
Identifying Profitable Specialization in
 Object-Oriented Languages

Jeffrey Dean, Craig Chambers, and David Grove

Department of Computer Science and Engineering, FR-35
University of Washington

Seattle, Washington 98195 USA

Technical Report 94-02-05
February 1994

{jdean,chambers,grove}@cs.washington.edu
(206) 685-2094; fax: (206) 543-2969

1

Identifying Profitable Specialization in Object-Oriented Languages

Jeffrey Dean, Craig Chambers, and David Grove

Department of Computer Science and Engineering

University of Washington*

Abstract

The performance of object-oriented languages can be greatly improved if methods can be specialized for particular
classes of arguments. Such specialization can provide the compiler with enough class information about the
receivers of messages within the specialized routine to enable these messages to be statically-bound to their target
methods and subsequently inlined. We present an algorithm for automatically determining which methods are most
profitable to specialize for which argument classes. This algorithm improves on previous automatic techniques by
avoiding the twin problems of over- and underspecialization and by being suitable for specializing programs that
use multi-methods.

1 Introduction

Object-oriented languages are useful for implementing abstractions and structuring programs to be more
extensible and maintainable. One of the key reasons is dynamic binding (also known as message passing).
Unfortunately, dynamic binding is slow, compared with a simple procedure call. In relatively pure object-
oriented languages, such as Smalltalk [Goldberg & Robson 83], Eiffel [Meyer 92], Trellis [Schaffertet al. 86],
SELF [Ungar & Smith 87], and Cecil [Chambers 92b], dynamic binding occurs very frequently and
consequently its impact on performance is severe. For example, an efficient implementation of Smalltalk-80
runs a suite of small benchmarks 5 to 10 times more slowly than does optimized C, in large part due to the
overhead of dynamic binding [Chambers & Ungar 91]. Even for hybrid languages that promote relatively
coarse-grained use of dynamic binding, such as C++ [Stroustrup 91], Modula-3 [Nelson 91], and CLOS
[Bobrow et al. 88], dynamic binding can become a performance bottleneck if the programming style in use
encourages heavier use of object-oriented features.

Program performance can be improved if the target of a dynamic message send can be determined at compile-
time. By doing so, the cost of determining the target method at runtime is eliminated, and these statically bound
call sites also become amenable to further optimizations such as inlining. In order to statically bind a call site,
however, the compiler requires static information about the possible classes of the receiver of a message. One
way of obtaining this class information is to produce a version of a method specialized for a subset of its possible
argument classes. This provides the compiler with additional information about the classes of the method’s
formal arguments, permitting messages sent to the formals to be statically bound and potentially inlined. This
can greatly improve performance. For example, SELF programs run from 1.5 to 5 times faster as a result of
specialization [Chambers 92a].

In this paper we present an algorithm that identifies automatically those points in the program where
specialization is profitable using call graphs derived from dynamic profiles of the program. Section 2 provides
an example motivating the benefits of specialization. Section 3 discusses previous work and identifies several
shortcomings which are addressed by our algorithm. Section 4 presents our algorithm. Section 5 describes our
current implementation status. Section 6 discusses related work, and section 7 offers our conclusions.

2 A Motivating Example

To illustrate the issues surrounding specialization of methods in object-oriented languages, we present an
example of a keyed table class hierarchy and the basic table lookup method,fetch. In the inheritance graph

* Mailing address: Jeff Dean, FR-35, Dept. of Computer Science and Engineering, University of Washington, Seattle, WA
98195. Phone: (206) 685-2094. Electronic mail:{jdean,chambers,grove}@cs.washington.edu.

2

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

below, class names are shown in boldface type, inheritance relations are indicated by arrows, and methods
defined for a class are shown in the boxes:

The[] method, invoked using expressions liketable[key], is the primary interface to tables. This method
is defined in theTable abstract class and is inherited by all data structures that support a table-like interface.
The[] method in turn sends thefetch message to itself with a default error-handling closure (enclosed in
braces) as an extra argument. Each concrete implementation of a table defines its ownfetch method, except
for GrowableHashTable which inherits thefetch method from its superclass,HashTable.

Call graphs are a useful framework with which to describe the effects of specialization. A call graph represents
the calling structure of a program: nodes correspond to methods and edges represent calls from one method to
another. For the call graphs in this paper, call sites are indicated with small squares, which are white if the
call site is dynamically bound, and are shaded if the call site is statically bound. Edges have a weight
associated with them, indicating the number of times the edge was traversed during execution. The following
call graph illustrates a program fragment where five callers send the[] message:

The [] method sends thefetch message toself, which is dynamically dispatched since three different
fetch methods can be invoked from this one call site.

By specializing the[] method for different subsets of its potential receiver classes, the compiler can obtain
more precise static information in the specialized versions about the class of the receiver of thefetch message,

Table

String

method [](self@Table, key):Value { return fetch(self, key, { error(“key not found”) }) }
method fetch(self@Table, key, if_absent) {abstract }

method fetch(self@String, key, if_absent) {..code..}

Vector
method fetch(self@Vector, key, if_absent) {..code..}

HashTable
method fetch(self@HashTable, key, if_absent) {..code..}

GrowableHashTable
no fetch method

fetch(@Vector)

10,000

fetch(@String)

6,000

fetch(@HashTable)

100

[](@Table)

9,5005006,000991

clients of[]

3

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

enabling the message to be statically bound. The call graph below shows one way of specializing that statically
binds all of the calls tofetch routines:

By producing a specialized version of[] for each of the three main kinds of tables and thereby statically-
binding the calls tofetch, 16,100 (10,000 + 6,000 + 100) dynamic dispatches were eliminated. These
statically-boundfetch call sites are now amenable to inlining to further improve performance.

Whether or not it is profitable to perform these specializations depends on the desired trade-off between run-
time performance improvement and compile time and code space costs. In this example, the system might elect
to not specialize[] for HashTable’s, since there isn’t much benefit for specializing it (a savings of only 100
dynamic dispatches) but there is a significant cost in terms of increased compiled code space and compilation
time. Similarly, the system needn’t produce a specialized version of[] for GrowableHashTable’s, since
[] never called any routines (directly or indirectly) where the knowledge that the receiver was a
GrowableHashTable would have provided any additional benefit over knowing that it inherited from
HashTable.

3 Previous Work

Method specialization has been incorporated into several existing implementations of object-oriented
languages, including SELF [Chambers & Ungar 91], Trellis [Kilian 88], and Sather [Lim & Stolcke 91]. Each
of these systems has used a fairly simple-minded strategy to determine when to specialize a method: a method
is always specialized on the exact class of the receiver, for all receiver classes, and never on anything else. While
this approach is simple to implement and enables many sends toself to be statically bound and potentially
inlined, it can lead tooverspecialization and/orunderspecialization.

• In some cases, specializing a routine for a single receiver class is overly precise: little or no additional
benefit is obtained over specializing for a group of several receiver classes. In the example above, producing
a version of[] specialized forGrowableHashTable’s provides no additional benefit over a version of
[] specialized forHashTable’s: the generated code for these two specializations would be the same. The
Trellis implementation includes a pass after specialization that shares code among specializations that turn
out to have identical machine code after specialization, alleviating the code space problem in some
circumstances but still consuming compilation time.

For large programs with deep inheritance hierarchies, producing a specialized version of every routine for
every potential receiver class can lead to significant code explosion. The SELF implementation often avoids
this problem by producing specializations lazily at run-time, as part of its general strategy of dynamic
compilation. If a method is never invoked for a particular receiver class, then no compiled method will be
produced. However, this strategy can still lead to overspecialization if a method is invoked with a large
number of distinct receiver classes during a program’s execution or if a method is invoked only rarely for a
particular receiver class, as was the case with thefetch message sent toHashTable objects. Moreover,
dynamic compilation may not be a suitable framework for some programming systems.

[](@Vector)

fetch(@Vector)

10,000

[](@String)

fetch(@String)

6,000

[](@HashTable)

fetch(@HashTable)

100

9,5005001,0005,000 991

[](@Table)

clients of[]

4

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

• By never specializing on an argument other than the receiver, these systems can miss some opportunities to
boost performance. Although message sends to the receiver comprise a significant fraction of the message
sends within most methods, message sends to arguments other than the receiver are also common, and by
not specializing on the arguments the compiler may lack the precise class information that is crucial to
statically binding these messages. However, the equally simplistic strategy of specializing on all arguments
can lead to even worse code explosion.

Specializing on multiple arguments seems particularly appropriate for object-oriented languages
incorporating multi-methods, such as CLOS and Cecil. Multi-methods generalize standard singly-
dispatched methods by allowing dynamic binding to be based on the dynamic class of any subset of the
message’s arguments, not just the receiver argument. In such a situation, there is no clearly-defined single
receiver argument that is appropriate for specialization, and consequently more intelligent decisions are
needed to determine the combinations of argument classes that are worth specializing.

The algorithm presented in this paper addresses the problems of over- and underspecialization. Specializations
of methods are made only as specific as is necessary to statically bind important (high weight) calls, and
situations where it is profitable to specialize a routine on arguments other than its receiver are identified. We are
developing the algorithm in the context of a language based on multi-methods.

Lea has explored the potential benefits of applying specialization in the C++ language [Lea 90]. For a simple
matrix multiplication benchmark where the index function was dynamically bound, Lea calculated a potential
speedup of around a factor 10 if the multiply routine were specialized to the particular matrix representations,
thereby statically-binding the index call. Lea proposed user annotations to guide where specialization was to be
applied, but did not implement his proposal.

4 A Specialization Algorithm

This section explains our algorithm for determining where specialization is profitable. The next subsection
discusses how we measure profitability. Subsection 4.2 presents the basic algorithm, with subsection 4.3
explaining how the basic algorithm is extended to cope with closures. Subsection 4.4 discusses how the
algorithm is adapted to singly- and multiply-dispatched systems.

4.1 Profitability

Our algorithm attempts to balance the costs and benefits of specialization to improve program performance
without excessive space and compile time costs. We measure the benefit of specialization by the dynamic
number of dynamically-bound message sends which are turned into statically-bound calls due to the additional
information provided by specializing. The cost of specialization is measured by the increase in code space
introduced by the specialized copies of routines. These costs and benefits do not fully account for the effects of
specialization. In particular, they do not account for the performance improvement due to post-specialization
inlining. Our profitability metric can be extended to take these secondary effects into account by incorporating
a persistent database that records the costs and benefits of inlining [Dean & Chambers 94].

Our algorithm identifies profitable places to specialize by examining the program’s call graph. Our current
implementation uses a call graph constructed using profile data from previous runs of the program.* Edge
weights in the call graph help to identify portions of the call graph which are important enough to warrant
specialization. Other compilation systems have exploited dynamic profiles to guide the application of
optimizations, such as the Impact-C profile-guided inliner [Changet al. 92].

* The Cecil implementation uses polymorphic inline caches (PICs) to speed dynamic dispatch [Hölzleet al. 91]. A PIC is
a call-site-specific method lookup cache, mapping argument classes for a message send to the routine which should be
invoked. When a Cecil program terminates, its PICs contain a complete profile of the classes of arguments which
appeared during program execution for each send location in the program, and this provides sufficient information to
reconstruct the call graph. We augment the PICs to keep a counter of the number of times each argument class occurred,
to provide weights on each edge in the call graph.

5

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

A call graph constructed from profile data is not guaranteed to be conservative; a future program execution
might traverse an edge not found in the call graph. Fortunately, our algorithm does not require that the call graph
be conservative, since producing or not producing a specialization does not affect program correctness. In the
absence of other conservative information, we must however preserve the original unspecialized routine to catch
cases where an edge is traversed with a receiver class not encountered during the profile-gathering program
execution.

4.2 The Basic Algorithm

Two characteristics of call graph edges are important for our algorithm:

• A pass-through edge is an edge in which one or more of the formals of the caller are passed through as actual
arguments to the call site that is the source of the edge. All of the edges between the[] method and the
fetch methods in the example call graphs are pass-through edges, because the send of thefetch message
passes through theself andkey formals of the[] method to thefetch call site. Conversely, anon pass-
through edge is one in which none of the caller’s formals are passed through as parameters of the message
send.

• A statically-bound edge is an edge where the class information available in the caller is sufficient to
uniquely determine the callee at compile-time. Adynamically-bound edge requires run-time dispatching to
determine the callee.

A dynamically-bound, pass-through edge is one which might benefit from specialization, since knowing
additional class information about the formals of the caller might allow the call to be statically-bound.

The algorithm is presented below interspersed with discussion about its various pieces. The presentation is in
the style of a literate program [Knuth 92]. When helpful, call graph diagrams illustrating the various situations
which occur are presented. In these diagrams,pass-through edges are indicated as solid black lines, andnon
pass-through edges are shown as gray lines. We continue our convention of representingstatically-bound calls
with solid square anddynamically-bound calls with white squares.

specialize_program(budget)
while cost < budget do

Let e := highest weight edge in call graph that is dynamically-bound, pass-through and is not visited
cost := cost + specialize(e.caller, e.callee.specializers, e.weight)
e.visited := true

end
end specialize_program

specialize_program is the top level routine of the algorithm. It loops, looking for edges which might benefit from
specialization, until a space budget allotted for specialization has been exceeded. It examines edges in decreasing order

6

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

specialize(specialize_node, desired_info, benefit)
nodes_to_specialize := ∅
collect_nodes(specialize_node, desired_info, benefit, nodes_to_specialize)
cost := sum of space cost for each node in nodes_to_specialize
if specialization_is_profitable(cost, benefit) then

output directives to specialize members of nodes_to_specialize for desired_info
else

cost := 0
end
return cost

endspecialize

collect_nodes(node_to_specialize, desired_info, var benefit, var node_set)
/* Return immediately if node already visited (recursion) */
if node_to_specialize ∈ node_set then

return
end
node_set := node_set ∪ { node_to_specialize }
foreach incoming edge e of node_to_specialize do

/* We want to take different action, depending on which of the four varieties of edge this is: */

specializeis called for each dynamically-bound edge that we are attempting to statically-
bind through specialization. It is given three parameters: the caller of the edge we’re trying
to statically bind (specialize_node, which is the node we will potentially specialize), the
desired_info, which is a description of the class information required to make the edge
statically bound, and thebenefit, which is the number of dynamically-bound sends which
will be turned into statically bound sends if the edge can be statically bound (simply the
weight on the edge betweenspecialize_node andcallee). There may be other routines
called from this call site other than the callee (since the call site is, by definition,
dynamically bound): these are shown with additional arrows.

The routine returns the total cost of all nodes which are to be specialized.

specialize_node

callee

Edge to specialize:
benefit =

 edge weight

collect_nodes is called to determine the connected subgraph of nodes which reach
node_to_specialize through statically-bound, pass-through edges. This set is of
particular interest because such nodes should be specialized as a unit. If they were not
specialized together, then calls which were statically-bound will be turned into
dynamically-bound calls unnecessarily. By specializing as a unit, we avoid introducing
new dynamically-bound calls which will have to be specialized back into statically-
bound calls.

The routine computesnode_set, the set of nodes to be specialized. It also adjusts the
benefit value downward by the number of statically-bound non-pass-through calls which
may be turned into dynamically-bound calls.

node_to_specialize

C1

w

C2

C4

C3

node_set

7

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

if is_dynamically_bound(e) then
nothing extra to do for dynamically bound incoming edges

else /* is_statically_bound(e) */
if has_desired_info(e, desired_info)) then

already has the desired info; will still be statically bound after specialization without cost
else

/* Need to consider effect of specialization on statically-bound caller */

if not(is_pass_through(e)) then
benefit := benefit - e.weight

For the case of a dynamically-bound edge, specialization
incurs no reduction in benefit, since the call to
node_to_specialize is already dynamically dispatched. This
is true regardless of whether the edge entering
node_to_specialize is apass_through edge (caller1) or not
(caller2). If the newly introduced edge fromcaller1 to
specialized has sufficient weight, thencaller1 may
potentially be split during a subsequent iteration of the main
loop. This can cause a rippling effect upwards as a whole call
chain is specialized.

specialized

callee

caller1

After

benefit

caller2

Before

original

caller1 caller2

callee

node_to_specialize

For a statically-bound edge, we first check whether the call
site has enough static information to remain statically
bound after specialization, either to thespecialized or to the
original method. If this is the case, then the full benefit of
specialization remains, and no specialization of the caller is
needed. specialized

After

node_to_specialize

benefit

caller

Before

original

caller
Still statically-bound

w

calleecallee

edge e

For a statically-bound edge that does not pass-through any
formals, the benefit of specialization is tempered by the fact
that the statically-bound call fromcaller to specialize may
become dynamically-bound after specialization, if the static
information available incaller is insufficient to statically
determine whether thespecialized or original method will
be called. To be conservative, the algorithm reduces the
benefit of specialization (benefit) by w, the weight of the
edge fromcaller to specialize. Specialization is only a win
if benefit > w (if benefit ²w, then specialization only moves
dynamic calls from one location to another).

specialized

After

node_to_specialize

benefit

caller

Before

original

caller
Now dynamically-bound

w

calleecallee

edge e

8

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

else /* is_pass_through(e) */
/* Recur on this edge, collecting nodes */
collect_nodes(e.caller, desired_info, benefit, node_set)

end
end

end
end

end collect_nodes

specialization_is_profitable(cost, benefit)
return true if cost is acceptable, given the benefit; false otherwise

endspecialization_is_profitable

has_desired_info(e, desired_info)
return true if e’s caller has desired_info available statically; false otherwise

end has_desired_info

The output of this algorithm is a list of specialization directives. These directives are first processed to merge
directives to specialize the same routine in non-interfering ways. If a routine contains multiple call sites, each
to a different formal of the routine, each call site can generate distinct specialization directives. These directives
are merged where they do not conflict (specialize the same formal for different types) to reduce the number of
specializations computed. (We are investigating algorithms to generate specialization directives that more
directly account for multiple specializable call sites within a single routine.) Once the set of directives is
computed, our system obeys the directives to generate the specializations.

As written, the algorithm has worst-case time complexityO(E2), whereE is the number of edges in the call
graph. By segregating the various types of edges and only visiting dynamically-bound pass-through edges in the

S3

We attempt to specialize all statically-bound, pass-
through callers of thenode_to_specialize routine
as a whole. This avoids converting statically-
bound pass-through calls into dynamically-bound
calls unnecessarily. To find the subgraph that
reaches specialize through statically-bound, pass-
through calls, we recursively callcollect_nodes
for the caller of the edge to add the reachable nodes
to thenode_set.

In the diagram at the left, the computednode_set is
{ node_to_specialize, C1, C2, C3, C4}. After
specialization, specialized versions for each of
these nodes would be created.

After

node_to_specialize

benefit

C1

Before

w

C2

C4

C3

specialized

callee

S1

S2

S4

C3

original

C1

C2

C4

callee

specialization_is_profitable makes a final yes or no decision about a potential specialization, based on the cost and
benefit. The exact nature of the heuristics depends on the desired trade-offs between code space and compile time vs. run-
time performance.

has_desired_infoaccepts a call graph edge,e, and a description of class information,desired_info, and returns true ife’s
caller is guaranteed to have thedesired_info available statically.

9

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

specialize_program loop and statically-bound edges in thecollect_nodes loop, the algorithm reduces to
O(DP * SP + SN), whereDP is the number of dynamically-bound pass-through edges,SP is the number of
statically-bound pass-through edges, andSN is the number of statically-bound non-pass-through edges. The
productDP * SP is significant only when a large number of statically-bound pass-through edges are repeatedly
collected as part of processing a large number of dynamically-bound edges, which we consider a rare
occurrence. Consequently, we expect this algorithm to take time roughly linear in the number of edges in
practice, and our initial experimental results confirm that identifying specializations is quick.

4.3 Closures

In the presence of first-class, lexically-nested function objects, such as blocks in Smalltalk and SELF and
closures in Cecil, a message can be sent to a formal not of the sending routine but of a lexically-enclosing
routine. We extend our specialization algorithm to support this case by computing thenode_to_specialize not
as the caller of the edge being specialized but as the routine that declares the formal that is being passed through
to the call site. In many situations this will be the same as the caller of the edge being specialized, but in the
presence of closures this can be a routine that lexically encloses the caller of the edge.

4.4 Specialization in Single- and Multiple-Dispatching Systems

Our specialization algorithm allows any subset of a routine’s arguments to be considered a candidate for
specialization. The subset selected is determined from the messages sent by the routine and the arguments of
those messages that are subjected to run-time type tests to determine the target method. In the presence of multi-
methods, several of the arguments of a particular dynamically-bound call site might be subject to run-time type
tests, in which case thedesired_info manipulated by the algorithm will be a set of <variable, desired class>
pairs.

To implement specialization, our implementation generates new methods whose formals are restricted to apply
to particular subsets of classes. This approach exploits our environments multi-method dispatching
infrastructure, using multi-method dispatching to test when a particular specialized version is appropriate. This
infrastructure may not be present in a singly-dispatched system. To exploit our algorithm in such a system, we
recommend that the basic run-time system of the language be augmented to support selecting method
implementations based on the classes of several arguments. Alternatively, versions of a routine specialized on
arguments could be limited to being invoked only from call sites that possess statically the required class
information, with other cases being caught by the original unspecialized routine.

5 Current Status

We have implemented the described algorithm in the context of the Cecil compiler. Our current system
constructs a program’s call graph derived from profiles of the program, generates specialization directives using
the algorithm described in this paper, and produces specialized versions of routines based on these specialization
directives. The specialization directives produced by our algorithm agree with our intuitive sense about what
specializations are most profitable, and the number of specialization requested is reasonably small: 10 or 15
specializations for small programs and around 100 to 200 specializations for a large program (our Cecil
compiler, containing 27,000 lines of Cecil source code). The algorithm also runs quite quickly in practice, taking
a few seconds for small programs and less than a minute for the large Cecil compiler program.

We are currently in the final stages of implementing concrete type analysis and using the results of this analysis
to statically-bind and inline message sends. Once this is completed, the additional type information provided by
specialization will allow the static binding and inlining of message sends which would otherwise be dynamically
bound, and we will be able to explore the performance impact of producing specializations. We hope to have
initial performance results shortly.

10

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

6 Related Work

The implementations of SELF [Chambers & Ungar 91], Trellis [Kilian 88], and Sather [Lim & Stolcke 91] use
specialization to provide the compiler with additional information about the classes of arguments to a routine,
allowing many message sends within the routine to be statically-bound. All of these previous work takes the
approach of always specializing on the the exact class of the receiver, and not specializing on any other
arguments. As discussed in section 3, this can lead to overspecialization and/or underspecialization. Our
approach is more precise because it identifies sets of receiver classes which enable static-binding of message
sends send to the receiver (thereby avoiding overspecialization), and because it allows specialization on
arguments other than just the receiver of a message (preventing underspecialization for arguments).

The techniques described in this paper focus on using specialization to convert dynamically-bound message
sends into statically-bound calls. However, many dynamically-bound message sends still exist in the residual
program. Other work focuses on reducing the overhead of dynamic dispatching in object-oriented programs, by
partially evaluating the routines to perform method lookup with respect to the inheritance hiearchy of the
program being executed [Khoo & Sundaresh 91, Harnett & Montenyohl 92]. We rely on standard caching
techniques to reduce the overhead of dynamic dispatching [Kranser 83, Hölzleet al. 91].

Cooper, Hall, and Kennedy present a general framework for identifying when creating multiple, specialized
copies of a procedure can provide additional information for solving dataflow optimization problems [Cooper
et al. 92]. Their work is similar to ours. Some of the differences are that they assume the existence of a program
call graph and are focusing on improving information available for data dependence calculations, primarily
through interprocedural constant propagation. We are focusing on an object-oriented environment, where the
goal of specialization is to convert dynamically-bound message sends into statically-bound calls by providing
additional concrete, class-level type information. We also base our analysis on a dynamic profile-derived call
graph, since a precise call graph is difficult to compute from the program text in the presence of dynamic
binding.

7 Conclusions

We have presented an algorithm for determining which methods in an object-oriented language should be
specialized for which set of argument classes. Our algorithm uses weighted call graphs derived from dynamic
profiles of the program to determine those parts of the program with high execution. Our algorithm strives to
balance the benefits of specialization against its costs, improving on previous automatic specialization
algorithms by avoiding both overspecialization and underspecialization. As a consequence of its more judicious
application of specialization, our algorithm is appropriate for specializing on multiple arguments of a method
and coping with multi-methods. Initial results from our implementation of the algorithm are encouraging. The
algorithm and its approach of exploiting the program’s weighted call graph could be adapted for other kinds of
languages to help select the routines that are most profitable to specialize.

Acknowledgments

This researchis supported in part by a National Science Foundation Research Initiation Award (contract number
CCR-9210990) and several gifts from Sun Microsystems, Inc. We would like to thank Stephen North and
Eleftherios Koutsofios of AT&T Bell Laboratories for producingdot, a program for automatic graph layout.dot
has been invaluable in visualizing large call graphs.

11

Identifying Profitable Specialization in Object-Oriented Languages UW-CS-TR-94-02-05

References
[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A. Moon. Common Lisp

Object System Specification X3J13. InSIGPLAN Notices 23(Special Issue), September, 1988.

[Chambers & Ungar 91] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages Practical. In
OOPSLA ’91 Conference Proceedings, pp. 1-15, Phoenix, AZ, October, 1991. Published asSIGPLAN Notices 26(10),
October, 1991.

[Chambers 92a] Craig Chambers.The Design and Implementation of the SELF Compiler, an Optimizing Compiler for
Object-Oriented Programming Languages. Ph.D. thesis, Department of Computer Science, Stanford University,
report STAN-CS-92-1420, March, 1992.

[Chambers 92b] Craig Chambers. Object-Oriented Multi-Methods in Cecil. InECOOP ’92 Conference Proceedings, pp.
33-56, Utrecht, the Netherlands, June/July, 1992. Published asLecture Notes in Computer Science 615, Springer-
Verlag, Berlin, 1992.

[Changet al. 92] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W. Hwu. Profile-Guided Automatic
Inline Expansion for C Programs. InSoftware—Practice and Experience 22(5), pp. 349-369, May, 1992.

[Cooperet al. 92] Keith D. Cooper, Mary W. Hall, and Ken Kennedy. Procedure Cloning. InProceeding of the 1992 IEEE
International Conference on Computer Languages, pp. 96-105, Oakland, CA, April, 1992.

[Dean & Chambers 94] Jeffrey Dean and Craig Chambers. Toward Better Inlining Decisions Using Inlining Trials. To
appear inProceedings of the ACM Symposium on Lisp and Functional Programming Languages, Orlando, FL, June,
1994. An earlier version appears as technical report 93-05-05, Department of Computer Science and Engineering,
University of Washington, May, 1993.

[Goldberg & Robson 83] Adele Goldberg and David Robson.Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, MA, 1983.

[Harnett & Montenyohl 92] Sheila Harnett and Margaret Montenyohl. Towards Efficient Compilation of a Dynamic
Object-Oriented Language. InProceedings of the 1992 Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pp. 82-89, San Francisco, CA, 1992. Published as Yale University Department of Computer
Science Technical Report YALEU/DCS/RR-909.

[Hölzle et al. 91] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed Object-Oriented
Programming Languages with Polymorphic Inline Caches. InECOOP ’91 Conference Proceedings, pp. 21-38,
Geneva, Switzerland, July, 1991.

[Kilian 88] Michael F. Kilian. Why Trellis/Owl Runs Fast. Unpublished manuscript, March, 1988.

[Khoo & Sundaresh 91] Siau Cheng Khoo and R. S. Sundaresh. Compiling Inheritance using Partial Evaluation. In
Proceedings of the 1991 Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 211-222,
New Haven, CT, 1991.

[Knuth 92] Donald E. Knuth. LiterateProgramming. Center for the Study of Language and Information - Lecture Notes
Series, 1992.

[Krasner 83] Glenn Krasner, editor.Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley, Reading, MA, 1983.

[Lea 90] Douglas Lea. Customization in C++. InProceedings of the 1990 Usenix C++ Conference, pp. 301-314, San
Francisco, CA, April, 1990.

[Lim & Stolcke 91] Chu-Cheow Lim and Andreas Stolcke. Sather Language Design and Performance Evaluation.
Technical report TR-91-034, International Computer Science Institute, May, 1991.

[Meyer 92] Bertrand Meyer.Eiffel: The Language. Prentice Hall, New York, 1992.

[Nelson 91] Greg Nelson, editor.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Schaffertet al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An Introduction to
Trellis/Owl. In OOPSLA ’86 Conference Proceedings, pp. 9-16, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Stroustrup 91] Bjarne Stroustrup.The C++ Programming Language, Second Edition. Addison-Wesley, Reading, MA,
1991.

[Ungar & Smith 87] David Ungar and Randall B. Smith. SELF: The Power of Simplicity. InOOPSLA ’87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987. Published asSIGPLAN Notices 22(12), December, 1987. Also
published inLisp and Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

