
Interface Timing Veri�cation with

Combined Max and Linear Constraints

Elizabeth Walkup, Gaetano Borriello

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Technical Report 94{03{04

June 3, 1994

Interface Timing Veri�cation with Combined

Max and Linear Constraints

Elizabeth A. Walkup

�

, Gaetano Borriello

y

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

fwalkup, gaetanog@cs.washington.edu

June 3, 1994

Abstract

A fundamental timing analysis problem in the veri�cation and syn-

thesis of interface logic circuitry is the determination of the possi-

ble and allowable time separations, or skews between interface events,

given timing constraints and propagation delays between the events

generated by the circuits the interface connects. These skews are used

to verify timing properties and determine allowable propagation delays

for logic synthesis. The main contributions of this report are two-fold.

First, this report shows that the veri�cation problem can be expressed

with constraints of the form

x

i

� Maxfx

j

1

+�

j

1

;i

; : : : ; x

j

m

+�

j

m

;i

g;

such as those described in several other domains including the fMax;+g

algebra used in modeling discrete event systems [1]. Second, this re-

port presents and proves correct an algorithm that provides tight up-

per bounds on the time separation between all pairs x

i

; x

j

for such

a constraint set in less time and with tighter bounds than previous

algorithms [2] [3].

�

Supported in part by an NSF Graduate Fellowship.

y

Supported by PYI Award (MIP-8858782) and by the ARPA/CSTO Microsystems

Program under an ONR monitored contract (N00014-91-J-4041).

1

1 Introduction

Temporal behavior of interface circuitry is frequently described using event-

based representations that relate the occurrence times of events with timing

constraints and propagation delays [2, 4, 3, 5, 6, 7].

In this paper, we present an e�cient solution to a key problem in the

veri�cation and synthesis of interface glue logic, namely, the determination

of tight bounds on the temporal separations between events. To verify the

correct timing behavior of a synthesized circuit, we must be able to check

that the circuit's outputs will occur within the time interval required and

expected by the circuit's environment. In synthesizing the circuit, we must

be able to determine the amount of delay within which the logic may gen-

erate each interface event. This information permits optimizing the logic to

take advantage of the temporal characteristics of the interface. The basic

subproblems of both these tasks can be phrased in terms of bounds on the

skew between pairs of events.

Previous work on the interface veri�cation problem has su�ered from a

combination of two de�ciencies. First, existing veri�cation algorithms are

ine�cient. The method in [2] relies on exponential search, while the method

of [3] does not produce the tightest possible skew bounds and has a running

time which depends intimately upon the time bounds of the constraints. Sec-

ond, they have not been useful for the synthesis process because they yield

very loose bounds in the presence of unknown delays, a common situation

before a circuit is synthesized.

In this paper, we �rst present an interface timing speci�cation model

which uni�es the concepts of timing constraint and propagation delay into

a single constraint type. We then provide an e�cient algorithm for solving

systems of these constraints. The algorithm yields tight bounds even in the

presence of unknown constraint bounds, and its worst case running time can

be expressed independently of the initial constraint values.

2 Interface Timing Veri�cation

Interface speci�cations consist of a sequence of events, which are transitions

on signal wires. Such a speci�cation can be viewed as a partial ordering

of the events. Temporal relationships between these interface events are

expressed with propagation delays and timing constraints. In this section,

we explain the semantic di�erence between these two types of temporal

2

tRCtRC

tCLZ tAA
tACS tOH

ADDRESS

CS

DATA_OUT

Figure 1: Timing diagram for an SRAM read operation.

Propagation Delay Values for SRAM

name from to min max

t

AA

ADDRESS Valid DATA Valid 0 20

t

ACS

CS low DATA Valid 0 20

t

CLZ

CS low DATA Driven 5

t

OH

Adress Invalid DATA Invalid 5

Performance Requirement for SRAM

t

RC

ADDRESS Valid next ADDRESS 100

Figure 2: Constraint values in ns for the SRAM example.

constraints and present a model that expresses both of them in a uni�ed

form.

2.1 An Interface Speci�cation Example

Suppose we wish to synthesize a circuit to interface with an SRAM. We

say that the SRAM is then the environment of our interface circuit. Fig-

ures 1 and 2 provide the interface speci�cation for a simpli�ed SRAM read

operation { any circuit we synthesize to interface with the SRAM must ad-

here to the performance requirements in Figure 2, and may take advantage

of the propagation delay information to meet any further timing constraints

on its own performance. The timing diagram and constraints given by Fig-

ures 1 and 2 indicate that the appearance of valid data on the DATA OUT

line is the result of a propagation delays from both the lowering of the signal

CS and the assertion of a valid address on the ADDRESS lines. Throughout

the remainder of this paper, these three events will be referred to as DV,CS,

and AV, respectively.

Propagation delays, or delay constraints such as those given here express

3

structural dependencies between the inputs and outputs of both the interface

circuitry and the environment. These constraints, here expressed as ranges

of 0 to 20 time units from both the lowering of CS and the appearance of a

valid address, determine when valid data will �rst appear. The data appears

at the maximum of CS+ t

ACS

and AV + t

AA

where t

ACS

and t

AA

are within

the 0 to 20 nanosecond unit delays listed for DV relative to AV and CS. Note

that this means event DV may actually occur outside the range speci�ed by

either input event's propagation delay when considered alone. Therefore,

we consider these constraints linked or dependent on one another. We can

express the propagation delays for event DV as:

Max

(

CS + 0;

AV + 0

)

� DV � Max

(

CS + 20;

AV + 20

)

;

More generally, propagation delays are expressed as:

Max

8

>

<

>

:

x

j

1

+ �

j

1

;i

;

.

.

.

x

j

m

+ �

j

m

;i

9

>

=

>

;

� x

i

� Max

8

>

<

>

:

x

j

1

+ �

j

1

;i

;

.

.

.

x

j

m

+�

j

m

;i

9

>

=

>

;

;

where � and � represent the lower and upper bounds of the propagation

delays and the x

i

's are individual events. With propagation delays, the

Max term causes an event to happen only after all predecessor events plus

their corresponding delay have occurred.

While propagation delays represent causal relationships, interface speci�-

cation also requires independent constraints. These other constraints, which

we term timing constraints, come in two avors: requirements, which the

environment imposes upon the interface circuit for proper interaction, and

guarantees, which describe the operating environment independently of the

underlying implementation. An example of a requirement would be the

minimum time constraint t

RC

in the above example. This constraint indi-

cates that an address must remain valid for at least 100 ns. An example

of a guarantee would be an environment asserting that it will never change

two signal values within a short interval of each other. Constraints of this

type are independent of one another and specify the exact time range within

which one event must occur relative to another. Performance requirements

of the circuit can also be viewed as timing constraints { specifying that an

output response must be seen within a particular interval. We can express

such constraints independently with equations of the form:

x

j

+ �

j;i

� x

i

� x

j

+ �

j;i

:

4

Performance Guarantees for SRAM Interface

from to min max

Address Valid CS low 300

CS low Data Valid 30

Figure 3: Performance bounds for an SRAM interface.

When several independent constraints apply to the same event, we can also

express them as:

Max

8

>

<

>

:

x

j

1

+ �

j

1

;i

;

.

.

.

x

j

m

+ �

j

m

;i

9

>

=

>

;

� x

i

� Min

8

>

<

>

:

x

j

1

+�

j

1

;i

;

.

.

.

x

j

m

+ �

j

m

;i

9

>

=

>

;

;

where � and � again represent the lower and upper bounds of the con-

straints.

Previous work has used di�erent models for temporal constraints that

make more explicit distinctions between the two types of constraints. McMil-

lan and Dill ([3]) use the terms Linear and Max constraints for timing

constraints and propagation delays, respectively. Vanbekbergen ([5]) has

a more complete yet, not largely useful, taxonomy that labels timing con-

straints and propagation delays as type 1 and type 2, respectively. We �nd it

more useful to translate both types into inequalities involving the Max op-

eration. We can express both types of constraints as a system of inequalities

of the following form:

x

i

� Maxfx

j

1

+�

j

1

;i

; : : : ; x

j

m

+ �

j

m

;i

g: (1)

Since timing constraints are independent, there is only one term in theMax

expression { reducing Equation 1 to a simple arithmetic inequality. Note

that the lower bounds of the form

Maxfx

j

1

+ �

j

1

;i

; : : : ; x

j

m

+ �

j

m

;i

g � x

i

:

in both constraint types can be represented asm independent as constraints

of the form of Equation 1, where the left hand side of equation takes each

of the x

j

k

in turn, and the right hand sides are x

i

� �

j

k

;i

.

Suppose that we are given an interface circuit for the SRAM of Fig-

ures 1 and 2 which has been designed to meet the performance guarantees

5

Address Valid

CS Low

Data Valid

0

-30

300

20

20

Figure 4: Graphical representations of constraints in the SRAM interface.

Outlined arcs represent interdependent propagation delays; thin arcs repre-

sent independent constraints.

of Figure 3. The set of equations describing the relative times of events AV,

DV, and CS are:

DV � Max (AV + 20; CS + 20)

AV � Max (DV + 0)

CS � Max (DV � 30)

CS � Max (AV + 300) .

Systems of these of events can be abstracted as a constraint graph over

interface events. We say a given set of constraints induces a graph whose

nodes represent the events, and whose arcs, along with their labels, represent

the terms within constraints. A thin arc from x

i

to x

j

with label � represents

the constraint x

j

� x

i

+ �; an outlined arc from x

i

to x

j

with label �

represents the existence of a term x

i

+ � within a Max expression for an

upper bound on x

j

.

The graph induced by the set of constraints given above is shown in

Figure 4. Note that when specifying interface timing behavior, propagation

delays for an event represent its causal structure, and therefore all thick arcs

represent a single set of dependent constraints and are not ambiguous.

3 Solving the Veri�cation Problem

We can verify that a system's required performance constraints are met by

determining that the maximum time separations, the maximum skews, be-

tween all interface and environment events in the system meet all perfor-

mance requirements of the system.

6

3.1 Formal Problem De�nition

We now state the veri�cation problem more formally. Given

� X = fx

0

; x

1

; : : : ; x

n�1

g a set of occurrence times of events in the sys-

tem

� C, a set of constraints c

j

of the form:

c

j

: x

i

� Maxfx

j

1

+ �

j

1

;i

; : : : ; x

j

m

+�

j

m

;i

g;

determine either a tight upper bound on the occurrence times of all variables

x

1

; : : : ; x

n�1

relative to x

0

= 0, or that the set of inequalities is inconsistent.

In practical applications, one would apply the veri�cation algorithm to

a fully synthesized combined circuit-environment speci�cation with all per-

formance requirements removed and then check that the bounds given by

the veri�cation algorithm are no looser than any performance requirement.

Performance guarantees and propagation delays ought not to be removed

since they determine how the circuit and its environment will react.

3.2 Previous Work

Algorithms for determining the maximum inter-event timing separations

have been proposed by Borriello [2] and McMillan and Dill [3]. The algo-

rithm of [2] is exponential in the number of nodes with propagation delays

and can quickly become too costly for large composed graphs. The im-

plementation is straightforward and uses backtracking to determine which

causal relationships determine the occurrence time of an event.

The algorithm of McMillan and Dill ([3], hereafter referred to as theMD

algorithm, text in Appendix C) has two drawbacks: in many practically in-

teresting cases, it provides in�nite separation bounds between events with

�nite bounds; and its worst case running time depends not only upon n, the

number of events in the system, but also upon the values of the �

i;j

's, the

bounds within the constraints. In the MD algorithm, initial in�nite upper

bounds on node separations are re�ned by successive applications of appro-

priate constraints from the input set. The problem with this approach, as

noted in [3], is that the running time of the algorithm can depend on the val-

ues of the constraints, giving a worst case complexity of O(n

3

�

P

j�

i;j

j). This

behavior occurs precisely when there is a \negative cycle" in the induced

constraint graph with at least one arc of the cycle belonging to a propagation

7

delay. When applied to the SRAM example of Figure 4, the number of times

the algorithm of [3] applies the constraints DV � Max (AV + 20; CS + 20)

and CS � DV � 30 is dependent upon on the value of the 300 ns constraint

from AV to CS. Increase the 300ns constraint to 600ns and the algorithm

takes twice as long to converge.

In addition, the limit of CS's maximum skew relative to AV as the 300

ns constraint is raised towards in�nity is �10, indicating that the 300 ns

constraint is redundant. However, if the constraint is completely removed,

the MD algorithm will give a �nal bound of 1 for CS relative to AV. If we

assume that all events must eventually occur, then an in�nite bound simply

indicates that we do not know the relationship between event occurrence

times. In this case, an in�nite maximum skew between the events is wrong:

we know that they will occur and that CS must occur at least 10 ns before

AV.

3.3 An Improved Veri�cation Algorithm

We now introduce the new \short circuiting" veri�cation algorithm, here-

after referred to as the SC algorithm. It's improvements over the MD al-

gorithm rely on two observations:

� If a \negative cycle" can be discovered, we can then predict how many

times the constraints along that cycle can be re-applied. This informa-

tion can be used to speed up the performance of the MD algorithm.

� Since we assume that all events will eventually happen, it is correct

to de�ne the problem using the limit of the maximum skews as an

initial bound on all maximum skews goes to in�nity. This allows us to

accurately handle cases such as that of Figure 4 with the redundant

300 ns constraint removed.

If we de�ne the dependency graph of the system to be the subgraph induced

by those constraints which were used to provide the current upper bound

on each node, then patterns of repeated constraint application appear as

strongly connected components in this dependency graph. To calculate the

limit of the maximum skews as an initial bound goes to in�nity, we begin

the algorithm by setting the maximum skews of all nodes in the graph to

the symbolic constant V , with the exception of one node whose time is set

to 0 to serve as the origin of the time measurement. We assume that V is a

very large number, and so perform all calculations involving it symbolically.

8

Optimized Constraint Relaxation Algorithm

Input: Event set X = fx

0

; x

1

; : : : ; x

n�1

g and constraint set C

Result: each x

j

contains tight upper bound on (x

j

� x

0

)

Set all bounds x

j

where j 6= 0 to symbolic quantity V.

Set x

0

to 0.

Repeat:

For round = 1 to n do:

Foreach x

i

in parallel do subroutine Update:

If a constraint c

j

exists that can reduce the bound on an x

i

,

update x

i

to reect c

j

,

record c

j

as the most recent to update x

i

.

Endfor.

Find topologically �rst strongly connected components of

size � 2 in the graph induced by such recorded constraints.

Within each such component do (Short-circuit step):

For all x

i

in the component, whose recorded constraints induces

at least one arc whose tail is exterior to the component �nd

(x

i

's current value) � (x

i

's Max value from exterior constraint arcs only).

If any component has no exterior arcs,

return, reporting that the constraints are inconsistent.

Let � be the smallest such di�erence in the component. (It will be positive.)

Subtract � from all bounds x

i

in the component.

Until x

0

< 0 or no x

i

changes.

If x

0

< 0, the constraint set is inconsistent.

Figure 5: SC constraint relaxation algorithm.

An intuitive description of the algorithm follows; pseudocode is given in

Figure 5.

The short circuit algorithm cycles through the following four steps:

� Pass through n rounds of the Update subroutine, where n is the

number of events in the system. The Update subroutine applies to

each event the constraint that most reduces its bound. During this

process, the dependency graph summarizing which constraint was used

most recently to update each event's maximum skew is maintained.

After n rounds, any current cyclic behavior will appear since every

cycle has at most n nodes on it.

� Perform a strongly connected components analysis of the dependency

graph. In the dependency graph, each strongly connected component

9

Address Valid

CS Low

Data Valid

-30

20

20

Figure 6: Constraint set on which topological information is performed.

containing two or more nodes represents a set of constraints which can

be cyclicly reapplied.

� Among such components of size � 2, �nd the topologically �rst ones.

These indicate the constraint dependencies which may be pro�tably

\short circuited."

� For each of these components, �nd all constraints whose arcs have

their tails outside the component (called exterior arcs). In Figure 6,

the only such exterior arc is from AV to DV. When the constraint

relaxation procedure is exhibiting cyclic behavior, the values of the

nodes will continue to decline until one of the exterior arcs provides

the actual bound on the node it points to. We discover which node will

limit the cycle by comparing the current skew bounds of all nodes that

such exterior arcs enter with the value they would have if the interior

arcs (those arcs with tails inside the component) were to be removed.

Whichever of these nodes has the least di�erence between the current

and exterior-provided skew bounds is chosen as the \winner", and we

update that node's skew to match the incoming arc. If no node in

a component has any exterior arcs entering it, the constraints in the

component can be re-applied in�nitely many times without converging,

and thus the constraint set is inconsistent.

Note that the last step is where the symbolic value V becomes useful {

a component may have all nodes with values containing a V term when all

exterior arcs provide potential bounds not containing V . In such a case, the

MD algorithm will erroneously calculate an in�nite maximum skew for all

nodes in the connected component. We assume that any value containing

a V is larger than any value not containing V , and this allows us to short

circuit these components as well. Note that the use of V also allows us to

apply ShortCircuit to systems that contain variables with true upper bounds

10

Convergence with Short-Circuit Algorithm

Number of Pass Through Outer Repeat Loop

Node start 1

st

Updates 1

st

SC 2

nd

Updates

AV 0 0 0 0

CS V V � 40 V � 40 �10

DV V V � 10 20 20

Figure 7: Applying the short circuit algorithm to the graph in Figure 4 with

the redundant 300ns constraint removed.

of in�nity. These variables will be precisely those whose �nal bound as given

by the algorithm still includes a V term.

In Figure 7 we show the results of applying the short-circuit algorithm

to the graph in Figure 4, without the redundant constraint CS � AV � 300

since we can now handle an initial upper bound of in�nity on CS �AV .

3.4 Practical Results

Each of the n update rounds takes time at most jCj where jCj is the number

of terms x

j

+ �

j;i

in the constraint set. The topological information takes

time at most O(jCj) to calculate. We have unfortunately been unable to

determine a tight bound on the number of short circuiting passes that must

be made in the worst case. It is our intuition, however that the number

of required passes is polynomial and we have been unable to generate any

example that takes more than P = O(jCj) such passes. The algorithm must

be run once for each possible assignment of x

0

, thus giving a bound of

n � P � (n � jCj+ jCj)

to determine all n

2

maximum event separations in the worst case, which we

feel is probably n

6

. For practical problems, C is O(n), giving a likely bound

of n

4

. In contrast, the bound for the MD algorithm is n

3

�

P

j�j in the

worst case and n

2

�

P

j�j for the practical case. We would expect that n

2

is

much less than the sum of the �'s for practical problems. An absolute worst

case on the number of passes required by our algorithm is T , where T is

the number of distinct rooted trees which can be induced by the constraint

set C. This bounds the number of di�erent dependency graphs we will see

during the short circuiting portion of the algorithm { it can be shown that

11

with each pass, the portions of the dependency graph which topologically

precede all strongly connected components of size greater than one must be

distinct.

We have implemented the algorithm and run both practical examples

[8, 3] and randomly generated larger examples built to look like practical

examples (i.e. similar constraint sizes and constraint type ratio). In these

cases no more than three short circuiting phases were required to �nd max-

imum skews relative to a single event. Running times were on the order of

20 seconds on a DEC station 5000 to �nd all n

2

maximum skews for a dense

constraint graph with 80 nodes, which is much larger than we expect to see

in practice.

4 Conclusions and Future Work

This paper has presented a new algorithm for satisfying systems of con-

straints as arise in interface timing veri�cation, and shown that the algo-

rithm is practically applicable. This algorithm improves upon the previous

work of McMillan and Dill [3] in two ways: it robustly handles in�nite delay

bounds, and its worst case running time is not dependent on the individual

delay values of the constraints. In the appendix which follows, we prove the

algorithm correct, and relate the interface veri�cation problem in terms of

the fMax;+g algebra. Currently we are working on determining the veri�ca-

tion algorithm's theoretical time performance bounds, as well as exploring

ways to expand the algorithm to handle interface timing synthesis tasks.

The reader is referred to [9] for a preliminary exploration of this topic.

Acknowledgments

The authors wish to thank David Dill, Peter Vanbekbergen, Martin Tompa, and

Paul Beame for many useful discussions of material contained herein.

References

[1] Francois Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre

Quadrat. Synchronization and Linearity: an algebra for discrete event systems.

John Wiley & Sons, 1992.

[2] Gaetano Borriello. A New Interface Speci�cation Methodology and its Applica-

tion to Transducer Synthesis. PhD thesis, University of California, May 1988.

Report No. UCB/CSD 88/430.

12

[3] Kenneth McMillan and David Dill. Algorithms for interface timing veri�ca-

tion. In Proceedings of the IEEE International Conference on Computer Design:

VLSI in Computers and Processors, 1992.

[4] Thomas Gahlinger. Coherence and Satis�ability of Waveform Timing Speci�-

cations. PhD thesis, University of Waterloo, 1990. Research Report CS-90-11.

[5] Peter Vanbekbergen, Gert Goossens, and Hugo De Man. Speci�cation and

analysis of timing constraints in signal transition graphs. In Proceedings of the

European Design Automation Conference, March 1992.

[6] Peter Vanbekbergen. Synthesis of Asynchronous Controllers from Graph-

Theoretic Speci�cations. PhD thesis, Katholieke Universiteit Leuven, September

1993.

[7] Bruce Gladstone. Speci�cation of timing in a digital system. ASIC and EDA,

pages 46{52, August 1993.

[8] Chris Myers. Synthesis of timed asynchronous circuits. IEEE Transactions on

VLSI Systems, June 1993.

[9] Elizabeth Walkup and Gaetano Borriello. Interface timing veri�cation with ap-

plication to synthesis. In Proceedings of the 31st Design Automation Conference,

June 1994.

A Proof of Correctness

A.1 Problem Re-de�nition to Handle In�nite Bounds

We re�ne our de�nition of the problem in Section 3.1 for �nd maximum separations

relative to a single x

0

as follows:

� Given event set X = fx

0

; x

1

; : : : ; x

n�1

g, and constraint set C as before

� For all x

i

1 � i � n� 1 add an additional constraint c

0

i

: x

i

� x

0

+ V to C.

Determine either a tight upper bound on lim

V!1

(x

i

� x

0

) for all 1 � i � n� 1 or

that the set of constraints is inconsistent.

A.2 Proof of Correctness

Throughout this section, there is an assumed existence of a constraint set C.

De�nition 1 For a given set of events, X = fx

0

; x

1

; : : : ; x

n�1

g and associated

constraints, de�ne y to be a vector of maximum skews

y = hy

0

; y

1

; : : : ; y

n�1

i

13

with each y

i

representing the current upper bound on the maximum skew x

i

� x

0

.

Further de�ne the relation

y � z () [y

i

� z

i

; 0 � i � n� 1] :

We say such a y is �nite if all y

i

are �nite.

De�nition 2 De�ne MD(x) to be the result of applying the MD algorithm when

each variable x

i

is given an initial maximum skew as speci�ed in vector x.

De�nition 3 A set of events X = fx

0

; x

1

; : : : ; x

n�1

g, is said to have a consistent

constraint set C, when there exists an assignment of values to each of the x

i

's such

that all constraints in C are satis�ed.

Lemma 1 [MD(x) = y and x � z � y] =)MD(z) = y

Proof: ClearlyMD(y) = y, since if not, some constraint still applies at y and so

MD(x) cannot equal y. We now show that

MD(x) �MD(z)

by showing that applying the MD algorithm to both x and z results in the rela-

tionship x

i

� z

i

for all 0 � i � n� 1.

� When we begin, x

i

� z

i

for all 0 � i � n� 1.

� With each step of the algorithm we apply to both x and z:

� x

i

 min(x

i

;max (x

j

+ �

m

j

; x

k

+ �

m

k

)) and

z

i

 min(z

i

;max (z

j

+ �

m

j

; z

k

+ �

m

k

))

which preserves the initial inequality. By the same argument MD(z) � MD(y)

and therefore

y =MD(x) �MD(z) �MD(y) = y

. 2

Lemma 2 Suppose there exists an x, the tight, �nite, upper bound on the skews of

a set of consistent events and inequalities and let y � x. ThenMD(y) = x.

Proof: Clearly if x is tight then MD(x) = x. Since y � x, from the proof of

Lemma 1 we knowMD(y) � MD(x) = x. IfMD(y) = x, then we're �ne. If not,

then the skews in MD(y) satisfy all the inequalities and are all greater than or

equal to the corresponding skews in x and so x cannot be the tight bound. 2

Note that since we do not know what the bound is, we cannot rely on theMD

algorithm to calculate the true bound; we can only know that if we give it a large

enough starting vector, the correct skew will eventually be calculated, so long as

none of the true skew bounds are in�nite.

14

De�nition 4 De�ne SC(x) to be the result of applying the short-circuiting algo-

rithm when each variable x

i

is given an initial maximum skew as speci�ed in x.

De�nition 5 De�ne SC

0

(x) to be the result of applying one pass through the outer

repeat loop of the short-circuiting algorithm when each variable x

i

is given an initial

maximum skew as speci�ed in x.

De�nition 6 Within a given application of SC

0

(x), for each x

i

in the set X , de�ne

the round label r

i

of x

i

to be the number of the parallelUpdate round during which

x

i

's maximum skew last changed.

Lemma 3 x � SC

0

(x)

Proof: Obvious, since SC

0

can only reduce the bounds in x. 2

Lemma 4 For a given node x

i

with round label r

i

and most recently used constraint

c

j

: x

i

� Maxfx

j

1

+�

j

1

;i

: : : x

j

k

+�

j

k

;k

g, there are only two possible combinations

of round labels for x

i

's predecessors in the dependency graph after n Update steps.

They are:

� x

i

> Maxfx

j

1

+�

j

1

;i

: : :x

j

k

+�

j

k

;k

g and there is at least one x

j

with r

j

= n

� x

i

= Maxfx

j

1

+�

j

1

;i

: : :x

j

k

+�

j

k

;k

g and for those x

j

i

in c

j

such that x

j

i

+

�

j

i

;i

= x

i

, r

j

< r

i

and r

j

= r

i

� 1 for at least one such r

j

.

Proof:

� Clearly x

i

< Maxfx

j

1

+�

j

1

;i

: : :x

j

k

+�

j

k

;k

g is impossible since x

i

was last

updated with constraint c

j

, and the x

j

i

+�

j

i

;i

terms can only have decreased

since then

� If there is no r

j

= n for an x

j

in the constraint c

j

, then it must be the case

that x

i

= Maxfx

j

1

+�

j

1

;i

: : :x

j

k

+�

j

k

;k

g since x

i

has had the opportunity

to be updated since all x

j

i

have reached their current bounds. Furthermore,

all x

j

such that x

i

= x

j

+�

j;i

have round labels r

j

< r

i

since otherwise x

i

could not have its current bound, and one of those r

j

must equal r

i

� 1, else

x

i

's round label, r

i

, would be less.

2

De�nition 7 De�ne U

n

(x) to be the result of applying n parallel Update rounds

to x.

Lemma 5 SC

0

(x) �MD(x)

15

Proof: For a given starting vector x, let y

0

= U

n

(x), then

y

0

= U

n

(x) �MD(x) =MD(y

0

)

, sinceMD essentially applies the Update routine until it converges. Assume that

as we have been updating node skews we have been associating with each node the

round numbers of De�nition 6. If no node was updated in the n

th

round, then both

SC andMD have converged to the same skew value, sinceMD is easily seen to be

equivalent to repeated application of the Update routine, and so

y

0

= U

n

(x) =MD(x) =MD(y

0

)

Otherwise, for each x

i

in a given strongly connected component of the constraint

induced dependency graph with associated constraint

c

j

: x

i

< Maxfx

j

1

+�

j

1

;i

: : :x

j

k

+�

j

k

;i

g

�nd c

0

j

where

c

0

j

: x

i

< Maxfx

j

1

+�

j

1

;i

: : :x

j

m

+�

j

m

;i

g

and c

0

j

includes only those x

j

p

terms whose induced arc is exterior to the component.

Let x

0

i

be the bound x

i

would have were c

0

j

applied to the current bounds for all

x

k

, and let � = x

i

� x

0

i

.

� For any strongly connected component C there cannot exist node x

i

2 C

with � < 0. If this is the case then x

i

cannot have received its current bound

from the predecessors indicated in the dependency graph.

� In any component C, if there is some node x

i

2 C with � = 0, then the values

for all x

j

2 C in U

n

(x) and SC

0

(x) are identical, since no short-circuiting step

is performed for component C, and therefore greater than or equal to those

of nodes x

j

inMD(x).

� For all other components C, all x

i

2 C have � > 0. For a given component

C, let

C

be the smallest amount that any node x

i

2 C decreased when it

was last updated. Then:

{ Suppose

C

� � for all x

i

2 C. Let y

00

be the vector with y

00

i

= y

0

i

�

C

for x

i

2 C and y

00

i

= y

0

i

otherwise. In the next jCj or fewer Update

rounds,MD(x) � y

00

will become true.

{ Else,

C

> � for some x

j

2 C. Let y

00

be the vector with y

00

i

= y

0

i

� �

i

for �

i

the smallest � value in C, and y

0

i

in component C and y

00

i

= y

0

i

for y

0

i

not in C. In the next jCj or fewer Update rounds,MD(x) will

provide all x

i

2 C with a value at least � less than the current value.

The short circuiting process essentially repeats the �rst step above until the second

case applies. We claim that the process of short circuiting each of the di�erent

components within a single pass can be calculated independently, and thus the

16

short-circuited nodes have bounds no less than the bounds theMD algorithm will

give them, and all other nodes have values provided byUpdate, which is essentially

common to both algorithms, and so

SC

0

(x) �MD(x)

2

Theorem 1 SC(x) =MD(x).

Proof: By Lemmas 1 3, and 5 we know

x � SC

0

(x) �MD(x)

Let y = SC

0

(x). Then

x � SC

0

(x) = y � SC

0

(y) �MD(y) =MD(x)

We can thus repeatedly perform SC

0

and still have

SC(x) = SC

0

(SC

0

(� � � SC

0

(x))) �MD(x)

However, SC(x) >MD(x) is impossible since with z = SC(x), this would imply

x � SC(x) = z >MD(x) =)MD(SC(x)) =MD(x)

by Lemma 1, so some constraint applies at y and ShortCircuit cannot have termi-

nated. 2

B A fMax,+g Formulation

Recent advances in the study of discrete event systems have sparked an interest

in the study of dioids [1], which are idempotent semirings. One such dioid is

the fMax;+g algebra, whose elements are the real numbers plus �1, and whose

operations are \max", represented by \�", and scalar addition, represented by by

\
". In this algebra, we can express each of the equations of the type in Equation 1

as

c

i

: x

j

�

k=m

M

k=1

x

j

k

�

j

k

;i

which is equivalent to the equation

x

j

�

"

k=m

M

k=1

x

j

k

�

j

k

;i

#

=

k=m

M

k=1

x

j

k

�

j

k

;i

:

Our problem of determining the maximum separation between events x

i

and x

j

is equivalent to �nding the maximum possible value of x

j

when x

i

= 0. Note that

unlike a normal linear programming problem, we cannot freely move x

i

� terms

from one side of the equation to the other since our � operation is not invertible.

17

C The McMillan and Dill Algorithm

McMillan and Dill's Constraint Relaxation Algorithm

Input: Event set X = fx

0

; x

1

; : : : ; x

n�1

g and constraint set C

Result: x[i; j] contains upper bound on (x

j

� x

0

)

Set all bounds x[i; j] to 1.

Set all bounds x[i; i] to 0.

Forall constraints c

j

: x

i

� x

k

+ �

k;i

,

Set x[k; i] to �

k;i

.

Repeat:

Foreach i:

Foreach j:

Foreach k:

If x[i; k] + x[k; j] < x[i; j],

x[i; j] x[i; k] + x[k; j]

Endfor k:

If a propagation delay constraint c

j

exists that can reduce the bound from x

i

to x

j

,

update x[i; j] to reect c

j

.

Endfor j:

Endfor i:

Until some x[i; i] < 0 or no x[i; j] changes.

If any x[i; i] < 0, the constraint set is inconsistent.

Figure 8: McMillan and Dill's constraint relaxation algorithm.

18

