
On Scalable State-Based Specifications for Real-Time Systems*
Alan C. Shaw

Department of Computer Science and Engineering
University of Washington

Seattle, Washington 98195
shaw@cs.washington.edu

Technical Report 94-02-03

Abstract
Using our communicating real-time state machine (CRSM) language as a basis, we propose and
develop a methodology for specifying requirements and designs for large real-time systems.
CRSMs are distributed state machines with novel and general timing facilities and CSP-like
synchronous communications. The paper first presents a particular controller-client (CC)
architecture for composing CRSMs into larger components and then uses the CC organization to
define a number of standard in-the-large paradigms for real-time and other software.

1 . Introduction

The general goal is to provide a methodology for the specification of software requirements
and designs for large real-time systems. Among other features, the approach and techniques
should be executable, universal, formal, and scalable. The basis for our work is the
communicating real-time state machine (CRSM) notation [Raju 93; Raju & Shaw 92; Shaw 92,
93]. CRSMs are universal state machines with guarded commands as transitions, synchronous IO
communications over undirectional channels, and facilities for describing the execution times of
transitions and for accessing real-time. CRSMs are distinguished from other state machine models
mainly by their explicit timing features.

CRSMs have been tested empirically on a large number of relatively small problems,
through paper specifications, computer simulation, monitoring, and (to some extent) verification.
Examples include a real-time bounded buffer, calendar timer, mouse clicker recognizer, gate
controller for a train crossing, traffic light controller, real-time dining philosophers, and real-time
spinning lock algorithms. However, it is evident that some additional methodology is needed to
handle larger applications.

This paper makes two contributions towards real-time specifications in-the-large. First, we
present a CRSM architecture that permits the construction of larger systems from components.
This organizational scheme, called a controller-client architecture, assumes a particular uniform IO
channel interface for all CRSMs. Our second contribution is to define a number of standard in-the-
large paradigms for real-time and other software. These include conventional control for large
components, such as sequential, parallel, guarded selection, and looping; and scalable encapsulated
data objects. Also presented are a variety of specific schemes and utilities commonly used mainly
in real-time applications. Examples are alarm clock and multicasting utilities, scalable interrupt
mechanisms, and organizations for periodic and sporadic activities.

Our approach to scalability has been most influenced by statecharts [Harel 87], with their
notions of superstates, interrupts, and series/parallel composition of machines, even though our

* This research was supported in part by the National Science Foundation under grant number CCR-9200858.

mechanisms and details are quite different. These differences result from different models (shared
memory versus distributed, broadcast communications versus synchronous one-to-one) and our
timing facilities. The Modechart notation [Jahanian & Mok 89] is similar to statecharts, but more
restricted; they compose nicely but machines are finite state and events that trigger transitions
among components cannot have data associated with them. The Requirements State Machine
Language (RSML) [Leveson et al. 92], also heavily influenced by statecharts, permits both shared
store and distributed interactions among machines, but has no timing features. The Hierarchial
Multi-State Machines (HMS) [Gabrielian & Franklin 91] uses aspects of statecharts, Petri-nets,
and temporal logic, but seems excessively complex for convenient specification. Another
interesting language that provides for hierarchical composition of components is the prototype
system description language (PSDL) [Kramer et al. 93], which combines state machine with data
flow ideas and includes time; for convenience and simplicity, we prefer a pure state-based notation.
Other (non-state-based) models that provide for scalability, for example, those based on
programming languages or Petri-nets, are not discussed here.

The next section describes the interfaces and behaviors of machines, and our graphical
notation for components and interfaces. Section 3 then gives a brief introduction to CRSMs. The
next two sections explain our proposed controller-client architecture for large components and our
standard reusable CRSM form. These are used in Sections 6 and 7 which present some standard
in-the-large paradigms for compositions and encapsulations and a variety of schemes for real-time
software. The last two sections discuss some open problems and issues, and summarize our
results.

2 . Behaviors, Components, and Interfaces

A real-time system is modeled as a closed world consisting of an external environment and
a controlling and monitoring computer system (Figure 2.1). The environment and computer
system communicate through objects from a set of inputs I and outputs O. These input-output (IO)
objects are called signals, events, messages, or commands. Elements of I are monitored by the
computer system and elements of O represent control and query messages from the computer.

Figure 2.1 Real-Time System Model

Environment Computer System

I

O

The behavior of a system is defined as a set T of traces over I and O, where a trace tr is a
(possibly infinite) sequence of timed IO events:

tr = <x0 x1 ... xi ...>
A timed IO event xi is a triple (ei, vi, t i); ei and vi denote an event name and an associated value,
respectively, from I or O, and ti is the time of the event. The event name can be viewed as a class
or as an IO channel; the value is the message or data corresponding to the particular instance of the
event. For all i, ti ≤ ti + 1 and for each xi, there exists only a finite number of xj such that ti = tj.
Generally, the xi terms from I in a trace represent the given behavior of the environment over time
and the terms from O describe the required behavior or response of the computer system.

The environment and the computer system are each described by a set of CRSMs and their
communicating IO channels. A closed system S is given by a pair (M, C), where M = {M1, M2,...,
Mm : m ≥ 2, Mi a CRSM}1 and C={C1,C2,...,Ck : k ≥ 0, Ci a channel}. Each channel Ci
consists of a name, a type denoting the values of the messages that can be transmitted on the
channel, and an ordered pair (Ms, Mr), s ≠ r, listing the sender and receiver CRSMs. Graphically,
a machine "node" is drawn as a named rectangle with rounded corners, a channel as a labeled wavy
arrow "edge" directed from the sender to the receiver machine, and a system as a graph of machine
nodes connected by channel edges.

Example:
Consider a (simplified) real-time system for controlling traffic lights at the intersection of an

avenue and street; in addition to controlling the normal light sequencing, the computer system must
respond appropriately to the arrival and departure of an ambulance on one of the thoroughfares.
This is a variation of the example presented in [Raju & Shaw 92]. The environment consists of
two pairs of traffic lights, one for the avenue and one for the street, and the ambulance. Outputs
are commands to turn the lights to their correct colors. Inputs are from the ambulance and
comprise a signal indicating the approach of an ambulance on either the street or the avenue and a
message that is sent when the ambulance leaves the intersection. The traffic control system TC can
be specified:

TC = {{Ambulance, Street_Lights, Avenue_Lights, Light_Mode_Control,
Light_On/Off_Control}, {Approach, Leave, Avenue, Street, Normal_Mode,
Amb_Mode}}

where the channels are:
Channel Name Message Type (Sender,Receiver)
Approach <thoroughfare> (Ambulance, Light_Mode_Control)
Leave <null> (Ambulance, Light_Mode_Control)
Avenue <color> (Light_On/Off_Control, Avenue_Lights)
Street <color> (Light_On/Off_Control, Street_Lights)
Normal_Mode <thoroughfare> (Light_Mode_Control, Light_On/Off_Control)
Amb_Mode <thoroughfare> (Light_Mode_Control, Light_On/Off_Control)

The system is illustrated in Figure 2.2

In a closed system S = {M, C}, there are no dangling or unconnected channels in C: every
channel has both a sender and receiver machine in M. Such a system generally consists of a
number of open subsystems which in isolation have unconnected channels. In an open system S=
{ M, C}, the definition of at least one channel Ci ∈ C has an ordered pair (Mj, Mk) where exactly
one of Mj, Mk is undefined.

An in-the-large component is represented as an open subsystem, with the unconnected
channels as its interfaces. These higher-level components are also denoted graphically by named
rectangles with rounded corners and the interface channels by labeled wavy arrows, as illustrated
in Figure 2.3. Components can be combined by connecting channels together, provided that the
channels are type-compatible. When combining open subsystems in this manner, each new
connecting channel must have a unique name, which may involve renaming the channel and all of
its IO commands in the sending or receiving CRSM.

1 m ≥ 2 because we assume that there is at least one CRSM representing the environment and at least one for the
computer system.

Figure 2.2 Traffic Controller

Approach

Leave

Avenue

Street

Ambulance

Street_lights

Avenue_Lights

Light_Mode_Control

Light _On/Off_Control

Amb_ModeNormal_Mode

Figure 2.3 Three Open Subsystems From Figure 2.2

Avenue
Environment

Computer Control

Light_Mode_Control

Amb_ModeNormal_Mode

Approach

Street

Leave

Avenue

Approach

Street

Leave

Approach

Leave

3 . Communicating Real-Time State Machines

We present a brief introduction to CRSMs. More formal and detailed treatments appear in
[Shaw 92, 93].

A CRSM is a state machine with one designated start state and guarded commands for state
transitions. A command can be either an IO command, or an internal one designating a
computation or some physical activity. Enabled transitions are fired on an earliest-time-first basis.

Communications between CRSMs is synchronous and occurs over undirectional named
channels, in a manner similar to CSP [Hoare 85]. A receiving machine desiring input on a channel
C may issue an input command:

C(x)?
A sender machine may have a corresponding output command on the same channel:

C(message)!
When and if communication occurs, the data transmitted by the sender is instantaneously received
by the receiver, equivalent to the assignment:

x := message
Both sender and receiver then continue execution.

Guarded commands have the general form:
g → COM[t1, t2]

where g is a Boolean guard, COM is a command, and [t1, t2] , t1 ≤ t2, gives a time bound for
executing the transition. If COM is an internal command and the transition is selected for
execution, then its execution time d is somewhere in the time-bound window, i.e., 0 ≤ t1 ≤ d ≤ t2.
If COM is an IO command selected for execution, then t1 and t2 give the earliest and latest times,
respectively, that the IO can occur, relative to the time that the machine last entered its current state.
If IO occurs, it happens at the earliest time that both sender and receiver can execute the
command.2

Finally, every machine X has its own real-time clock machine RTCX that can send current
global real-time (denoted rt) to X on demand. RTCX has one state with a single transition (to
itself) on a clock channel RTX :

RTX (rt)! [0, ∞]
The host machine X can obtain current real-time with a "time-out" at time t with the command:

RTX (crt)? [t, t]

Example: Real-Time Bounded Buffer
Figure 3.1 contains 3 CRSMs implementing a real-time version of a producer and a

consumer interacting through a bounded buffer. We assume that the producer is a physical device
that generates input signals quasi-periodically in a cycle that ranges between 7 and 12 time units. If
the Buffer is unable to accept the data in time, the Producer times-out (RTP (now)?) and sends a
message on the Error channel to some fault-handling or monitoring machine (not shown).
Abbreviations for two common cases of time-bounds are used: if the bounds are [0,∞], then the
interval is omitted; if the bounds are identical, e.g., [t,t], then a simple scalar [t] is employed. The
intervals for the compute transitions in Buffer and P ([2,3], [4,8], and [0]) were chosen arbitrarily
for this example.

2 Every interval [t1, t2] is interpreted as [t1 + δ, t2 + δ], where δ is a small number representing a minimal amount
of time that will always be spent in every state.

Figure 3.1 Real-Time Bounded Buffer Example

(b) CRSMs

(a) Buffer and Clients

in := out := full := 0 [2,3] full < n → Deposit(Buf[in])?

in := in+1 (mod n); full := full+1 [4,8]

Buffer

out := out+1 (mod n); full := full–1 [4,8]

full > 0 → Remove(Buf[out])!

RTp(now)? [12]

Deposit(data)! [7,12]

Error((now,"missed data"))!

Producer P

Generate(data)[0]

Buffer ConsumerProducer

RemoveDeposit

Consumer C

Remove(x)? [8,10]

..
.

..
.

4 . A Standard Reusable CRSM Form

All machines will have a standard interface. Our basic reusable machine contains an input
start channel for initiating execution, an output stop channel for signaling termination, and an
arbitrary number of input and output channels as shown in Figure 4.1 (a)3 . The start channel has
an optional typed input parameter x and the stop channel has an optional output y. Figure 4.1 (b)

3 Not shown is the clock machine RTCM that is associated with every machine M.

indicates how these channels are used in the rest of the CRSM; guards (not shown) may appear on
the stop transitions.

Figure 4.1 Basic Reusable CRSM

(b) Internal Connections

default
entry

stop(y2)!

stop(y1)!

stop(yn)!

n ≥ 1

.
.

.

start(x)?

.
.

.

start(x) stop(y)

M

C1 C2 Ck k ≥ o

(a) Machine Interfaces

. . .

To control such a machine, say M, another machine would first issue a start command,
i.e., send a message over its start channel with input, say a

M. start(a)!
and then may wait for it to terminate by issuing a stop command

M. stop(b)?
receiving output in b. We will use a dot notation, "M." above, to distinguish start, stop, and other
identically-named channels on different machines.

An example of a reusable machine is the periodic ticker machine W specified in Figure 4.2.
W issues a Tick every p units of time after startup, until the current time (ct) exceeds n which is
provided at startup. The Tick is ignored unless a user of W is requesting it in the time interval
[0,eps] after the Tick is issued. It is assumed, arbitrarily, that the compute transitions take 1 unit
of time; for correct operation, we also assume that p>1, ensuring that (next-ct)>0.

Figure 4.2 Periodic Clock Ticker W

start(n)?

Tick!

next: = ct + p [1]RTw(ct)?

next < n → RTw(ct)?next ≥ n → stop!

next: = next + p [1]

RTw?[eps]

RTw?[next-ct]

Frequently, a controlling machine may wish to enforce or initiate a termination action on its
controllee M. In such a case, at least one of M's IO channels is an "interrupt" channel; messages
received on this channel cause M to (eventually) issue a stop request. Alternatively the stop
channel could act as an interrupt channel. (Section 7.2 presents a finer-grained mechanism for
interrupting a CRSM more directly).

The CRSMs in the bounded buffer example (Figure 3.1) are not in this reusable form,
since they are all missing start and stop channels. These can be easily added, and in fact, may be
necessary if the application is to be completely specified conveniently. In particular, these channels
are needed to handle situations such as power failures, and orderly start-up and shutdown.

5 . Controller-Client Architecture

Every higher level subsystem will have the same general interface as the reusable primitive
CRSM, i.e. start and stop channels and an arbitrary number of other IO channels (Figure 5.1(a)).
An organization, that we call the controller-client (CC) structure (Figure 5.1(b)), is imposed on
these higher level subsystems.

The structure contains a controller machine and k≥1 client subsystems M1,..., Mk, each of
which can be either a basic CRSM or a higher level subsystem. The task of the controller is to
initiate the execution of the client subsystems, to control the clients' execution, e.g. with respect to
time, and to synchronize the termination of the client machines. Each subsystem set of machines
M can have an associated clock, namely the clock machine of its controller. The start and stop
channels of M are the corresponding channels of M's controller, and will be written as M.start and
M.stop.

Machine composition and refinement are defined in terms of the CC architecture. A set of
subsystems {M1, ... ,Mk} are composed by providing an appropriate controller K. K could
consist of more than one CRSM, in general. Conversely, the refinement of a subsystem M={K,
M1, ... ,Mk} is the set of clients {M1, ... ,Mk}.

The traffic light example described in Section 2 is not in CC form. One version of this
system in standard form is sketched in Figure 5.2. A side benefit of our conventions, that is not

realized in the original, is that this more complete description can provide for orderly startup,
shutdown, restarts, and interruptions4 .

Figure 5.1 CC Architecture for Subsystems

start(x) stop(y)

M

(a) System Interface

. . .

(b) Structure of (a)

start(x) stop(y)
Controller

K

MkM2

. . .

M1

.

. . .

. . .

.

4 There is the issue of how the top level controller in a closed system starts and stops, e.g., the Traffic World
Controller in this example. We will assume that some meta-level "super-controller" performs these functions, such
as the user of the system.

Figure 5.2 CC Structure For Traffic Light System

Traffic World
Controller

Environment
Controller

Computer System
Controller

Ambulance Street Lights
Avenue
Lights

Light Mode
Control

Light On/Off
Control

start

start start stopstop

start stopstop

.

.

.

6 . Standard Paradigms for Composition and Encapsulation

Conventional control methods for grouping objects and for encapsulating behaviors are
described and implemented within the controller-client framework.

6 . 1 Conventional Serial and Parallel Machine Compositions

Given two open subsystems M1 and M2, each implemented with a CC structure, we show
how they may be connected sequentially, in parallel, and with guarded selection by providing an
appropriate controller K producing a subsystem M={K, M1, M2}. The methods extend easily to
m ≥ 2 subsystems M1, ... ,Mm. Cyclic control of a single subsystem is also defined.

For sequential composition, the controller K is a small CRSM that sequences through the
IO instructions:

M1. start! M1. stop? M2. start! M2 .stop?
If data is to be passed (not "piped") to M2 at the termination of M1, the stop and start channels of
M1 and M2 will have parameters and K has the form:

M1. start! M1. stop(x)? M2. start(x)! M2.stop
In this simplest of cases, the controller could be eliminated completely by identifying the stop
channel of M1 with the start channel of M2. (Figure 6.1)

Figure 6.1 Efficient Sequential Composition

start

M

stop

M1 M2

M1.stop_M2.start

A function f from domain X to co-domain Y, i.e., y = f (x) where x in X and y in Y, can
be described as a basic CRSM or structure with input on the start channel and output on its stop.
To specify the computation y = f (x) with structure or machine Mf, the "caller" invokes the
sequence:

Mf. start(x)! Mf. stop(y)?
Function composition is a particular instance of the sequential case. If the co-domain of a function
g is equal to the domain of a function f, their composition y = f (g(x)) can be specified by the
sequential composition of their machines Mg and Mf.

Parallel composition means that M1 and M2 start at (approximately) the same time, perform
their functions concurrently, and are synchronized at their termination. It can be implemented
using a fork/join form of control. K executes the IO sequence:

M1. start! M2.start! M1.stop? M2 . stop?

Selection of either M1 or M2 depending on the values of Boolean guards g1 and g2 is
another standard control paradigm. We call this guarded selection. The semantics are defined by
the controller CRSM in Figure 6.2. Note that because we are working with a distributed model,
there are no global variables; the guards g1(x) and g2(x) are Boolean functions of the input to M
obtained though its start channel. Guarded selection is non-deterministic - if both g1 and g2 are
true, one of M1, or M2 is selected, non-deterministically.

Figure 6.2 Controller for Guarded Selection

start(x)?

stop!

M2.stop?

M1.stop?

g2(x) → M2.start!

g1(x) → M1.start!

Several different forms of cyclic control are also useful. For example, a subsystem M is to
execute repeatedly until a Boolean guard becomes true; this is an in-the-large repeat/until loop. The
controller is given in Figure 6.3.

Figure 6.3 Repeat/Until Looping

start stop(y)

(a) Cyclic Control of M

start?

(b) repeat/until Controller CRSM

repeat/
until

M

M.start! M.stop(y)?

g(y) → stop!

¬g(y) → skip

6 . 2 Data Encapsulations

The suggested approach for handling shared data in our distributed model is through
abstract data types (ADTs) that maintain the data state and provide remote procedure call interfaces
(methods or operations) for user access and manipulation. A shared data server that implements
read and write operations on a database x is specified by the basic CRSM in Figure 6.4.

Figure 6.4 Shared Data Server

start stop

(a) Shared Data Interface

(b) CRSM

writeread

start?

write(x)?

read(x)!

stop!

Of course, if several users wish to read and write the database, we need unique read and
write channels for each user. The standard way to accomplish this is by defining arrays of
channels; e.g. read.k , write.k , k = 1 .. n for n≥1 users.

If access and update at a finer granularity than the entire database is desired, then it is
necessary to transmit names or addresses of data at the interface. For example, if data is stored in
an array X(i), i =1,...,m, then the data server could execute the following sequences:

Read: read(i)? return(X(i))!
Write: write(i,y)? X(i) := y

A user would call the server with:
Read call: read(i)! return(x)?
Write call: write(i,y)!

The array index i serves as the data address.

For higher-level ADT servers that implement more general operations, a send/receive
protocol over the IO channels can be used to implement the remote procedure call interface. A
server S that offers operations p1, p2, ..., pm, m≥1, on shared data d can be constructed with the
CC structure of Figure 6.5. A user invokes a service pi with the IO calls:

S.pi.call(x)! S.pi.return(y)?
x is the input parameter to S and y is the output returned from S. The pi sequence (pi_s) in the
controller K has the general form

pi. call(x)? Perform_Requested_Service pi.return(y)!
A guard may be part of the first command. Also, we have not shown separate channels for each
user, as in the other examples above.

Figure 6.5 General ADT Server

start?

stop!

Initialize

(b) CRSM for K

pm_S

.

.

.

p1_S

(a) CC Structure

K

p1

Server
for
d

write

read

. . . pm

Pi.call

Pi.return

. . .

7 . Real-Time Paradigms

7 . 1 Some Time-Constrained Utilities

We describe two different kinds of utilities that are useful in real-time specifications. One
family defines alarm clocks for both absolute and relative time. The second provides an alternative
communications method, in particular a multicast mechanism for broadcasting messages to a given
subset of the components of a system. Both classes have interesting and non-obvious time
constraints.

The generic alarm clock has the interface depicted in Figure 7.1. The message in the
Wake_Me channel gives a non-negative absolute or relative time, say t or ∆t, respectively, at which

a Wakeup message is to be sent by the clock. If now is the time at which the Wake_Me
communication occurs, then at time t'= max(now, t) (absolute time) or t'= now + t (relative
time), the Wakeup message will be enabled on its channel. The Wakeup message will remain
enabled until either it has been received or the time has reached t' + ring_time, whichever occurs

Figure 7.1 Alarm Clock Interfaces

stopstart(ring_time) Alarm Clock

Wake_Me(time) WakeupReset

ac

earliest5 . A (null) message on the Reset channel will reset the alarm clock so that it is ready to
receive another Wake_Me or to terminate. Figures 7.2 and 7.3 contain CRSMs for relative and
absolute time alarm clocks, respectively. In these versions, a Reset signal is not handled once an
alarm clock starts "ringing"; this could be added easily if desired.

The multicast facility allows a signal to be broadcast for a given time interval. During the
broadcast interval, any of a set of designated receivers can elect to receive the signal. The interface
for a generic multicast system appears in Figure 7.4. The message or signal to be broadcast is sent
to the facility over the multicast channel. The message will be made available to each receiver over
the channels Receiveri , i=1, ..., r, for the time interval [now, t'], where now is the time at which
the multicast message is sent to and received by the multicast facility (assumed identical here) and t'
= now + transmit_time.

5 The minimal transition time δ is being ignored here. The maximum enabling time is really t' + ring_time + kδ,
where k = 2 or 3 depending on the alarm clock (Figure 7.2 or 7.3).

Figure 7.2 Alarm Clock for Relative Time

start(ring_time)?

stop!

Reset?

Wakeup![0,ring_time]

RTac?[ring_time]

Wake_Me (∆t)?

RTac?[∆t]

Figure 7.3 Alarm Clock for Absolute Time

start(ring_time)?

stop!

Reset?

Wakeup![0,ring_time]

RTac?[ring_time]

RT(now)?

RTac?[max(now,t)–now]

Wake_Me(t)?

Receiver1(message)

Receiverr(message)

Multicast
Controller

Alarm
Clock

stop

.
.
.

. . .

start(transmit_time)

multicast(message)

.
.

.

Figure 7.4 Multicast Communications

The system can be implemented with a basic multicast controller and an alarm clock for
relative time. The details of the multicast controller CRSM are given in Figure 7.5. 6

Example:
For an obvious example in real-time systems, consider a power system that broadcasts

power_on/power_off signals to its r components (power consumers). The multicast message is
either "power_on" or "power_off", and components c1,...,cr receive the same message on their
Receiveri channels. The transmit_time parameter might reflect the physics of turning power on and
off, the complexity and nature of the components, and the system requirements.

Our original paper on CRSMs [Shaw 92] indicates how some other common forms of
communications may be implemented. This includes asynchronous communications with a non-
blocking send and a blocking receive, and synchronous but undirected one-to-one message
passing. Utilities for these and others can be constructed when the need arises.

7 . 2 Interrupts and Faults

In order to specify a broad variety of exceptions and faults, as well as "handlers" or
procedures that monitor and recover from them, it is convenient to have a uniform mechanism for
interrupting and reentering system components. Our proposed scheme is similar to and inspired by
the statechart method for exiting and entering superstates.

We first define interrupts for a CRSM. A CRSM can designate an input channel to be an
interrupt channel, using the graphical notation illustrated in Figure 7.6. An interrupt channel, say
int, is identified as such by adding a dashed arrow; the meaning is that a transition with input
command int? is connected from every state in the CRSM to the start state of the machine. Thus,
to interrupt a CRSM, one would issue the command int!. An example is given in Figure 7.7,
where our real-time bounded buffer machine (Section 3) has been augmented with an interrupt.

6 The message is available between now + δ and now + transmit_time + kδ, where k could range from 2 to 2 + 2r.

The extra transitions are shown as boldface arrows; normally, these would not be explicitly drawn.
Note that the interrupt signal has very much the same effect as the stop command.

The same notation is used to denote interrupts of higher-level components (Figure 7.8). To
gracefully propagate the interrupt signal to all machines, we employ the multicast facility defined in
the last section. Each level of component will broadcast the message to the next level, until basic
CRSMs are reached7 ; in the figure, for example, each Ri is interpreted as an interrupt signal to its
component Ci. As an application of higher-level interrupts, consider a power supply subsystem
that provides electrical power to the rest of the system; if a power failure occurs, a "power-off"
interrupt message can be sent causing all components to revert to their start states.

When a timing or other fault occurs in some component, perhaps asynchronously, it can be
propagated through the system by means of this interrupt scheme. The remaining part that needs to
be described is the actual fault handler - that component that takes whatever corrective, monitoring,
or restorative action is necessary to record and recover from the fault. The detector of the fault
which generated the interrupt signal could handle it directly or it could send an appropriate message
to some other exception-handling component.

7 . 3 Control of Periodic and Sporadic Activities

From requirements through implementations, and from theory through practice, the
principal means for organizing real-time functions and tasks are as periodic and sporadic activities.
We propose a CC structure for families of both kinds.

Periodic objects are activated every p units of time and must complete their processing
within a deadline d < p. The CC organization of such an activity is given in Figure 7.9(a). The
controller (Figure 7.9(b)) sends an interrupt message int to its client if the deadline is exceeded and
then generates a timing fault output fault_stop. The transition RTK?[d] provides the deadline time-
out. The pair (p, d) are initial input to the controller. Variations and extensions of this
basiccontroller and structure might include a fault handler component, and other parameters such as
start and stop times for the subsystem and an activation time a for each cycle (0 < a < p–d).

Sporadic activities are triggered by an event, say e, and must complete their processing
within same deadline d after the event occurrence time. Figure 7.10 contains a CC architecture and
controller for a standard sporadic object.

7 It may be convenient to give priority to interrupts and other IO over internal activities, to assure that IO is
serviced. Also note that, if necessary, one could define several different kinds of interrupts (different interrupt
channels) and interrupts that save state.

Figure 7.5 Multicast Controller

stop!

Alarm_Clock.stop? start(transmit_time)?

i = 1, ..., r Ri := true [0]

Alarm_Clock.start(ring_time)!

multicast(message)?

Ri := false, i = l , ..., r [0]

Alarm_Clock.Wake_Me(transmit_time)!

¬Ri → Receiveri(message)!

Alarm_Clock.Wakeup?

Figure 7.6 Interrupts at the CRSM Level

int

int?

start
state

any other state

Figure 7.7 Bounded Buffer With Interrupt

start?

int?

int?

int?

int?

stop!

Figure 7.8 Higher Level Interrupts

Multicast
. . .

int
R1

Rn

R1

Rn

C1

Cn

int

Figure 7.9 Periodic Object

7.9(a) Periodic Function CC Structure

7.9(b) Periodic Controller K With Client C

C.int!

C.stop?

start(p,d)?

RTk?[d]

C.start!

RT(next)?

next:=next+p [0]

RTk(now)?

RTk?[max(next-now,0)]

fault_stop!

normal_stop!

Periodic
Controller

start
stop

int

Client

normal_stop

fault_stop

normal_stop

7.10(a) CC Architecture

7.10(b) Sporadic Controller

Figure 7.10 Sporadic Object

start(d)?

normal_stop!

C.int!

C.stop?

C.start!e?

fault_stop!

RTk?[d]

Sporadic
Controller

start(d) fault_stop

int

e

Client
C

K

8 . Discussion

8 . 1 Notation and Representations

A consistent graphical representation of components and interfaces has been employed.
Component objects are denoted by rounded rectangles labeled by identifiers; geometrically-
enclosed rectangles indicate hierarchical grouping of objects (the "part of " relation). Wavy lines
with entering (exiting) arrows represent input (output) channels and are labeled by the channel
name and the types of their parameters. Interrupts are identified by dashed arrows. At the basic
CRSM level, a standard state diagram is used. It is tempting to define more specific icons for each
of the mechanisms and paradigms presented, for example, so that sequential control can be
obviously distinguished from parallel control, and periodic objects immediately appear differently
then sporadic ones. However, the benefits are not yet evident and we will resist for a while.

Similarly, and perhaps more clearly, there are any number of reasonable possibilities for
purely textual notations of in-the-large objects. (A formal (textual) notation for CRSMs is given in
[Shaw 93]). For example, a subsystem M could be defined:

M = { M1, ... , Mm} , m>1
/* M consists of m components M1, ... , Mm. */
Chconnected = {CC1, ..., CCc} , c ≥ 0
/* Each channel CCi is connected between two components of M. */
CCi = (name, <Mis , Mir>, message_type)
/* This defines each CCi . Mis and Mir are in M. */
Chunconnected = {UC1, ... , UCu } , u ≥ 0
/* These are the interface channels of M. */
UCi = (name, Mi, in|out, message_type)
/* Each UCi is defined. */

Standard control, encapsulation, and time-constrained objects may also have specific textual
representations. Examples are:

sequential: M1 ; M2
parallel : M1 || M2

guarded selection : (g1(x) → M1) [] (g2(x) → M2)
periodic activity: periodic M(in: p,d; out: normal | fault)

As in the graphical case, it is not yet clear whether such notations are useful.

Several naming issues also arise. It should be possible to connect any two type- and
direction-compatible channels. This requires that the name of the channels be identical after the
connection is declared, which in turn would generally require a systematic renaming of sender
and/or receiver IO calls in the base CRSMs. Arrays of channels are necessary for "server" and
other subsystems; examples are broadcast servers, ADTs, and n-way fork/join controllers. Class
and instance declarations also need to be provided and distinguished. All of this seems no different
than analogous facilities available in modern programming languages and can be directly
borrowed.

8 . 2 Time and Other Resources : Specification and Analysis

Timing behavior can be specified using the basic CRSM facilities - through time bounds on
state transitions and through communication with clock machines. Higher-level timing
specifications must either use these mechanisms directly or handle each example on a one-of-a-kind
basis; for example, we do this in the alarm clock machine and in the parameterization of other
machines (ring_time, broadcast_time, period, deadline). A research problem that we have not

addressed here is whether or not there should be some general higher-level scheme for describing
timing constraints in-the-large. Ideally, it would be attractive if the CRSM techniques could be
adapted, i.e. scaled-up, to the subsystem level; the CC architecture provides a convention for
partially doing this by identifying the clock machine of the controller as the clock machine of the
component. More experience will help decide whether any extensions are necessary or convenient.

One may also wish to use an in-the-large scheme to specify the time-constrained sharing of
other resources that are required by components. For example, processor sharing among a set of
independent components might be handled through an "executive" controller that schedules clients,
say in round robin fashion. In order to do this conveniently, some means of saving state on an
interrupt would appear to be necessary; this could be implemented by changing our interrupt
mechanism appropriately. Sharing of communications lines and input-output devices can be
described by defining components that simulate the actual sharing.

At this point, we have given little thought to techniques for analyzing and verifying the
behavior of large specifications. The standard proposed solution is to prove various properties of
such systems from the bottom-up, starting with individual components. Typically, the standard
approach does not scale up. A top-down methodology that examines and verifies traces a level at a
time, starting with of the basic systems-level requirements, would seem promising.

8 . 3 Tools and experiments

Paper experiments and proposals for large systems design can be deceiving and unrealistic.
Proof of scalability is accomplished only by demonstrations of scalability. Software tools are
needed to construct specifications, to store libraries of specifications, to test specifications for
consistency, to analyze them, to simulate their execution, to monitor their behavior during
execution, and to verify their properties when possible. Of these tasks, the most useful initially
would be programs for building and executing specifications - an in-the-large version of the tools
described in [Raju & Shaw 92; Raju 93].

With these tools, especially the latter, we will be in a position to do some convincing
experiments on interesting real-time systems. This should also lead to a larger number of useful
paradigms for real-time requirements and designs.

9 . Summary

The research and contributions have two principle parts. First, we demonstrated how in-
the-large components for specifying real-time systems may be constructed using a particular
controller-client software architecture. Second, with the CC architecture, we defined particular
types of components and control needed for real-time requirements and designs. Both parts are
based on our CRSM notation. As discussed in the last section, much remains to be done.

Acknowledgments:
Thanks to H. Rebecca Callison, Travis Craig, and Sitaram Raju for critiquing the paper.

References

[Gabrielian & Franklin 91] A. Gabrielian and M. Franklin, "Multilevel Specification of Real-Time
Systems," Comm. of ACM 34, 5 (May 1991), pp. 50-60.

[Harel 87] D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Science of
Computer Programming 8, (1987), pp. 231-274.

[Hoare 85] C. Hoare, Communicating Sequential Processes, Prentice-Hall International, 1985.

[Jahanian & Mok 89] F. Jahanian and A. Mok, "Modechart: A Specification Language For Real
Time Systems," IBM Tech Report RC 15140, Nov. 1989.

[Kramer et al. 93] B. Kramer, Luqi, and V. Berzins, "Compositional Semantics of a Real-Time
Prototyping Language," IEEE Trans. on Software Eng., Vol. 19, No. 5, May 1993, pp. 453-477.

[Leveson et al. 91] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese, "Requirements
Specification For Process-Control Systems," TR 92-106, Computer Science Dept., UC Irvine,
1992.

[Raju 93] "An automatic verification technique for communicating real-time state machines," TR
#93-04-08, Dept. of Computer Science & Engineering, University of Washington, Seattle, April,
1993.

[Raju & Shaw 92] S. Raju and A. Shaw, "A prototyping environment for specifying, executing
and checking communicating real-time state machines," TR #92-10-03, Dept. of Computer Science
& Engineering, University of Washington, Seattle, October, 1992. A revised version is in
publication in the journal Software-Practice & Experience.

[Shaw 92] A. Shaw, "Communicating real-time system machines," IEEE Trans. on Software
Eng., Vol. 18, No. 9, Sept. 1992, pp. 805-816.

[Shaw 93] "A (more) formal definition of communicating real-time state machines," TR #93-08-
01, Dept. of Computer Science & Engineering, University of Washington, Seattle, August, 1993.

