nite graph and realize that there is no

way to achieve the bound at node d, thus 0 is the maximum separation between a

k

and e

k

, for all

k � 0. Like in the previous examples, the matrices R and S are particularly simple because "

?

= 1.

21

We get

R =

�

fh0; 0ig fh�3;�3ig

�

S =

fh0; 0ig fh�3;�3ig

fh3; 0ig fh0; 0ig

!

T =

fh0; 0ig

fh3; 3ig

!

The closure of S is:

S

�

=

1 fh�3;�3ig

fh3; 0ig 1

!

yielding the �nal product

F = RS

�

T = (fh0; 0ig) :

From F (0)� 0 = 0 we get � = �

�1

= 0.

Finally, we show the result of running the tse algorithm on the example in Figure 14. Recall

that this example requires the process graph to be unfolded 149 times before the bounds converge.

However, after just 9 unfoldings the m-values repeat. Using the cutset X = fd

(1)

; b

(2)

; f

(0)

g and

unfolding 11 times we get the bounds �

?

= 68 and �

>

= 188. We get the following matrices

("

?

= 1):

R =

�

fh100; 0ig fh�78;�78ig fh�219;�219ig

�

S =

0

B

@

fh100; 0ig fh�89;�89ig 0

fh0; 0ig fh1; 0ig fh�140;�140ig

0 fh0; 0ig fh�1;�1ig

1

C

A

T =

0

B

B

B

@

fh58; 58i; h157; 57i; h256; 56i; h355; 55i; h454; 54i; h553; 53i; h652; 52i; h751; 51i; h951; 50ig

fh132; 131i; h134; 122i; h136; 113i; h138; 104i; h140; 95i; h142; 86i; h144; 77i; h146; 68i;

h148; 59i; h156; 56i; h255; 55i; h354; 54i; h453; 53i; h552; 52i; h651; 51i; h851; 50ig

fh269; 188i; h353; 53i; h452; 52i; h551; 51i; h751; 50ig

1

C

C

C

A

The closure of S is:

S

�

=

0

B

@

1� fh1; 0ig fh1; 0ig fh1;�140ig

fh1; 0ig 1� fh1; 0ig fh1;�140ig

fh1; 0ig fh1; 0ig 1� fh1;�140ig

1

C

A

yielding the �nal product

F = RS

�

T = (fh1; 131ig) :

From �

�11

= F (0)� 0 = 131 we get � = max(131; 68) = 131.

5 Applications

The tse analysis is fundamental for performance analysis, timing veri�cation, and optimization

of concurrent systems. Classical performance measures can be derived based on the maximum

22

separation in time of events. Bounds on the latency between two events s and t are determined

from a separation analysis of �(t

k

)� �(s

k

). Bounds on the cycle period for event s can be obtained

from �(s

k

)� �(s

k�1

). These measures give best and worst case delays from one event to the next.

The best and worst n-term moving averages can be obtained by computing

�(s

k+n

)��(s

k

)

n

.

Timing veri�cation is another area of application of the tse analysis. Consider a timing con-

straint that speci�es the maximum time, �, that may elapse from an event s to its response t. It

must be veri�ed that �(t

k

)� �(s

k

) � � for all k, which is directly obtainable from a tse analysis.

Similarly, a constraint specifying that at least a given amount of time, �, must pass between two

events, i.e., � � �(t

k

)� �(s

k

) corresponds to the lower bound from the tse analysis.

In this section, we present four speci�c examples that demonstrate the applicability and e�cacy

of the tse algorithm.

5.1 Memory Management Unit

Consider an edge u

k�"

[d;D]

7�! v

k

in an arbitrary process graph. If the minimum time separation

between u

k�"

and v

k

is larger than D, event u

k�"

will never constrain the time of event v

k

, i.e., v

k

must always wait for some other event to occur, and the edge from u

k�"

can be removed from the

process graph without changing the behavior of the system.

This idea can be used to remove redundant circuitry in asynchronous circuits given (conserva-

tive) bounds on the actual delays of a speed-independent design. Superuous edges can be removed

by analyzing the process graph corresponding to the circuit. This approach has been taken by Myers

and Meng [25] who use an inexact timing analysis algorithm, i.e., the algorithm doesn't necessar-

ily give tight bounds on separation times. Clearly, being able to obtain tight bounds potentially

enables the removal of more edges.

One of the examples in [25] is a memory management unit (MMU) designed to interface to the

Caltech Asynchronous Microprocessor [23]. The process graph (for one of the possible execution

modes of the MMU) is shown in Figure 22.

For the chosen delay intervals, k

?

= 1 and "

?

= 1. Analyzing the 23 edges using our exact

algorithm takes 0:6 seconds on a SPARC 2. The analysis results in the removal of six edges from

the process graph or equivalently, the removal of six transistors from the circuit. This is the same

result as in [25].

5.2 Asynchronous Microprocessor

A subset of the Caltech Asynchronous Microprocessor [23] has been modeled and analyzed using

the techniques described in this paper. A block diagram of the processor is shown in Figure 23.

The process graph for this simpli�ed model consists of 60 events and 127 edges. Using our

implementation of the techniques described in this paper, a separation analysis can be performed

in under 2 seconds on a SPARC 2. For example, if all the delays associated with rules within

the blocks of Figure 23 are in the range [0; 1] (small in comparison to the delays associated with

computation and data transfer) and we make the following assignments of delay ranges to the delay

elements modeling the computations:

23

mdli"

rao" bo"

rai" bi"

mslo"

bi#

bo#

msli#

rai#

rao#

mslo# msli"

mdlo"

mdli#

mdlo#

[2;9] [2;9] [2;13] [2;13]

[30;1]

[5;30]

[5;30]

[30;1]

root

[0;0]

Figure 22: Process graph for memory management unit (from [25]). All unmarked edges

have [0; 1] as the delay range.

IMEM FETCH

PCADD REG1 REG2

ALUEXEC REG3

ID E

AC

inc

sty

Xs

X

Ys

ZA

ZAs

Y

PCI

A B

Figure 23: A block diagram of the Asynchronous Microprocessor. For a complete description

of the process graph components within each block, see [6].

24

Rise Fall Rise Fall

ID [50,51] [30,31] X [30,31] [30,31]

inc [20,31] [20,21] Y [30,31] [30,31]

sty [20,21] [20,21] AC [20,21] [20,21]

E [20,21] [20,21] ZA [40,51] [40,41]

we obtain the minimum and maximum separations in cycle period seen at point A of 80 and

107. The minimum and maximum separation between identically numbered occurrences of rising

transitions at point A and point B is 140 and 246. This last measurement corresponds to the

pipeline latency of the microprocessor.

Computations of this type can be used to determine the real-time properties of the asynchronous

microprocessor. This information is useful when interfacing the microprocessor to an external

synchronous component, especially in cases where the synchronous component is clocked using a

signal produced by the microprocessor.

5.3 STARI

STARI is a novel approach to high-bandwidth communication proposed by Greenstreet [13]. STARI

combines synchronous and self-timed design techniques. The sender and receiver operate syn-

chronously at the same clock rate, but the communication interface consists of an asynchronous

FIFO queue. The overall structure is shown in Figure 24 (from [13, Figure 5]).

Transmitter Receiver

sync.

completion

encoding

Global Clock

FIFO

sync.

circuitrycircuitry

Figure 24: STARI communication.

The idea in STARI is to time the system such that the FIFO operates at the speed of the clock,

accepting a new data item every clock cycle. The system is initialized to a state where the FIFO is

half full. By taking the absolute delays (indicated by delay elements in Figure 24) into account in

the initialization phase, arbitrary clock skews and transmission delays can be tolerated. The FIFO

makes the system tolerant to dynamic changes of the delays, i.e., STARI is tolerant to variations in

clock skew, to variations in the clock period and to variations in internal delays. If the variations

becomes too large, the FIFO overows or underows and STARI fails. The amount of variation

of the delays that can be tolerated depends on the length of the FIFO, the clock period, and the

delay of the FIFO elements.

Greenstreet [13] has derived su�cient timing conditions under which STARI operates correctly.

The correctness proof for these conditions is quite complicated (approx. 20 pages). Here we show

how the maximum separation analysis can be used for timing veri�cation of a STARI implementa-

tion. Given the clock period, the delay ranges for FIFO elements and the variation in clock skews,

we can prove whether STARI is timed correctly. Consider a STARI implementation with a three

stage FIFO (followed by a latch controlled by the receivers clock). The control structure is shown

25

in Figure 25. Figure 26 shows the corresponding process graph. The marks on the edges indicate

C C C C

Self-timed FIFO

y0

y1 y2 y3 y4

y5

clk

Latch

Figure 25: Control structure of STARI implementation with a three stage FIFO followed

by a latch. The logic symbols denote Muller-C elements.

the initial state of a half full FIFO: the two �rst stages of the FIFO wait for a request from the

sender while the third stage waits for an acknowledge by the receiver. The process graph is not

strongly connected because the FIFO is not constraining the clock period.

y0" y1" y2" y3" y4" y5"

y0# y1# y2# y3# y4# y5#

clk"

clk#

skew

t

skew

t

skew

r

skew

r

��

root

[0; 0]

Figure 26: Process graph for STARI implementation.

For the correct operation of STARI, the synchronous components (i.e., the sender and the

receiver) must adhere to the asynchronous protocol of the FIFO; the sender can only insert a

new data item in the FIFO when the previous one has been acknowledged, and the receiver can

only acknowledge a data item after it has been output from the FIFO. Referring to the signals in

Figure 25, the requirements for correct operation of STARI are that a transition at y0 is acknowledge

by y1 before another y0 transition, and similarly that y4 changes before it is acknowledged by

y5. Thus, the following four timing relations need to hold for all possible executions in order to

guarantee correct operation:

�(y1"

�

) � �(y0#

�

) (18)

�(y1#

�

) � �(y0"

�+1

) (19)

�(y4"

�

) � �(y5"

�+1

) (20)

�(y4#

�

) � �(y5#

�

) (21)

We can verify (18) by determining the smallest � such that for all �; �(y1 "

�

) � �(y0 #

�

) � �.

If � � 0, (18) holds. The other three inequalities have similar analyses. Thus, by applying our

algorithm four times we can verify the correct operation of the STARI protocol for all possible

delay variations in the speci�ed ranges.

26

Table 1 shows the result for di�erent values for the clock period (�), and for di�erent variations

of clock skew to the transmitter (skew

t

) and to the receiver (skew

r

). The CPU time to verify the

four conditions is less than a second on a SPARC 2.

�

d

skew

t

skew

r

�

(18)

�

(19)

�

(20)

�

(21)

OK

6 [0; 0] [0; 0] �3 �3 0 0

p

6 [0; 0] [0; 3] �3 �3 0 0

p

6 [0; 3] [0; 0] 0 0 3 3

6 [0; 0] [0; 6] 0 0 3 3

6 [0; 0] [6; 6] 0 0 �3 �3

p

8 [0; 0] [0; 0] �5 �5 �4 �4

p

8 [0; 3] [0; 5] �2 �2 0 0

p

8 [0; 5] [0; 3] 0 0 1 1

8 [0; 0] [0; 12] 0 0 7 7

8 [0; 0] [12; 12] 0 0 �5 �5

p

8 [12; 12] [0; 0] �5 �5 8 8

Table 1: Timing analysis of STARI. �

d

is the lower bound on the clock period (the upper

bound is irrelevant for the correctness of STARI), skew

t

and skew

r

are the variations in

skew to the transmitter and receiver, respectively. The delay through a C-element is set to

[2; 3] in all cases. �

(i)

is the maximum separation corresponding to equation (i). Correct

operation of STARI is indicated with a checkmark in the OK column.

5.4 Isochronic Forks

An exact solution to the maximum separation problem can be used to determine whether or not an

asynchronous circuit designed under the assumptions of the quasi{delay-insensitive model [22] will

work correctly even if the isochronic fork assumption is relaxed. The isochronic fork assumption

states that certain signals in the circuit that fan out to separate circuit elements arrive at their

respective elements at the same time. This assumption is very strong; what is actually important

is that the circuit behaves as if these signals are isochronic. However, we can check for correct

behavior by performing various maximum separation analyses on a process graph that includes the

timing information corresponding to both the operators and wires of the circuit.

As an example, the D-element (Figure 27) is a simple asynchronous component that sequences

two four-phase handshakes. A process graph corresponding to the D-element and its environment

is shown in left half of Figure 28. Assume now that the three forks of the system are no longer

considered to be isochronic. This can be modeled by introducing new signals in the circuit corre-

sponding to the ends of the forks and then adding new events to the process graph corresponding

to the transitions on these new signals. The non-isochronicity of a fork is modeled as bounded

delay intervals on the rules coming into the new events. The new process graph is shown in the

right half of Figure 28 and is no longer strongly connected.

By performing maximum separation analyses on this graph, we can determine whether or not

the violation of the isochronic fork assumption can cause the circuit to fail. In particular, we must

27

D-element

reset

li

lo

ro

ri2

ri1

li2

li1

ri

x2

x1

S R

Figure 27: Circuit for the D-element connected to a trivial environment. The center element

is an S-R latch.

li" x" lo"

li#

ro"

ri"x#ro#

ri#

lo#

root

li"

li1"

li2"

x"

x1"

x2"

lo"

li#

li1#li2#

ro"

ri"

ri1"

ri2"

x#

x1#

x2#

ro#

ri#

ri1# ri2#

lo#

A

B

A

B

root

Figure 28: The left half shows the process graph for the D-element assuming isochronic

forks. The right half shows the process graph for the same circuit if isochronic forks are not

assumed.

28

show that

�(li1"

�

)� �(x1"

�

) � 0 (22)

�(ri1"

�

)� �(x2#

�

) � 0 (23)

�(li2#

�

)� �(ri2"

�

) � 0 (24)

�(ri2#

��1

)� �(li2"

�

) � 0 (25)

for all �. By satisfying these inequalities, we know that the events in the process graph that

have no fanout (i.e., the transitions of the signals in the circuit that are not acknowledged) have

actually occurred before the outcome of the event is needed later in the execution of the circuit.

For example, in order to insure that ro " does not �re prematurely, we must know that li1 " has

occurred before x1", corresponding to (22). A similar argument holds for (23). (24) and (25) are

needed to insure that the set and reset signals to the latch are not active simultaneously.

If we assume that all gate delays are in the range [2; 3] and all the wire delays are in the range

[0; 1] except those speci�ed explicitly in the table, we get the results shown in Table 2. The CPU

time needed to verify the four conditions is less than half a second on a SPARC 2.

Arc A Arc B �

(22)

�

(23)

�

(24)

�

(25)

OK

[0; 1] [0; 1] �1 �1 �3 �3

p

[0; 2] [0; 1] 0 �1 �3 �3

p

[0; 3] [0; 1] 1 �1 �3 �3

[0; 5] [0; 1] 3 �1 �3 �3

[0; 1] [0; 2] �1 �1 �3 �2

p

[0; 1] [0; 3] �1 �1 �3 �1

p

[0; 1] [0; 5] �1 �1 �3 1

Table 2: Results of the maximum separation analysis for the D-element. �

(i)

is the maxi-

mum separation corresponding to equation (i).

6 Conclusion

We have presented an e�cient exact solution to a fundamental problem for timing analysis and

veri�cation of concurrent systems, namely, the determination of bounds on the separation in time

between two arbitrary events. The major contribution of this paper is the structural decomposition

of the in�nitely unfolded process graph which allows the in�nite graph to be implicitly analyzed

to obtain the tightest possible bounds. This aspect of the solution and its algebraic formulation

enables the algorithm to be e�cient in practice. Furthermore, the algorithm handles a wide range

of process graphs and is thus useful in a variety of domains.

The utility of the time separation of events algorithm for solving a wide range of practical prob-

lems has been demonstarted. These include: determination of execution times in large concurrent

systems such as an asynchronous microprocessor, veri�cation of a high-performance communication

protocol, and veri�cation of isochronous fork assumptions.

29

We are looking into adaptations of this technique to graphs that include conditional behavior

and thus process an ever-larger class of graphs. This may require the exploration of tradeo�s

between the tightness of the bounds and computation time that has not been a concern up to now

because of the high e�ciency of the algorithm in practice. In concert with this e�ort, we are also

investigating other problem domains such as high-level synthesis and hardware/software co-design

as potential application areas.

Acknowledgments

This work was supported by an NSF PYI Award (MIP-8858782), an NSF YI Award (MIP-9257987),

by the DARPA/CSTO Microsystems Program under an ONR monitored contract (N00014-91-J-

4041), by an IBM Graduate Fellowship, and by the Technical University of Denmark.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, MA, 1974.

[2] R. Alur and D. L. Dill. The theory of timed automata. In J. W. de Bakker, C. Huizing, W. P. de Roever,

and G. Rosenberg, editors, Real-Time: Theory in Practice, Lecture Notes in Computer Science #600,

pages 28{73. Springer-Verlag, 1991.

[3] T. Amon and G. Borriello. An approach to symbolic timing veri�cation. In 29th ACM/IEEE Design

Automation Conference, June 1992.

[4] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity. Wiley Series

in Probability and Mathematical Statistics. John Wiley and Sons, 1992.

[5] Gaetano Borriello. A New Interface Speci�cation Methodology and its Application to Transducer Syn-

thesis. Ph.D. thesis, University of California at Berkeley, 1988.

[6] S. M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. Ph.D. thesis, California

Institute of Technology, 1991. CS-TR-91-1.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sosta. Automatic veri�cation of �nite state concurrent

systems using temporal logic speci�cation. ACM Transactions on Programming Languages and Systems,

8(2):244{263, April 1986.

[8] G. Cohen, P. Moller, J. P. Quadrat, and M. Viot. Evaluation of discrete event systems. Proceedings of

the IEEE, 77(1):39{58, January 1989.

[9] R. A. Cunighame-Green. Minimax Algebra. Number 166 in Lecture Notes in Economics and Methe-

matical Systems. Springer-Verlag, 1979.

[10] S. Gaubert. Th�eorie des Syst�emes Lin�eaires dans les Dio��des. Ph.D. thesis, L'�ecole Nationale Sup�erieure

des Mines De Paris, 1993. In French.

[11] S. Gaubert and C. Klimann. Rational computation in dioid algebra and its application to performance

evaluation of discrete event systems. In Algebraic computing in control, Lecture Notes in Computer

Science # 165. Springer Velag, 1991.

[12] Mike Gordon. HOL: A proof generating system for higher-order logic. In G. Milne and P. A. Subrah-

manyam, editors, VLSI Speci�cation, Veri�cation and Synthesis. Kluwer Academic Publishers, 1988.

30

[13] M. R. Greenstreet. STARI: A Technique for High-Bandwidth Communication. Ph.D. thesis, Princeton

University, January 1993.

[14] I. N. Herstein. Topics in algebra. Blaisdell Publishing Company, 1964.

[15] F. Jahanian. Verifying properties of systems with variable timing constraints. In Proceedings of the

IEEE Real-Time Systems Symposium, pages 319{328, 1989.

[16] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time systems. IEEE Transac-

tions on Software Engineering, 12(9):890{904, September 1986.

[17] F. Jahanian and A. K. Mok. A graph-theoretic approach for timing analysis and its implementation.

IEEE Transactions on Computers, 36:961{975, August 1987.

[18] F. Jahanian and D. A. Stuart. A method for verifying properties of modechart speci�cations. In

Proceedings of the 9th IEEE Real-Time Systems Symposium, pages 12{21, December 1988.

[19] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New

York, 1976.

[20] A. R. Martello and S. P. Levitan. Temporal analysis of time bounded digital systems. In Correct

hardware design and veri�cation methods : IFIP WG10.2 Advanced Research Working Conference,

CHARME '93, May 1993.

[21] A. R.Martello, S. P. Levitan, and D. M. Chiarulli. Timing veri�cation using HDTV. In 27th ACM/IEEE

Design Automation Conference, pages 118{123, 1990.

[22] A. J. Martin. Programming in VLSI: From communicating processes to delay-insensitive circuits. In

C.A.R. Hoare, editor, UT Year of Programming Institute on Concurrent Programming. Addison-Wesley,

Reading, MA, 1990.

[23] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovi�c, and P. J. Hazewindus. The design of an asynchronous

microprocessor. In C.L. Seitz, editor, Advanced Research in VLSI: Proceedings of the Decennial Caltech

Conference on VLSI, pages 351{373, Cambridge, MA, 1989. MIT Press.

[24] K. McMillan and D. L. Dill. Algorithms for interface timing veri�cation. In 1992 IEEE International

Conference on Computer Design: VLSI in Computers and Processors, October 1992.

[25] C. J. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous circuits. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 1(2):106{119, June 1993.

[26] X. Nicolin, J. Sifakis, and S. Yovine. Compiling real-time speci�cations into extended automata. IEEE

Transactions on Software Engineering, 18(9):794{804, September 1992.

[27] J. S. Ostro�. Deciding properties of timed transition models. IEEE Transactions on Parallel and

Distributed Systems, 1(2), April 1990.

[28] E. S. Selmer. On the linear diophantine problem of Frobenius. J.-Reine-Angew.-Math., 293/294:1{17,

1977.

[29] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. John Wiley and Sons, 1992.

[30] P. Vanbekbergen, G. Goossens, and H. De Man. Speci�cation and analysis of timing constraints in

signal transition graphs. In European Design Automation Conference, March 1992.

31

A Proof of Theorem 1

Let �(v

k

) denote the maximum separation from node s

���

to node v

k

in the �nite unfolded process

graph G

�

= hE

�

; R

�

i. We want to prove that �(v

k

) = M(v

k

)�m(v

k

).

We begin by asserting that there does not exist an execution with a separation greater than

M(v

k

)�m(v

k

). Let � be a timing assignment that achieves the maximum separation, i.e., �(v

k

)�

�(s

���

) = �(v

k

). For convenience, we use max

r

f�g to denote

max

�

�

�

�

�

r = u

j

[d;D]

7�! v

k

2 R

�

�

:

For the case v

k

; s

���

, we have from the de�nition of M(v

k

)

M(v

k

)�m(v

k

) = max

r

fmin(0;M(u

j

)�m(u

j

) +D +m(v

k

))g �m(v

k

)

= max

r

fmin(�m(v

k

);M(u

j

)�m(u

j

) +D)g

= min

�

�m(v

k

);max

r

fM(u

j

)�m(u

j

) +Dg

�

: (26)

We prove �(v

k

) � M(v

k

) � m(v

k

) by proving �(v

k

) to be less then each of the two parts of the

minimization in (26). By de�nition of the m-values we have that any consistent timing assignment

satis�es �(s

���

)� �(v

k

) � m(v

k

), so ��(v

k

) � m(v

k

). Multiplying by �1 yields �(v

k

) � �m(v

k

).

The second part, �(v

k

) � max

r

fM(u

j

)�m(u

j

)+Dg is proven by topological induction. Basis is

v

k

= root , which holds trivially as root has indegree of zero. Now assume �(u

j

) �M(u

j

)�m(u

j

).

From the de�nition of a consistent timing assignment (1), we have �(v

k

) � max

r

f�(u

j

) +Dg.

Subtracting �(s

���

) on both sides yields:

�(v

k

) = �(v

k

)� �(s

���

) � max

r

f�(u

j

)� �(s

���

) +Dg

� max

r

f�(u

j

) +Dg

� max

r

fM(u

j

)�m(u

j

) +Dg :

If v

k

6; s

���

, the minimization in (26) is omitted and the proof reduces to the second part above.

We now prove that there exist an execution where M(v

k

)�m(v

k

) is the maximum separation,

i.e., there exists a consistent timing assignment � such that

�(v

k

) = �(v

k

)� �(s

���

) = M(v

k

)�m(v

k

) : (27)

Choose as the timing assignment:

�(v

k

) = M(v

k

)�m(v

k

) + �(s

���

) : (28)

This timing assignment trivially satis�es (27). It remains to be proved that � is a legal execution,

i.e., that � satis�es (1) for all nodes. If v

k

; s

���

, we substitute the expression (26) for M(v

k

)�

m(v

k

) into (28)

�(v

k

) = min

�

�m(v

k

);max

r

fM(u

j

)�m(u

j

) +Dg

�

+ �(s

���

)

= min

�

�(s

���

)�m(v

k

);max

r

f�(u

j

) +Dg

�

:

32

By the de�nition of min, �(v

k

) � max

r

f�(u

j

) +Dg. We now prove

max

r

f�(u

j

) + dg � �(v

k

) ;

by proving

max

r

f�(u

j

) + dg � max

r

f�(u

j

) +Dg ; (29)

and

max

r

f�(u

j

) + dg � �(s

���

)�m(v

k

) :

The �rst follows from the fact that d � D for all edges, and the second from

max

r

fM(u

j

)�m(u

j

) + �(s

���

) + dg � �(s

���

)�m(v

k

)

max

r

fM(u

j

)�m(u

j

) + dg � �m(v

k

) : (30)

From the de�nition of m-values, m(u

j

) � m(v

k

) + d for all edges u

j

[d;D]

7�! v

k

2 R and thus

max

r

f�m(u

j

) + dg � �m(v

k

) : (31)

As for all nodes u

j

such that u

j

; s

���

, M(u

j

) � 0 (follows from the de�nition of the M -values),

we have that (31) implies (30), concluding the proof. If v

k

6; s

���

the timing assignment only

need to satisfy (29), which follows from a equivalent argument.

So �(v

k

)� �(s

���

) � M(v

k

) �m(v

k

) for every timing assignment � and there exists a timing

assignment with �(v

k

) � �(s

���

) = M(v

k

)� m(v

k

), and thus �(v

k

) = M(v

k

)�m(v

k

). One such

timing assignment, having �(root) = 0, is:

�(v

k

) =

8

>

>

>

>

<

>

>

>

>

:

0 if v

k

= root

min

�

m(root)�m(v

k

);max

�

�(u

j

) +D

�

�

�
u

j

[d;D]

7�! v

k

2 R

��

if v

k

; s

���

max

�

�(u

j

) +D

�

�

�
u

j

[d;D]

7�! v

k

2 R

�

if v

k

6; s

���

B Data Structures and Algorithms

This section describes details necessary to implement the tse algorithm e�ciently. These include

algorithms for performing scalar function operations, for �nding an optimal cutset, and for com-

puting the m-values.

B.1 Scalar Function Operations

Recall that a function f 2 F is represented as a set of pairs

f = fhl

1

; w

1

i; hl

2

; w

2

i; : : : ; hl

n

; w

n

ig (32)

corresponding to the function

f(x) = max fmin(x+ l

i

; w

i

) j 1 � i � ng :

33

The following observation leads to an important e�ciency optimization: If l

i

� l

j

and w

i

� w

j

for two pairs p

i

= hl

i

; w

i

i and p

j

= hl

j

; w

j

i, then p

i

subsumes p

j

since for all x, min(x + l

i

; w

i

) �

min(x+ l

j

; w

j

). Thus, a function (32) can always be represented as a list of pairs such that

l

1

< l

2

< : : : < l

n

and w

1

> w

2

> : : : > w

n

: (33)

Performing the maximum of two functions, f

1

and f

2

, can clearly be done in time jf

1

j + jf

2

j.

More surprisingly is it that the same holds when composing two functions. This follows from the

following theorem which leads directly to an algorithm composing two functions in linear time.

Theorem 3

jf

1

 f

2

j < jf

1

j+ jf

2

j.

Proof: Proof by induction on jf

1

j+ jf

2

j.

Basis: jf

1

j = jf

2

j = 1. We have jf

1

 f

2

j = 1 which is less than jf

1

j+ jf

2

j = 2.

Inductive step: Let f

1

= fhl

1

; w

1

i; hl

2

; w

2

i; : : : ; hl

n

; w

n

ig and f

2

= fhL

1

;W

1

i; hL

2

;W

2

i; : : : ; hL

m

;W

m

ig

be two functions on the form (33). Let p

n;m

2 f

1

 f

2

be

p

n;m

=

(

h1; f

2

(w

n

)i if l

n

=1

hl

n

; w

n

i
 hL

m

;W

m

i otherwise

(34)

It straightforward to prove that f

1

 f

2

= f

0

1

 f

0

2

� p

n;m

, where either f

0

1

= f

1

� fhl

n

; w

n

ig

and f

0

2

= f

2

or f

0

1

= f

1

and f

0

2

= f

2

� fhL

m

;W

m

ig. In both cases we have from the inductive

hypothesis that jf

0

1

 f

0

2

j < jf

0

1

j + jf

0

2

j = n + m � 1 and thus jf

1

 f

2

j = jf

0

1

 f

0

2

j + 1 <

n+m� 1 + 1 = n+m.

2

Let f be a function satisfying (33). The scalar closure operation of f ,

f

�

= 1� f � f

2

� f

3

� � � � ;

can be e�ciently computed by:

f

�

=

(

1� fh1; w

q

ig if l

n

> 0

1 if l

n

� 0

(35)

where w

q

is the w-component of the �rst pair with positive l, i.e., l

q

> 0 and if q > 1 then l

q�1

� 0.

Closing a function can clearly be done in linear time.

Function maximization and composition is used when constructing the functions for the R, S,

and T matrices. The closure of a function is needed when forming the closure of S. A matrix

closure algorithm [1] can be used to compute S

�

because (F ;�;
; 0; 1) forms a closed semiring.

The closure of an n� n matrix can be performed in O(n

3

) scalar function operations (n = O(E

0

)),

see Figure 29.

34

Matrix-Closure(S)

1 n rows[S]

2 D

(0)

 S� I

3 for k 1 to n do

4 for i 1 to n do

5 for j 1 to n do

6 d

(k)

ij

 d

(k�1)

ij

� d

(k�1)

ik

�

d

(k�1)

kk

�

�

 d

(k�1)

kj

7 return D

(n)

Figure 29: Algorithm for forming the closure of a matrix S.

B.2 Computing m-values

We have identi�ed two approaches for computingm-values. One is to determine the maximum ratio

cycles in the process graph and use these to derive "

?

and k

?

. The other approach is to represent the

m-value computation using a (max;+)-algebra, and �nd m-values for all occurrences by closing a

matrix in this algebra. Which one is appropriate depends on the use of the tse algorithm. If many

separation analysis are done on the same process graph (with di�erent s

(�)

events) or non-strongly

connected process graphs are analyzed, the algebraic approach is most e�cient.

A primal-dual algorithm [6] can be used to e�ciently determine the maximum ratio r and

the maximum ratio cycles. Computing "

?

is complicated by the fact that there may be multiple

maximum ratio cycles; m-values computed for di�erent events may use di�erent maximum ratio

cycles.

Let G

�

denote the sub-graph of G

0

including only edges on maximum ratio cycles and let G

�

i

denote the i

th

strongly connected component of G

�

. If an event, v, can get its m-value from two

di�erent maximum ratio cycles, c

1

and c

2

, and these two cycles are in di�erent strongly connected

components, then the occurrence period of v, "

?

(v), is

"

?

(v) = lcm("(c

1

); "(c

2

)) ;

where "(c) is sum of the "-values of the edges on the cycle c. On the other hand, if c

1

and c

2

are

in the same strongly connected component we get

"

?

(v) = gcd("(c

1

); "(c

2

)) :

An approach to computing "

?

is to enumerate all cycles in G

�

i

and compute "

?

as

"

?

= lcmfgcdf"(c) j c 2 G

�

i

gg :

The problem with this approach is that there may be an exponential number of maximum ratio

cycles, making it potentially expensive to enumerate all of them. Instead we can compute an upper

bound on "

?

by using the smallest " value for each strongly connected component:

"

?

� lcm fminf"(c) j c 2 G

�

i

gg :

35

This is an upper bound because gcd(a; b) � min(a; b) for any two numbers a and b. Finding the

cycle in G

�

i

with minimal "-sum can be done e�ciently using an all pairs shortest path algorithm.

The other important number related to the m-values is k

?

, i.e., the number of unfoldings

before all m-values repeat. Let k

?

(v) denote the number of unfoldings before m(v

(k)

) repeats (with

occurrence period "

?

(v)). We have that

k

?

= max

�

k

?

(v) j v 2 E

0

	

:

We now consider the problem of �nding k

?

(v) for a given node v 2 E

0

. For a strongly connected

process graph we know that all nodes eventually get their m-values from maximum ratio cycles. As

we unfold the process graph we can detect when m(v

(k)

) is obtained from a maximum ratio cycle.

If the maximum ratio cycle has "(c) = 1, all subsequent m(v

(k)

) values can be obtained repeatingly

using the cycle.

However, if the maximum ratio cycles have "-values larger than one, further unfoldings may be

necessary before the m-values repeat. This is best illustrated using a simple example. Assume node

v

(k

0

)

can get its m-value from two maximum ratio cycles, c

1

and c

2

, with "(c

1

) = 3 and "(c

2

) = 5.

Also, let c

1

and c

2

be in the same strongly connected component, then "

?

(v) = gcd(3; 5) = 1.

Although v

(k

0

)

gets the m-value from maximum ratio cycles, this does not guarantee that the

m-values repeat yet. We can certainly compute m(v

(k

0

+"(c

1

))

) from a maximum ratio cycle by

traversing c

1

one additional time. In fact, all subsequent m-values for nodes separated by "(c

1

)

in occurrence index get the m-value from a maximum ratio cycles. Similarly can m(v

(k

0

+n"(c

2

))

)

(for n � 0) be obtained from the cycle c

2

. In fact, every m(v

(k

0

+n"(c

1

)+m"(c

2

))

) for n;m � 0 can

be obtained from maximum ratio cycles. Exactly when m(v

(k

0

+n)

) for all n � 0 is obtained from

maximum ratio cycles is determined as the solution to the Frobenius problem [28] given "(c) for

the maximum ratio cycles c.

For two variables, a and b, the Frobenius problem can be solved exact, and the solution is

(a�1)(b�1). That is, for the example, we need ("(c

1

)�1)("(c

2

)�1) = 8 further unfoldings before

m(v

(k)

) repeats. More generally, we have

k

?

(v) = k

0

+ frobenius f"(c) j c 2 G

�

i

g :

For more than two variables, no exact solution to the Frobenius problem is known, but several

bounds exists [28]. Note that any subset of "

?

-values also gives a bound on k

?

(v), and if there

exists a maximum ratio cycle c with "(c) = 1, the solution to the Frobenius problem is 0.

The m-values can also be computed using a dioid algebra [8, 11, 10]. The lower delay bound

and the occurrence index o�set for all edges in the process graph are represented as elements of the

dioid algebra in an jE

0

j � jE

0

j matrix. By closing this matrix (in the dioid algebra) the m-values

for all nodes are computed. An entry of the closure of this matrix contains functions that, given

an occurrence index, returns the m-value. In O(jE

0

j

3

) scalar dioid operations the m-values at all

event occurrences for every s 2 E

0

are computed.

This approach works regardless of the structure of the process graph, and the entries in the closed

dioid matrix can be used to determine everything about the behavior of the m-values, including "

?

and k

?

. This is very useful when analyzing non-strongly connected process graphs, see Section 4.7.

B.3 Cutsets

Determining a small cutset of the unfolded process graph can greatly improve the practical per-

formance of the tse algorithm. The dimension of the S matrix is determined by the dimension of

36

the cutset. Closing S takes O(n

3

) where n is the dimension of the cutset. Clearly reducing n can

drastically improve the practical execution time of the tse algorithm.

It is simple to �nd a cutset X for an unfolded process graph:

X =

�

v

(i)

�

�

�
u

[d;D];"

7�! v 2 E

0

; 0 � i < "

�

: (36)

However, this is not necessarily the smallest cutset. We can use a max-ow algorithm to determine

a smaller cutset. From the max-ow min-cut theorem [29] it follows that for a ow network (with

source s and sink t) we can �nd a minimal set of edges whose removal disconnects all path from

s to t. We can �nd a minimal cutset (i.e., a minimal set of vertices whose removal disconnects

the graph) for a �nite unfolded process graph G

k

from a ow network G

f

k

. The ow network is

constructed by splitting all nodes (except the source and sink) into two nodes with an edge between

them. All edges are assigned capacity 1. Finding the minimal edge cut of G

f

k

corresponds to a

minimal vertex cut of G

k

(Menger's theorem, [29]).

In this context, the Ford-Fulkerson max-ow algorithm is e�cient. The complexity of Ford-

Fulkerson is O(EU), where E is the number of edges in the ow network and U is the maximum ow.

We can bound U as a cutset will always be smaller than "

max

jE

0

j, where "

max

= maxf" j u

[d;D];"

7�!

v 2 E

0

g. I.e., the maximum ow is bounded from above by "

max

jE

0

j, therefore the complexity of

the Ford-Fulkerson algorithm is O(N jE

0

jjR

0

j), where N � "

max

is the number of times the process

graph is unfolded.

A cutset for the process graph in Figure 14 computed using (36) is fa

(0)

; b

(0)

; c

(0)

; d

(0)

; e

(0)

; f

(0)

g,

while a minimal cutset is fb

(2)

; d

(1)

; f

(0)

g.

37

