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Abstract

Asynchronous circuit design has been studied for decades, but it has only recently

been feasible to construct large and e�cient asynchronous systems. This paper sur-

veys di�erent techniques for checking whether an asynchronous circuit has fabrication

defects. The inherent di�erences between asynchronous and synchronous circuits, pri-

marily that asynchronous circuits do not have a global clock, necessitate a review of the

testing techniques used for synchronous circuits and a re-evaluation of the trade-o�s

involved. New methods that e�ciently utilize the structure of asynchronous circuits

are possible, most notably self-checking asynchronous circuits can be implemented with

little or no circuit overhead.

Keywords: Asynchronous circuits, stuck-at fault testing, path delay fault testing, self-

checking circuits, test generation.



1 Introduction

Asynchronous circuits promise a number of advantages over synchronous systems. They

have no problems with clock skew, can be designed for average case rather than worst

case performance, have potentially lower power consumption, and have a higher degree of

modularity. Designing asynchronous circuits is challenging because hazards and races must

be carefully considered. Therefore, the focus of research in the area has been primarily

directed to synthesis and veri�cation techniques, while little attention has been paid to

techniques to e�ciently verify whether a fabricated asynchronous circuit has any physical

faults. However, as asynchronous circuits become larger [24, 45] and start to be used in

commercial products [40], testing concerns become critical. This paper reviews recently

developed approaches for testing digital asynchronous circuits and systems for fabrication

defects.

Several aspects of asynchronous circuits make them harder to test than synchronous

circuits. Asynchronous circuits by de�nition have no global synchronization signals. This

drastically reduces the amount of control over the circuit as it cannot easily be \single

stepped" through a sequence of states|a common way to test synchronous circuits. Also,

because asynchronous circuits tend to have more state holding elements than synchronous

circuits, generating test vectors is harder and design techniques to ease testing will have

a higher area overhead. Finally, an asynchronous circuit may have hazards or races when

faulty, and these delay faults are notoriously di�cult to detect.

However, other aspects of asynchronous circuits tend to make them easier to test. Because

asynchronous circuits use local handshakes instead of global clock signals to synchronize

operations, a stuck-at fault on the signals used for this handshake will cause communicating

modules to wait inde�nitely, an e�ect that is easily observable. These di�erences lead to

new approaches for testing asynchronous circuits or a reevaluation of the trade-o�s involved

when applying techniques developed for testing synchronous circuits.

The structure of the paper is the following. Section 2 introduces some basic testing

terminology. Section 3 discusses a class of asynchronous circuits where a faulty circuit will

deadlock for all faults, the easiest way to test. The generation of test vectors is described

in Section 4. Techniques for making a circuit easier to test are discussed in Section 5.

Finally, Section 6 describes methods for testing the actual delays in an asynchronous circuit,

a necessity for circuits designed using delay assumptions.

2 Testing Terminology

The outputs of the circuit under test are called primary outputs and we assume we can easily

observe these. Similarly, the inputs to the circuit are called primary inputs and these are

assumed to be easily controllable.

The controllability of a circuit is the ability to establish a speci�c signal value at each node

in the circuit by proper setting of the circuit's primary inputs. Observability of a circuit is

the ability to determine the value at any node in the circuit by observing the primary outputs

while controlling the primary inputs. The testability of a circuit is a measure that attempts
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to reect the ease with which a circuit can be tested. A circuit with high testability generally

has a higher degree of observability and controllability than one with low testability.

A failure in a circuit occurs when the circuit deviates from the speci�ed behavior. A

fault is a physical defect which may or may not result in a failure. Fault detection is the

process of determining whether a given circuit contains one or more faults. This is done

by applying a sequence of input values (called test vectors) to the circuit and observing the

primary outputs. If the outputs di�er from the speci�cation, a failure has occurred and a

fault is present in the circuit.

In a test, a set of test vectors are applied to the circuit in order to detect as many faults

as possible. The e�ectiveness of a test is measured by the fault coverage, which is the ratio

of faults potentially detected by the test to the total number of possible faults in the circuit.

The length of a test is the number of test vectors in the test and the test time is the time

it takes to apply the test vectors and observe the results. Key quality measures for a given

test approach includes the time to generate the test vectors, the fault coverage, and the test

time. Also, testing overhead such as increased area, decreased operating speed, and added

I/O pins inuences which test approach is most suitable for a given circuit. Often di�erent

approaches o�er di�erent trade-o�s between these criteria. For example, there is generally

a trade-o� between the time to generate the test vectors, the length of a test, and the fault

coverage.

A fault model is employed to test a circuit e�ciently based on its structure rather than on

its functionality

1

. The fault model is an abstraction of the physical faults we try to detect.

The more detailed the fault model, the more actual (physical) faults can be modelled. But

this higher precision is obtained at the expense of more complex test generation algorithms,

longer test generation times, and longer test times.

Fault models can describe the faults at di�erent abstraction levels. The most common

abstraction level is the gate level, but fault models exist which describe faults at the transistor

level as well as on higher levels. Most fault models assume that the circuit only contains

a single fault, as the number of potential multiple fault combinations is so large that test

generation becomes infeasible.

A widely used fault model for synchronous circuits is the (input) stuck-at fault model. In

this fault model it is assumed that a physical fault can be modeled as a signal in the circuit

being either stuck-at-0 or stuck-at-1 . A gate can have either an input stuck-at-0 or stuck-at-

1, or the output stuck-at-0 or stuck-at-1. Thus, a gate with n inputs has 2(n + 1) di�erent

possible stuck-at faults. A wire branching out to n gates also has 2(n+1) stuck-at faults: two

at the \input" to the wire and two for each of the n end-points. The possible stuck-at faults

are shown in Figure 1. This fault model has proven reasonable good at representing the

most common faults in fabricated synchronous circuits, and is simple enough to be practical.

However, it should be noted that although the applicability of this fault model is generally

accepted for synchronous circuits, this has not been established for asynchronous circuits.

A simpler fault model only considers faults on the outputs of the gates. A wire branching

1

Full (i.e., exhaustive) functional testing generally takes a long time. For example, consider testing a

16-bit adder functionally. This would take 2

16

� 2

16

� 4 billion test vectors.

2



Figure 1

Possible places of stuck-at faults in the input stuck-at fault model for a gate (left) and

a wire branching out to multiple gates (right).

out to n gates has only two di�erent faults, independently of n, corresponding to the entire

net being either stuck-at-0 or stuck-at-1. Similarly for an n-input gate, see Figure 2. This

fault model is called the output stuck-at fault model (the input stuck-at fault model refers to

the stuck-at fault model described above).

Figure 2

Possible places of stuck-at faults in the output stuck-at fault model for a gate (left)

and a wire branching out to multiple gates (right).

3 Self-Checking Circuits

Asynchronous circuits have no global clock to synchronize operations. Instead the synchro-

nization is achieved using local handshaking signals. While a synchronous circuit can easily

be single-stepped through di�erent states by using the global clock, this is much harder

(sometimes impossible) for asynchronous circuits. The lack of global synchronization in

asynchronous circuits means that synchronization must be achieved by other means. Two

general approaches have been taken. One approach, used in the design of classical asyn-

chronous state machines [18, 43], is to make timing assumptions about the delays of the

gates and wires. In order to avoid critical races and hazards it is often necessary to add

extra (functionally redundant) circuitry and appropriate delays. This makes it very di�cult

to fully test this class of circuits. For example, under the stuck-at fault model full fault

coverage is not possible for a circuit with redundant logic.

Here we will focus on the alternative, which is to use explicit handshake signals for lo-

cal synchronization. Because no absolute timing assumptions are made on the handshake,

circuits are robust and easily composable, a property that has made this design approach

popular [5, 9, 22, 26, 27, 30]. While the lack of global synchronization decreases the con-

trollability of the circuit and thus makes an asynchronous circuit harder to test, the local

synchronization tends to increase the observability. Consider the popular four-phase hand-

shake protocol, see Figure 3. A computation is started by the environment by issuing a

request (req) to the circuit. The completion of the computation is indicated by the circuit

raising an acknowledge signal (ack). To complete the protocol, the request is lowered, and

the circuit lowers the acknowledge signal in response. That is, the environment (the active

3



req

ack

Figure 3

A four-phase handshake protocol.

part) will execute req"; [ack]; req#; [:ack] while the circuit will do [req]; ack"; [:req]; ack#

2

.

In the presence of a stuck-at fault on either req or ack, either the environment or the circuit

will wait forever. For example if the request signal is stuck-at-0, the passive end will wait on

req" and the active end will wait on ack" after issuing req". A transition that is supposed to

occur but doesn't because of a stuck-at fault is called inhibited [25, 14]. A fault that causes

an inhibited transition will always eventually cause the circuit to halt, a situation which is

easily detected during the test. The circuit is tested by issuing the request and waiting a

bounded amount of time, � , for the circuit to raise the acknowledge signal. If the circuit

does not, then it has halted and is thus faulty. The time bound � can be determined given

the fabrication technology and the circuit speci�cation

3

. Circuits that have the property

that they halt for all faults are called self-checking [4, 44] (or self-diagnostic [3, 8]). Thus,

self-checking circuits are fully testable (i.e., 100% fault coverage). A test for a self-checking

circuit attempts to toggle all nodes at least once, that is, during a test all nodes are driven

both high and low. For example, a 4-phase handshake circuit is tested by performing a

complete handshake.

The above notion of a self-checking circuit is di�erent from the one conventionally used

for synchronous systems. In synchronous systems special codes or state assignments are

used so that the circuit produces an illegal output in the presence of a fault. A separate

circuit (a checker) can then detect the illegal output code and raise an error signal. Faults

are detected while running the circuit at its operation speed (called on-line testing). The

overhead in terms of area is quite large, often as much as a factor of two. Similar self-

checking approaches have been applied to classical asynchronous state machines by using

a state assignment that brings the circuit into a special state when a fault exists [37, 29].

However, designing asynchronous circuits using the classical state machines approach [43, 18]

and related approaches [15, 32] has turned out to be problematic for larger systems. The

state machines have timing constraints that must be met to ensure correct operation (such

as fundamental mode assumptions) and these constraints are hard to satisfy when composing

multiple machines. We therefore here use the term \self-checking" to refer to asynchronous

circuits that halts in the presence of a fault. The rest of this section discusses the classes of

asynchronous circuits and fault models under which a faulty circuit always halts.

Delay-insensitive asynchronous circuits work correctly independently of the delays of both

2

This is a handshake expansion [22]. [e] indicates waiting on the Boolean expression e to become true,

and s" and s# indicate driving the signal s high and low, respectively.

3

A subtle point: if the circuit contains an arbiter, the arbiter may take an unbounded amount of time to

leave a meta-stable state.
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the gates and the wires in the circuit. Consequently, every transition in the circuit must be

acknowledged by the receiver of the transition. This property is called the acknowledgment

property in [25]. Speci�cally, if a wire fans out to multiple gates (a fork), each gate at the

destinations of the fork must acknowledge the receipt of a signal transition before a new

transition can occur on the input to the fork. Because each single transition in a delay-

insensitive circuit is acknowledged, any stuck-at fault will cause the circuit to halt, making

delay-insensitive circuits self-checking under the input stuck-at fault model.

As a very simple example, consider the circuit in Figure 4. Initially, z is 1 and x and y

are 0. The C-element

4

will then change its output to 0, which changes x and y to 1, causing

all the signals in the circuit to oscillate. Any stuck-at fault will cause this circuit to halt.

For example, the fault z1-stuck-at-0 (z1 is the one end of the fork with z as input) will cause

x to be 1 and thus the output of the C-element can never be 0. A complete test of the

circuit simply needs to toggle all nodes in the circuit, which is done \automatically" in this

example.

C
z

z2y

x z1

Figure 4

A simple delay-insensitive circuit where any input stuck-at fault will cause a halt.

The class of delay-insensitive circuits turns out to be very small [23]|a delay-insensitive

circuit has to be constructed exclusively from C-elements and inverters (if single output

gates are used exclusively). Thus most practical circuits will not be delay-insensitive. Some

delay assumptions must be made in order to construct useful asynchronous circuits. One

such assumption is that all wire delays are negligible. Speed-independent circuits make this

assumption while maintaining that gate delays can be arbitrarily large. By assuming wire

delays to be zero, a transition on the input to a fork needs only be acknowledged by one

of the recipients, not all of them. The assumption is equivalent to assuming all forks are

isochronic [23]. The isochronic fork assumption states that a transition on the input to a

fork arrives at the ends of the fork at the same time. The implementation must satisfy this

constraint.

In the output stuck-at fault model, a fork is considered a single node that can be either

stuck-at-0 or stuck-at-1. Because a transition on the input to the fork still has to be acknowl-

edged by at least one of the recipients, a speed-independent circuit is self-checking under this

simple fault model [3, 4]. Unfortunately, it's questionable whether the output stuck-at fault

4

A Muller C-element (or rendezvous element) is a stateholding element that waits for the inputs to be

equal, and then changes the output to be the same as the inputs.
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model reects a reasonable number of physical faults. However, some speed-independent

circuits turn out to be self-checking under the more general input stuck-at fault model.

The FIFO element in Figure 5 [41] is an example of a speed-independent circuit that

is self-checking under the input stuck-at fault model. Data values in a FIFO queue built

from these elements are coded using the dual-rail code that consists of three values: true

(10), false (01), and empty (00). A dual-rail code for a variable x can be represented by

two signal wires, named x:t and x:f . Inputs to the FIFO queue must alternate between the

pred.t

pred.f

out.t

out.f

succ.t

C

C

succ.f

FIFO element

Figure 5

Implementation of FIFO element. The input succ is the output of the succeeding FIFO

element.

empty value and a data value. The environment inserts a true-value by raising pred:t or a

false-value by raising pred:f . The signals succ:t and succ:f are the outputs of a succeeding

FIFO element. The fork between the two C-elements is isochronic, but a stuck-at fault at

one of the two ends of the fork will cause the circuit to halt because the C-element will not

be able to propagate either the true-value or the false-value to the outputs. The queue is

tested by propagating a true-value, an empty-value, and a false-value through the queue.

If they all get through, the queue is fault-free under the input stuck-at fault model.

The class of quasi-delay-insensitive circuits [22] is \in between" delay-insensitive and

speed-independent circuits; only some of the forks are assumed to be isochronic. This is a

interesting class because it is possible to construct basic elements that have delay-insensitive

interfaces, and only use isochronic forks within the elements. The elements are easy to

compose (no timing constraints are imposed on the interconnections) and the isochronic forks

are easier to implement because they are local. The existence of isochronic forks indicates

that the circuits in this class are not self-checking under the input stuck-at fault model (but

are under the output stuck-at fault model). We can introduce a fault model that models

faults on forks di�erently depending on whether a fork is isochronic, called the isochronic

transition fault model [34]. The fault model is a combination of the input and output stuck-at

fault models. It considers input stuck-at faults for non-isochronic forks and output stuck-at

faults for isochronic forks. Under this fault model, every quasi-delay-insensitive circuit is

self-checking.

After having identi�ed a number of classes of self-checking circuits and their correspond-

ing fault models, it is natural to consider what happens if we consider circuits that are

not self-checking. For example, quasi-delay-insensitive and speed-independent circuits are

not generally self-checking under the input stuck-at fault model. A circuit that is not self-
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checking will either contain redundant logic, in which case it may not be possible to test

for all faults, or it may have premature �rings [25] for some faults. A premature �ring is a

signal that changes too early according to the speci�cation. To illustrate a premature �ring

in the presence of a stuck-at fault, consider the circuit in Figure 6 (from [25]). The circuit

(called a D-element) sequences two four-phase handshakes. Ahandshake is started on li and

lo, and before completing this handshake another full handshake is performed on ri and ro.

The circuit speci�cation is

5

�[[li];u"; [u]; lo"; [:li]; ro"; [ri];u#; [:u]; ro#; [:ri]; lo#] (1)

and the environment speci�cation is

�[li"; [lo]; li#; [ro]; ri"; [:ro]; ri#; [:lo]] :

The two forks with li and ri as inputs are isochronic. Under the input stuck-at fault model,

this circuit has two faults that cause a premature �ring: l1-stuck-at-0 and r2-stuck-at-0. All

other faults cause the circuit to halt. Consider l1-stuck-at-0. Initially all signals are low.

C

ro

rili

lo
r2

u

u
l2

r1

l1

Figure 6

Implementation of a D-element.

The environment raises li which causes u to go up. Because l1 is stuck-at-0 both lo and

ro go up, ro" being a premature �ring because it isn't supposed to happen until after the

environment has lowered li. The next section will describe how to derive test sequences for

premature �rings.

4 Test Generation

The purpose of test generation is to determine input sequences that will cause a faulty circuit

to behave di�erently from its speci�cation.

If the circuit has redundant logic, the behavior of a faulty circuit may depend on the

delays of the circuit elements, i.e., a fault may cause hazards or races that only occur for

certain combinations of delays. To guarantee that these circuits will work under a large

range of conditions, the values of the actual delay must be checked. How this delay test

can be performed is described in Section 6. Here we will focus on stuck-at faults in circuits

5

The operator \�[s]" denotes repetition of s.
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without redundant logic. For non-redundant circuits, a fault is known to cause either the

circuit to halt or a premature �ring.

A test consist of two phases. First the fault must be activated, e.g., if the test is for a

node stuck-at-0, a 1 must be assigned to the node in order to detect the fault. Secondly, the

e�ect of the error must be made observable by propagating the error to a primary output.

a

c

F
b

y

x

Figure 7

The fault x-stuck-at-0 is tested using the vector (a; b; c) = (1; 1; 0).

Consider the simple combinational circuit in Figure 7 with the fault x-stuck-at-0. To

�nd a test vector the fault is �rst activated by assigning 1 to x. This results in the partially

speci�ed vector (a; b; c) = (1; 1;�). Then the e�ect of the fault must be propagated to F ,

which requires that y is 0. That is achieved by assigning 0 to c. Thus, the �nal test vector

is (1; 1; 0). If F = 0 for this input vector, the circuit is faulty. E�cient algorithms exists to

generate test vectors for combinational circuits, e.g., the D-algorithm [35], PODEM [11] and

FAN [10].

Test generation for sequential circuits is a much harder problem, and it does not have

a general solution [28]. Because the output of a sequential circuit not only depends on

the inputs but also on the present state, a test for a given fault must �rst put the circuit

into a known state before applying a test pattern that will exercise the fault. A faulty

circuit may not start in the speci�ed initial state but instead in some other arbitrary state.

Self-initializing sequences are used to put the circuit into a known state, although this

state may be a�ected by the fault. This section describes approaches to test generation for

asynchronous sequential circuits assuming that the initial states are known.

One approach is to conceptually (i.e., not physically) transform the sequential circuit into

a combinational circuit and then apply combinational circuit test generation algorithms. This

transformation is done by considering all state holding elements as combinational gates with

an extra input (q), representing the present state, and an extra output (q

+

), representing

the next state of the element. A sequential circuit is transformed into a combinational

one by making several copies of the circuit (called time frames), connecting the next-state

output of a state holding element in one time frame to the present state input of the same

element in the succeeding time frame, forming an iterative array. We can then apply any

test generation algorithm for combinational circuits to the iterative array to generate a test

vector for the sequential circuit. The number of time frames that are necessary to detect a

given fault determines the number of test vectors needed to test for the fault. When using

this technique for asynchronous circuits, special care must be taken that hazards and critical

races are not introduced during the test. Hazard and race-free tests can be derived for

asynchronous circuits using a 9-valued logic combined with the D-algorithm [13]. Figure 8
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shows an iterative array of size three for the D-element. The C-element is changed into a

combinational three-input majority gate, the third input being the present state input.

M

ro(2)ri(2)

li(2)lo(2)

M

ro(1)ri(1)

li(1)lo(1)

q(1)
M

ro(3)ri(3)

li(3)lo(3)

q+(3)
q+(2)q+(1) q+(3)q+(2)q+(1) q+(3)

q(3)q(2)q(1)

Figure 8

An iterative array of size three for the D-element in Figure 6.

The major problem for this test generation approach is that the number of time frames

necessary in the worst case is exponential in the number of stateholding elements. In practice

the maximum number of copies of the circuit is limited by a (small) user de�ned constant.

This guarantees a reasonable execution time at the cost of lower fault coverage.

Another approach is to base the test generation on an analysis of the fault being consid-

ered. Stuck-at faults in non-redundant circuits will either cause the circuit to halt or generate

a premature �ring. We can derive the conditions for these two behaviors [14]. Consider the

AND-gate in the D-element with l1 and u as inputs (Figure 6). The speci�cation of the

AND-gate can be written as

6

:l1 ^ u ! ro" (2)

l1 _ :u ! ro# (3)

Consider the fault l1-stuck-at-0. This fault can inhibit ro#, and cause a premature �ring of

ro". The ro# transition is inhibited if there is a state in the execution of the circuit where

ro is true, u is true (thus, u is not causing ro#), and l1 is true. In this state ro will go down

in a fault-free circuit, but will remain high in the presence of the fault. The transition ro#

is inhibited in the states that satisfy the state predicate INH

ro#

:

INH

ro#

� l1 ^ u ^ ro

A condition for the premature �ring of ro is derived similarly:

PRE

ro"

� l1 ^ u ^ :ro

6

This notation is called production rules. A production rule consists of a Boolean guard and an assignment:

guard ! assignment . When the guard is true the assignment can be performed.
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To �nd a test for the fault we need to determine an input sequence that will put the circuit

into a state where either INH or PRE is true. If we can �nd such a sequence that leads to

satisfying INH (without PRE becoming true), we have found a test for the fault since this

input sequence will eventually cause the faulty circuit to halt. The situation is more complex

for faults that only cause a premature �ring. Again, a sequence must be determined that

will put the circuit into a state where PRE holds, and the e�ect of the premature �ring must

also be propagated to a primary output. Since this is not always possible, not all premature

�rings are testable.

Consider the fault l1-stuck-at-0. From the circuit speci�cation (1) it is noted that INH

ro#

is false in all states and thus no test exists for this fault that will cause the circuit to halt.

However, PRE

ro"

is true after li" and u", and before ro". Because ro" is a primary output

the e�ect of the premature �ring is directly observable. A test for the fault is li"; [lo] and

postponing li#. If ro" occurs in this state, the fault is present. For the D-element it turns

out that all faults can be tested using only one sequence, the execution of one cycle of the

environment: li"; [lo]; li#; [ro]; ri"; [:ro]; ri#; [:lo].

The main problem with this approach is that if there is much concurrency in the circuit

or the environment, the number of possible states explodes, and the time to �nd states that

satis�es either INH or PRE becomes long. This approach is therefore mainly appropriate

for circuits which are mostly sequential, i.e., control dominated circuits.

The two approaches just described generate test vectors for one speci�c fault. However,

the goal is to �nd a (preferably small) set of vectors that test for most of the faults in the

circuit. Clearly, we can apply the above techniques for each fault, but it is more e�cient to

use a fault simulator in the test generation [1]. A fault simulator determines the e�ect of a

fault by simulation. It can be used to determine the fault coverage of a set of test vectors,

and also to determine which faults in a circuit a given test vector detects. Given a circuit,

a fault, and an input sequence, the simulator determines whether the output of the circuit

di�ers from the speci�cation. If it does, the vector detects the fault. However, a fault may

cause a critical race in which case the output of the circuit may depend on the actual delays.

The input vector is only a test if it always causes the circuit to deviate from the speci�cation

independent of the delays, i.e., a test always brings a faulty circuit to a �nal (stable) state

that is di�erent from the one speci�ed. Thus the circuit must be analyzed under all possible

delay assignments. If both gates and wires can take arbitrary (but bounded) delays, i.e., the

delay-insensitive model, the analysis can be done by ternary simulation using a third logic

value, X, denoting a unknown or changing signal [6]. For other delay models, this analysis

becomes computationally much harder [39].

Assuming that a few test vectors can generally test for most faults, we can use the fault

simulator to e�ciently generate test vectors with a high fault coverage. The approach is

illustrated in Figure 9. After the fault coverage is above some limit the test generation enters

a second phase where a fault-oriented test generation is applied for each of the remaining

faults. No fault simulation in necessary in this phase. The two phases can be merged

by combining the fault simulator with an appropriate cost function [2]. The cost function

incorporates testability measures and guides the search for a test vector. The input vector
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Select Fault
Fault coverage > Limit

DoneGenerate test for fault

Discard detected faults

Fault simulate

Figure 9

The use of fault simulation for test generation.

is changed until the cost drops below a given threshold, and at that point that vector is

chosen. Depending on the cost function, the test generation can be guided to search for

vectors that test for a group of faults or to search for speci�c faults. The cost function is

changed dynamically, starting with a cost function that will put the circuit in a known initial

state, then the cost function is changed to one that detects groups of faults, and �nally to

one that guides the search for the remaining faults.

5 Design for Testability

A level of controllability and observability may not be su�cient to test all possible faults.

For example, to test for a premature �ring, the circuit must be held in a state where the

premature �ring occurs and the faulty transition propagates to a primary output. This is

not always possible. This section describes methods to increase the testability by adding

test circuitry during the design phase, termed design for testability.

x

x

uo ui

x

uo
x

ui

0

1

test

Figure 10

Introducing test points for signal x. An observation point (left), a control point (mid-

dle), and both (right).

The simplest way to increase testability is to introduce a test point into the circuit. Test

points are of two types. An observation point is used to access an internal node by making
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the node a primary output. A control point is used to set the value of an internal node

from a primary input. A test point can also be both an observation and a control point, see

Figure 10. Where to insert test points to minimize the total number is a di�cult problem.

Some heuristics are given in [14].

Cl1i

l1o

C

r2o

r2i

l2i

l2o

u1

u1
u2

u2

x

Figure 11

Two D-elements in series.

An example of the use of test points is shown in Figure 11. A premature �ring that isn't

testable exists when two D-elements are connected in series. As discussed above, a stuck-at-0

fault at the node x causes a premature �ring of r2o as r2o then can �re before l2i#. To test

for this fault, the circuit must be held in the state where the premature �ring occurs. But

u2" causes l2o" then u1# and l2i#. The environment cannot prevent this sequence from

happening. In order to test for this fault, a test point must be introduced in this loop. One

possibility is to make l2o a primary input and output, as shown to the right in Figure 10.

If the number of test points is small, the overhead is reasonable. But for more than a

few test points, inserting test points is expensive in terms of I/O pins, which are normally a

scarce resource. A way to reduce the number of I/O pins used for test points, at the cost of

added test time, is to store the value of the test points in an internal register whose contents

can be shifted in and out serially. This shift register can be implemented synchronously or

asynchronously. A testable queue containing the values of the test points can be built from

the FIFO element shown in Figure 5 [14]. This scheme requires only a few extra I/O pins

independent of the number of test points.

Generalizing this idea leads to a popular method of simplifying test generation by intro-

ducing a scan-path. The registers in the circuit are extended to be scan registers, illustrated

in Figure 12 with a conventional clocked register.

In normal operation (test-mode = 0), the scan registers work exactly as the original

registers. In test mode, the scan registers form a shift register as the scan-output of one

register is connected to the scan-input of the next. Their content can then be serially

shifted out to the scan-out output, and new values can be shifted in on the scan-in input.

Full observability and controllability is obtained for the values stored in the registers. By

extending all registers in a circuit with scan capabilities, the circuit is divided into a scan-path

with blocks of combination logic in between. The hard problem of generating test vectors

for a sequential circuit is thus transformed into a much simpler problem of generating tests

for blocks of combinational logic. The cost of simpler test generation is an increase in circuit

area and potentially a longer test time because each test vector must be serially shifted in

12



out Q D
in0

1

test modeclk

Scan in

Scan out

Figure 12

A scan-register.

and out. This cost can be reduced by having multiple scan-paths, trading o� test time with

I/O pins.

Counters are notoriously di�cult to test because they contain many states and have a

low controllability. Consider the n-bit counter shown in Figure 13. The toggle element

(tg) steers input transitions to the outputs, X and Y , alternately, starting with the output

marked with a \�". A two-phase (transition-) signaling protocol is used for request (req)

and acknowledge (ack).

req

ack

bit 0

tg

bit 1

tg

bit n−1

tg
carry out

X

Y

X

Y

X

Y

Figure 13

An n-bit asynchronous counter.

It is straightforward to come up with a test sequence for an n-bit counter: toggle the

request signal 2

n

times and observe the carry out signal. If the carry output does not change,

the circuit has halted and a fault is present (assuming the counter is self-checking). One way

to reduce the exponential test time is to partition the counter into m chunks of n=m bits and

insert test points between the partitions. For example, a 16 bit counter can then be split into

two 8-bit counters by adding a single test point, reducing the test time from 65536 cycles to

512 cycles (or even 256 if the two counters are tested concurrently). For large n many test

points are needed. The number of additional I/O pins is reduced by introducing a scan-path

through the toggle elements which are the only state holding elements in the counter. By

doing so the state of the counter is made observable and controllable. The signal req is used

as scan-in and carry out is used as scan out. Two extra signals are added: test-mode puts
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the toggle element in scan-mode and test-clock is the clock used to scan data in and out of

the scan register. In order to test the counter, only the signals ack and carry out have to be

observable.

req

ack

bit 0

tg

bit 1

tg

bit n−1

tg
carry out

X

Y

X

Y

X

Y

test−mode

test−clock

Figure 14

Extending an n-bit asynchronous counter with a scan-path.

Using the scan-approach, the counter can be tested in linear time. For a particular

implementation [7], the extension of the toggle elements to scan elements increases the area

of the counter by only 6% and the speed is reduced by about 7%. A comparable synchronous

implementation of the counter has a 15% area increase to implement the scan-path and the

test time is quadratic [16].

This example illustrates that even though generating the test sequences for a self-checking

circuit is simple, it may take a long time to perform the test because the controllability is

too low. A scan approach for cell-based designs that may also apply to asynchronous circuits

is proposed in [36]. Each cell is extended with test circuitry that implements a scan-path

through the cell. To reduce the test time, a test bus is introduced, which allows for multiple

separate scan paths. The area increase is reported to be only approximately 6%. This

approach seems appropriate if the cells are reasonable large. This is often the case for

syntax-directed synthesis methods where each cell corresponds to a language construct in a

high-level speci�cation language (e.g., [5]).

The feasibility of the scan approach for asynchronous circuits has been demonstrated

in [33] with a 144-bit scan-path in a systolic array. Asynchronous dual-rail combinational

logic, implemented as PLAs, can be made fully testable by introducing a dual-rail scan

path [12]. However, [14] shows that dual-rail combinational logic can be tested using standard

test generation techniques, e.g., the D-algorithm.

An alternative approach to design for testability, which also addresses the problem of ef-

�ciently testing a circuit with low controllability, is described in [34]. Quasi-delay-insensitive

circuits are synthesized from a CSP-like speci�cation by translating the speci�cation in a

syntax-directed manner. Under the isochronic transition fault model, the synthesized cir-

cuits are self-checking by construction. Instead of adding a scan-path to the circuit to make

it e�ciently testable, a single test signal is added. In test mode, the operation of some of the

14



elements in the circuit is changed. Most notably, the element that sequentializes the commu-

nication on a particular channel is changed so that only a single communication is performed

on the channel. This is su�cient to test the channel for stuck-at faults. The addition of the

test circuitry is shown for the sequentializing element in Figure 15. By introducing the test

S0 S1

|

;

c

C
C

t

b1

b0

c0 c1

a1

a0

CC b1

b0

c0 c1

a1

a0

ba

Figure 15

The sequential execution of two operations S

0

and S

1

that shares the channel c is

translated into the structure shown on the left. The implementation of the operator

that sequentializes the communication on a channel, \j", is shown in the middle. The

addition of the test mode (the signal t) is shown on the right. Notice that when the

circuit to the right is in test mode (t = true), the communication on the channel b

is not propagated down to the c channel, but instead an acknowledge is generated

immediately. This is the key that allows the circuit to be tested in linear time.

signal and modifying some of the basic building blocks, a synthesized circuit can always be

tested in time linear in the size of the circuit. Because the circuit is self-checking (under

the isochronic transition fault model) it is tested by executing a single computation while in

test mode, and if a full handshake is performed on a particular channel the circuit is fault

free. The cost is a considerable increase in area caused by the extra logic added to the basic

circuit elements. However, one can trade o� circuit area with test time by adding the test

mode only to a subset of the sequencing elements.

Finally, [42] proposes a way to make an asynchronous state machine easily testable. The

technique is a combination of the scan-technique with a clever state assignment. The ow

table for an asynchronous state machine is extended with at most two extra state bits and a

test input signal. By toggling the test input, a distinguishing sequence appears on an output,

i.e., based on the output sequence both the present state and the number of stable states for

the given input can be determined. This sequence is used to verify that the state machine

has the correct number of stable states for a given input and can perform the transitions

speci�ed by the ow table. This process is called state machine identi�cation [18]. Some

care must be taken that a race-free state assignment is used. Di�erent trade-o�s between the

length of the distinguishing sequences and the increase in number of states of the machine

is exploited in [38]. The area overhead is minimal, but the state machine identi�cation is a

functional oriented test that takes time proportional to the number of states in the machine.
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This limits the approach to small state machines. Also, the inputs must be controllable and

the test-output must be observable. This can be achieved by adding a scan-path, at the

expense of longer test time.

6 Path Delay Fault Testing

The classes of asynchronous circuits discussed in the previous sections have very few assump-

tions about the actual delays of the elements. In fact, the only timing assumption introduced

is that some forks are isochronic. However, by designing circuits under absolute delay as-

sumptions (for example that the delay of an inverter is between .5 and 2 ns), presumably

the circuits can be made smaller and faster [31, 19]. In terms of testing the circuits, the

consequence is that it must now be determined whether a fabricated circuit has the assumed

delay properties. In order to do so a fault model that models delays must be used, therefore

the stuck-at fault model is not appropriate.

This section describes a method for testing a circuit under a fault model that can model

delay faults, called the path delay fault model. In this fault model, all paths between registers

are considered. The circuit has a path delay fault if a given path in the fabricated circuit

has a delay outside the speci�ed interval. The path delay fault model is a more general

fault model than the stuck-at fault models. Clearly, a path with a stuck-at fault has a delay

outside the speci�ed interval, as the delay will be in�nite for either a rising or a falling

transition.

To test a circuit under the path delay fault model, the delay of all paths in the circuit

must be determined by a path delay fault test. The delay for a given path in the circuit, �,

is tested by applying two vectors hV

1

; V

2

i at times t

0

and t

1

, respectively. The time between

t

0

and t

1

is long enough to assure that all nodes in the circuit are stable at time t

1

. The

test vector pair has the property that when V

2

is applied after V

1

, it causes a transition to

occur at all nodes on �. The output of the circuit is latched at time t

2

. If the latched value

di�ers from the speci�cation (which is the output corresponding to V

2

), the delay on � is

larger than t

2

� t

1

, and a path delay fault is detected.

Consider the simple combinational circuit in Figure 16 implementing the function F =

ab+ bc+ bc. The delay (for a rising transition) of the path from a to F can be tested by the

two vectors V

1

= (a; b; c) = (0; 0; 0) and V

2

= (1; 0; 0).

b

F

a

c

Figure 16

Implementation of the function F = ab+ bc + bc.

A robust test is a test for a path delay fault which is independent of delays in gates not on
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the path under test. Test vector generation for robust path delay tests is described in [21].

A circuit can be made path delay fault testable by changing all state holding elements to

scan elements. However, in contrast to the scan elements used in the scan-paths described

in the previous section, the scan elements must be able to hold two values corresponding to

a bit in the two vectors hV

1

; V

2

i.

Special care must be taken in the test generation to assure that the generated vectors do

not generate hazards in the circuit independently of the gate delays, as a hazard could mask

the presence of a delay fault. Hazards are not a problem in the regular scan approach, as

the result is latched and scanned out when all signals are stable, i.e., at a time considerably

larger than the longest path delay in the circuit. However, since the test for path delay faults

is performed at the operation speed of the circuit, hazards are a problem when performing

a delay test.

There may exist paths in a circuit that are not robust path delay fault testable. The

circuit in Figure 16 is not robust path delay fault testable for the path from b through the

topmost AND-gate (the term ab). In order to test this path, the outputs of the two AND-

gates not on the path must be kept low and without hazards, but this is not possible because

one of these will be (a least momentarily) enabled when switching b.

In [17], a technique to make any Boolean (possibly redundant) function delay fault

testable is presented. Let x be an input variable associated with a path that cannot be

delay fault tested in the function F . F is decomposed into F = xG + xH + R such that x

does not occur in G, H, and R, see Figure 17. Two test points, t

1

and t

2

, are introduced

x

R

H

G

t1 t2

F

x

R

H

G

F

Figure 17

Making the path associated with x in the logic function F robust path delay fault

testable. To the left is the general case and to the right is the case where the two

functions R+ G and R+H are both path delay fault testable.

(in normal operation these are set to true). These test points are used to select either the

path from R to F or the path from G and H to F . The logic can be simpli�ed if both

the function G + R and the function H + R are path delay fault testable. Then the two

added test points can be eliminated as shown to the right in Figure 17. This method is then

applied recursively on the logic blocks G, H, and R. Clearly, this transformation increases

the circuit area, decreases the operation speed, and increases the test time, but it turns out

that most functions are robust path delay fault testable without any modi�cations (see [17,

Table 1]).
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Consider the example from Figure 16 where the path associated with b is not robust

path delay fault testable. F can be rewritten as F = bc + b(a + c). Thus, x = b, G = c,

H = (a + c), and R = false. The corresponding robust path delay fault testable circuit is

shown at left in Figure 18. Eliminating the test points results in the circuit on the right in

Figure 18.

b

F
a

c

b

t1

F
a

c

t2

false

Figure 18

Path b from the function F = ab+ bc + bc is made robust path delay fault testable.

An alternative approach to make all paths delay testable is called variable phase split-

ting [20]. The idea is to make both phases of the variables controllable. If both a variable,

x, and its negated, x, are used in a block of combinational logic, the variable is split into two

independent variables, x

0

and x

00

. Under normal operation one will be the inverted version of

the other, but under test they are individually controllable (for example both x

0

and x

00

could

be true simultaneously). A variable is split by storing it in a register which has outputs for

both the true and negated version of the variable. The register is made into a scan register

such that these two outputs are individually controllable in test mode. The scan register

must still be able to hold two values for each of the outputs in order to perform the delay

test. Thus, the register elements in this approach are even larger, but they eliminate the

need for inserting test points and changing the logic to make a circuit fully path delay fault

testable.

Testing a circuit under the path delay fault model is considerably more expensive than

the other approaches described in this paper. The scan-registers must be able to hold two

bits, extra signals are needed to control the test, and at least twice as many test vectors

are needed. Furthermore, the skew on the clock to the scan-registers must be accurately

controlled, as the worst case skew must be taken into account when determining the path

delay. Thus, the overhead in terms of circuit area and test time is considerable, and it is

unclear whether the bene�ts (in terms of speed and area e�ciency) of circuits with absolute

delay assumptions outweighs their testing overhead.

7 Conclusion

This paper has presented techniques for testing fabricated digital asynchronous circuits.

For asynchronous circuits there is a strong relation between the timing assumptions made

by the designer and the test approach necessary to test the fabricated circuit. The more

assumptions the designer make about the delays in the circuit, the harder it becomes to test.

18



At one extreme is delay-insensitive circuits where no assumptions are made about the delays

of the components. These are very simple to test because they always are self-checking. The

only delay assumption in speed-independent and quasi-delay-insensitive circuits is that all or

certain forks are isochronic. For these classes of circuits some faults (under the input stuck-

at fault model) cause premature �rings, and testing for these faults may require insertion of

test points. For circuits where the actual delays must be within speci�ed bounds for correct

operation, the stuck-at fault model is not appropriate. Instead it must be veri�ed that the

actual delays are correct by performing a delay test. The path delay fault test requires that

all registers are extended to scan-registers, making it expensive both in terms of circuit area

and test time.

Many techniques traditionally used for synchronous circuits can be adapted to asyn-

chronous circuits. E�cient test generation techniques for both combinational and sequential

circuits can be applied with few modi�cations. Care must be taken that the test doesn't

introduce hazards, a problem that doesn't exists for synchronous circuits. Also, a more de-

tailed simulation is necessary when a fault simulator is used because faults can cause races

(non-determinism) in an asynchronous circuit, and all possible behaviors must be consid-

ered. Design for testability techniques are also applicable to asynchronous circuits, though

the trade-o�s between circuit area, test time, and test coverage may be di�erent.

Other techniques are unique for asynchronous circuits. Self-checking asynchronous cir-

cuits halt in the presence of faults, making this class of circuits easy to test. Whether a

circuit is self-checking depends on the fault model and the timing assumptions under which

the circuit is designed. The e�ciency of testing self-checking circuits can be improved by

introducing a test mode at the expense of increased circuit area.

The di�erent test techniques represent di�erent trade-o�s between the quality and the

cost of the test. Which one is appropriate depends on the circuit structure, the fault model

used, and the delay assumptions made when designing the circuit. It may be bene�cial

to combine some of the approaches, for example identifying self-checking portions of the

circuit and isolate them with scan-paths, thus achieving a small area overhead and easy test

generation. An open question is what fault model is appropriate for asynchronous circuits.

Most work has adopted the gate-level stuck-at fault model which has proven applicable for

synchronous circuits, but it is not clear whether this model can be adapted to asynchronous

circuits with the same level of coverage of physical faults.
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