On Scalable State-Based Specifications for Real-Time Systems®
Alan C. Shaw
Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195
shaw@cs.washington.edu
Technical Report 94-02-03

Abstract
Using our communicating real-time state machine (CRSM) language as a basis, we propose and
develop a methodology for specifying requirements and designs for large real-time systems.
CRSMs are distributed state machines with novel and general timing facilities and CSP-like
synchronous communications. The paper first presents a particular controller-client (CC)
architecture for composing CRSMs into larger components and then uses the CC organization to
define a number of standard in-the-large paradigms for real-time and other software.

1. Introduction

The general goal is to provide a methodology for the specification of software requirements
and designs fdarge real-time systems. Among other features, the approach and techniques
should be executable, universal, formal, and scalable. The basis for our work is the
communicating real-time state machine (CRSM) notation [Raju 93; Raju & Shaw 92; Shaw 92,
93]. CRSMs are universal state machines with guarded commands as transitions, synchronous ¢
communications over undirectional channels, and facilities for describing the execution times of
transitions and for accessing real-time. CRSMs are distinguished from other state machine model
mainly by their explicit timing features.

CRSMs have been tested empirically on a large number of relatively small problems,
through paper specifications, computer simulation, monitoring, and (to some extent) verification.
Examples include a real-time bounded buffer, calendar timer, mouse clicker recognizer, gate
controller for a train crossing, traffic light controller, real-time dining philosophers, and real-time
spinning lock algorithms. However, it is evident that some additional methodology is nheeded to
handle larger applications.

This paper makes two contributions towards real-time specifications in-the-large. First, we
present a CRSM architecture that permits the construction of larger systems from components.
This organizational scheme, called a controller-client architecture, assumes a particular uniform 10
channel interface for all CRSMs. Our second contribution is to define a number of standard in-the-
large paradigms for real-time and other software. These include conventional control for large
components, such as sequential, parallel, guarded selection, and looping; and scalable encapsula
data objects. Also presented are a variety of specific schemes and utilities commonly used mainly
in real-time applications. Examples are alarm clock and multicasting utilities, scalable interrupt
mechanisms, and organizations for periodic and sporadic activities.

Our approach to scalability has been most influenced by statecharts [Harel 87], with their
notions of superstates, interrupts, and series/parallel composition of machines, even though our

* This research was supported in part by the National Science Foundation under grant number CCR-9200858.

mechanisms and details are quite different. These differences result from different models (sharec
memory versus distributed, broadcast communications versus synchronous one-to-one) and our
timing facilities. The Modechart notation [Jahanian & Mok 89] is similar to statecharts, but more
restricted; they compose nicely but machines are finite state and events that trigger transitions
among components cannot have data associated with them. The Requirements State Machine
Language (RSML) [Leveson et al. 92], also heavily influenced by statecharts, permits both shared
store and distributed interactions among machines, but has no timing features. The Hierarchial
Multi-State Machines (HMS) [Gabrielian & Franklin 91] uses aspects of statecharts, Petri-nets,
and temporal logic, but seems excessively complex for convenient specification. Another
interesting language that provides for hierarchical composition of components is the prototype
system description language (PSDL) [Kramer et al. 93], which combines state machine with data
flow ideas and includes time; for convenience and simplicity, we prefer a pure state-based notatior
Other (non-state-based) models that provide for scalability, for example, those based on
programming languages or Petri-nets, are not discussed here.

The next section describes the interfaces and behaviors of machines, and our graphical
notation for components and interfaces. Section 3 then gives a brief introduction to CRSMs. The
next two sections explain our proposed controller-client architecture for large components and our
standard reusable CRSM form. These are used in Sections 6 and 7 which present some standari
in-the-large paradigms for compositions and encapsulations and a variety of schemes for real-time
software. The last two sections discuss some open problems and issues, and summarize our
results.

2. Behaviors, Components, and Interfaces

A real-time system is modeled as a closed world consisting of an external environment and
a controlling and monitoring computer system (Figure 2.1). The environment and computer
system communicate through objects from a set of inprd output®. Thesenput-output (I0)
objects are called signals, events, messages, or comntdadsents of are monitored by the
computer system and element®ofepresent control and query messages from the computer.

Environment Computer System

Figure 2.1 Real-Time System Model

Thebehaviorof a system is defined as a $eif traces ovelr andO, where a tracdr is a

(possibly infinite) sequence of timed IO events:
tr = Xg X1 ... Xj...>

A timedlO eventx; is a triple @, v, tj); § andy; denote an event name and an associated value,
respectively, from or O, andt; is the time of the evenThe event name can be viewed as a class
or as anlO channel; the value is the message or data corresponding to the particular instance of the
event. For alli, tj < tj + 1 and for each, there exists only a finite numberxgfsuch that; =t;.
Generally, theg terms froml in a trace represent tgezenbehavior of the environment over time
and the terms fror® describe theequiredbehavior or response of the computer system.

The environment and the computer system are each described by a set of CRSMs and thei
communicating 10 channel® closedsystenSis given by a pairN], C), whereM = {M1, M»,...,
Mm:m=2,Mja CRSM}I andC={C1,Cy,...Ck : k=0, Cj a channel}. Each chann€|
consists of a name, a type denoting the values of the messages that can be transmitted on the
channel, and an ordered pa#y M,), sz, listing the sender and receiver CRSN&aphically,

a machine "node" is drawn as a named rectangle with rounded corners, a channel as a labeled we
arrow "edge" directed from the sender to the receiver machine, and a system as a graph of machir
nodes connected by channel edges.

Example:

Consider a (simplified) real-time system for controlling traffic lights at the intersection of an
avenue and street; in addition to controlling the normal light sequencing, the computer system mus
respond appropriately to the arrival and departure of an ambulance on one of the thoroughfares.
This is a variation of the example presented in [Raju & Shaw®&#.environment consists of
two pairs of traffic lights, one for the avenue and one for the street, and the ambGlatprés
are commands to turn the lights to their correct colors. Inputs are from the ambulance and
comprise a signal indicating the approach of an ambulance on either the street or the avenue and ¢
message that is sent when the ambulance leaves the intersection. The traffic contrdiGgsiem
be specified:

TC = {{Ambulance, Street_Lights, Avenue_Lights, Light Mode_Control,

Light_On/Off_Control}, {Approach, Leave, Avenue, Street, Normal_Mode,

Amb_Mode}}

where the channels are:
Channel Name Message Type (Sender,Receiver)
Approach <thoroughfare> (Ambulance, Light_Mode_Control)
Leave <null> (Ambulance, Light_Mode_Control)
Avenue <color> (Light_On/Off_Control, Avenue_Lights)
Street <color> (Light_On/Off_Control, Street_Lights)

Normal_Mode <thoroughfare> (Light_Mode_Control, Light_On/Off_Control)
Amb_Mode <thoroughfare> (Light_Mode_Control, Light_On/Off_Control)
The system is illustrated in Figure 2.2

In a closed systeif= {M, C}, there are no dangling or unconnected channels gvery
channel has both a sender and receiver machie iBuch a system generally consists of a
number of open subsystems which in isolation have unconnected chdnraisopen systers=
{M, C}, the definition of at least one chanr@&ld C has an ordered paiki, My) where exactly
one ofMj, Mk is undefined.

An in-the-large component is represented as an open subsystem, with the unconnected
channels as itsiterfaces These higher-level components are also denoted graphically by named
rectangles with rounded corners and the interface channels by labeled wavy arrows, as illustrated
in Figure 2.3.Components can be combined by connecting channels together, provided that the
channels are type-compatibM/hen combining open subsystems in this manner, each new
connecting channel must have a unique name, which may involve renaming the channel and all of
its IO commands in the sending or receiving CRSM.

1 m= 2 because we assume that there is at least one CRSM representing the environment and at least one for the
computer system.

Approach

> Light_Mode_Control

Ambulance

Amb_Mode

Street_lights

Light _On/Off_Control

Avenue_Lights

Figure 2.2 Traffic Controller

Approach
AVAVAVAN
Leave /\/v>
AYAVAVAN
Environment
Avenue
O YA YAVAVAVAN
AATEAAAN h
Approach
VAYAVAVAN
Light_Mode_Control
Leave
/\/V\/\M
Approach
/\/\/\/\/\/\/x> Normal_Mode Amb_Mode
Leave >
Computer Control
Avenue
{\/\S/t@\/\/\/\

Figure 2.3 Three Open Subsystems From Figure 2.2

3. Communicating Real-Time State Machines

We present a brief introduction to CRSMs. More formal and detailed treatments appear in
[Shaw 92, 93].

A CRSM is a state machine with one designated start state and guarded commands for stat
transitions. A command can be either an IO command, or an internal one designating a
computation or some physical activity. Enabled transitions are fired on an earliest-time-first basis.

Communications between CRSMs is synchronous and occurs over undirectional named
channels, in a manner similar to CSP [Hoare 85]. A receiving machine desiring input on a channe
C may issue amput command:

C(x)?

A sender machine may have a correspondutgutcommand on the same channel:

C(message)!

When and if communication occurs, the data transmitted by the sender is instantaneously receivec
by the receiver, equivalent to the assignment:

X ;= message
Both sender and receiver then continue execution.

Guarded commands have the general form:

whereg is a Boolean guard€;OM is a command, andh] to] , t1 < t, gives a time bound for

executing the transition. @OMis an internal command and the transition is selected for

execution, then its execution tirdes somewhere in the time-bound window, i.est@ < d < to.

If COMis an 10 command selected for execution, themdt, give the earliest and latest times,
respectively, that the 10 can occur, relative to the time that the machine last entered its current stat
If 10 occurs, it happens at the earliest time that both sender and receiver can execute the

command®

Finally, every machinX has its own real-time clock machiR& G that can send current
global real-time (denoted) to X on demandRTCx has one state with a single transition (to
itself) on a clock chann&Tx :

RTx (rt)! [0, oo]

The host machin¥ can obtain current real-time with a "time-out" at timéth the command:

RTx (crt)? [t, t]

Example: Real-Time Bounded Buffer

Figure 3.1 contains 3 CRSMs implementing a real-time version of a producer and a
consumer interacting through a bounded buffer. We assume that the producer is a physical devict
that generates input signals quasi-periodically in a cycle that ranges between 7 and 12 time units.
the Buffer is unable to accept the data in time, the Producer times-qur(®A)?) and sends a
message on tHerror channel to some fault-handling or monitoring machine (not shown).
Abbreviations for two common cases of time-bounds are used: if the boundseyrénfh the
interval is omitted; if the bounds are identical, efg], fhen a simple scalat] s employed. The
intervals for the compute transitions in Buffer and P ([2,3], [4,8], and [0]) were chosen arbitrarily
for this example.

2 Every interval {1, t2] is interpreted agt{ + §, t2 + &], whered is a small number representing a minimal amount
of time that will always be spent in every state.

Producer AVAVAVAVAVAVES Buffer A VAVAVAVANVAVES Consumer

Deposit Remove

(a) Buffer and Clients

in := in+1 (mod n); full := full+1 [4,8]

Buffer

in := out := full := 0 [2,3]
%

out := out+1 (mod n); full := full-1 [4,8] >©
Producer P
O b oeona O
wj
AN Generate(data)[0]

Error((now,"missed data"))!
RTp(now)? [12]

Dep
L

Consumer C

Remove(x)? [8,10]

(b) CRSMs

Figure 3.1 Real-Time Bounded Buffer Example
4. A Standard Reusable CRSM Form

All machines will have a standard interface. Our basic reusable machine contains an input
start channel for initiating execution, an outgtbpchannel for signaling termination, and an

arbitrary number of input and output channels as shown in Figure 3.1 Tagstart channel has
an optional typed input parameteand thestopchannel has an optional outgutFigure 4.1 (b)

3 Not shown is the clock machif®&T Gy that is associated with every machie

indicates how these channels are used in the rest of the CRSM; guards (not shown) may appear ¢
thestoptransitions.

start(x) stop(y)

(a) Machine Interfaces

stop(yl)!

default
entry

start(x)?

stop(yn)!

n=1

(b) Internal Connections
Figure 4.1 Basic Reusable CRSM

To control such a machine, silly another machine would first issue a start command,
i.e., send a message oversitart channel with input, sag

M. start(a)!
and then may wait for it to terminate by issuing a stop command

M. stop(b)?
receiving output irb. We will use a dot notationM." above, to distinguishtart, stop and other
identically-named channels on different machines.

An example of a reusable machine is the periodic ticker ma@specified in Figure 4.2.
W issues &ick everyp units of time after startup, until the current tirag éxceeds which is
provided at startup. ThEcK s ignored unless a user\®fis requesting it in the time interval
[0,eps] after th&ickis issued. It is assumed, arbitrarily, that the compute transitions take 1 unit
of time; for correct operation, we also assume phat ensuring thatext-cj>0.

next=n - stop!

next<n - RTw(ct)? RTw?[next-ct]

RTw?[eps]

next: =ct+p [%

next: = next + p Tick!
ICK!

Figure 4.2 Periodic Clock Ticker W

Frequently, a controlling machine may wish to enforce or initiate a termination action on its
controlleeM. In such a case, at least ond/td IO channels is an "interrupt” channel; messages
received on this channel cauddo (eventually) issue stoprequest. Alternatively thetop
channel could act as an interrupt channel. (Section 7.2 presents a finer-grained mechanism for
interrupting a CRSM more directly).

The CRSMs in the bounded buffer example (Figure 3.1) are not in this reusable form,
since they are all missirggart andstopchannels. These can be easily added, and in fact, may be
necessary if the application is to be completely specified conveniently. In particular, these channel
are needed to handle situations such as power failures, and orderly start-up and shutdown.

5. Controller-Client Architecture

Every higher level subsystem will have the same general interface as the reusable primitive
CRSM, i.estartandstopchannels and an arbitrary number of other 10 channels (Figure 5.1(a)).
An organization, that we call tleantroller-client(CC) structure (Figure 5.1(b)), is imposed on
these higher level subsystems.

The structure contains a controller machine kidclient subsysteml, ..., Mk, each of
which can be either a basic CRSM or a higher level subsystem. The task of the controller is to
initiate the execution of the client subsystems, to control the clients' execution, e.g. with respect to
time, and to synchronize the termination of the client machines. Each subsystem set of machines
M can have an associated clock, namely the clock machine of its controllestaifl@dstop
channels oM are the corresponding channeldvb$ controller, and will be written &4.start and
M.stop.

Machine composition and refinement are defined in terms @@harchitecture. A set of
subsystemsNl1, ... My} are composed by providing an appropriate contrddleK could
consist of more than one CRSM, in general. Conversely, the refinement of a sulbdyftem
M1, ... My} is the set of clientsM§iq, ... My}.

The traffic light example described in Section 2 is n@@form. One version of this
system in standard form is sketched in Figure 5.2. A side benefit of our conventions, that is not

realized in the original, is that this more complete description can provide for orderly startup,
shutdown, restarts, and interruptiéns

start(x) stop(y)

VAVAVAVAVANANE M >

Controller
K

(b) Structure of (a)

Figure 5.1 CC Architecture for Subsystems

4 There is the issue of how the top level controller in a closed system starts and stops, e.g., the Traffic World
Controller in this example. We will assume that some meta-level "super-controller” performs these functions, such
as the user of the system.

Traffic World
Controller
start stop start stop
Environment Computer Syste
Controller AAAAAN Controller
start stop sta}gg
. Avenue MAAAAAY Light Mode Light On/Off

Figure 5.2 CC Structure For Traffic Light System

6. Standard Paradigms for Composition and Encapsulation

Conventional control methods for grouping objects and for encapsulating behaviors are
described and implemented within the controller-client framework.

6.1 Conventional Serial and Parallel Machine Compositions

Given two open subsysterivy andMp, each implemented with@C structure, we show
how they may be connected sequentially, in parallel, and with guarded selection by providing an
appropriate controllek producing a subsystemM={K, M1, Mo}. The methods extend easily to
m = 2 subsystembl,, ... M. Cyclic control of a single subsystem is also defined.

Forsequentiatompositionthe controlleK is a small CRSM that sequences through the
IO instructions:

M1. start! M1. stop? Mo. start!M» .stop?
If data is to be passed (not "piped" Mg at the termination d¥11, thestopandstart channels of
M1 andMa will have parameters ari{l has the form:

Mj. start! Mj. stop(x)? M. start(x)! Mo.stop
In this simplest of cases, the controller could be eliminated completely by identifying the stop
channel oM; with the start channel ®fl,. (Figure 6.1)

M1.stop_M2.start stop

start
% >{ M2 AANNANAD

- J

Figure 6.1 Efficient Sequential Composition

A functionf from domainX to co-domairy, i.e.,y =f (X) wherex in X andy in Y, can
be described as a basic CRSM or structure with input cstahtechannel and output on g$op
To specify the computation y = f (x) with structure or macMpethe "caller” invokes the
sequence:

Mf. start(x)! Mf. stop(y)?

Function composition is a particular instance of the sequential case. If the co-domain of a function
g is equal to the domain of a functifriheir compositiory =f (g(x)) can be specified by the
sequential composition of their machildg and M.

Parallel compositiormeans thatl; andM» start at (approximately) the same time, perform
their functions concurrently, and are synchronized at their termination. It can be implemented
using a fork/join form of controlK executes the 10 sequence:

Mj. start! Mo.start! Mj.stop? My . stog?

Selection of eitheM; or M2 depending on the values of Boolean guapdsndgy is
another standard control paradigm. We callghizrdedselection The semantics are defined by
the controller CRSM in Figure 6.Note that because we are working with a distributed model,
there are no global variables; the guagf{®) andgy(x) are Boolean functions of theput toM
obtained though itstart channel. Guarded selection is non-deterministic - if gpémdgy are
true, one oM, or Mz is selected, non-deterministically.

M1.stop?

gl(x)-> Ml.start!

start(x)?

%Q

M2.stop?

- M2.start!

stop!

Figure 6.2 Controller for Guarded Selection

Several different forms afyclic control are also useful. For example, a subsystamto
execute repeatedly until a Boolean guard becomes true; this is an in-thejeafentil loop. The
controller is given in Figure 6.3.

repeat/
until

start stop(y)

-g(y) - skip
(a) Cyclic Control of M

M.start! M.stop(y)?

O

g(y) - stop!
(b) repeat/until Controller CRSM

Figure 6.3 Repeat/Until Looping

6.2 Data Encapsulations

The suggested approach for handbhgreddata in our distributed model is through
abstract data types (ADTs) that maintain the data state and provide remote procedure call interface
(methods or operations) for user access and manipulation. A shared data server that implements
readandwrite operations on a databasis specified by the basic CRSM in Figure 6.4.

/\/\/\%{ }M

read write

N\
(a) Shared Data Interface
read(x)!

start? L

stop!

(b) CRSM

Figure 6.4 Shared Data Server

Of course, if several users wish to read and write the database, we needaatdgunel
write channels for each user. The standard way to accomplish this is by defining arrays of
channels; e.g. read.k , write.K,= 1 ..n for n=1 users.

If access and update at a finer granularity than the entire database is desired, then it is
necessary to transmit names or addresses of data at the interface. For example, if data is stored |
an arrayX(i), i =1,...m, then the data server could execute the following sequences:

Read: read(i)? return(X(i))!

Write: write(i,y)? X(i) =y
A user would call the server with:

Read call: read(i)! return(x)?

Write call: write(i,y)!

The array index serves as the data address.

For higher-level ADT servers that implement more general operations, a send/receive
protocol over the 10 channels can be used to implement the remote procedure call interface. A
serverSthat offers operationsy, p2, ...,pm, M=1, on shared dathcan be constructed with the
CC structure of Figure 6.5. A user invokes a serpjosith the 10 calls:

Spj.call(x)! Spj.return(y)?

x is the input parameter ®andy is the output returned fro® Thepj sequencépj_s)in the
controllerK has the general form

pi. call(x)? Perform_Requested_Servigiereturn(y)!

A guard may be part of the first command. Also, we have not shown separate channels for each
user, as in the other examples above.

Pi.call

Pi.return

8 ot

Server
for
! write
read N
p]_ . . . pm

(@) CC Structure

stop!
(b) CRSM for K

Figure 6.5 General ADT Server

7. Real-Time Paradigms
7.1 Some Time-Constrained Utilities

We describe two different kinds of utilities that are useful in real-time specifications. One
family defines alarm clocks for both absolute and relative time. The second provides an alternative
communications method, in particular a multicast mechanism for broadcasting messages to a givel
subset of the components of a system. Both classes have interesting and non-obvious time
constraints.

The generic alarm clock has the interface depicted in Figure 7.1. The message in the
Wake_Mechannel gives a non-negative absolute or relative time,@sadt, respectively, at which

aWakeupmessage is to be sent by the clockaolvis the time at which th&/ake Me
communication occurs, then at time t'= nmeoy(; t) (absolute time) af=now+t (relative
time), theWakeupmessage will be enabled on its channel. Wadeupmessage will remain
enabled until either it has been received or the time has retaeh@ty_time, whichever occurs

ac

start(ring_time) Alarm Clock stop
ANANANANANAN >
N
Wake_Me(time) Reset Wakeup

Figure 7.1 Alarm Clock Interfaces

earliest . A (null) message on thiResethannel will reset the alarm clock so that it is ready to
receive anothéWake Meor to terminate. Figures 7.2 and 7.3 contain CRSMs for relative and
absolute time alarm clocks, respectively. In these versidRsseasignal is not handled once an
alarm clock starts "ringing"; this could be added easily if desired.

The multicast facility allows a signal to be broadcast for a given time interval. During the
broadcast interval, any of a set of designated receivers can elect to receive the signal. The interfac
for a generic multicast system appears in Figure 7.4. The message or signal to be broadcast is s¢
to the facility over thenulticastchannel. The message will be made available to each receiver over
the channel&eceiver, i=1, ...,r, for the time intervalrjow, t'], wherenowis the time at which
the multicast message is sent to and received by the multicast facility (assumed identical kiere) anc
= now+ transmit_time

S The minimal transition timé is being ignored here. The maximum enabling time is réallying_time+ kd,
wherek = 2 or 3 depending on the alarm clock (Figure 7.2 or 7.3).

Reset?

start(ring_time)? /\ Wake_Me [t)?

RTac?]t]

stop!
Wakeup![0,ring_time]

RTac?[ring_time]

Figure 7.2 Alarm Clock for Relative Time

Reset?

start(ring_time)? m Wake Me(t)? m RT(now)?
N

stop! RTac?[max(now,t)—now]

Wakeup![0,ring_time]

RTac?[ring_time]

Figure 7.3 Alarm Clock for Absolute Time

INANANANANS
I Multicast
start(transmlt_tlme> AN Controller >
VAVAVAVAVAYAVYSS A VAVAVEVAVANS
AN Receiverl(message)

multicast(message) Alarm
VA VAVAVAVAVAVE (NN NN
> Clock . >

Receiverr(message)

Figure 7.4 Multicast Communications

The system can be implemented with a basic multicast controller and an alarm clock for
relative time. The details of the multicast controller CRSM are given in Figure 7.5.

Example:

For an obvious example in real-time systems, consider a power system that broadcasts
power_on/power_off signals to tscomponents (power consumers). The multicast message is
either "power_on" or "power_off", and componetis..cr receive the same message on their
Receiverchannels. Thaansmit_timegparameter might reflect the physics of turning power on and
off, the complexity and nature of the components, and the system requirements.

Our original paper on CRSMs [Shaw 92] indicates how some other common forms of
communications may be implemented. This includes asynchronous communications with a non-
blocking send and a blocking receive, and synchronous but undirected one-to-one message
passing. Ultilities for these and others can be constructed when the need arises.

7.2 Interrupts and Faults

In order to specify a broad variety of exceptions and faults, as well as "handlers" or
procedures that monitor and recover from them, it is convenient to have a uniform mechanism for
interrupting and reentering system components. Our proposed scheme is similar to and inspired t
the statechart method for exiting and entering superstates.

We first define interrupts for a CRSM. A CRSM can designate an input channel to be an
interrupt channel, using the graphical notation illustrated in Figure 7.6. An interrupt channel, say
int, is identified as such by adding a dashed arrow; the meaning is that a transition with input
commandnt? is connected fromverystate in the CRSM to thetart state of the machine. Thus,
to interrupt a CRSM, one would issue the commatid An example is given in Figure 7.7,
where our real-time bounded buffer machine (Section 3) has been augmented with an interrupt.

6 The message is available between + 6 and now + transmit_timet+ kd, wherek could range from 2to 2 +2

The extra transitions are shown as boldface arrows; normally, these would not be explicitly drawn
Note that the interrupt signal has very much the same effect sioploemmand.

The same notation is used to denote interrupts of higher-level components (Figure 7.8). Tc
gracefully propagate the interrupt signal to all machines, we employ the multicast facility defined in
the last section. Each level of component will broadcast the message to the next level, until basic

CRSMs are reachédin the figure, for example, eafhis interpreted as an interrupt signal to its
componenCj. As an application of higher-level interrupts, consider a power supply subsystem
that provides electrical power to the rest of the system; if a power failure occurs, a "power-off"
interrupt message can be sent causing all components to revert to their start states.

When a timing or other fault occurs in some component, perhaps asynchronously, it can be
propagated through the system by means of this interrupt scheme. The remaining part that needs
be described is the actual fault handler - that component that takes whatever corrective, monitoring
or restorative action is necessary to record and recover from the fault. The detector of the fault
which generated the interrupt signal could handle it directly or it could send an appropriate messag
to some other exception-handling component.

7.3 Control of Periodic and Sporadic Activities

From requirements through implementations, and from theory through practice, the
principal means for organizing real-time functions and tasks are as periodic and sporadic activities.
We propose &C structure for families of both kinds.

Periodic objects are activated evprynits of time and must complete their processing
within a deadlinel <p. TheCC organization of such an activity is given in Figure 7.9(a). The
controller (Figure 7.9(b)) sends an interrupt messade its client if the deadline is exceeded and
then generates a timing fault outfamlt stop The transition RK?[d] provides the deadline time-
out. The pairf, d) are initial input to the controller. Variations and extensions of this
basiccontroller and structure might include a fault handler component, and other parameters such-
start and stop times for the subsystem and an activatiofioneeach cycle (0 & < p-d).

Sporadic activities are triggered by an event,esaynd must complete their processing
within same deadlind after the event occurrence time. Figure 7.10 conta architecture and
controller for a standard sporadic object.

7t may be convenient to give priority to interrupts and other 10 over internal activities, to assure that 10 is
serviced. Also note that, if necessary, one could define several different kinds of interrupts (different interrupt
channels) and interrupts that save state.

Alarm_Clock.stop?

stop!

Alarm_Clock Wakeup?

-Ri - Receiveri(message)!

start(tran

C

Alarm_Clock.st

multicast
Ri := fals

C

Alarm_Clock.Wake

D

smit_time)?

D

art(ring_time)!

D

message)?

D

e, i=1,..r[0]

D

| Me(transmit_time)!

Figure 7.5 Multicast Controller

Ri := true [0]

\ /
\ /
\ /
\ /
N /
int N N / g
Q /
/\/\/\/\/\/\/>
int?
start any other state
state

Figure 7.6 Interrupts at the CRSM Level

int?

int?

int?

start? m
\

int?

Figure 7.7 Bounded Buffer With Interrupt

\ R1 \ / /

Multicast

int
VAVAVAVAVAVAVE
N /
\ /
\ /
Rn \ /
N Cn
AN

Figure 7.8 Higher Level Interrupts

fault_stop

Periodic
Controller normal_stop
start int
stop o
28 !
|
1
|
Client !
|
|
|
|
N N . :
N |
7.9(a) Periodic Function CC Structure N

start

C

normal_stop!

fault_stop!

ext+p [0]

®

C.stop?

RTk?[max(next-now,0)]

C.int!

RTk?[d]
7.9(b) Periodic Controller K With Client C

Fiotire 7.9 Perindic Ohiect

start(d) K Sporadic fault_stop
> Controller
e N normal_stop
VAVAVAVAVAVAVS
int -
\ 7223 }
C 1
Client 1
7.10(a) CC Architecture o |

C.stop?

start(d)?

C.start!

normal_stop! RTk?[d]

fault_stop!

7.10(b) Sporadic Controller

Figure 7.10 Sporadic Object

8. Discussion
8.1 Notation and Representations

A consistent graphical representation of components and interfaces has been employed.
Component objects are denoted by rounded rectangles labeled by identifiers; geometrically-
enclosed rectangles indicate hierarchical grouping of objects (the "part of " relation). Wavy lines
with entering (exiting) arrows represent input (output) channels and are labeled by the channel
name and the types of their parameters. Interrupts are identified by dashed arrows. At the basic
CRSM level, a standard state diagram is used. It is tempting to define more specific icons for eact
of the mechanisms and paradigms presented, for example, so that sequential control can be
obviously distinguished from parallel control, and periodic objects immediately appear differently
then sporadic ones. However, the benefits are not yet evident and we will resist for a while.

Similarly, and perhaps more clearly, there are any number of reasonable possibilities for
purely textual notations of in-the-large objects. (A formal (textual) notation for CRSMs is given in
[Shaw 93]). For example, a subsystem M could be defined:

M={Mjy, .., Mp}, m>1

[* M consists ofn componenty, ... ,Mm. */

Chconnected =€Cy, ...,CC} , ¢=0

[* Each channeCG; is connected between two componentsiof/

CG = (name <Mjs , Mjr>, messagetype

[* This defines eacRGC; . Mjs andM;, are inM. */

Chunconnected =§YCy, ... ,UCy} ,u =0

[* These are the interface channeld/bf*/

UC; = (hame M;j, injout, messagetype

[* EachUC; is defined. */

Standard control, encapsulation, and time-constrained objects may also have specific textual
representations. Examples are:
sequential: M1 ; M2

parallel : Mz || M2
guarded selection : (g1(X) - M1) [] (g2(X) — M>2)
periodic activity: periodic M(in: p,d; out normal | fault)

As in the graphical case, it is not yet clear whether such notations are useful.

Several naming issues also arise. It should be possible to connect any two type- and
direction-compatible channels. This requires that the name of the channels be identical after the
connection is declared, which in turn would generally require a systematic renaming of sender
and/or receiver IO calls in the base CRSMs. Arrays of channels are necessary for "server" and
other subsystems; examples are broadcast servers, ADTs, and n-way fork/join controllers. Class
and instance declarations also need to be provided and distinguished. All of this seems no differe!
than analogous facilities available in modern programming languages and can be directly
borrowed.

8.2 Time and Other Resources : Specification and Analysis

Timing behavior can be specified using the basic CRSM facilities - through time bounds on
state transitions and through communication with clock machines. Higher-level timing
specifications must either use these mechanisms directly or handle each example on a one-of-a-ki
basis; for example, we do this in the alarm clock machine and in the parameterization of other
machines (ring_time, broadcast_time, period, deadline). A research problem that we have not

addressed here is whether or not there should be some general higher-level scheme for describing
timing constraints in-the-large. Ideally, it would be attractive if the CRSM techniques could be
adapted, i.e. scaled-up, to the subsystem leveC @architecture provides a convention for

partially doing this by identifying the clock machine of the controller as the clock machine of the
component. More experience will help decide whether any extensions are necessary or conveniet

One may also wish to use an in-the-large scheme to specify the time-constrained sharing of
other resources that are required by components. For example, processor sharing among a set ¢
independent components might be handled through an "executive" controller that schedules clients
say in round robin fashion. In order to do this conveniently, some means of saving state on an
interrupt would appear to be necessary; this could be implemented by changing our interrupt
mechanism appropriately. Sharing of communications lines and input-output devices can be
described by defining components that simulate the actual sharing.

At this point, we have given little thought to techniques for analyzing and verifying the
behavior of large specifications. The standard proposed solution is to prove various properties of
such systems from the bottom-up, starting with individual components. Typically, the standard
approach does not scale up. A top-down methodology that examines and verifies traces a level at
time, starting with of the basic systems-level requirements, would seem promising.

8.3 Tools and experiments

Paper experiments and proposals for large systems design can be deceiving and unrealisti
Proof of scalability is accomplished only by demonstrations of scalability. Software tools are
needed to construct specifications, to store libraries of specifications, to test specifications for
consistency, to analyze them, to simulate their execution, to monitor their behavior during
execution, and to verify their properties when possible. Of these tasks, the most useful initially
would be programs for building and executing specifications - an in-the-large version of the tools
described in [Raju & Shaw 92; Raju 93].

With these tools, especially the latter, we will be in a position to do some convincing
experiments on interesting real-time systems. This should also lead to a larger number of useful
paradigms for real-time requirements and designs.

9. Summary

The research and contributions have two principle parts. First, we demonstrated how in-
the-large components for specifying real-time systems may be constructed using a particular
controller-client software architecture. Second, withGRearchitecture, we defined particular
types of components and control needed for real-time requirements and designs. Both parts are
based on our CRSM notation. As discussed in the last section, much remains to be done.

Acknowledgments:
Thanks to H. Rebecca Callison, Travis Craig, and Sitaram Raju for critiquing the paper.

References

[Gabrielian & Franklin 91] A. Gabrielian and M. Franklin, "Multilevel Specification of Real-Time
Systems,'Comm. of ACM 345 (May 1991), pp. 50-60.

[Harel 87] D. Harel, "Statecharts: A Visual Formalism for Complex Systedegghce of
Computer Programming,§1987), pp. 231-274.

[Hoare 85] C. HoareCommunicating Sequential Procesdegentice-Hall International, 1985.

[Jahanian & Mok 89] F. Jahanian and A. Mok, "Modechart: A Specification Language For Real
Time Systems," IBM Tech Report RC 15140, Nov. 1989.

[Kramer et al. 93] B. Kramer, Lugi, and V. Berzins, "Compositional Semantics of a Real-Time
Prototyping LanguageJEEE Trans. on Software Engvol. 19, No. 5, May 1993, pp. 453-477.

[Leveson et al. 91] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese, "Requirements
Specification For Process-Control Systems,” TR 92-106, Computer Science Dept., UC Irvine,
1992.

[Raju 93] "An automatic verification technique for communicating real-time state machiRes,"
#93-04-08 Dept. of Computer Science & Engineering, University of Washington, Seattle, April,
1993.

[Raju & Shaw 92] S. Raju and A. Shaw, "A prototyping environment for specifying, executing
and checking communicating real-time state machiffés#92-10-03Dept. of Computer Science
& Engineering, University of Washington, Seattle, October, 1992. A revised version is in
publication in the journgboftware-Practice & Experience

[Shaw 92] A. Shaw, "Communicating real-time system machihegE Trans. on Software
Eng, Vol. 18, No. 9, Sept. 1992, pp. 805-816.

[Shaw 93] "A (more) formal definition of communicating real-time state machim&s#93-08-
01, Dept. of Computer Science & Engineering, University of Washington, Seattle, August, 1993.

