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Abstract

Parallel applications exhibit a wide variety of memory reference patterns. Designing a mem-

ory architecture that serves all applications well is not easy. However, because tolerating or

reducing memory latency is a priority in e�ective parallel processing, it is important to explore

new techniques to reduce memory tra�c.

In this paper, we describe a snoopy cache coherence protocol that uses a large sized transfer

block (to take advantage of spatial locality) while using a small coherence block in order to

avoid false sharing. To further illustrate the protocol, we present an example of its workings.

We then present the results of simulating our protocol on 5 applications that exhibit a variety

of reference patterns. We �nd that our protocol e�ectively takes advantage of spatial locality

while avoiding the increase in false sharing that often occurs when using large line sizes.
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1 Introduction

There is now a large and still expanding body of literature on the behavior of parallel programs.

It has become quite clear that parallel applications exhibit a wide variety of memory reference

patterns. Because of these di�ering reference patterns, it is di�cult to design memory architectures

that will serve all applications well. However, since tolerating or reducing memory latency is

one of the main challenges to e�ective parallel processing, new techniques are continually under

investigation to decrease memory tra�c.

In this paper we investigate one such technique in the context of a cache coherent shared-

memory multiprocessor architecture. Our main focus is on the relationship between the coherence

protocol and the cache block size. Coherence protocols are either invalidation based { the write

invalidation (WI) protocols { or update based { the write update (WU) protocols. It is well

known that depending on the application, either WI or WU performs best[EK88]. Similarly, some

applications run better when small cache block sizes are used because of the presence of migratory

data or because false sharing is avoided, while others execute more quickly with larger block sizes

because they exhibit good spatial locality.

Most often, an architecture is implemented with a given protocol and a block size used for

both transfer (memory to cache or cache to cache) and coherence. Protocols with varying block

sizes[DL92] or with partial block invalidations[CD93] have been proposed in order to reduce the

number of invalidations or the amount of bytes transferred between the various components of

the memory hierarchy. The choices can be made either statically (compile-time) or dynamically

(run-time). For example, some architectures[MIP91] allow the choice of a coherence protocol to be

determined on a page per page basis. Competitive snooping[KMRS88] and hybrid protocols such

as the one implemented on the DEC Alpha [TCS92] allow dynamic switching between WI and WU

protocols. Compiler optimizations have been advocated for the choice of a protocol at compile

time[VF92] on a block per block basis.

In this paper we present a dynamic technique, namely a snoopy cache coherence protocol,

that uses di�erent block sizes for transfer and coherence. The goal of the protocol is to obtain

the advantages of using large block sizes for those programs that have good spatial locality while

avoiding many unnecessary invalidations or updates that result from migratory data and false

sharing. In Section 2 we present our model architecture, in particular a sector cache organization

that allows subblocks. Section 3 introduces a cache coherence protocol for sector caches. Section

4 describes our evaluation methodology with Section 5 giving simulation results. Section 6 is a

brief summary of related work. Suggestions for improvements and further study are given in the

concluding section.

2 Architectural Model

Our base architecture is a shared-bus multiprocessor. The base architecture can be seen as a cluster

in a hierarchical multiprocessor. Our investigation at this point explores intra-cluster e�ects but the

techniques could be extended to inter-cluster optimizations. Each processor has a private cache and

coherence is maintained via a snoopy protocol (cf. Section 3). The shared bus is a split-transaction

bus.

We consider two types of caches:\usual" caches and \sector" caches. Usual caches have a

capacity C, a line size L, and an associativity k. Corresponding sector caches have the same



(C;L; k) characteristics but in addition the lines are divided into subblocks of size b. The units

of coherence and transfer are the same for the usual caches, namely L, while these units can be

L or b depending on speci�c protocols in the case of sector caches. In the sector caches, both

lines and subblocks have states. A sector cache (C;L; k; b) will therefore require 2L=b extra state

bits/line, assuming that subblocks have a maximum of 4 states. Thus an (C;L=2; k) usual cache

and a (C;L; k; b) sector cache require approximately the same number of tag and state bits for L

between 32 and 128 bytes and b = 8 bytes. Note also that a usual cache with L = b is more memory

expensive than a sector cache with L and b as above.

Systems with sector caches also require more bus lines to transmit bitmasks corresponding

to the status of the subblocks in a particular line. However, the number of additional lines will

be comparatively small, since the number of extra lines required is equal to L=b, the number of

subblocks in a line.

3 Coherence Protocol

The motivation behind sector caches is to design a coherence protocol that takes advantage of

applications' spatial locality by fetching large sized lines while avoiding invalidations and migrations

of falsely shared data by having a smaller coherence unit, namely a subblock. The protocol is

snoopy-based[AB86]. It incorporates features from the Illinois protocol [PP84] (the Illinois protocol

will be the basis for comparisons with usual caches) and from protocols or write policies with

subblock (in)validations [CD93, Jou93].

The basic philosophy behind the protocol is as follows. As much as possible, we favor cache to

cache transfers. On read misses, we transfer as many valid subblocks in the line as possible. On

writes to clean subblocks and write misses, we invalidate only the subblock to be written. We also

implemented read broadcasting (also called snar�ng): when a cache or main memory responds to a

read request, all other caches use the data on the bus to update an invalid subblock (or subblocks)

if the address of the invalid subblock matches that of the data on the bus[SR84, EK89]. Unlike

Eggers' study, we assumed that read-broadcasting would not lock out the processor from accessing

the cache.

In contrast to the Illinois protocol, dirty subblocks that are transferred on read misses are not

copied to memory. An early version of our protocol implemented this operation but we discovered

that the memory queues were becoming unduly large. Instead, we use subblock states to encode

a form of ownership. Our �nal protocol has four states for the cache line and four states for each

subblock. In the following descriptions, line states will be in bold type, while subblock states will

be in italic type. The line states are as follows:

INVALID All subblocks are Invalid.

VALID EXCLUSIVE All valid subblocks in this line are not present in any other cache.

All subblocks that are Clean Shared may be written without a

bus transaction. Note that any (or possibly all) subblocks in the

line may be Invalid. There also may be Dirty blocks which must

be written back upon replacement.

In the �nal version of the paper we plan to quantify the bene�ts of using read broadcasting on the subblock

protocol.



CLEAN SHARED The line contains subblocks that are either Clean Shared or In-

valid. The line can be replaced without a bus transaction.

DIRTY SHARED The subblocks in this line may be in any state. There may be

Dirty blocks which must be written back on replacement.

Dirty Shared Valid Exclusive

Invalid Clean Shared

Replacement-
Write dirty 
subblocks 
back

Replacement

Read Subblock (From cache)

Write Subblock

Read/ Write Subblock 
(From memory)

Bus Induced 
State 
Changes

Processor 
Induced State 
Changes

Read Subblock

Read/Write 
Subblock

Read/Write 
Subblock

Write 
Subblock 
(from 
cache)

Read Subblock (from cache)

Read Subblock (snarfed)

Read (non-Invalid) Subblock

Replacement-
Write dirty 
subblocks 
back

To Invalid State

Figure 1: Line Protocol

The subblocks states are as follows:

Invalid The subblock is not valid.

Clean Shared A read access to the subblocks will succeed. Unless the line the

subblock is a part of is in the VALID EXCLUSIVE state, a write

to the subblock will force an invalidation transaction on the bus.

Dirty Shared The subblock is treated like a Clean Shared subblock, except that it

must be written back on replacement. At most one cache will have a

given subblock in either the Dirty Shared or Dirty state.

Dirty The subblock is exclusive to this cache. It must be written back on

replacement. Read and write accesses to this subblock hit with no

bus transactions.

Table 1 shows the states a subblock may be in given a particular line status.
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Figure 2: Subblock Protocol

Line Subblock Status

Status Invalid Clean Shared Dirty Shared Dirty

INVALID OK Error Error Error

VALID EXCLUSIVE OK OK Error OK

CLEAN SHARED OK OK Error Error

DIRTY SHARED OK OK OK OK

Table 1: Allowable states for subblock



Figure 1 gives the state transitions for cache lines. Note that there is only one transition (from

VALID EXCLUSIVE toDIRTY SHARED) that is induced by requests from other processors

that the cache observes. All other bus induced state changes change subblock states only. Figure

2 shows the state changes at the subblock level. For a complete description of the protocol, see

Appendix A.

To illustrate the protocol, we give an example of its workings on a particular cache line. A

complete description can be found in an upcoming technical report. In Figure 3 we show the status

of a cache line, say L, which contains 4 subblocks. The subblocks will be referred to as a through

a+ 3. Initially, the line is invalid in all three caches of the processors P1, P2 and P3.

At step one, P1 reads subblock a + 2. Since no other cache has the block, the request goes to

memory. Memory returns all subblocks in the line. The state of the line is VALID EXCLUSIVE,

which signi�es that all valid blocks in L exist only in this cache. The four subblocks are loaded in

the Clean Shared state.

At step two, P2 writes subblock a + 1. An invalidation message is sent over the bus, which

invalidates only subblock a + 1 in P1's cache. Note that P1 remains VALID EXCLUSIVE

because all of its remaining subblocks are still unique to it.

On the third step, P3 reads subblock a. P1 supplies subblock a as well as all other valid, non-

dirty subblocks it possesses. The state of the line in P1's cache is changed to DIRTY SHARED

because other copies of L's subblocks exist in the system. Note that P2's cache snarfs the 3 valid

blocks.

The next operation is a write to subblock a+ 3 by P1. This operation invalidates the subblock

in P2's and P3's caches.

Following this operation, let us assume that a request from P1 induces a replacement of L in

P1's cache. A bitmask is transmitted with the write back request so that only subblock a + 3 is

updated in memory.

In the �nal operation, P3 reads subblock a + 3. When the request is broadcast over the bus,

each cache responds with a bitmask indicating which subblocks of L (if any) it has stored in a

valid state. These bit-masks are OR'ed together to give a complete view of which subblocks of this

particular line are cached { and valid { in the system. Because no other cache has the subblock

a + 3, the request must go to memory. The memory unit returns the entire line, but only those

subblocks which are not cached elsewhere in the system are marked valid in the requester's cache

(in addition to those subblocks, like a and a + 2 that were already valid). This is to prevent stale

data from memory from being marked valid in a cache. In our example, the a + 1 block is not

marked valid in P3's cache, because it is cached and dirty in P2.

4 Methodology

4.1 Benchmarks

We modi�ed the Cerberus multiprocessor instruction-level simulator [Bro89, AB93] to evaluate the

sector cache protocol. The basis for comparison with usual caches is the Illinois protocol. The use

of an instruction-level simulator not only allowed us to evaluate the merits of the new protocol but

also to check its correctness by comparing the results of application runs on the simulator against

runs on the native workstation. Instruction references and references to non-shared locations are

assumed to always hit in a private cache. The width of the bus in all simulations was 64 bits. The
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Figure 3: Protocol example



latency of main memory was assumed to be 10 cycles.

We picked �ve applications to evaluate our protocol. The applications' reference behaviors fall

into three categories:

� Applications that have very little sharing and exhibit high cache hit rates (Gauss, Relax,

Cholesky)

� Applications that exhibit true sharing (MP3D)

� Applications that exhibit both true and false sharing (Topopt)

Gauss is a gaussian elimination program to solve a system of linear equations. The �rst phase,

which is the reduction of a square matrix to upper triangular form, lends itself well to parallelism

[Dar88]. The second phase is back substitution that takes much less time than the triangularization.

We ran our simulation on a 250x250 matrix, comprising approximately 161 million instructions on

a single processor.

Relax is a successive over-relaxation program on a 256x256 array of 8 byte oating point num-

bers. For our study, we executed 10 iterations of the algorithm, gathering statistics for only the �nal

5 iterations to eliminate cold-start e�ects. This represents the simulation of 62 million instructions.

MP3D is a 3-dimensional particle simulator from the SPLASH suite [Sin92]. The program

evaluates the positions and velocities of molecules over a sequence of time steps. Although it

appears that the program is well suited for parallelization, speed-ups are hampered by changes

in localities when molecules move from one \space" cached in one processor to another. As a

consequence, most of the cache misses are coherence misses. We ran MP3D on 50000 molecules for

50 steps, approximately 21 million instructions.

Cholesky is a program from the SPLASH benchmark suite for sparse matrix factorization[Sin92].

Columns of the matrix are grouped into supernodes to obtain adequate granularity. Each free

processor takes a supernode o� the task list and modi�es the appropriate parts of the main matrix.

Processors interfere with one another when attempting to take work o� the queue, and when

making modi�cations to the same destination column. Our simulation used the BCSSTK14 input

�le, which ran for 65 million instructions.

Topopt performs topological optimization on VLSI circuits using a parallel simulated annealing

algorithm[DN87]. This application exhibits a fair amount of both true and false sharing[EJ91]. We

used the cpla1.lomim input �le, approximately 1.7 billion instructions.

4.2 Simulated architectures

Our experiments simulated a variety of usual and sector caches. We varied C, the cache capacity,

and L, the line size. In all experiments the subblock size b was 8 bytes and caches were two-way

set-associative (k = 2).

Caches were either small (C = 32K) or large (C = 128K). The line size was either 8, 32 or 64

bytes. For the usual caches we used the Illinois protocol. For the sector caches we simulated the

protocol described previously (of course there was no simulation of sector caches with a line size of

8 bytes).

Finally, we simulated the applications on systems with 1, 4, 16, and 32 processors.



4.3 Metrics

The principal metric we used to evaluate the protocols was execution time in simulated clock ticks.

For all programs, all measurements were done only on the parallel section of the application; for

the programs studied, the execution time of the serial section of the code is negligible compared to

the time spent in the parallel section.

We also gathered other performance metrics that allowed us to interpret the simulation results.

Among these, we paid particular attention to the read/write miss rates since we cannot expect

to see improvements in the coherence protocol to be of much value if the miss rates are very low.

We also report on the number of cycles the bus was busy. This metric is especially important

because bus saturation limits the number of processors that can e�ectively be used to speed up a

program. For some applications, increasing the cache line size may reduce the cache miss rate, yet

the program may run slower because the additional time to transmit larger lines increases both bus

utilization and the overall time it takes to satisfy a cache miss.

5 Results

In this section we present the results of our simulations. In Figures 4 through 11, we show each

application's execution time when run using the large line sizes (32 and 64 bytes) normalized to

the running time of the program using the Illinois protocol using an 8 byte line size. We give

more detail about two applications: Gauss, because it is representative of the applications with

good locality; and MP3D, an example of a program with a great deal of sharing. For these two

programs, we show the overall speedup versus the single processor, 8 byte line size Illinois protocol.

We also show the number of bus busy cycles during the program's run.

5.1 Gauss

Gauss has a high degree of spatial and temporal locality and little sharing between processors.

Because of this, miss rates for both reads and writes were low. Write miss rates across all studied

architectures and both protocols were 1% or lower. However, there were signi�cant di�erences in

the read miss rates between runs using the small line size Illinois protocol and those using the

larger line sizes. This is due to the fact that satisfying a cache miss when the line size is large also

brings in additional matrix elements. First accesses to these elements hit in the cache, whereas such

accesses are misses when small line sizes are used. Read miss rates using small line sizes ranged

from 10% to 14%, while miss rates for larger line sizes varied between 2% and 4%. These higher

miss rates did not a�ect execution times much when few processors were used. When bus and

memory contention become high, though, using larger line sizes produced much smaller execution

times, as can be seen in Figures 4 through 7 and Figure 12. On 16 and 32 processors, Gauss runs

2.5 to 3.5 times faster using 32 or 64 byte lines. While the Illinois protocol with 8 byte lines reaches

saturation at 4 processors (cf. Figure 12), speedups still increase after 16 processors with larger

line sizes. Using larger line sizes also substantially reduces the amount of time the bus is busy, as

shown in Figure 13. Because the miss rates were so low for the large line size Illinois protocol, there

was little room for improvement on the part of the subblock protocol. Nonetheless, in all cases

Bus cycles are reported for the entire program run; this will be changed in the �nal version of the paper.



Gauss executed as fast (and sometimes a bit faster) using the subblock protocol as it did using the

large line size Illinois protocol.

5.2 Relax

Relax's memory reference patterns are similar to those found in Gauss. The relax application

exhibited very low read miss rates; across all simulation runs, the rate was 3% or below. This is

not surprising, since each element in the matrix is read 9 times each iteration of the main loop.

However, write miss rates varied a great deal among the simulation runs. For a given number of

processors, write miss rates (and execution time) for large caches (128K) varied little when the line

size under the Illinois protocol was varied from 8 to 32 to 64 bytes, or when the subblock protocol

was used (cf. Figures 6 and 7). However, when small caches were used (32K), write miss rates for

the Illinois protocol were high (from 50% to 75%) when small line sizes were used. Miss rates were

much lower (10% to 20%) with larger line sizes because there is a great deal of spatial locality for

write accesses. Since the cost of write misses is low when there are few processors in the system

(because of a lack of bus and memory contention), there was little di�erence in execution time in

the 1 and 4 processor systems. However, when bus contention is high due to the large number of

processors, using large line sizes substantially reduced execution times (cf. Figures 4 and 5 which

show execution time improvements between 1.5 and 2.5). There was little di�erence between the

performance of the subblock protocol and the Illinois protocol since there is relatively little sharing

in the application.

5.3 Cholesky

Because there is not a great deal of data sharing in Cholesky, increasing the line size in the ap-

plication decreased execution times. In all cases except one, the execution time of the subblock

protocol was within 3% of the time of Illinois protocol on the same line size (the biggest di�erence

was 5%). Because there are many locking operations done in Cholesky, the addition of the Dirty

Shared subblock state to the subblock protocol reduced the latency for the memory unit, because

otherwise the subblock would have to be written back to memory after every lock or unlock oper-

ation (and subsequent read by another processor) just as in the Illinois protocol. This allowed the

performance of the subblock protocol to stay competitive with the large line size Illinois protocol,

even though the subblock protocol had more misses (and bus busy cycles) than the large line size

Illinois protocol. Using large line sizes gave an improvement of from 5% to 38% for small caches

(cf. Figures 8 and 9) and from 3% to 26% for large caches (cf. Figures 10 and 11).

5.4 MP3D

MP3D has a great deal of true sharing in one of its principal data structures. In practice, this

sharing strongly limits the amount of speedup that can be obtained. Because of this sharing

behavior, we would expect that increasing the line size under the Illinois protocol would strongly

degrade application performance when compared to using 8 byte line sizes. As seen in Figures 8

through 11, using large line sizes with 1 processor actually increased performance by up to 10%

over the small line size cases. But as the number of processors increases, the advantage of using

large line sizes turns into a disadvantage, so much so that in the worst case (32 processors, 128K

caches, 64 byte line size) the large line size case takes almost twice as long to execute as the 8 byte



case. In contrast, the subblock protocol took only 4% longer to execute (cf. Figure 11). Though the

large block Illinois protocol had miss rates, about 6% that were 10% to 20% lower than those of the

subblock protocol, a cache miss on the Illinois protocol caused much more data to be transferred

per miss than the subblock protocol. Indeed, the 8 byte Illinois protocol had the highest miss rates

of all, about 8%, yet performed better when compared to using larger line sizes under the same

protocol because each miss required fewer bus cycles to satisfy. The overall reduction in bus cycles

can be seen in Figure 13 which shows that at equal line sizes the number of bus busy cycles under

the subblock protocol is less than half that of the Illinois protocol. As expected, the number of bus

busy cycles went up markedly as the number of processors increases. Because of these additional

bus cycles, performance for the large line size Illinois protocol actually decreased as the number of

processors is increased from 16 to 32, while the subblock protocol and the 8 byte Illinois protocol

actually posted small increases in performance (see Figure 12). Thus using the subblock protocol

with large line sizes produces a dramatic gain in performance over the standard Illinois protocol.

5.5 Topopt

As previously discussed, Topopt exhibits a great deal of true and false sharing. As seen in Figures

8 through 11, Topopt's performance under the Illinois protocol substantially decreased when the

line size was increased from 8 bytes to 32 and 64 bytes. In the 16 processor case, performance of

the 32 byte line size dropped 9% from the 8 byte Illinois protocol, while using 64 byte line sizes

performance decreased by 27%. In contrast, the performance of the subblock protocol decreased

very little (if at all) from the 8 byte Illinois protocol across the various con�gurations studied. The

source of the di�erence between the subblock protocol and the Illinois protocol for large line sizes

is the additional misses caused by sharing. These misses generate many more bus busy cycles for

the Illinois protocol than the subblock protocol. The delay in satisfying these misses substantially

increased program execution time.

5.6 Results summary

From the above results, we can see that using small coherence blocks with large transfer blocks

gives good performance for both applications with very little sharing (e.g. Gauss et al.) as well as

applications with a great deal of sharing (MP3D and Topopt). Using large line sizes, the subblock

protocol (along with the Illinois protocol) sped up Gauss by 2.5 to 3 times over using small line

sizes with the Illinois protocol. At the same time, the subblock protocol performed about as well

as (and sometimes better than) the 8 byte Illinois protocol for those applications with a great deal

of sharing, cases in which using a large line size with the Illinois protocol substantially reduces

performance. The number of cache state and tag bits required by the subblock protocol (used with

large line sizes) is actually less than that needed by the Illinois protocol for an 8 bit line size (for a

given cache size), since the additional bits needed for the subblock states are more than matched

by the savings in tag bits. Though a cache that implements the subblock protocol for a given line

size does require a bit more memory than a cache that supports the Illinois protocol, the cost is

minimal given the performance advantages of the subblock protocol.
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Figure 8: Speedups for 32K cache, 32 byte line size
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Figure 9: Speedups for 32K cache, 64 byte line size
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Figure 10: Speedups for 128K cache, 32 byte line size
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Figure 11: Speedups for 128K cache, 64 byte line size
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Figure 12: Speedups for Gauss and MP3D Relative To Single Processor
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Figure 13: Bus busy times for Gauss and MP3D



6 Related Work

Goodman introduced the concept of a coherence block which can be di�erent in size from either

an address block (the amount of storage associated with a cache address tag) or a transfer block,

which is the amount of data transferred from memory on a miss [Goo87]. Goodman advocates

using a large size for the coherence block to reduce the number of coherence operations that must

be done to read or write a given amount of data. However, at some point increased tra�c from

false sharing misses will cause an overall increase in memory latency and bus tra�c.

Other authors have proposed directory based schemes in which the unit of coherence is smaller

than an address block. Chen and Dubois [CD93] describe an extension to Censier and Feautrier's

full-map directory protocol in which a valid bit is associated with each invalidation block. They

show a substantial decrease in both miss rates and memory tra�c when partial invalidations are

used.

Dubnicki and LeBlanc [DL92] propose adjustable block size caches which dynamically grow or

shrink the size of an address block in response to various patterns of write sharing. A counter is

associated with each cache line. The counter is incremented if only half of the block was accessed;

if both halves were accessed, the counter is decremented. A block is split when a processor requests

part of a block which has been modi�ed in another processor, and the split/merge counter indicates

that processors are accessing only parts of the block. Two blocks is merged when both are owned

by the same node and both split/merge counters indicate that the blocks should be merged. Un-

like Chen's protocol, Dubnicki's protocol is not easily adaptable to non-directory based coherence

protocols.

7 Conclusion

In this paper, we have highlighted a cache coherence protocol that attempts to combine the best

features of using large and small line sizes. The coherence protocol uses large block sizes for data

transfers, yet uses smaller block sizes when doing invalidations in order to avoid false sharing e�ects.

We also used read broadcast to reduce the number of data re-reads caused by invalidations.

We ran this subblock protocol on an instruction-level simulator, to both test its correctness

and evaluate its performance. We found that the subblock protocol did as well as the large line

size Illinois protocol on applications that exhibit good spatial locality and little sharing. At the

same time, the subblock protocol was competitive with the small line size Illinois protocol on the

two applications that have large amounts of sharing. We believe that the relatively small amount

of additional hardware needed by the subblock protocol (versus using the same line size with

a conventional protocol) is justi�ed by the fact that it performs well both for applications that

exhibit good spatial locality and for those that have true and false sharing. This is in contrast

with protocols with a single line size for coherence and transfer that perform well for one type of

applications and poorly for the other.

In future work we will modify the protocol to work in a hierarchical bus system. We plan to

evaluate the e�ectiveness of using di�erent transfer and coherence sizes at di�erent levels in the

system. We will also investigate incorporating the detection of migratory sharing into our subblock

protocol[SBS93].
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Appendix A - Subblock Protocol Speci�cation

Processor Cache Status Processor Request

Line Status / Subblock Status READ WRITE SWAP REPLACE

INVALID/Invalid Allocate line Allocate Line Allocate Line None

Q Read� Q Read Ex Q Read Ex

CLEAN SHARED/Invalid Q Read Q Read Ex Q Read Ex None

VALID EXCLUSIVE/Invalid Q Read Q Read Ex Q Read Ex Noney

DIRTY SHARED/Invalid Q Read Q Read Ex Q Read Ex Noney

CLEAN SHARED/Clean Shared Hit Q Invalidate Q Invalidate None

VALID EXCLUSIVE/Clean Shared Hit Hit Hit Noney

! Dirty ! Dirty

DIRTY SHARED/Clean Shared Hit Q Invalidate Q Invalidate Noney

CLEAN SHARED/Dirty Shared Hit Q Invalidate Q Invalidate Write Back

DIRTY SHARED/Dirty Shared Hit Q Invalidate Q Invalidate Write Back

VALID EXCLUSIVE/Dirty Hit Hit Hit Write Back

DIRTY SHARED/Dirty Hit Hit Hit Write Back

yIf other blocks are dirty, they are written back

�`Q' means to enqueue a request on the bus

Table 2: Direct Processor Actions



Processor Cache Status Other Request

Line Status / Subblock Status Read Read Ex Invalidate

INVALID/Invalid Snarf - -

! CLEAN SHARED

! Clean Sharedz

CLEAN SHARED/Invalid Snarf - -

! Clean Sharedz

VALID EXCLUSIVE/Invalid - - -

DIRTY SHARED/Invalid Snarf - -

! Clean Sharedz

CLEAN SHARED/Clean Shared Supply* Supply* ! Invalid

!Invalid

VALID EXCLUSIVE/Clean Shared Supply Supply Error

!DIRTY SHARED !Invalid

DIRTY SHARED/Clean Shared Supply* Supply* ! Invalid

!Invalid

CLEAN SHARED/Dirty Shared Supply* Supply* ! Invalid�

!Invalid�

DIRTY SHARED/Dirty Shared Supply* Supply* ! Invalid�

!Invalid�

VALID EXCLUSIVE/Dirty Supply Supply

!DIRTY SHARED !Invalid Error

!Dirty Shared

DIRTY SHARED/Dirty Supply Supply Error

!Dirty Shared !Invalid

zThe snarf occurs i� the tag matches, and another cache (not memory) supplies the subblock

*At most one cache will supply the block

�The requester will be responsible for writing the subblock back

Table 3: Induced Processor Cache Actions



Processor Cache Status Successful Request

Line / Subblock Read Read Ex Invalidate

(Cache to Cache) (Cache to Cache)

! CLEAN SHARED ! DIRTY SHARED

INVALID/Invalid ! Clean Shared ! Dirty N/A

(From Memory) (From Memory)

! VALID EXCLUSIVE ! VALID EXCLUSIVE

! Clean Shared ! Dirty

(Cache to Cache) (Cache to Cache)

! Clean Shared ! DIRTY SHARED

CLEAN SHARED/ ! Dirty N/A

Invalid (From Memory) (From Memory)

! Clean Shared ! DIRTY SHARED

! Dirty

(Cache to Cache) (Cache to Cache)

! CLEAN SHARED ! DIRTY SHARED

VALID EXCLUSIVE/ ! Clean Shared ! Dirty N/A

Invalid (From Memory) (From Memory)

! Clean Shared ! Dirty

DIRTY SHARED/ ! Clean Shared ! Dirty N/A

Invalid

CLEAN SHARED/ N/A N/A ! DIRTY SHARED

Clean Shared ! Dirty

VALID EXCLUSIVE/ N/A N/A N/A

Clean Shared

DIRTY SHARED/ N/A N/A ! Dirty

Clean Shared

DIRTY SHARED/ N/A N/A ! Dirty

Dirty Shared

Table 4: Processor cache response to successful request


