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Abstract

Chaotic routers are randomizing, non-minimal adaptive packet routers designed for use in

the communication networks of parallel computers. Chaotic routing is reviewed along with other

contemporary network routing approaches, including the state-of-the-art oblivious routers. Each

routing approach is evaluated for its e�ectiveness as a multicomputer message router. The results

indicate that the Chaos router is the most e�ective of known routing methods.

1 Introduction

In spite of the fact that network routing has been an active research area in recent years, leading

to many diverse proposals, practical experience with routers is extremely limited. The routers used

in most implemented parallel computers are all from a single class, known as oblivious routers.

Most of the non-oblivious routers have appeared only in single instance machines such as the HEP,

CM-2, and CM-5 computers, making it di�cult to separate fundamental properties of the routers

from artifacts of the speci�c instances. Researchers are naturally reluctant to implement a router

design for several reasons. First, being a fundamental component of a parallel computer that must

be fast, routers demand aggressive designs that are notoriously di�cult to get perfect. Second,

once the router is working it is useless unless it is incorporated into a communication network,

which is itself incorporated into a parallel computer. After the computer is operational, it is

necessary to write, debug, run, and measure numerous application programs to gather performance

statistics. No one would undertake such a monumental e�ort without some certainty that the router

materially improves on the alternatives. The purpose of this paper to compare the Chaos router

with state-of-the-art routers, as well as other recent proposals.

2 Terminology

Of the many router designs, most can be classi�ed as either oblivious or adaptive, depending on

whether the path selection is statically determined based on the network topology or if dynamic

information about congestion, priorities, or faults is considered in path selection. Adaptive algo-

rithms can be broken down into two broad categories as well: minimal or non-minimal. Minimal

adaptive algorithms allow only topologically minimal-length paths, while non-minimal algorithms

allow a larger set of paths, possibly even of in�nite length. A wide variety of mechanisms exist

within each of the categories to provide reliability and performance.

Another distinguishing feature of routers is the method of ow control used. Flow control

deals with the way that individual bits of data in a message are grouped into units which can

be transmitted through the interconnection network. Messages may be sent directly through the
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network, or may be broken up into �xed size packets. Also, bu�ering of many sorts may be added

to the network.

Regardless of the method used, the goals or routers are similar. All routers attempt to correctly

deliver the greatest number of messages in the least amount of time. The rate at which a network

delivers data is known as its throughput. The time for a message to travel from its source to its

destination is known as latency. In general, latency is desired to be small, and throughput large.

3 Flow Control Techniques

Flow control concerns the method in which messages are transmitted and bu�ered within a network.

Speci�cally, the method of ow control in a network describes how messages are broken up into

individual bits to be transmitted and how these bits are assigned to bu�ers and channels in the

network. There are many di�ering forms of ow control present in network routers, so only the

most basic forms are described here.

In its simplest form, network communication can be accomplished in two basic manners: circuit-

switched and packet-switched communication. In circuit-switched routing, the entire path from

source to destination is acquired �rst, then communication proceeds. The path is relinquished

only after the message has been completely transmitted. The advantages of circuit-switching in-

clude simplicity of transmission once the path is set up, high utilization of the bandwidth during

transmission, and low overhead for routing information. The drawbacks include wasted bandwidth

during the acquiring/relinquishing phases, the need to acquire the entire path before transmission,

and the inability for paths to change during a message transmission.

On the other hand, in packet-switched store-and-forward communication, messages are broken

up into �xed size packets, each independently routed towards their destination. Each link in the

path (a hop) is acquired only when needed and relinquished when the packet has traversed that

link. The packet is stored in any intermediate nodes and then re-transmitted to the next node

in its path from source to destination. Store-and-forward communication has the advantage of

only requiring link resources when they are actually in use and allowing changes in paths during

transmission if necessary. The primary disadvantage is the need to receive and retransmit packets

at each hop. Other disadvantages are the overhead time for packetization and reassembly, the

additional overhead needed to replicate routing information in each packet, and the space needed

to bu�er the packets at each intermediate node.

Both circuit-switched and store-and-forward communication have variants which incorporate the

advantages of the other. Circuit-switched communication has evolved into wormhole routing with

virtual channels. Wormhole routing is an extension of circuit-switching which allows incremental

claiming and relinquishing of links and bu�ers in a network [Dally 87]. Messages are transmitted

immediately behind the header of the message as the path in the network is established, blocking

if necessary. In wormhole routing, data is transmitted in units of its, where each it is typically

the amount of data that can be transmitted over a channel during a single cycle. Resources are

acquired in it-sized units, allowing bu�er sizes to be independent of the message sizes. Unlike

circuit switching, the path from source to destination is destroyed immediately behind the tail of

the message. Thus, only the resources of the network presently transmitting or bu�ering messages

are reserved at any given time. Virtual channels add bu�ering to wormhole routing so that messages

may temporarily relinquish ownership of links due to blocking, priorities, or other reasons and allow

non-blocked or higher priority messages to pass them [Dally 92].
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Store-and-forward communication has been augmented by virtual cut-through, which relaxes the

requirement that an entire packet be stored in a node before it is forwarded towards its destination

[Kermani & Kleinrock 79]. In a virtual cut-through router, arriving packets which have a desired

outgoing link available may proceed as soon as the header arrives without having to wait for the

entire packet to arrive. If no desired outgoing links are immediately available, the packet is stored

in the node until a link becomes available.

The distinctions between virtual cut-through and wormhole routing with virtual channels are

less clear than between store-and-forward and circuit switched communication. Aside from im-

plementation details, the primary di�erences are that cut-through requires packetization and the

accompanying overhead, as well as enough storage at each node to hold the entire packet when it

becomes blocked. Virtual cut-through, however, retains the advantages of using �xed-size packets

which include a wider variety of deadlock-avoidance mechanisms and independent routing of indi-

vidual packets. In the following sections, most of the path-selection algorithms work equally well

with either virtual cut-through or wormhole routing. The primary exception to this is that the

packet-exchange method of deadlock avoidance requires packet-switched communication.

4 Network Routing

Routing in an interconnection network is concerned with determining a path for a message to travel

in getting from a source node to a destination node. In general, the route a message takes can

be described by specifying an ordered list of nodes, (N

source

; : : : ; N

dest

), which describe a path

starting at the source node and ending at the destination node. Routing techniques di�er in how

they respond to congestion and faults within a network, as well as the degree of exibility in

choosing a path that is allowed within \normal" operation.

4.1 Oblivious Routing

In an oblivious router, the path taken by a message is determined solely by its source and destination

addresses, without regard to the current state of the network. Thus, all messages which have the

same source and destination will follow the same predetermined path through the network. This

path is usually chosen to be a topologically shortest path in the network. Some oblivious routers

may allow recon�guration of the routing algorithm at startup time to account for faulty links in

the network, but this is not allowed during normal operation.

4.1.1 Oblivious Path Selection

Oblivious routers have gained wide acceptance because they provide reasonable service with great

simplicity. For common networks, such as the k-ary n-cube family, topologically shortest paths

are found easily. In this family, n dimensions of k nodes each form a network of N = k

n

nodes.

Included are hypercubes, meshes, and tori of all dimensions. A shortest path for a message in

such a network is a path in which each hop takes the message closer to its destination in exactly

one dimension. Several shortest paths may exist because the ordering of the hops with respect to

dimension does not e�ect the outcome; the path remains a topologically shortest path regardless

of the order in which the dimensions are traversed.
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Dimension order routing is a shortest-path algorithm which mandates that a message traverse

the network dimensions in dimension order. A message will not traverse a link in dimension d

until all dimensions earlier than d in the order have displacements of zero. This provides a simple

distributed incremental path selection algorithm which can be implemented by �nding the lowest-

order dimension with a non-zero displacement from its destination and routing the message along

the link which reduces this displacement. When all displacements are zero, the message has arrived

at its destination.

4.1.2 Oblivious Deadlock Prevention

Dimension order routing can also be shown to be deadlock-free for open-ended k-ary n-cubes (those

without \wrap-around" edges) using simple resource-ordering arguments [Dally 87]. Deadlock can-

not occur within a dimension because the open-ended network does not allow cycles within a

dimension. Since messages only change the dimension being traversed in a pre-determined order,

no cycles can exist between dimensions, either. Assuming that all messages which arrive at their

destination are eventually removed from the network, the lack of cyclic dependencies guarantees

freedom from deadlock. In order to provide deadlock-freedom for dimension order routing in net-

works with wrap-around links (such as torus networks), additional mechanisms must be provided

to alleviate deadlock within a single dimension. Dally and Seitz provide a solution to this using vir-

tual channels which employs extra bu�ering to remove the possibility of cyclic dependencies within

a single dimension [Dally & Seitz 87]. This mechanism perturbs the network's balance, though,

resulting in non-uniform tra�c ow through the network and degraded performance [Bolding 92,

Adve & Vernon 93].

4.1.3 Congestion Avoidance

Since oblivious routers by nature ignore congestion in the network, it might be expected that they

do not perform well under highly congested loads. In fact, Borodin and Hopcroft have shown that,

for any N node, degree d network, oblivious routing requires 
(

p

N=d

3=2

) time steps to route a

permutation [Borodin & Hopcroft 85]. This bound was tightened to 
(

p

N=d) by Kaklamanis,

Krizanc and Tsantilas [Kaklamanis et al. 90].

Valiant and Brebner avoided this bottleneck by introducing a randomized oblivious scheme for

the hypercube { messages are �rst sent to a randomly chosen intermediate node and then forwarded

to their destination [Valiant & Brebner 81]. Although this probabilistically removes the theoretical

worst-case bottleneck, it does so at the cost of doubling the average path lengths of messages in

the network.

For certain tra�c patterns, though, oblivious routing performs very well. Nearest-neighbor

communication patterns produce very little congestion and are served very well by oblivious routing.

Uniform random tra�c in networks with no \center" nodes (i.e. tori and hypercubes) produces

uniform random congestion for which oblivious routing works well. On the other hand, networks

with \center" nodes, such as open-ended meshes, have more congestion in the center. Here, one

might expect oblivious routing to perform poorly. For dimension-order oblivious routing, though,

the scheme spreads the tra�c out and helps reduce the e�ects of the central hot spot, producing

very good results [Pertel 92].

For non-uniform tra�c, though, oblivious routers do not perform as well. In the presence of

hot spots, some nodes in the network will become much more congested than others. However,
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since oblivious routers are do not respond to hot spots, paths will be chosen through congestion

even when equal-length paths with no congestion exist as alternatives. This is a serious drawback

to oblivious routing since many software applications create hot spots or other non-uniform tra�c

[P�ster & Norton 85].

4.1.4 Bu�ering

Bu�ering can be applied to oblivious routing in many ways. Two basic types of bu�ering are

available: blocking and non-blocking. Blocking bu�ering is simply in-place bu�ering of messages.

In blocking bu�ering, messages do not give up the resources they hold when they cannot move in the

network. The most common way to add simple blocking bu�ering is to add FIFO's at any desired

point in any path in the network. Non-blocking bu�ering adds storage to the router that is o� of

the main data paths. In non-blocking bu�ering, messages that are bu�ered do not consume critical

resources and can be bypassed by other messages which have resources available to them. Non-

blocking bu�ering can be implemented using a shared bu�er pool for virtual cut-through routing

or by virtual channels with FIFO's for wormhole routing [Dally 92].

Adding blocking bu�ering to a network by inserting FIFO queues between links can help perfor-

mance by allowing packets to relinquish control of links to other messages earlier. Dias and Jump

showed that, for delta multistage networks, adding just a few bu�ers between stages could double

the throughput of the network [Dias & Jump 81]. However, adding bu�ers also increases latency by

adding additional complexity to the routing path. Dally examined non-blocking bu�ering by adding

virtual channels to wormhole routing and found signi�cant performance advantages for a range of

network sizes when compared to networks with equal amounts of blocking bu�ering [Dally 92]. In

general, adding a moderate amount of bu�ering to an oblivious router can signi�cantly expand its

throughput capacity with only a small amount of additional latency per message [Konstantinidou

91].

4.2 Minimal Adaptive Routing

Since most networks provide multiple shortest paths between many, if not most, source-destination

pairs, it is intuitive to design a router that allows exibility in choosing among these paths. Routers

which allow some choice among minimal-length paths based on local or temporal conditions are

known as minimal adaptive routers.

In the \basic" minimal adaptive router, the router computes the set of all outgoing links which

lie on some minimal path for an incoming packet. These are known as pro�table links. Of the

pro�table links, some may be currently unavailable due to tra�c, routing restrictions, or faults in

the network; these are removed from the set. The packet is then sent out on one of the remaining

pro�table links. If none is available, the packet waits for one to become available, in either a

blocking or non-blocking manner depending on the router.

When more than one pro�table link is available, the router must somehow choose from the

alternatives. There are several alternative methods: random, dimension-order, zigzag, and no-turn

[Glass & Ni 91]. The �rst two methods are obvious in implementation. The zigzagmethod attempts

to maximize the number of minimal paths still available at any time by choosing the dimension in

which the packet has the largest displacement from its destination. Although this helps to preserve

the largest set of pro�table hops as the packet progresses towards its destination, its usefulness is

marginal at best [Ngai 89]. No-turn is based on the observation that when a packet \turns" or
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changes dimensions, it blocks packets traveling in two directions, while it would block packets only

in one direction otherwise. Thus, the no-turn model chooses the link which minimizes the number

of turns when possible.

A problem which arises in minimal adaptive routing is deadlock. The constraints which pre-

vented deadlock in dimension-order routing are no longer present in adaptive routing, so other

techniques must be added to ensure freedom from deadlock. Routers based on the turn model

[Glass & Ni 92] restrict routing by forbidding certain turns. The Zenith router [Konstantinidou 90]

and planar-adaptive routing [Chien & Kim 92] require extra bu�ering as well as extra constraints

on packet paths in order to prevent deadlock. Other routers [Pifarr�e et al. 91, Cypher & Gravano

92, Linder & Hardin 91, Felperin et al. 91, Berman et al. 92, Boppana & Chalasani 92] are fully-

adaptive minimal, in that all minimal paths are allowed

1

, although some amount of extra bu�ering

is required. One disadvantage of some of these algorithms [Chien & Kim 92, Linder & Hardin 91,

Berman et al. 92] is that di�erent bu�er capacities for di�erent nodes in the network are required,

creating non-uniformities which disturb the network's performance.

However the main problem with minimal adaptive routers is that, in general, the number of

paths available decreases as the distance to the destination decreases. Packets which have a non-

zero displacement in only one dimension have only one path to choose from and can no longer

avoid congestion or faults. Even when there is exibility, packets near their destinations lose their

ability to maneuver around congestion. This is especially evident in a result by Chinn, Leighton,

and Tompa where the worst case routing time of a permutation on an N -node mesh for a class

of minimal adaptive packet routing algorithms is shown to be 
(N=k

2

) when k is the number of

packets that can be bu�ered in a single node [Chinn et al. 93].

4.3 Non-minimal Adaptive Routing

While oblivious and minimal adaptive routers require a packet always be routed on a minimal

length path, non-minimal adaptive routers allow packets to be routed on paths from the source

to destination with paths that are not always restricted to shortest paths. There are two primary

motivating factors for allowing packets to follow longer than necessary paths: congestion avoidance

and fault-tolerance.

If all minimal paths for a packet are heavily congested, but longer paths are uncongested, it

may be possible for a packet to travel out of its way on a longer path but still arrive more quickly.

Consider a highway analogy: although the shortest path to where you want to go may be on a

freeway, local streets may be faster during rush hour when the freeway is congested even though

the distance is further. Also, when packets detour around a congested area, they avoid adding to

and worsening the congestion. Moreover, if hardware faults result in a link becoming permanently

unavailable, there will be some pairs of nodes in networks using minimal routers which can no longer

communicate. By allowing non-minimal paths, these nodes can be avoided and communication is

still possible.

Non-minimal routers face di�erent problems in deadlock prevention and must deal with preven-

tion of livelock. Solutions to these are presented below. Two performance issues also arise: the time

lost in taking potentially longer paths and delay in making routing decisions due to the greater

complexity of the decision. These issues are discussed in Section 5.

1

This is not strictly true for the Linder-Harden algorithm with even size dimensions for wrapped k-ary n-cubes.
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4.3.1 Derouting

The decision to route a packet on an outgoing link away from its destination is known as derouting

2

.

Of the routers presented in the literature, there are many di�ering methods of deciding when and

which packet to deroute. However, based on their bu�ering characteristics, the three basic classes

of non-minimal adaptive routers are: deection routers, queueing routers, and wormhole routers.

Deection routers [Smith 81, Maxemchuk 89, Fang & Szymanski 91, Smitley 89], also known

as \hot-potato" or desperation routers, use a synchronous approach and a time step long enough

to transmit an entire packet. At each step the incoming packets are paired with outgoing channels

and are transmitted in the next step. Since deection routers use a synchronous approach, it is

guaranteed that all outgoing links will be available for use on the next routing cycle { the routing

logic must attempt to �nd the best mapping of packets to outgoing links. In some cases, though,

two or more packets may desire the same outgoing link. One packet will be given its desired link,

while the other packets are assigned one of the remaining links. Thus, the \losing" packets are

derouted immediately, without being bu�ered in the node.

Queueing non-minimal routers [Ngai & Seitz 89, Konstantinidou & Snyder 90, Coates et al. 93]

di�er from deection routers by the presence of a central bu�er which holds packets awaiting free

outgoing links. In general, packets move into a central bu�er from incoming links and wait there

until a preferred outgoing link (a link on a minimal path) becomes available. If the central bu�er

becomes full, a packet is selected to be derouted on the next free outgoing link. Router designs

may allow packets to bypass the queue altogether if an outgoing link is immediately available (cut-

through), and there may be FIFO bu�ering on the input and output channels. The selection of

which packet to deroute also depends on the implementation.

While both deection and queueing non-minimal adaptive routers require that messages be

broken into �xed-size packets, wormhole routers do not require this; and allow arbitrary size mes-

sages in the network. However this makes deadlock prevention more complex and requires either

restrictions on routing [Glass & Ni 92, Dally & Aoki 92], multiple classes of virtual channels [Linder

& Hardin 91, Boppana & Chalasani 92], or both [Dally & Aoki 92].

4.3.2 Deadlock Prevention

In fully adaptive non-minimal routers, any packet has the possibility of going out any free channel

from its current location

3

. As a result, it is simple to show that deadlock cannot occur through

path dependencies because there are no explicit paths. However, mechanisms to guarantee that

the links themselves do not deadlock are still necessary.

Deection routers achieve this trivially: there are no bu�ers and all network links are always

free at the beginning of each routing cycle. All packets which enter a node during a routing cycle

will exit during the next routing cycle, so all packets are always moving about.

Queueing routers usually rely on the packet-exchange protocol [Ngai & Seitz 89] which ensures

that each bi-directional link in the network will not deadlock. Essentially, the protocol mandates

that two nodes connected by a bi-directional link and having packets to send to each other must

2

In some networks, there may be links available which take a packet neither closer nor further away from its

destination. We will call these \no-progress" hops deroutes as well.

3

In some livelock protection schemes, there may be some packets which cannot be derouted, but, as a general rule,

this principle applies.

7



accept the other node's packet. In other words, node a cannot send a packet to node b while at the

same time denying b's request to send a packet to a.

Other methods of deadlock prevention based on restricted resource claiming have also been

presented [Coates et al. 93].

4.3.3 Livelock Prevention

A distinct problem which plagues non-minimal adaptive routers is the possibility of packets having

in�nite-length paths. If there is no bound on the number of times a packet may be derouted it is

conceptually possible that a packet never makes progress towards its destination, even though it

is continually moving. This is known as livelock. There are three basic methods of dealing with

livelock: \do nothing," priorities, and randomness.

One method of dealing with livelock is to ignore it. The argument is that livelock is rare and

pathological, so its likelihood is not great enough to worry about. Although this seems naive, many

routers have been proposed without protection from livelock. Since livelock-causing tra�c patterns

exist, no matter how pathological, this is an unattractive solution.

There are two basic variations of the priority method: timestamps and battle scars. Timestamp

protocols [Ngai 89] require that each packet be stamped with the time it was injected into the

network. Whenever a router must choose a packet to deroute, it ensures that the oldest packet is

not chosen. Thus, the oldest packet in the network is guaranteed to be routed on a minimal path

to its destination; when it is delivered, there is a new \oldest" packet which is not derouted. Thus,

in�nite livelock is prevented since all packets will eventually be delivered or become the oldest

packet and be guaranteed delivery.

Battle scar methods [Smith 81] place in each packet information which indicates how many

times it has been derouted. When choosing a packet to deroute, the one with the smallest battle

scar is selected { thus, packets which have been previously derouted are less likely to be continually

derouted. Once a packet reaches some pre-determined maximum battle scar, it is routed on an

Eulerian path through the network toward its destination which is guaranteed to be livelock-free.

A similar method by Dally and Aoki [Dally & Aoki 92], allows messages to be derouted freely up

to a maximum number of times, at which point they are routed deterministically by dimension

order. A dynamic version of the algorithm does not have a �xed maximum number of deroutes but

restricts messages to wait only on messages with a larger number of deroutes than itself. When this

is impossible the message switches to oblivious routing as in the static version of the algorithm.

Priority methods su�er from two problems: complexity and overhead. The routing decision at

each node becomes more complicated due to the necessity of comparing priorities when derouting.

Also, the timestamp or battle scar must be transmitted in the header of the packet consuming

bandwidth that could provide other crucial routing information.

The third solution is randomization. Chaotic routers [Konstantinidou & Snyder 90] choose

randomly among queued packets when selecting a packet to deroute. By introducing randomness

into the network in this manner, the very regular cycles, typical of livelock, decay with time.

Livelock-freedom is provided only in a probabilistic sense: the probability a packet is in the network

for a time greater than t goes to zero as t approaches in�nity. Since the likelihood of livelock is low

to start with, this provides a practical, though not a deterministic solution.

8



5 Comparisons

Since there are so many competing designs for multicomputer routers, it becomes di�cult to deter-

mine which is the best design. Most implemented massively parallel machines use state-of-the-art

oblivious routers with minimal bu�ering, so these routers obviously have merit. However, the al-

ternative provided by adaptive routing seems very attractive due to its ability to provide better

performance in the presence of congestion.

Because speed is of such importance in router design, complexity is very costly. The nature of the

decisions which must be made by di�erent classes of routers requires designs of varying complexity.

At the heart of the design of a router is the \basic routing decision": assigning incoming packets

to outgoing channels. This decision can be made with very little information for oblivious routers,

but requires more work for adaptive routers.

The Oblivious Decision. For oblivious routers using dimension order routing, path selection is

simple because it is de�ned in advance. All that is necessary is for the router to see if the header

in the current dimension is non-zero: if so, the message \goes straight" along the same dimension,

otherwise it \turns" to either the next dimension or the processor channel. It is not necessary to

consider more than one dimension at a time or to consider whether bu�ers are full or links available

when making the routing decision.

The Adaptive Decision. The adaptive routing decision is more complicated than the oblivious

decision because the path taken must be computed based on dynamically changing information.

Each message may have several pro�table channels to choose from, some of which may be unavail-

able. The adaptive decision involves computing the pro�table channels for an incoming message,

masking out channels which are unavailable due to contention or faults, and selecting a single

outgoing channel from those remaining.

The adaptive decision requires �rst decoding the header to �nd which outgoing links are desired.

If all of the header information can be encoded into a single it, the decoding can proceed imme-

diately. Since each dimension can be decoded in parallel, there is no time lost over the oblivious

decode step. However, whereas the oblivious router has �nished its choice at this point, adaptive

routers must continue on.

To make an informed choice among outgoing links, the router must use information on which

of the outgoing links are available. Although this is simple, it requires information which is often

widely distributed about the routing chip, and thus causes some delay. More importantly, as

incoming messages claim outgoing links, the status changes. Thus, the decision must either be

serialized or controlled by more complex logic to deal with contention. Finally, once the pro�table,

available channels are identi�ed, one must be selected from the set. This can be done at random

or by one of many ordering methods (see Section 4.2).

By closely examining the competing routers, we can dismiss several alternatives as inferior. We

will then compare in detail the remaining contenders.

5.1 Oblivious { The One to Beat

Oblivious routers are simple and of mature design { a combination that produces a very fast router

upon which it is hard to improve. A good example of this is the Caltech Mesh Routing Chip (MRC)
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[Flaig 87, Seitz & Su 93]. The MRC is a simple oblivious wormhole routing chip for open-ended

two-dimensional mesh networks. Simplicity is the rule: deadlock is prevented by dimension order

routing, messages block in place when links are unavailable, and wormhole routing reduces overhead

to a minimum. The routing decision for such a router can be broken down into two cascaded stages,

each making the simple decision \go straight or turn" for a single dimension.

The CalTech MRC has undergone several generations of design and implementation, resulting

in a �nely-tuned routing chip. The routing decision is extensively pipelined so that the bandwidth

of the routing channels is determined only by the chip-to-chip delay and not a�ected by the logic

internal to the chip. Within the chip, the logic is kept to a minimum making input-to-output

latency very low as well. Thus, the simplicity of oblivious dimension-order routing with minimal

bu�ering results in a high bandwidth, low latency router.

Extensions to oblivious routers include simple FIFO bu�ering, non-blocking bu�ering using

FIFO's and virtual channels [Dally 92], and virtual channels to provide deadlock prevention in

torus networks[Dally & Seitz 86]. Each of these enhancements provides potential advantages at the

cost of greater complexity.

The randomized oblivious router of Valiant [Valiant & Brebner 81], while addressing a theoreti-

cal bottleneck, does so at a high cost: doubling the average message path length in direct networks.

The performance gain of randomization becomes irrelevant compared to this loss, so this extension

is not competitive.

5.2 Minimal Adaptive Routers

Minimal adaptive routers must not only make the adaptive routing decision, but also implement

a deadlock-prevention protocol. Although the protocols in the literature vary widely, most rely

on multiple classes of bu�ers or queues in the node to hold messages at di�erent stages in their

path from source to destination. The router must compute and select which bu�er class a message

belongs to before assigning a bu�er. This may involve a computation on the destination of the

message or on information tagged to the message. Either way, the additional complexity of the

decision, as well as the hardware space required for the extra bu�ers results in longer times to route

messages through a node.

Some minimal adaptive designs restrict the minimal paths [Konstantinidou 90, Chien & Kim

92, Glass & Ni 92] or the order in which virtual channels may be taken [Cypher & Gravano 92,

Boppana & Chalasani 92], causing uneven channel use and further diminishing the performance of

the router relative to other fully-adaptive routers. Preliminary studies by Nguyen and Snyder have

shown the Chaos torus to be superior to the Cypher-Gravano fully-adaptive minimal algorithm

[Nguyen & Snyder 94]. The Cypher-Gravano algorithm restricts the order of virtual channel use

causing bottlenecks in the �rst set of channels while the others experience little congestion. A

possible intuitive explanation is that packets in adaptive routers \discover" congestion when all

forward paths are blocked. For minimal adaptive routers this is \too late," since the minimum

distance constraint forces the packet to wait, adding to the congestion. Nonminimal adaptive

routers, however, allow messages to \go backwards" and possibly bypass the congestion. Another

common problem with minimal adaptive routers is they often use many virtual channels. The

more virtual channels needed the more complex the channel arbitration logic. Algorithms such as

Linder-Harden [Linder & Hardin 91] and the hop-based schemes [Boppana & Chalasani 92] use a

large number of virtual channels and are clearly impractical. In the former case O(n2

n

) and in
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the latter O(nk) virtual channels per channel for a k-ary n-cube. Others such as 4-classes and

*-channels use more modest number of virtual channels per physical channel, but the complexity

necessary may not justify the performance gains.

5.3 Deection Non-minimal Adaptive Routers

Deection routers require that all incoming packets arrive at a node during a single routing cy-

cle, and all packets leave on the next routing cycle. This constraint has several consequences on

complexity and performance.

Once again, the adaptive routing decision must be made. However, since all packets must be

routed at the same time, the decision must be made in parallel for all channels. Essentially, the

decision is transformed from \�nd a free pro�table channel for one packet" into \map all incoming

packets to outgoing channels in the best manner." This decision may be implemented in several

ways, from simple greedy algorithms to multiple-pass algorithms with priorities. Although the

decision is simpli�ed because all outgoing channels will be free (until assigned), the decision may

be very complex. Furthermore, the complexity grows with the node degree, limiting the usefulness

of deection routing in high-degree networks

4

.

The second consequence of the deection technique is that the headers of all packets must arrive

at and leave a node on the same cycle. Thus, all packets must be synchronized together so that

their headers are aligned. The result is that neither virtual cut-through nor wormhole routing may

be used because these methods would cause mis-alignment of the headers: store-and-forward is the

only applicable method. While this is of no consequence if an entire packet can be transmitted

in a single cycle, limits on the bandwidth of channels cause most multicomputer networks to have

multi-it packets which must incur the large latency penalties of pure store-and-forward routing

when using deection routing. For larger area networks with high-bandwidth cables or �ber-optic

channels and less critical latency requirements, deection routing may be applied more usefully.

Thus, although deection routing provides two simplifying bene�ts: guaranteed availability

of outgoing channels and no need to deal with internal bu�ering, the complexity of the mapping

decision and the inability to use virtual cut-through routing limit its use as a multicomputer router.

Simulation studies show that chaotic routing outperforms deection routing on torus networks by

providing both higher throughput and lower latency at all loads for all commonly used message

sizes [Bolding 93].

5.4 Wormhole Non-minimal Adaptive Routers

Most wormhole non-minimal adaptive algorithms are straightforward extensions of the minimal

adaptive wormhole versions of the algorithms[Linder & Hardin 91, Boppana & Chalasani 92, Glass

& Ni 92]. As with their minimal versions, the Linder-Harden and Boppana-Chalasani algorithms

su�er from the complexity of numerous virtual channels, while the Glass and Ni turn-based algo-

rithms severely restict routing opportunities in a manner which depends upon the location of the

node in the network.

The Dally and Aoki non-minimal adaptive wormhole algorithms, described briey in Sec-

tion 4.3.3, allow messages to be derouted. The static version requires a number of virtual channels

4

The complexity of the deection router used in the Tera computer resulted in changing the network, a degree 6

3D torus, to a degree 4 network (by removing X direction and Y direction wires in alternating planes) in order to

make the routing decision within the 2.5 ns clock cycle.
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per channel proportional to the maximum number of deroutes allowed, making the router com-

plex to build. The dynamic version does not have this requirement, but has an additional routing

restriction for waiting messages. However the main problem with both algorithms is they may der-

oute too often since messages are derouted immediately when all pro�table channels are blocked,

without waiting, even briey, for the congestion to clear.

5.5 Queueing Non-minimal Adaptive Routers

Queueing non-minimal adaptive routers must perform the adaptive routing decision, determine

when packets enter and leave the queue, and, when necessary, select which packet to deroute in a

manner that does not cause livelock.

In a typical queueing router, packets arriving at the node are bu�ered in a central bu�er pool

or queue and wait for free pro�table channels on a FIFO basis. Typically, this bu�er is relatively

small, ranging in size from �ve packets [Bolding & Snyder 92] to nineteen packets [Coates et al. 93]

in implemented designs. When the internal queue becomes full and there are no pro�table channels

available for any packets in the queue, a packet is selected, regardless of its destination, from the

queue to be derouted to the next available channel

5

. The method of selecting which packet to

deroute varies among designs, primarily depending on what livelock prevention mechanism is used

(see Section 4.3.3). The presence of the internal queueing bu�er allows for a fully adaptive router

where waiting packets do not block channel resources.

5.5.1 Livelock prevention

The primary distinction between di�erent queueing non-minimal routers is in the method of livelock

prevention as described in Section 4.3.3. Priority routers [Ngai & Seitz 89] use timestamps, chaotic

routers [Konstantinidou & Snyder 90] use randomization, and others do not guard against livelock

at all [Coates et al. 93].

The priority router is strictly more complex than a chaotic router because determining which

packet among colliding packets is oldest signi�cantly complicates the routing logic. The chaotic

router does not need to make such decisions, giving it lower node latency and better overall per-

formance [Konstantinidou 91]. Also, priority adaptive routers require the inclusion of a creation

timestamp in each packet, using up bandwidth which could be used for data. Furthermore, the

timestamp data must be in the header of a packet since the information is needed before the der-

outing decision can be made; this may extend the time to transmit the header to more than a single

cycle, adding to the node latency.

Thus, within the class of queueing non-minimal routers, chaotic routing provides the lowest

complexity, livelock-free design at the cost of providing only probabilistic protection. However,

since the �nite bounded delivery time of deterministic livelock protection provides little bene�t due

to the enormous magnitude of the bound, chaotic routing provides, in a practical sense, the same

function at a smaller cost.

5.5.2 Queue management

Management of the central queue is a very complex and di�cult task when compared with the

simple \go straight or turn" oblivious routing decision. Packets must be allowed to enter the queue

5

Packets are not derouted to the processor channel.
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Figure 1: Two-dimensional Chaos router diagram.

in any order, but be removed from the queue in FIFO order by outgoing channels. In other words,

when an outgoing channel becomes free, the oldest packet in the queue which can pro�tably use it

must be assigned to it. When the queue �lls up, selection of which packet to deroute must take into

account the policy for derouting as well. Add to this the need to implement virtual cut-through,

which complicates matters because the queue may be �lled with some complete packets and some

partial packets, and the complexity becomes overwhelming.

Chaotic routing. Chaotic routing attempts to minimize the impact of the queue management

overhead by eliminating it from the critical path of the routing decision[Konstantinidou & Snyder

91]. In Chaos routers, single packet bu�ers are placed on both the input and output sides of each

channel (see Figure 1). In \normal" operation, packets enter the node into an input frame, wait

for an output frame of a pro�table outgoing channel to become available, and move to the output

frame in a virtual cut-through fashion. At the output frame, packets wait for the bi-directionally

shared channel to become available and advance to the next input frame when it becomes free.

Virtual cut-through minimizes the time spent in the bu�ers when channels are available. Thus, the

\core" of a Chaos router looks like a minimal adaptive router without the need for multiple classes

of queues for deadlock prevention.

Packets in Chaos routers are moved from input bu�ers into the central queue on two occa-

sions: packet exchanges for deadlock prevention and \stalling" [Bolding & Snyder 92]. The packet-

exchange deadlock prevention protocol mandates that if routers on either side of shared link have

packets to send to each other, both packets must be sent, rather than only one side sending a

packet. In order to guarantee this, the Chaos router implements the following protocol: if a packet

is sent to the output frame for channel i and the input frame for channel i has an incoming packet,

13



the packet in input frame i is moved to the central queue.

6

If there is no space in the queue, a

packet is derouted from it to make room for the newly arriving packet. The second method by

which packets are moved into the queue is when they have stalled for a \reasonably long" time

at an input frame while waiting for a pro�table output frame. For performance reasons, stalled

packets are moved to the queue to free up the input channel for other packets. The Chaos router

determines that a packet is stalled when both its head and tail are bu�ered in the same input

frame, i.e. it can no longer cut-through. Packets in the queue have priority over packets in input

frames when competing for outgoing channels.

By allowing most packets to bypass the queue altogether, the Chaos router reduces the e�ect

of the complexity of queue management. The critical routing decision is now simply the adaptive

routing decision with two additional checks to control moving packets into the queue.

Consequently, chaotic routing should perform better than minimal adaptive routing, deection

routing, and priority routing due to simpler design than minimal and priority routers (deadlock and

livelock prevention) and the ability to use virtual cut-through switching which deection routers

cannot use. Thus, chaotic routing is the best contender to compare with state-of-the-art oblivious

routers.

6 Oblivious routing vs. Chaotic routing

Having argued that, among adaptive routers, chaotic routing is the best contender due to its

simplicity and exibility, we now compare in detail the Chaos router to an oblivious router. While

simplicity of node design a�ects the critical path of a router, and, therefore, the time spent in

each node, this is not the primary performance concern. The response of the network to a user's

application is, of course, the best measure of a network's performance and usefulness. Unfortunately,

such a study is infeasible because of the huge di�erences in how applications use computer networks.

Instead, we will examine two common performance measures, network latency and throughput,

under varying loads and tra�c patterns.

6.1 Uncongested Network Performance

When a network is uncongested there are few conicts for resources, so packets should be able to

acquire needed bu�ers and links with little or no delay at all times. Since the network will have

much greater capacity to hold packets than needed, there should be no backup of congestion and

throughput should be equal to the applied load in all cases. Therefore, in the uncongested case,

there will be no apparent di�erence in throughput between oblivious and chaotic routing.

Since throughput is not a distinguishing factor between chaotic and oblivious routing when

congestion is low, the minimum latency for packets going through the network becomes the �gure

of merit. Since the chance of conicts in routing is small, packets will rarely enter the multiqueue

in Chaos routers. Because of this, it is almost certain that packets will never be derouted, so

packets will almost always follow minimal-length paths from their sources to their destinations. In

oblivious routers, the paths are always of minimal length, so a given packet will have to take the

same number of network hops in either chaotic or oblivious routing when loading is light. Thus,

only the di�erences in routing latency between oblivious and chaotic routing for packets following

paths of the same length are of concern.

6

Packets from the injection frame do not enter the queue due to deadlock prevention constraints.
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Although there is a chance of conict between two or more packets in the lightly-loaded case,

only conict-free routing is considered in the following analysis. Since chaotic routing allows packets

to have a greater number of choices during each routing decision, packets will have fewer chances

of conict when using chaotic routing. Thus, the assumption of conict-free routing is more likely

to hold in chaotic routing. Since conicts can only delay packets, this assumption tends to bias

this analysis slightly in favor of oblivious routing.

The time for a packet to travel a minimum-length path from its source to its destination without

conicts is known as the minimum network latency for that packet. This �gure includes all of the

time from the injection of the packet header into the network until the entire packet is received

at its destination. Since the path length is the same for both oblivious and chaotic routing, and

conicts are assumed not to occur, there are only two factors which a�ect the minimal network

latency for a particular packet. These factors are the network cycle time, c, and the delay the

message incurs at each node (in cycles), d. The minimum latency for a message of length L its

traveling D hops is then:

c � [(D + 1)d+ L� 1)] (1)

since the header of the packet is delayed d cycles for each of the D hops (plus one additional \hop"

for delivery) and then the remaining L � 1 its follow in cut-through fashion. Since c and d are

the only factors which can vary between chaotic and oblivious routers when congestion is small or

non-existent, we compare these factors and their e�ects on the minimum network latency for the

two routers.

6.1.1 Cycle Time

The network cycle time, c, is a critical factor in performance, as it is a multiplicative factor a�ecting

the time to transfer each it of the packet, as well as the time to process the header of the packet at

each hop. The network cycle time must be long enough for the slowest function computed in a cycle

to be completed. For most of the routing logic, pipelining techniques can be applied to support

very short cycle times, although a penalty will be paid in overall latency. However, a fundamental

limit on the network cycle time is imposed by the chip-to-chip interface in the network since data

cannot get on or o� the chip at a rate faster than the I/O pads and wires connecting them can

be cycled. For a given technology and interface voltage, the limits on the speed of this interface

will be constant regardless of the logic inside the routing chip. Thus, once the interface is de�ned,

there is a maximum speed at which the chip can be run, and there is little point in attempting to

make the internal logic run at a faster rate since data cannot get on or o� of the chip any faster

than the limited speed of the pad drivers.

The question remains as to whether the routers can be built fast enough to be limited only

by the o�-chip cycle time. With oblivious routers, pipelining of the simple routing decision, as in

the Caltech MRC, allows the router to run as fast or faster than the pad drivers

7

[Seitz & Su 93].

Therefore, this limit is clearly achievable for the given technology, a 1:2� CMOS process with a 5

V interface. For chaotic routing, the design presented in Section 8 achieves this using a multi-stage

synchronous pipeline and the same technology. Thus, for both oblivious and chaotic routers, the

network cycle time, c, is limited by the same factors and, thus, will be the same value.

7

The MRC is a self-timed chip, so there are no explicit clocks.
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Figure 2: Ratio of minimum average latency with chaotic routing to minimum average latency with

oblivious routing: Hypercube and 2-D torus networks.

6.1.2 Routing Latency

The second factor in comparing the minimum latency is d, the routing latency per node. This factor

represents the time the header of a packet spends entering a node and waiting to be routed to an

outgoing link, when there is no contention. Essentially, d reects the complexity of the routing

decision, and it should be expected to be higher for the Chaos router than for the oblivious router.

For an oblivious router with minimal bu�ering, the time allowed must be at least one cycle for

the header to arrive on the inputs, one cycle for the routing decision to be made, and one cycle for

the header to be routed to the outputs and updated. Although it might be possible to combine

the second and third steps into a single cycle, this is unlikely given the clock speed constraint from

the previous section. As interface technology moves toward lower voltage interfaces, the cycle time

will be further reduced, possibly adding additional cycles to the routing decision as the pipeline

depth is increased. Nonetheless, this results in a minimum of three cycles, so d � 3 cycles. The

performance exhibited by the Caltech \Elko" MRC is consistent with our observation, having an

asynchronous \cycle time" of 14.5 ns and minimum input-to-output latency of about 44.5 ns (c =

14.5 ns and d = 3 cycles)[Seitz & Su 93].

With chaotic routing, packets are delayed a total of four cycles by the routing pipeline (see

Section 8 for details). When congestion is minimal or absent, incoming packets will immediately

enter the routing pipeline and have no extra delay. Thus, for the Chaos router, d = 4 cycles.

Therefore, the input-to-input latency for an oblivious router with bu�ering is three or more

cycles, while it is four cycles for a Chaos router. Since this delay is added only to the routing of

the header it, the minimum latency will be only one cycle per hop greater with chaotic routing

than with oblivious routing, a factor which becomes negligible as the length of packets becomes

large compared to the diameter of the network. Figure 2 shows the ratio of the minimum average

latency with a Chaos router to the minimum average latency with an oblivious router for torus and

hypercubic networks with di�erent packet sizes.

Both of these graphs are constructed by substituting the average distance a packet must travel

in the network, D

avg

, into Equation 1 and varying the packet length. Since the hypercube network

has a much lower diameter than the torus network for same number of nodes, the penalty for chaotic

routing is lower. Also, as packet sizes increase, the relative slowdown becomes less apparent because
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the additional latency due to chaotic routing is based only on the network size, and is not a�ected

by the packet length.

6.2 Congested Network Performance

As network congestion increases, the probability that packets will be routed without experiencing

conicts for resources diminishes. When the network load is in the range between \light" loading,

where packets rarely experience conicts for resources, and saturation, where the load is equal to

the maximum the network can handle, packets will face some delays in routing, but the network

throughput will keep up with the applied load.

In this range, a Chaos network is expected to route most packets on minimal-length paths,

although some packets may enter the multiqueue and wait for needed resources to free up. Oblivious

networks will still, of course, route packets on minimal-length dimension-order paths. Because the

Chaos network will allow packets to choose from more than one pro�table link at a time, packets

should be able to reach their destinations more quickly than with oblivious networks. When the

network is operating in this \moderately loaded" range, the latency gains made by the \quicker"

oblivious router will be lost and chaotic routing will provide faster delivery of messages.

Once the network loading increases beyond a certain point, the network will reach saturation and

will not deliver packets fast enough to keep up with the load. Although it is important to compare

latency �gures for loads up to saturation, the latency numbers have less meaning at loads above

saturation because the load corresponds to a state unachievable in real applications having �nite (or

non-existent) source queues. Because the adaptive nature of chaotic routing allows packets to have

a greater number of choices when routing, a chaotic network should achieve a higher throughput

than an oblivious network before saturating. Moreover, as the network nears saturation, Chaos

nodes will deroute packets which are not making progress, possibly moving them to less congested

paths and improving performance. Overall, the saturation point will be higher with chaotic routing

than with oblivious routing.

Due to the complexity of chaotic routing, an analysis of congested performance is not provided.

Detailed simulations are presented in Section 7 which con�rm these expectations.

6.3 Fault-tolerance

In the presence of faulty links or nodes, routing becomes a much more di�cult problem. In oblivious

routers, since there is only one possible path between a source a and destination b, any fault on this

path will render direct communication between a and b impossible. If the fault is static, that is,

known to exist ahead of time, communication may be re-established through an intermediate node

c such that neither the path from a to c or the path from c to b relies on the faulty component. This

solution requires advance knowledge of the faults in the network, construction of an \intermediary"

table (which may be non-trivial in the presence of multiple faults) at each injecting node, and that

packets avoiding faults are received by the intermediate node and re-injected into the network to

travel to their destinations. Although it would be easy to add a \forward" bit in the header of

a packet along with a second destination �eld so that forwarding could be accomplished entirely

within a router, this would violate the dimension-order routing properties necessary to prevent

deadlock. Thus, oblivious routing may tolerate static faults, but at a high cost.

When transient faults occur or static faults �rst appear, oblivious routing has no possibility

of routing around failed paths and the only solution is to stop the network, map the faults, and
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re-start.

In chaotic routing, avoiding faults is more natural. If a link is not functioning, it will appear

to the router as a continually busy link and the router will deroute around it just as if congestion

were the problem. Since all routes are available, fault-tolerance is established as long as nodes are

not completely isolated by faults. Mechanisms to extend this \natural" fault-tolerance to be more

e�cient and robust at little cost have been outlined [Bolding & Snyder 91].

Thus, chaotic routing provides fault-tolerance for both static and some transient faults without

requiring additional overhead. On the other hand, oblivious routing can provide fault-tolerance

only for already known static faults at a high overhead cost.

6.4 Out-of-order Packet Delivery

Messages which are broken into packets for network transmission must be reconstructed before

being delivered to the receiving node. If the packets arrive in the same order as they are sent, this

is trivial, provided there are no lost packets. On the other hand if packets may be lost or arrive

in a di�erent order than they were injected, mechanisms must be provided to re-order the packets

into the original message.

Oblivious routing always delivers packets in order because there is a single path between a source

and destination and packets do not pass each other on the same route

8

. For adaptive routers, this

is not true. Since packets may take di�erent paths and face di�ering levels of congestion, they may

arrive out-of-order. Although the router itself does not deal with either packetization or reordering,

the cost of using the network is increased because of the extra overhead needed at the ends of the

path.

Adaptive routing, unfortunately, does not necessarily deliver messages in the order in which

they were sent. Because of this, extra complexity is added to network interface in order to deliver

the messages in the correct order. Re-ordering can be done in software, but this adds to the already

large time spent in the network interface. A hardware solution to this problem has been proposed

by McKenzie in which packets include information on their length and their destination in memory

[McKenzie 94]. Packets are placed in their proper place in memory and the processor is signalled

as soon as the entire message has arrived.

7 Chaos vs. Oblivious Experiments

While arguments based on design complexity may suggest that chaotic routing performs better

than oblivious routing, the actual performance of a router cannot be gauged without employing

the router in real tra�c. Barring building a multicomputer with the actual router, simulation is

the best that can be done. We present the results of simulating chaotic and oblivious routing on

several di�erent topologies of 256-node networks under various synthetic tra�c workloads.

The chaotic router used is the design described in Section 8. Latency through each node is 4

cycles minimum, and the multiqueue holds 5 packets for the mesh and torus routers and 10 packets

for the hypercube router.

The oblivious router is a virtual cut-through packet router with input and output FIFO's.

Essentially, it is the same as the chaotic router shown in Figure 1 without the multiqueue. Path

8

If non-blocking bu�ering is added to an oblivious router, packets may be able to pass each other and delivery

could be out-of-order.

18



selection is, of course, oblivious, and the delay through the node is 3 cycles instead of the 4 cycles

for the Chaos router (see Section 6 for justi�cation).

In the simulations, each packet consists of 20 its, the �rst one being the header of the message.

The channels between nodes are shared bi-directionally. The details of the simulationmethodologies

can be found in [Fulgham & Snyder 93].

The tra�c patterns considered have been used previously in the literature and are generally

thought to be di�cult, useful or both. It is assumed that tra�c patterns are not known in advance

and hence more e�cient routing techniques that require precomputing switch settings or tra�c

speci�c algorithms cannot be used. Following is a description of the tra�c patterns simulated. Let

the binary representation of the source node be a

n�1

a

n�2

: : : a

0

. Also, let 0 = 1 and 1 = 0.

� Random, all destinations including the source are equally likely.

� 4X Hot Spots, ten randomly selected nodes are distinguished. Destinations are chosen ran-

domly such that the distinguished nodes are four times more likely to be chosen than the

undistinguished nodes.

� Complement, is a permutation where each source node sends packets to a

n�1

a

n�2

: : : a

0

.

� Transpose, is a permutation where each node sends packets to a

n

2

�1

a

n

2

�2

: : : a

0

a

n�1

a

n�2

: : : a

n

2

.

� Bit Reversal, is a permutation where each node sends packets to a

0

a

1

: : : a

n�1

.

� Shu�e, is a permutation where each node sends packets to a

n�1

a

n

2

�1

a

n�2

a

n

2

�2

: : :a

n

2

a

0

.

� Random Leveled, each node with i < n=2 bits set to one sends a packet to a randomly selected

node b

n�1

b

n�2

: : : b

0

with i one bits satisfying b

n�1

b

n�2

: : : b

0

&a

n�1

a

n�2

: : : a

0

= 0 where & is

the bitwise AND operator. Nodes with i � n=2 one bits simply choose a random destination

with i one bits.

All nodes generate packets at the rate speci�ed by the presented load which is measured in

messages per cycle. This load is normalized to the maximum load that can be delivered, under

any circumstances, for all the tra�c patterns except the complement and random leveled tra�c.

The maximum load is one message every l, kl=4, and kl=2 cycles for the hypercube, torus, and

mesh k-ary n-cube networks respectively, using shared bidirectional channels and messages with

an average length of l. This constraint is due to the �nite bisection bandwidth of the networks

[Thompson 79] and the fact that on average half the messages cross the bisection for all but the

complement and the random leveled tra�c pattern. However, in order to compare the performance

between tra�c patterns, the complement and random leveled tra�c are normalized to the max

load of the other tra�c patterns.

When routing a permutation (i.e., all patterns except random and hot spot), a particular source

node always generates packets with the same destination. Random and hot spot tra�c patterns

generate an independent destination for each packet that is created.

The tra�c patterns illustrate di�erent features. As mentioned earlier the random tra�c is

simply a standard benchmark used in network routing studies. The 4X hot spot tra�c models cases

where references to program data, such as synchronization locks, bias packet destinations towards

a few nodes. The complement is a particularly di�cult permutation since it requires all packets to

cross the network diameter in the hypercube and the network bisection in both topologies. Given
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Saturation

Hypercube Torus Mesh

Tra�c obliv Chaos obliv Chaos obliv Chaos

Random 0:60 0:70 0:65 0:95 0:80 0:80

Transpose 0:10 0:70 0:55 0:55 0:55 0:70

Bit reversal 0:15 0:70 0:40 0:85 0:55 0:80

Shu�e 0:35 0:75 0:55 0:70 0:70 0:70

Random level 0:20 0:70 0:50 0:55 0:65 0:55

Complement 0:50 0:55 0:45 0:35 0:50 0:35

Table 1: Minimum load at which saturation is detected.

x and y axes through the center of a torus network, the complement destination is the composition

of the x and y axes reection of the source. Transpose and bit reversal are important because

they occur in practical computations and can cause worst case behavior in hypercubic oblivious

routers [Leighton 92]. The shu�e converts row major indexing to shu�ed row major indexing on

the mesh or torus topologies. This indexing scheme can be used for e�cient sorting [Thompson &

Kung 77]. Random leveled tra�c can cause worst case behavior for oblivious hypercubes [Valiant

& Brebner 81].

7.1 Saturation

The �rst set of results simply identi�es the saturation points for the di�erent tra�c patterns. The

saturation point reported is the �rst normalized applied load, using intervals of .05, that saturates

the network. See Table 1. Saturation does not necessarily occur at the knee of the throughput,

latency, or delay curves since the e�ects of saturation can alter system behavior before, during, or

after saturation depending on the particular conditions.

After saturation some system statistics such as network delay are no longer valid since they do

not have a limiting distribution. The load where the system saturates is an important measure

since after saturation it is not possible to predict the delivery time of messages.

The tra�c patterns exhibit considerable diversity in the throughput they are able to sustain.

In all cases on the hypercube, except several of the hot spot tra�c patterns which are discussed in

more detail in Section 7.3, the Chaos router saturates at a higher load than the oblivious router.

The Chaos torus also saturates at an equal or higher load than the oblivious torus for all the tra�c

patterns except for the complement permutation. In both cases the di�erence is modest. On the

other hand, with the mesh network, the oblivious router achives equal or higher saturation levels

for all permutation-like tra�c but the transpose and bit reversal. This phenomonon is due to

the a fortuitous combination of the shape of the mesh network and the routes messages take in

dimension-order oblivious routing.

Pertel has compared oblivious routing with minimal adaptive routing on mesh networks and

found the oblivious router to perform better under random tra�c [Pertel 92]. The main underlying

reason for this is that, in a mesh-connected network with random tra�c, there are many more

possible paths which cross the center than the edges of the network. With minimal adaptive

routing, severe congestion will form in the center of the mesh, resulting in degraded performance.

When dimension-order routing is used, packets follow `L'-shaped paths and are not as likely to use
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Figure 3: Average injection delay for a 256-node mesh using chaotic routing.

the center paths as intensively as in minimal adaptive routing (though the center paths will still be

more congested than the edge paths). Thus, the hot spot in the center is not as \hot" when using

oblivious routing as when using minimal adaptive routing, so performance is potentially better.

Similar results are observed for chaotic adaptive routing. The center becomes a very \hot" hot

spot, resulting in severe congestion and excessive derouting. This congestion can be seen in Figure

3 where the average time to inject a message from each node in the network is plotted. Because the

mesh hot spot creates so many di�culties, and since the addition of only a few extra links to create

a torus doubles the bisection bandwidth and halves the network diameter, we will concentrate on

torus and hypercubes for the remaining discussion.

On torus and hypercube networks, di�ences in saturation levels between the Chaos and oblivious

routers can be great, as illustrated by the hypercube transpose permutation, or indistinguishable, as

in the torus transpose. For the torus transpose, no bene�t is gained from relaxing the requirement

of dimension order routing. The transpose on the torus is a reection of the source about the

line y = �x given a coordinate system through the center of the network. This pattern causes

a continuous hot spot along the diagonal of the network for both the Chaos and oblivious torus

routers.

The behavior of the complement permutation is especially interesting. On the oblivious hy-

percube the complement achieves an unusually high throughput when compared to the other non-

uniform tra�c patterns. To understand why this happens note that for the oblivious router, di-

mensions are traversed from lowest to highest. This implies that input frame i has packets destined

for output frame i + 1. At loads close to saturation most of the input frames should be occupied

since the complement packets traverse all dimensions and hence use all channels equally. Therefore

when the oblivious router is selecting a packet to use output channel i, it almost always �nds a

packet; speci�cally, the packet in input frame i� 1. More importantly, no other packet in the node

has a conict with the selected packet because only packets in input frame i need output frame

i + 1. The complement on the Chaos torus is more complex. Each packet is destined for a node

that is the composition of the x axis and y axis reection of the source in a coordinate system

passing through the center of the network. This causes a hot spot in the center of the network

and about the wrap around links at the ends of each of the axes, (if viewed in 3-D, this would

be like having two centrally located hot spots at opposite sides of the network), preventing the

Chaos torus from reaching the maximum possible throughput. However, for the complement, the
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oblivious torus excels over the Chaos because it has fewer conicts. Each packet su�ers conicts

only with packets being injected in the current direction of travel and at the one node where the

packet turns from correcting the x dimension to the y dimension.

When comparing the complement with the other non-uniform tra�c patterns, for both the

hypercube and torus, the major limiting factor of the complement permutation is the bisection

bandwidth. In the complement pattern, all packets must cross the network bisection, while this

is not true of the other tra�c patterns. In addition, on the hypercube the all packets in the

complement pattern must also travel the full diameter of the network.

7.2 Throughput and Latency

In this section the behavior of the two routers is compared by examining expected throughput

and expected latency for the seven tra�c patterns. The graphs in Figures 4 and 5 display the

presented load versus either throughput or latency for all non-hotspot tra�c patterns. Detailed

comparisons are found in Appendix A and hotspot results are found in Appendix B. Ninety-�ve

percent con�dence intervals for these statistics are also shown. Con�dence intervals are not visible

for measurements with very small error. The �rst method we use to compare the two routers is to

examine their throughputs.

Throughput for the Chaos router is greater than or equal to the oblivious for both topologies

for all tra�c patterns at all loads except for a few of the hot spot tra�c patterns on the hypercube.

However the di�erence is small, less than a few percent of the normalized throughput. See Figures 6

and 10 in Appendix A. A more detailed discussion of hot spot tra�c follows in Section 7.3.

The throughputs for the transpose on the Chaos hypercube and the bit reversal permutation

on the Chaos torus are especially noteworthy. The transpose on the Chaos hypercube saturates

with a normalized throughput of 68%, whereas the oblivious saturates at a throughput of 9%. The

throughput of the oblivious router at the load where the Chaos saturates is only 16%. With the bit

reversal permutation, the throughput of the torus Chaos router at saturation is more than double

the throughput of the oblivious router from about 39% to 82% respectively.

After saturation, the throughput of the Chaos hypercube degrades for the bit reversal, transpose,

shu�e, and random leveled tra�c patterns. However, the throughput still remains higher than the

oblivious router. Additional data not shown here, shows that optimal queue size depends upon the

tra�c pattern and the particular goals of the router. In general a multiqueue of size d + 1 for a

degree d router performs well for all the tra�c patterns simulated. Larger multiqueues are able to

sustain greater throughputs, but increase latency and latency variance after saturation. Latency is

una�ected before saturation due to the cut-through feature of the multiqueue.

Throughput on the oblivious hypercube router does not degrade signi�cantly above saturation.

This is the primary strength of the oblivious hypercube router. In a saturated oblivious system,

messages are forced to wait for needed channels. We believe the derouting capability of the Chaos

router is no longer bene�cial when the network is saturated and very congested. In this case,

waiting for the desired channels is more e�ective than using bandwidth to deroute messages. The

oblivious torus router does not share this strength. On the torus the oblivious throughput degrades

after saturation with the complement, random, shu�e, and random leveled tra�c patterns. This

is most likely due to the asymmetry in the oblivious network introduced by the virtual channels

used for deadlock protection in the torus [Bolding 92, Adve & Vernon 93].

Derouting also a�ects latency. In general the torus latencies have three phases. When the
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Expected latency on a 256 node Chaos hypercube
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Expected throughput on a 256 node oblivious hypercube
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Expected latency on a 256 node oblivious hypercube
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Figure 4: Throughput and latency for the Chaos and oblivious hypercube. Tra�c legend is r

= random, b.p. = bit-reversal permutation, c.p. = complement permutation, t.p. = transpose

permutation, sf. = shu�e permutation, r.l. = random-leveled tra�c.
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Expected throughput on a 256 node Chaos torus
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Expected latency on a 256 node Chaos torus
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Expected throughput on a 256 node oblivious torus
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Expected latency on a 256 node oblivious torus
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Figure 5: Throughput and latency for the Chaos and oblivious torus. Tra�c legend is r = random,

b.p. = bit-reversal permutation, c.p. = complement permutation, t.p. = transpose permutation,

sf. = shu�e permutation, r.l. = random-leveled tra�c.
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load is below the neighborhood of the saturating load of the oblivious torus, latency for the Chaos

torus router is slightly greater for all the tra�c patterns. This is due to the higher latency charged

to cross the Chaos node. After the oblivious torus saturates, the Chaos torus experiences lower

latency until it saturates. After saturation the Chaos torus router experiences much greater latency

than the oblivious router due to both the higher throughput of the Chaos and the increased path

lengths of the messages caused by derouting. The one exception is the complement where it is still

more bene�cial to deroute than to wait.

Latency on the Chaos hypercube has two phases. Before the Chaos hypercube saturates, the

Chaos hypercube has a lower or comparable latency than the oblivious hypercube. The greater

adaptivity in the hypercube paths allows the Chaos hypercube to hide the larger latency needed

to cross the Chaos node. After saturation the Chaos hypercube router experiences much greater

latency for the same reasons as the Chaos torus. See Figures 7 and 11 in Appendix A.

Before either of the routers saturate, the delays are comparable to the latencies. Therefore

for the Chaos torus, delays are slightly higher than the oblivious torus. On the hypercube, the

Chaos has equivalent or slightly lower delays than the oblivious router. After either router reaches

saturation, delay comparisons are meaningless, they grow towards in�nity as the simulation time

increases.

7.3 Hot Spots

For hot spot tra�c, placement of the hot spots a�ects performance, particularly on the oblivious

routers which cannot route around the hot spots. Simulations were run for six torus and eight

hypercube hot spots arrangements. See Appendix B for the location of the hot spots and for the

arrangement of the hot spots on the torus. The hot spot patterns were chosen to demonstrate the

variety of behavior in hot spot tra�c.

We are primarily interested in the case when all the hot spots are on distinct nodes. In this case,

the oblivious torus does the best when the hot spots are evenly distributed resulting in a peak of

about 60% of the normalized throughput (case 4). However, when the hot spots are clustered, the

throughput degrades slightly (cases 2, 5, 6) and when arranged in a linear fashion, the oblivious

torus throughput degrades signi�cantly, peaking at only 47% (case 3). The lack of adaptivity,

especially for packets that must traverse a row or column of hot spots, is particularly detrimental

to oblivious throughput. The Chaos torus does much better than the oblivious torus reaching

between 85% and 90% of the normalized throughput for all the hot spot cases simulated. See

Figure 19 in Appendix B.

When two of the hot spots are on the same node, the di�erence between the two routers is not

so dramatic (case 1). The Chaos torus does about 5% better than the oblivious torus and reaches

55% of the normalized throughput. In this case, throughput is a�ected by the delivery capacity of

the double hot spot node.

For the hypercube, the arrangement of the hot spots is more di�cult to visualize. We consider

two experiments, the �rst with the standard delivery rate and the second with the delivery rate of

each node increased by the hot spot factor. With the standard delivery rate, the hot spot nodes

become a bottleneck since they cannot accept packets destined for them fast enough. Using chaotic

routing, this causes packets waiting to be delivered to a hot spot to deroute and consume network

bandwidth. The standard delivery rate results in slightly worse throughput than on the oblivious

hypercube.
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With the faster (quadrupled) delivery rate, the Chaos hypercube peaks at a throughput of

about 50% before degrading slightly below 40% for all the hot spot cases except case 2, which

peaks at about 42%. The oblivious hypercube does almost as well for the randomly placed hot

spots reaching throughput between 36% and 38%. However when the hot spots form a tight cluster

(case 7) or are connected in two contiguous paths (case 8), the oblivious router cannot even reach

30% of the normalized throughput. See Figures 13 and 14 in Appendix B.

When there is more than one hot spot at a hypercube node, the two routers have lower through-

put with similar performance. However the Chaos hypercube does slightly better than the oblivious

with the standard delivery and the oblivious hypercube does better with the quadrupled delivery.

The Chaos peaks at a higher throughput than the oblivious hypercube if the delivery rate of the

double hot spot is increased (by eight times) to match the expected arrival rate of the packets.

Latencies follow the same general phases as for the other tra�c patterns and will not be discussed

here. See Figures 15, 16, and 20 in Appendix B for more details.

Saturation

Hypercube Torus Mesh

Tra�c obliv Chaos obliv Chaos obliv Chaos

1 0:20 0:15 0:55 0:55 0:75 0:80

1 4X d.r. 0:25 0:35 0:60 0:95

1 8X d.r. 0:25 0:40

2 0:25 0:20 0:50 0:90 0:65 0:80

2 4X d.r. 0:35 0:50

3 0:25 0:20 0:50 0:90 0:65 0:80

3 4X d.r. 0:35 0:55

4 0:25 0:25 0:65 0:90 0:80 0:80

4 4X d.r. 0:40 0:55

5 0:25 0:25 0:55 0:90 0:75 0:80

5 4X d.r. 0:40 0:60

6 0:25 0:25 0:55 0:90 0:70 0:80

6 4X d.r. 0:35 0:55

7 0:25 0:25

7 4X d.r. 0:30 0:55

8 0:25 0:25

8 4X d.r. 0:25 0:55

Table 2: Minimum load at which saturation is detected for various hot spot tra�c.

Saturation �gures are as expected. The more di�cult the hot spot arrangement is for the router

the lower the saturation point becomes. The Chaos router saturates at a higher load for all the

hot spots cases except three (case 1, 2, and 3) with the standard delivery rates. This inferior

performance is a result of delivery bottlenecks at the hot spot nodes, as explained above. When

the delivery rate of each node is quadrupled (4X d.r.), chaotic routing saturates at a higher load

than oblivious routing in all the hot spot cases.
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8 Chaos Router Design

While oblivious routers have been in use for many years, few adaptive routers have been built to

date. Of those that have, little technical information is available on most of them due to proprietary

design considerations. One exception to this is the Post O�ce router, of which a preliminary version

has been built and runs at around 20Mhz [Coates et al. 93]. A two-dimensional (mesh or torus)

Chaos router has been built with the design described below and is designed to run at 66MHz

[Bolding et al. 93]. Ongoing testing has con�rmed operation only to 25MHz in this prototype. The

design goals have centered around being able to match the cycle time of an oblivious router with

minimum additional latency, and this has been, in simulation, achieved through careful design and

extensive pipelining.

As outlined in Section 6, to compete with a state-of-the-art oblivious router, the Chaos router

must �rst of all have comparable throughput capability at all loads and match the minimum

latency experienced during light loads. The goal of equal throughput resulted in a design in which

the channels can be driven at the maximum rate allowed by the technology without lengthening

the cycle time due to the router design. If the channels were slowed down, raw throughput would

su�er. This is achieved by straightforward pipelining techniques at the expense of adding additional

latency: data is read into the router on one cycle, but not processed until the next. Oblivious routers

make use of this technique as well.

8.1 Pipeline Design

Because the router must run at a clock speed to match the maximum speed of the pads, the design

must be pipelined. The pipeline, which operates only on the header of each packet, has four primary

stages:

1. Read the header into the input frame across the network channel.

2. Decode the header to identify pro�table output channels for this packet.

3. Select a single output frame to route this packet to.

4. Move the header across the crossbar to the output frame and update the header to reect the

routing.

Thus, the minimum latency through the router is four cycles.

The pipeline design is complicated by new packets arriving in input frames and others leaving

output frames constantly during the routing decision. Add to this the fact that there may be

several packets desiring multiple output frames at once, and the complexity of the routing decision

can be seen [Konstantinidou 91]. In order to reduce the complexity, the constraint that only one

new route may be set up per cycle is added. Furthermore, during a cycle, a single output channel

is selected to be considered as the destination for newly routed packets and only packets which can

pro�tably use this output channel are considered. With these constraints, the complexity becomes

manageable since the complex parallel decision of matching all packets to all destinations at once

has been serialized so that the router only has to choose a single route to a �xed destination during

a cycle.

The serialization constraints are enforced by the use of the ActionDim vector, which indicates

the output frame that is currently being considered for the destination for newly routed packets.
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ActionDim is cyclically incremented through the output frames, with the routing logic setting up

routes from input frames to the output frame indicated by ActionDim when possible.

To avoid \wasting" cycles when ActionDim points to an output frame which no packets can

use, ActionDim is only cycled through interesting directions. A direction i is interesting whenever

output frame i is available and there is a packet in some input frame which can pro�tably use it,

or when a packet in input frame i is stalled and should be read into the multiqueue.

Once ActionDim is chosen, the router must set up the appropriate route to move a packet to

the output frame speci�ed by ActionDim. First, the multiqueue is searched for packets which can

pro�tably use this output frame. If none are found, then the input frames are searched. Regardless

of whether such a packet is found, any packet in the input frame corresponding to ActionDim is

moved directly into the multiqueue. All of these actions complete within a single cycle except

selecting a packet in the multiqueue to be moved to an output frame. This process takes three

or more cycles depending on tra�c conditions, with an average of 6.43 cycles for the worst tra�c

[Bolding 93].

8.2 Design Consequences

Although the serialization of the routing decision causes the Chaos router to be able to route

less than one new packet per cycle, this constraint does not seriously e�ect the performance.

Throughput through the node would be a�ected if this serialization caused a backlog of packets

to queue up. However, because the packets are composed of multiple its, there is a limit on how

frequently a new packet can arrive on a channel. In order to keep up with newly arriving packets,

all that is necessary is that each channel is visited at least as often as a new packet can arrive on

a channel. With worst-case tra�c, each channel of the 2-D router will be visted only once every

25.7 cycles [Bolding 93]. However, since in order for the worst-case load to exist, the bi-directional

channels must be utilized equally in both directions, new packets can arrive only once every 2L, or

40 cycles. Thus, the router should be able to provide su�cient throughput even in the worst-case

situation.

9 Conclusions

Although dozens of designs for multicomputer routers have been proposed over the last several

years, none has currently displaced the simple-but-fast oblivious routers in any signi�cant manner.

The reasons for this are many, but boil down to usefulness and complexity. Any adaptive router is

more complex than a straightforward dimension-order oblivious router. To compete, this complexity

must be dealt with carefully to produce a router that can deliver messages with the low node-to-

node latency of an oblivious router. When network loads are high, the advantages of adaptivity

become more apparent. At this point, non-minimal adaptive routers with limited derouting perform

better than minimal adaptive routers and deection routers.

Chaotic routing is a queueing non-minimal adaptive routing technique which lends itself to a

relatively simple critical path by using cut-through techniques to enhance low-load performance.

When loading increases, packets are stored in a non-blocking bu�er where they await channels to

become free. When loads become very high and the bu�er becomes full, derouting is employed to

distribute the load and prevent deadlock. By careful design of the low-load critical path, a per-node

routing latency comparable with an oblivious router is achieved in the Chaos router. When the
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load increases, the per-node latency increases, but the throughput achieved is much higher than in

oblivious routing. Thus, chaotic routing is presented as a contender to replace oblivious routing as

the router of the next generation of multicomputers.
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A Permutation-like Tra�c
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Figure 6: Hypercube throughput for bit reversal, complement, random tra�c, transpose, shu�e,

and random leveled tra�c.
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Expected latency on a 256 node hypercube
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Figure 7: Hypercube latency for bit reversal, complement, random tra�c, transpose, shu�e, and

random leveled tra�c.
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Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

b.p. oblivious

b.p. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      15

      20

      25

      30

      35

      40

      45

      50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

c.p. oblivious

c.p. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

     100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

r. oblivious

r. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

t.p. oblivious

t.p. Chaos

left 95% c.i. 

right 95% c.i. 

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

sf. oblivious

sf. Chaos

left 95% c.i.

right 95% c.i.

   
   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

r.l. oblivious

r.l. Chaos

left 95% c.i.

right 95% c.i.

   

   

Figure 8: Mesh throughput for bit reversal, complement, random tra�c, transpose, shu�e, and

random level tra�c.
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Expected latency on a 256 node mesh
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Figure 9: Mesh latency for bit reversal, complement, random tra�c, transpose, shu�e, and random

level tra�c.
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Expected throughput on a 256 node torus
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Figure 10: Torus throughput for bit reversal, complement, random tra�c, transpose, shu�e, and

random leveled tra�c.
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Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

Si
m

ul
at

io
n 

cy
cl

es

b.p. oblivious

b.p. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

    1400

    1600

Si
m

ul
at

io
n 

cy
cl

es

c.p. oblivious

c.p. Chaos

left 95% c.i.

right 95% c.i.

  
 

   

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      50

     100

     150

     200

     250

     300

     350

     400

     450

     500

     550

     600

Si
m

ul
at

io
n 

cy
cl

es

r. oblivious

r. Chaos

left 95% c.i.

right 95% c.i.
 
 

 

   

Expected latency on a 256 node torus
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Figure 11: Torus latency for bit reversal, complement, random tra�c, transpose, shu�e, and

random leveled tra�c.
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B Hot Spot Tra�c

Following are the hot spot nodes for each of the hot spot cases.

1. 146 102 94 51 196 25 107 94 15 224

2. 61 12 8 245 5 27 69 28 98 46

3. 3 239 207 83 6 9 89 125 7 255

4. 77 241 105 197 98 126 223 251 163 52

5. 223 251 163 52 74 220 70 179 55 158

6. 210 225 243 73 149 241 136 227 130 88

7. 0 1 2 4 8 16 32 64 128 3

8. 0 1 3 7 15 129 131 135 143 128

Figure 12 shows the arrangment of the hot spot tra�c patterns for the mesh and torus with cases

1-6 arranged left to right, top to bottom.
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Figure 12: Mesh and torus hot spot locations for cases 1, 2, 3, 4, 5, and 6.
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Figure 13: Hypercube hot spots throughput cases 1, 2, 3, 4, 5, and 6.
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Figure 14: Hypercube hot spots throughput cases 7 and 8.

42



Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

    1400

    1600

Si
m

ul
at

io
n 

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

  
 

   

 
 

 

 
 

 

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

    1400

Si
m

ul
at

io
n 

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

   

   

 
 

 

  
 

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

    1400

Si
m

ul
at

io
n 

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

  
 

   

 
 

 

  
 

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

    1400

Si
m

ul
at

io
n 

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

  
 

   

 
 

 

  
 

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

    1400

Si
m

ul
at

io
n 

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

   

   

 
 

 

  
 

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

       0

     200

     400

     600

     800

    1000

    1200

    1400

Si
m

ul
at

io
n 

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

  
 

   

 
 

 

  
 

Figure 15: Hypercube hot spots latency cases 1, 2, 3, 4, 5, and 6.
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Figure 16: Hot spot latency cases 7 and 8.

44



Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

     100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

     100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

     100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

     100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

     100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

   

   

Expected throughput on a 256 node mesh

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

      10

      20

      30

      40

      50

      60

      70

      80

      90

     100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

   

   

Figure 17: Mesh hot spot throughput for cases 1 - 6.
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Figure 18: Mesh hot spot latency for cases 1 - 6.
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Figure 19: Torus hot spots throughput cases 1, 2, 3, 4, 5, and 6.
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Figure 20: Torus hot spots latency cases 1, 2, 3, 4, 5, and 6.
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