
A Group Structuring Mechanism

for a Distributed Object-oriented Language

Przemysław Pardyak and Brian N. Bershad
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195, USA

A version of this paper appeared in Proceedings of the 14th International Conference on Distributed Computing Systems, Poznań, Poland, 1994

Abstract
This paper describes a structuring mechanism for group-

ing objects in a distributed object-oriented language. A
group structuring mechanism provides a single flexible
method for managing distributed applications that involve
complicated communication protocols and sophisticated
structure. We have added such a mechanism to the Emer-
ald distributed object-oriented language and its runtime
system. Our group structuring mechanism fits entirely
within the context of object-oriented programming, so simi-
lar mechanisms could be added to other distributed object-
oriented languages.

1 Introduction
In this paper we show that a general and flexible group

structuring mechanism for expressing and managing clus-
ters of cooperating objects can be introduced into a dis-
tributed object-oriented programming language. A group
structuring mechanism can ease the complexity of program-
ming distributed systems by encapsulating the structure and
communication protocols for groups of interacting objects.

1.1 The need for a group mechanism
Many problems in programming distributed systems are

caused by the inherent complexity of their structure and
communication patterns. Distribution adds a new design
dimension requiring a designer to take into account place-
ment of objects, their mobility, reliabilityof nodes and links
of the underlying network, and the impossibility of consen-
sus among parts of a distributed system. Several techniques
are used to deal with this complexity. Elaborate protocols
are used to maintain (at least partial) consistency among
components of a distributed system. Replication and re-
covery mechanisms are used to provide higher availability
and fault-tolerance.

Group communication is another recognized technique
for managing the complexity of distributed systems [2, 10].
It is used to simplify communication by enabling simultane-
ous addressing of all members of a group. It helps maintain
consistency by ordering messages. Group communication

This research was supported by Komitet Badań Naukowych under
grant no. 8.0077.91.01 and by a National Science Foundation Presidential
Young Investigator Award. Pardyak performed this work while at the
University of Mining and Metallurgy, Cracow, Poland.

protocols provide support for structuring techniques like
replication and load sharing and may be used as a basis for
fault tolerance [1].

Group communication protocols are themselves com-
plex, difficult to write, and hard to manage. They require
that the client programmer specify the properties of mes-
sage ordering, policies for handling faults, and methods for
interpreting a multiplicity of results following single in-
vocations. Therefore a group communication mechanism
alone is insufficient for expressing and managing the com-
plexity that arises from arbitrary styles of group interaction.
To demonstrate this, consider the use of a group commu-
nication mechanism in the context of a replicated service
where a request to the service is turned into requests to
each replica and some protocol is run to assure consis-
tency among the replicas. A number of aspects have to be
taken into account when designing such a system: number
of replicas, placement, consistency mechanism and policy,
failure handling, and protocols for handling client requests.
Consider the problem of handling the results of group invo-
cation when several servers are called as part of a multicast
and each can return a result. The result handling protocols
may vary from a simple one, such as ignoring all results
or waiting for a fixed number of them, to more complex
ones, e.g., collecting results from a majority of servers. In
the most general case the number of collected results may
depend on the number of servers, the parameters to the call,
and the results already received. For most applications, a
client of such a replicated service should see it as a sim-
ple service without being exposed to the complexity of its
implementation.

A group structuring mechanism is a facility for creating
and maintaining groups. By encapsulating group commu-
nication in such a mechanism, we can achieve a simple
interface to a group without exposing the complexity of its
structure and internal communication.

1.2 Goals

A group mechanism should be flexible to enable the
specification of all aspects of group interactions [14, 13]
and transparent to hide the complexity of these interactions.
In general, we wish to support three degrees of transparency
for clients of group communication:

completely transparent – the client is oblivious that it is
interacting with a group; members of a group are not

1

client
object

group
object

member
object

group
object

member
object

member
object

− object

− channel

Figure 1: General model of a group structure. Clients communicate with group objects via the group channel. Group
objects interface clients and members via the group channel. Members are connected by the member channel.

visible; results are collected by the group; a single
result based on results collected from members is re-
turned to the client.

semi-transparent – the client knows that it interacts with
a group; group communication is controlled by pa-
rameters passed by the client; a single collected result
is returned.

no transparency – the client knows that it interacts with a
group; it controls execution of group communication;
all results are returned separately.

The group structuring mechanism described in this pa-
per allows varying degrees of group transparency to be ex-
pressed. For example, the client may not be aware that it is
communicating with a group, it may be aware, but not care
to modify its behavior, or it may be aware, but only care to
deal with the group when, say, fewer than half of the group
members are accessible. These and other constraints can
be expressed entirely within the framework of an object-
oriented system, so no new programming paradigm is re-
quired.

Successful distributed programming models have equiv-
alents in traditional programming languages, for example,
RPC [3] and distributed shared memory [11]. In this pa-
per, we propose a set of cooperating objects as a program-
ming technique that provides a structuring mechanism for
using groups and group communication. The technique
is expressed in terms of the object-oriented programming
paradigm. We are using the technique in the Emerald
object-oriented programming language.

1.3 The rest of the paper

The rest of the paper is organized as follows. In Section
2 we discuss the requirements for a flexible and transparent
group mechanism. In Sections 3 through 6 we discuss
our group structuring mechanism first in general terms,
then in the context of Emerald, and finally in terms of

implementation. In Section 7 we discuss related work.
Finally, in Section 8 we present our conclusions.

2 Characteristics of groups
In this section we present our model of a group structure,

discuss the different roles served by a group, and advocate
encapsulation of the group structure and communication.

Structure of a group

In [14] we proposed a general model of a group struc-
ture. According to this model, a group consists of two
kinds of objects: group objects that interface the group
with the outside world, and member objects that perform
the group’s tasks (see Figure 1). Group objects identify a
group and provide access to its services. They are the only
interface between client objects and a group. A client’s
request for a service, passed to a group object, is turned
into appropriate actions of member objects. Members may
have different functionality and they do not have to respond
to the same requests. Objects comprising a group and its
clients communicate through channels which represent the
communication media used in the group and may be either
a communication mechanism used to connect objects or an
object that encapsulates such a mechanism.

Different views of a group

A group plays three roles: it is maintained by some manager
objects, it is accessed by its clients, and it interacts with its
members. Each role gives a different perspective on the
group. For manager objects, a group is a collection of
objects with a number of operations to maintain it. Such
a collection may be created, its structure and membership
dynamically changed, and its actions may be controlled
and modified. For a client, a group is a server that offers
a certain service. The implementation of such a server,

2

calling

returning replying

invokingmulticasting

client member

result

is it last

final result

parameters
method
group

member list

GROUP

Figure 2: A scenario of the MOI. The big rectangle denotes a group structuring mechanism. Arcs stand for steps of the
MOI. The big arrows point to the information that becomes available at the end of each step.

in this case the fact of it being a group, may be irrelevant
to clients, so the their view of a group does not include
managerial operations. For members, a group is a client
that expects a certain functionality from them.

Encapsulation

A transparent group mechanism should hide two aspects of
complexity in distributed systems: structure and commu-
nication. A group should be seen as an atomic, indivisible
object, hiding its structure and the protocols for accessing
members. A fully encapsulated group may transparently
change the number, identity, and configuration of its mem-
bers, as well as the protocols for passing a client’s requests
to the members. A client of such a group sees a simple
interface despite the group’s internal complexity.

3 A proposed mechanism

The design of our group mechanism is focused on the
flexible and transparent handling of group communication.
We first show the issues of group communication that affect
the design and then present a group structure that takes these
issues into account.

3.1 Group communication for objects

Multiple Object Invocation (MOI) [14] is a method of
providing group communication among objects. It is based
on the following scheme: an object identifying a group is
invoked, the invocation is turned into invocations of the
appropriate methods on appropriate member objects, and
results of these invocations are collected and returned as the
result of the original invocation. Each result is processed at
the moment of its reception without waiting for the others.
Multicast invocation may be abandoned by the caller at any

moment if the results already collected are sufficient for it
to proceed.

In Figure 2, we show a scenario of the MOI. In the first
step (calling), a client’s message is passed to the group.
It carries information about the group being called, the
invoked method, and arguments of the invocation. The
next step (multicasting) encompasses protocols used for
the selection of members to be called, message ordering,
and synchronization. As a result of this step, a list of
member objects to be invoked becomes available. The third
step (invoking) consists of invocations of selected member
objects. In the next step (replying), the invoked member
objects return results of the invocations. Knowledge of the
list of invoked members allows the group to detect if the
returned result is the last one. When enough results have
been collected, the reply to the client is determined and
returned (the returning step).

An important feature of MOI is that it enables mul-
ticast communication among objects in such a way that
both clients and members see the invocation as a traditional
(client/server) object invocation. MOI does not require any
changes to the client or server. Any method may be invoked
either directly or by means of the MOI mechanism. Any
object may invoke a group obliviously of group communi-
cation.

3.2 Group structure

In order to provide a means to flexibly handle the MOI,
the group structure in our mechanism reflects steps of the
MOI (Figure 2). The mechanism is a framework for main-
taining the group’s membership and handling group com-
munication. A group may be created from the framework
by providing a number of objects (group components) that
share the responsibilities of group communication (Fig-
ure 3). Each of these components encapsulates a single
step of MOI and is invoked by the framework when this step

3

returning

calling

calling invoking

returning replying

returning

calling

invoking
returning

multicasting

replying

client member

GROUP

channel
component

reply

component

init
component

start
component

group
component

Figure 3: Structure of a group in the proposed mechanism. Arrows depict the steps of the MOI (Figure 2). The group
object according to Figure 1 is the group component here. The group channel is the channel component that encapsulates
multicast of member invocations. The client channel is a direct invocation on the group object.

should be performed. In this way, the framework enables
group communication by linking the group’s components
and invoking them according to the execution of MOI. It
does not define any particular protocol for handling group
communication. This protocol is realized by the actions of
component objects and is independent of the framework.

Some of the group’s components may be provided by
the same object. Different methods of the object may be
used to provide functionality of more than one component.

The Group and Channel components perform actions
that interface the group’s clients and members. The Group
component is the only object visible to the group’s clients.
Its converts their requests into group’s actions. Eventually,
results of the group’s invocation are passed by the Group
object back to the client. The Channel component performs
all actions that lead to invocations of members, including
selecting members to be invoked, multicasting, ordering
of the invocation with respect to other invocations, and
synchronizing the invocation with other events. The actions
of the Channel component are not split into separate steps
because some may be unnecessary in some cases and their
order may differ from group to group. For example, a group
may require selecting half of the members and ordering
their invocation relative to all other group invocations in
the system. Another group may need ordering relative
to changes in its membership and then selecting only one
member. The results of member invocation are passed back
to the Channel component.

Three additional components are used by the group to
dynamically react during the MOI. The Reply component
encapsulates the policy of collecting results. It is passed
each result separately and informed by the Channel com-
ponent about which result is the last one. The Reply com-
ponent decides on the final result of a group invocation

and passes it to the Group component. The Start and Init
components permit a group to undertake actions in case of
the events during the MOI that mark a change of the state
of invocation and which are independent of member invo-
cations. The Start component is invoked when the MOI
is initiated. The Init component is invoked at the time the
Channel invokes members.

Additional infrastructure exists in a group for handling
group membership, exceptions, and modifying group’s
structure and behavior.

A group has a dynamic structure. It can be reconfigured
after creation by replacing or modifying the objects com-
prising it. By allowing more than one component of each
kind, we provide a mechanism for creating groups with
multiple personalities (a personality is a view of a group as
seen by a client through the particular Group object it is ac-
cessing). We require that each of the group’s personalities
see the same set of members because it is the member-
ship that defines a group. We assure this by requiring that
all of the group’s personalities share the infrastructure for
membership handling.

3.3 Properties of the mechanism

The structure of a group enables flexible MOI protocols
because knowledge about the course of group communi-
cation is made available to the application. The mech-
anism fully encapsulates both the structure of the group
and its internal communication. Group communication is
fully transparent because client and member objects inter-
act with a single object by means of a simple invocation.
Semi-transparent group communication may be achieved
by modifying a group’s behavior according to parameters
passed to the Group object. Other levels of transparency

4

− group communication
 channel

monitor
object

− control & communication

member

group
coordinator

group
coordinator

group
manager

client

client

client

GROUP

Figure 4: Structure of a group in Emerald. A group is managed through its manager. Its services are accessible though its
coordinators. Monitor objects are notified of group events such as failures and changes in membership.

can be achieved by enabling interactions between clients
and the internal group objects.

4 Adding groups to Emerald
In this section we describe the implementation of our

group mechanisms in Emerald [15]. Emerald is an object-
based programming language and a distributedruntime sys-
tem for objects. The language is strongly typed and sup-
ports distribution. Emerald’s objects are mobile and may
be invoked in a location independent manner.

4.1 Group structure
The central objects in an Emerald group are group coor-

dinators (Figure 4). A coordinator corresponds to a Group
object in our model in that it is the client’s handle to group
services and it defines actions undertaken upon group invo-
cation. A coordinator handles group communication and
combines the functionality of the Start, Init, and Reply ob-
jects from Figure 3. The functionalityof the Channel object
is realized by the underlying run-time system and permits
only a fixed number of predefined multicast protocols.

Two objects represent a group to outside objects: the
group coordinator which corresponds to the client view of
a group and provides access to services offered by a group
to its clients, and the group manager which corresponds
to the managerial view of a group and provides methods
for maintaining the group. Since the coordinator defines
groups services, a group may have multiple personalities
by having multiple coordinators.

A group contains a set of members which respond to
the same invocations although each may react differently.
There are also secondary members of a group called mon-
itors that monitor group events like membership changes
and failures.

4.2 Group maintenance

A group is created in two stages. First, the Group built-
in object is used to instantiate a group creator. Second,
the group creator creates the actual group (Figure 5). Two
abstract types are used to create a group: the type of member
objects and the type of the service the group will provide. A
group object conforms to the managerial view of the group
and is used for maintaining its membership. Members and
monitor objects may be added to and removed from a group
and a group’s membership may be inspected. To obtain the
client’s view of the group, the GetGroup method is invoked
on the object. The object it returns (a group coordinator)
fully encapsulates all group mechanisms, conforms to the
service type of the group, and may be used wherever a
normal object of the same type can be used.

An object that on request creates group coordinators
is passed as a parameter of group creation. This object
is invoked whenever a client asks for its handler. If a
group should have only one personality, the object creates
only once coordinator and returns it to all clients. If the
object creates more coordinators the group has multiple
personalities.

4.3 Group communication

A group coordinator may have traditional operations as
well as multicast operations implementing an MOI proto-
col. If an operation invoked on a group is a traditional one
then it is normally invoked on the coordinator object. If it
is a multicast operation then it is turned into invocations
on members according to the protocol specified in a call
clause. The three parts of the operation body (start, init,
and reply) specify reaction to subsequent events that oc-
cur during the MOI: starting an invocation, invocation of
members, and reception of a result.

5

% creation of a group
NSCreator Group.Of [NSServiceType, NSServerType]
NSGroup NSCreator.Create[NSCoordinatorCreator]

% building a group
NSGroup.Join[Server1]
...
NSGroup.Join[Server9]
NSGroup.Leave[Server2]

NSGroup.AddMonitor[NSMonitor]

% client’s view of a group
NameService NSGroup.GetGroup

% using a group
NameService.Add[“sirpa”, Sirpa13]
NameService.Remove[“foo”, FooBar]
foo NameService.LookUp[“sirpa”]

Figure 5: A sequence of operations for creation and use of
an example group (a replicated name service).

Figure 6 shows an example coordinator with four opera-
tions. The Add, Remove, and Lookup operations are group
communication invocations. The first two use a totally or-
dered reliable multicast protocol to invoke all the group’s
members. The third one invokes only one member. The
Add operation is aborted if the group has no members (init
section). The reply section is called whenever a result is
returned from an invoked member. The GetServers func-
tion is a traditional operation that returns a list of current
group members by invoking the group object.

4.4 Communication protocols

Our group mechanism can use any protocol supported
by the underlying system. In the Emerald implementation,
we use a range of protocols including reliable broadcast
protocols with different ordering properties (total, causal,
total causal, and unordered) as well as singular calls (in a
singular call one member is selected, if it cannot be reached
another one is selected), and n-call (like singular call but
invocation of n members is required).

Protocols to be used for group maintenance are defined
in the coordinator creator. Protocols used for multicasting
MOI invocations are defined in the call clause of the multi-
cast operation in a group coordinator. All messages in the
system are ordered relatively to each other.

4.5 Receiving broadcast invocations

An optional clause by has been added to the method
definition syntax to enable detection of an MOI invocation
and to reveal a list of all objects that received the same
invocation message. In case of an MOI invocation of the
method, the variable declared by the by clause contains
a list of active members of a group, and a special object
NIL otherwise. If the list of receivers is not needed then
the by clause may be omitted—this means that the MOI
mechanism is transparent on the callee’s side. Objects

coordinator NameServiceController
% operations available on the group
export Add, Remove, LookUp, GetServers
% an operation turned into MOI on members
multicast Add[Name : String, Item : Any]

% use atomic causal broadcast protocol
call Protocol.Total

% called when members invoked
init Receivers : Vector.Of [MemberType]

% abort MOI when no members in the group
quit when Receivers==NIL

end init

% called when a member returns
reply received

last isLast : Boolean

% stop when all members returned
quit when isLast

end reply
end Add

multicast Remove[Name : String, Item : Any]
...

end Remove

% an invocation called on a single member
multicast LookUp[Name : String]! [Item : Any]

% use singular broadcast (invoke one member)
call Protocol.Singular

% wait for the first result and return
reply Result : Any received

Item Result
end reply

end LookUp

% operation performed locally on the coordinator
function GetServers! [Res : Vector.Of [MemberType]]

% call the associated group object
Res manager.GetMembers

end GetServers
end NameServiceController

Figure 6: Example of a group coordinator. This object
encapsulates group communication protocols used by the
replicated name service.

initially not designed as parts of a group may be used in
group invocations without any change.

5 Implementation

Implementation of our group mechanisms consists of
three major parts: broadcast protocols implemented in the
Emerald kernel, support for groups of lightweight objects
in the object run-time system, and group communication
primitives in the language and run-time system.

The Emerald kernel was augmented with a suite of re-
liable broadcast protocols. The suite is based on reliable
broadcast and contains a number of ordering protocols (un-
ordered, total, causal, total causal) and a protocol for de-
tecting and recovering from inconsistencies in the system.

6

The protocols use physical broadcast over Ethernet using
UDP. The consistency protocol enables nodes to be added
and removed from the system, and to recover from node
crashes and transient lapses of connectivity.

The object group mechanism uses broadcast to propa-
gate group membership information to all nodes of a sys-
tem. Each node maintains a list of members for all active
groups. When a group initiates a broadcast, the invocation
message is broadcast to all nodes. Upon receiving a broad-
cast message, a node invokes all local group members and
subsequently sends back their replies. The Emerald object
migration mechanism propagates broadcast and member-
ship information when members or parts of a group migrate.

The changes to the Emerald language include a new
built-in object (Group) and a number of group communi-
cation primitives (the call, start, and reply sections of the
multicast operation, and the by clause). The changes do
not compromise the Emerald object model and are type-
safe.

6 Performance
In this section, we present the costs of some group com-

munication and maintenance operations measured for a dis-
tributed name service. The service consists of name servers
placed one on each node of the system and creating a group.
The measurements were taken on a system consisting of 5
nodes (40Mhz Sparc IPX) connected by 10Mb/s Ethernet.
MOI and group maintenance operations used total causal
broadcast.

First, we measure group maintenance cost. Creation of
a distributed service based on a group requires two steps:
first, the creation of all objects comprising it and their dis-
tribution, and second, construction of the group (creation of
the group and addition of its members). In our example ap-
plication, the first step took 135 ms and the second step 42
ms. The cost of group related operations is less then 25%
of the total cost of creation of the service (177ms) which
means that they do not have a prohibitively high cost.

Second, we contrast times of different invocation meth-
ods by measuring the time to invoke the empty method by
means of MOI and remote object invocation. To show the
impact of collecting results, we measure a broadcast invo-
cation that is abandoned without waiting for results and an
invocation that collects all results. The asynchronous MOI
(10ms) is significantly faster than a remote invocation of
an object (30 ms). The cost of fully synchronous MOI (51
ms) is of the same order of magnitude as the cost of remote
invocation. Table 1 summarizes the measurements.

operation time
creation and distribution of servers 135 ms
construction of a group 42 ms
total time of creation of the service 177 ms
remote invocation of a single object 30 ms
MOI, abandon results 10 ms
MOI, collecting all results 51 ms

Table 1: Measurements of basic group operations.

7 Related work
Group communication has been recognized as a valuable

communication method for distributed operating systems.
Systems like V [5] and Amoeba [10] use process groups
for replicated and distributed services. Multicast is used to
simplify and expedite communication for process groups.
The ISIS reliable distributed toolkit [2], also based on pro-
cess groups and multicast, enables group communication to
increase fault-tolerance. Remote Procedure Call has been
enhanced to handle communication with multiple processes
simultaneously [16] and to support replication [6].

The success of group communication in distributed sys-
tems provoked research into adopting the concept as a pro-
gramming technique. Broadcasting Sequential Processes
[7] enabled sequential processes similar to those in Hoare’s
CSP [9] to broadcast messages to all others although there
was no support for groups or transparency (messages were
explicitly broadcast and received). Another approach re-
lies on class libraries to abstract the group communica-
tion primitives of the underlying operating system [8, 12].
These libraries are not a general language construct because
their semantics depends on the system they are based on.
They are not transparent because multiple responses to an
invocation must be explicitly handled by a client.

We are aware of one other effort to add group mecha-
nisms to Emerald [4]. Their approach supports a simple
form of group structuring, whereby new members can be
added to an existing group. Group invocation results in one
member of the group receiving the invocation. Otherwise,
there is no support for group communication. Our mech-
anisms allow us to emulate this behavior using singular
invocations.

8 Conclusions

In this paper, we have presented a group structuring
mechanism for a distributed object-oriented language. We
have shown that the notion of a group fits well into the
paradigm of object-oriented programming. A group may
consist of objects and may itself be viewed as an object.
Group communication may be expressed by means of ob-
ject invocations. Groups and group communication ab-
stract issues such as communication protocols, member-
ship, and ordering of messages.

Acknowledgements

We would like to thank Grzegorz Czajkowski and
Krzysztof Zieliński from the University of Mining and Met-
allurgy in Cracow and Bjarne Steensgaard from Microsoft
Research for their comments on earlier versions of this
paper.

References

[1] K. P. Birman. The Process Group Approach to Reli-
able Distributed Computing. Communications of the ACM,
36(12):36–53, December 1993.

[2] K. P. Birman and R. Cooper. The ISIS Project: Real Experi-
ence with a Fault Tolerant Programming System. Operating
Systems Review, 25(2):103–107, April 1991.

7

[3] A. D. Birrell and B. J. Nelson. Implementing Remote Pro-
cedure Calls. ACM Transactions on Computer Systems,
2(1):39–59, February 1984.

[4] A. P. Black and M. P. Immel. Encapsulating Plurality. In
Proceedings of the 7th European Conference on Object-
Oriented Programming, pages 57–79, July 1993.

[5] D. R. Cheriton and W. Zwaenepoel. Distributed Process
Groups in the V Kernel. ACM Transactions on Computer
Systems, 3(2):77–107, May 1985.

[6] E. C. Cooper. Replicated Procedure Call. Operating Systems
Review, 20(1):44–56, January 1986.

[7] N. M. Gehani. Broadcasting Sequential Processes (BSP).
IEEE Transactions on Software Engineering,SE-10(4):343–
351, July 1984.

[8] O. Hagsand, H. Herzog, K. Birman, and R. Cooper. Object-
oriented Reliable Distributed Programming. In Proceedings
of the 2nd International Workshop on Object-Orientation in
Operating Systems IWOOOS’92, Dourdan, France, Septem-
ber 1992.

[9] C.A.R. Hoare. Communicating Sequential Processes. Com-
munications of the ACM, 21(8):666–677, August 1978.

[10] M. F. Kaashoek and A. S. Tanenbaum. Group Commu-
nication in the Amoeba Distributed Operating System. In
Proceedings of the 11th International Conference on Dis-
tributed Computer Systems, pages 222–230, Arlington, VA,
May 1991.

[11] Kai Li and Paul Hudak. Memory Coherence in Shared Vir-
tual Memory Systems. In Proceedings of the 6th Interna-
tional Conferenceon Distributed Computing Systems, pages
229–239, August 1986.

[12] M. Makpangou, Y. Gourhant, and M. Shapiro. BOAR: A
Library of Fragmented Object Types for Distributed Ab-
stracitons. In Proceedings of the International Workshop
on Object Orientation in Operating Systems IWOOOS’91,
pages 164–172, October 1991.

[13] P. Pardyak. Group Communication in an Object-based Dis-
tributed System. Master’s thesis, University of Mining and
Metallurgy, Cracow, Poland, 1992.

[14] P. Pardyak. Group Communication in an Object-Based Envi-
ronment. In Proceedings of the 2nd International Workshop
on Object Orientation in Operating Systems IWOOOS’92,
pages 106–116, September 1992.

[15] R. K. Raj, E. D. Tempero, H. M. Levy, A. P. Black, N. C.
Hutchinson, and E. Jul. Emerald: A General-Purpose Pro-
gramming Language. Software — Practice and Experience,
21(1):91–118, January 1991.

[16] M. Satanarayananand E. H. Siegel. Parallel Communication
in a Large Distributed Environment. IEEE Transactions on
Computers, 39(3):328–348, March 1990.

8

