
A Self-Accelerating Packet Service Discipline
for

Low-Delay Service to Bursty Flows

Ricardo Pincheira

Department of Computer Science, FR-35
University of Washington

Seattle, WA 98195
pinch@cs.washington.edu

Technical Report 94-05-07

ABSTRACT

In this paper, we consider the transmission of compressed video over networks.
We dev elop a packet service discipline called Axel that provides very low service delays
to bursty flows while providing guaranteed throughput to all flows in the system. In con-
trast to existing policies capable of providing bandwidth guarantees, Axel can provide
low delay service to bursty flows without the need for resource over-reservation. We
study the behavior of Axel through analysis and simulation, and conclude that Axel meets
its stated goals. The policy is targeted at a network environment composed of a mixture
of bursty, delay sensitive traffic and smoother, delay insensitive traffic. We expect such
an environment to arise from a mixture of interactive, compressed video streams (eg.,
tele-conferencing) and non-interactive compressed video streams (eg., video-on-demand).

31 January 1994

1. Intr oduction

There is little doubt that in coming years, continuous-media flows such as digital video and audio

will form an ever-increasing fraction of traffic in data networks. Animportant prerequisite for continuous

media flows is guaranteed bandwidth; in 30 frames-per-second video, for example, a new frame must be

available for consumption at the receiver every 33 milliseconds (see also[5]).Several service disciplines

able to provide guaranteed bandwidth have been proposed in recent years [14,10,4,13].Unfortunately,

these policies are able to guarantee bandwidth by decoupling, to a large extent, the service that they giv e to

a flow from the flow’s arrival behavior. Such a decoupling is necessary to provide “firewalls” between

flows and prevent any one flow from monopolizing system resources at the expense of other flows. How-

ev er, it prevents a flow from receiving a higher rate of service when its bits arrive faster than expected. Asa

result, these policies penalize bursty flows and provide them with considerably higher service delays than

smoother types of traffic.

Continuous media flows can be broadly divided into two classes: flows with stringent end-to-end

delay requirements, and flows that are not delay sensitive. The first class arises from teleconferencing or

other simultaneous tele-interactions. In an interactive conference, for example, maximum tolerable end-to-

end delays are measured in the 100-200 millisecond range, and one can easily envision future methods of

tele-interaction, such as distributed music rehearsal[1], in which end-to-end delay requirements are even

more stringent. The second class arises from services such as video-on-demand.An end-to-end delay of

several seconds is acceptable when watching a previously-recorded video clip or in a “live” but non-

interactive application.

Due to the interaction of delay requirements with variable bit-rate (VBR) compression, the burstiness

characteristics for these two classes of flows also differs. It is well known that applying variable bit-rate

(VBR) compression to video yields a very bursty stream of data (eg, [9]). Though a bursty flow can be

smoothed before it enters the network, smoothing results in additional delay. These delays are not signifi-

cant for flows with loose end-to-end delay requirements.Indeed, when all the data to be transmitted is

known in advance, as in video-on-demand services, the resulting flow can be smoothed to a practically con-

stant data rate. By contrast, flows with stringent delay requirements preclude any significant degree of

smoothing.

In sum, we can identify two distinct classes of continuous media flows: bursty flows with stringent

end-to-end delay requirements, and smoother flows with loose end-to-end delay constraints.Since existing

policies providing bandwidth guarantees penalize bursty flows, they are ill-suited to this environment.

In this paper we develop a packet service policy, called Axel, that offers very low end-to-end delays

to bursty flows while providing smoother flows with bandwidth guarantees.It belongs to a class of service

disciplines that we termself-accelerating, because they accelerate the rate of service of flows being

31 January 1994

-2-

serviced at a rate that is too low relative to their actual arrival rate. They can thus provide bursty flows with

very low service delays.We also require that self-accelerating policies provide bandwidth guarantees to all

flows in the system and prevent any one flow from arbitrarily increasing its rate of service.

The idea of increasing a flow’s rate of service so as to clear a burst of data more quickly is not

new. [8] (reviewed in section 2.3.2) describes a policy called Pulse that tries to alleviate congestion quickly.

It services packets according to a discipline that models the behavior of bursts. [2]discusses the relative

merits of enforcing total isolation between flows vs. allowing statistical sharing when trying to provide

bursty flows with low delay jitter (variability). TheAxel policy dev eloped here provides very low service

delays to bursty flows by allowing a controlled amount of sharing; yet, by enforcing isolation, it provides

all flows in the system with guaranteed throughput.

The rest of this paper is organized as follows. Section2 introduces our system model and reviews

some background material. Section 3 develops a self-accelerating policy called Axel. Section4 uses simu-

lation to evaluate the performance of Axel and compare it against several benchmark policies. Section 5

discusses potential improvements to Axel and suggests areas for future research.Lastly, section 6 con-

cludes.

2. Definitionsand Background

2.1. SystemModel

We assume a network in which packets originate at packet sources, traverse one or more packet

servers, and terminate at packet sinks. A packet server k has an aggregate service capacityRk. Sources,

servers, and sinks are joined by links having infinite capacity.1 As a condition for receiving a guaranteed

level of service, each client flow enters into a contract with the network, in which the client promises to

adhere to a certain traffic generation pattern and the network promises a certain level of service in return.

We will use a very general characterization for each flow i , similar to that used in[3,10,2,1]. Eachflow i

advertises 3 parameters,r i , r̂ i , andWi . r i , the average rate, describes the flow’s long-term average behavior

and bandwidth requirement.̂r i , the peak rate, bounds the peak rate at which the flow will present packets to

the network and is based on minimum inter-packet gaps. Hereafter, we will often user i and ˆr i to refer both

to bit rates and packet rates.Whenever the distinction matters, the particular interpretation should be clear

from context. We do not require that the network satisfy the peak rate constraints internally. r̂ i may

increase if packets clump together at some server and are then output in a large burst.

The last parameter, Wi , describes the burstiness of the flow, as shown in figure 1. The solid curve

shows the cumulative number of bits transmitted by some flow over its lifetime. The dotted line segments,

which have slope r i , show the number of bits the flow would have transmitted if it never produced bits

1 The finite capacity of a physical link is captured by the server capacity.

31 January 1994

-3-

.....
.....

.....
.....

.....
.....

.....
.....

...

.....
.....

.....
.....

.
.....

..

b

i

t

s

Wi

Time

Figure 1

faster than its claimed average rate during active periods. Wi bounds the difference between these two

quantities; in the figure,Wi is simply the maximum vertical distance between the solid and dotted curves.

Wi is a measure of burstiness because it bounds the size of a burst.

An equivalent definition ofWi is to consider an idealized server that always services flow i at an

instantaneous rater i . ThenWi bounds flow i ’s queue length at the ideal server. A flow with an average

rater i can be forced to abide to a given (Wi , r i , r̂ i) parameterization with a leaky-bucket filter [11].

Because of the dual interpretation forWi , we will sometimes callWi themaximum workaheadof the

flow (when viewed from the standpoint of data generation) or the themaximum backlog of the flow (when

viewed from the standpoint of an ideal server).

Let the servers that a flow traverses be denoted by 0,1, 2...m − 1, and its sink be denotedm. At each

hopk a burstinessWi
k can be defined in a manner analogous to the definition given for the flow’s burstiness

at the edge of the network by considering the output from the previous hop.Wi is thenWi
0. The input

burstinessof the flow at a particular serverk is Wi
k, while itsoutput burstinessis Wi

k+1.

Tw o of the policies we will discuss here, Virtual Clock (section 2.3.1 [14]) and Pulse (section 2.3.2

[8]), use a parameterAI i instead ofWi to describe the burstiness of a flow. AI i is called theaveraging

interval, and has the following interpretation:if a flow’s behavior is monitored over successive disjoint

intervals of lengthAI i , then in every such interval the flow transmits at mostAI i r i bits. For these policies,

we define a suitable value for AI i via AI i =
Wi

r i
. This conversion corresponds to a flow transmittingWi

bits at the beginning of an averaging interval.

31 January 1994

-4-

2.2. Classesof Flows

In the introduction, we alluded to the existence of two classes of flows, one composed of bursty flows

requiring very low end-to-end latencies, and another composed of very smooth flows able to tolerate rela-

tively high end-to-end latencies.We call the first of these classes thebursty or A flows; they are character-

ized by high values for
Wi

r i
and

r̂ i

r i
. We call the second class of flows thesmoothor D flows; they are char-

acterized by low values for
Wi

r i
and

r̂ i

r i
. The A and D designations arise from the fact that whenever a

bursty flow generates a burst, its service rate should be temporarily accelerated in order to provide it with

low end-to-end latency, while the service rate of delay-tolerant smooth flows can be temporarily decelerated

while part of their resources are devoted to improving the service given to A flows.

2.3. RelatedWork

2.3.1. Virtual Clock

The Axel packet service policy dev eloped in section 3 uses many of the ideas of Virtual Clock[14].

Vi rtual Clock belongs to the class oftimestamp-based service disciplines. These operate by assigning a

timestamp to the packets of each flow traversing the server and servicing the packets in timestamp order. In

Vi rtual Clock, the timestamp for flow i is generated using the following rule.vclocki (called auxVCi

in [14]) is a state variable that tracks the evolution of the timestamp;vticki is a constant set to 1/r i and is

the “tick” size at whichvclocki ticks; andRealTimestands for wall-clock time at the packet server.

Initially, on seeing the first bit from flowi , set vclocki = RealTime

For each packet received from flow i , let l be the packet length. Then do as follows:

• vclocki = max(RealTime, vclocki)

• vclocki = vclocki + l vticki

• Stamp the packet withvclocki

Note that the timestamps of a flow transmitting close to its claimed rater i closely trackRealTime, whereas

the timestamps of a flow transmitting faster than expected evolve faster thanRealTime. Such a misbehav-

ing flow quickly loses priority to flows abiding to their claimed average rate, because its timestamps will be

larger. Note also that the resynchronization ofvclockwith RealTimevia vclocki = max(RealTime, vclocki)

prevents a flow from arbitrarily reducing its timestamp values relative to those of flows that transmit close

to their claimed rate. Consequently, no flow can arbitrarily increase its priority over other flows.

Through these two mechanisms, Virtual Clock is able to provide each flow i with a guaranteed

throughput. Indeed,if n flows, 1,. . .n, traverse a server k having aggregate service capacityRk, then pro-

vided that Rk ≥
n

j=1
Σ r j , Virtual Clock provides each flow i with average throughput at leastr i . More

31 January 1994

-5-

generally, the long term rate of service received by flow i is
r i

n

j=1
Σ r j

Rk. 2

Though Virtual Clock provides guaranteed throughput to all flows in the system, it clearly penalizes

bursty flows, even when they adhere to their claimed long-term average throughputr i . Whenever a bursty

flow generates a burst, itsvclock advances rapidly and the flow loses priority to smoother flows. For this

reason, Virtual Clock does not work well in an environment composed of delay-intolerant, bursty A flows

and delay-tolerant, smoothD flows.

2.3.2. Pulse

The Pulse policy [8] aims to minimize congestion by attempting to clear bursts quickly. Pulse gener-

alizes Virtual Clock by using two values for the timestamp increment,vticki
large ≥ 1/r i andvticksmall ≤ 1/r i .

The vclock is incremented usingvticki
small until a certain number of bits are received. Thevclock is then

incremented once withvticki
large. The two values of vtick are thus used alternatingly. Pulse models the

behavior of on/off-type sources quite closely and can be expected to provide them with low service delays.

For the performance study of section 4, we setvticki
small to

1

r̂ i and vticki
large to

Wi

r i
− Wi vticki

small.

Initially, the flow hasWi “credits” for the smaller timestamp increment, which it consumes as bits arrive.

Once the flow exhausts its credits, the timestamp is incremented once with the large vtick and the flow

receives an additionalWi credits.

Pulse also differs from Virtual Clock in that thevclock is not resynchronized withRealTimeif it lags

behind. That is, unlike Virtual Clock, the Pulse timestamping rule does not include the step

vclock= max(vclock, RealTime).

2.3.3. Fifo+

Fifo+ [2] is a modification of ordinary Fifo.Fifo can be implemented as a timestamp-based service

discipline by using a packet’s actual arrival time at the server as its timestamp. Fifo+ modifies the Fifo

timestamp by the deviation between the packet’s actual delay in reaching the server from its source and the

delay that the packet would have encountered if, at each of the upstream servers it traversed, it had been

delayed by that server’s average observed delay. A packet that has received higher than average delay in

traversing upstream servers receives a smaller timestamp than it would under Fifo, while one that has

received lower than average delay is assigned a larger timestamp.

2 As [10] points out, however, Virtual Clock is vulnerable to a “punishment” phenomenom and does not
guarantee eachpacket of flow i a service rater i . The closely related Weighted Fair Queueing or PGPS
policy [10,4], can guarantee this rate even to individual packets of a flow (within a very small factor to account
for priority inversion — a server services each packet non-preemptively to completion).The PGPS timestamp-
ing rule is syntactically identical to that of Virtual Clock, but its slightly different semantics for the time associ-
ated with a server prevent punishment.

31 January 1994

-6-

Under Fifo+, end-to-end delays change relatively slowly, and one can predict a flow’s expected end-

to-end delays from the observed mean service delays at the servers it traverses. Ourinterest in Fifo+ stems

from the fact that it attempts to give similar end-to-end delays to all packets of a flow. To the extent that its

packets encounter similar delays, a flow’s original arrival characteristics are approximately preserved.

Since any increase or decrease in a flow’s original burstiness implies an increase in its end-to-end delay, one

would expect Fifo+ to service bursty flows with relatively low delay.

3. A Self-Accelerating Service Discipline

This section introduces the concept of self-acceleration in slightly more precise terms than has been

done to this point and develops a self-accelerating service policy called Axel. In introducing Axel, we will

first present a policy that does not work well, and then modify it to yield Axel. Axel provides very low end-

to-end delays to bursty flows, yet also provides bandwidth guarantees to every flow in the system and pre-

vents a malicious flow from monopolizing system resources.This will be demonstrated in section 4 which

presents the results of a simulation study.

Consider a flow i traversing a server, and suppose that over a small time interval the flow’s input rate

into the server isρ i
in ≥ 0 while its output (service) rate isρ i

out ≥ 0. A self-accelerating service policyis one

that increasesρ i
out whenever ρ i

in > ρ i
out. Clearly, a usable policy cannot increaseρ i

out to an arbitrary degree

or for an indefinite period of time, for otherwise, the flow could monopolize resources.Thus, in defining a

self-accelerating service policy we also require that any period of acceleration be bounded, so that no flow

can arbitrarily increase its quality of service at the expense of other flows. This last condition excludes

policies such as ordinary first-come, first-served (Fifo) from the class of self-accelerating policies.

The idea underlying our development of a self-accelerating service policy is the observation that any

discrepancy in ρ i
in and ρ i

out is reflected in the number of bits back-logged (queued) inside the server. In

particular, if ρ i
b denotes the rate at which the backlog changes, with positive values denoting an increase in

backlog and negative values a decrease, we have

ρ i
in = ρ i

out + ρ i
b

Suppose that a flow is serviced using Virtual Clock, and consider an idealized case in which the flow

is in a steady-state, withρ i
in = ρ i

out = r i andρ i
b = 0. If the flow bursts, the timestamp will evolve at the rel-

ative rate
ρ i

in

r i
, or, substitutingρ i

out + ρ i
b for ρ i

in, 1 +
ρ i

b

r i
, where 1 is the rate at whichRealTimeev olves.

ρ i
b

r i

is thus the rate at which the flow’s timestamp surges ahead ofRealTime, and, in some sense, reflects the dif-

ference between the rate at which the vclock is evolving and the rate at which it “should” evolve if the

flow’s service rate were to match its input rate. This holds to the extent that the timestamp value associated

with a bit bounds the time by which the bit is serviced.

31 January 1994

-7-

ArrivalTime= RealTime

TS≈ RealTime+
bi

r i

TS≈ RealTime

Figure 2

Figure 2 illustrates. The figure shows the state of some flow i ’s bits following a burst by the flow. bi

denotes the current backlog in bits for the flow at the server andTSdenotes the timestamp of the indicated

bit. Thefigure shows an idealized case in which flow i had no back-logged bits at the server before burst-

ing and the timestamp value of the bit being serviced closely matchesRealTime. This latter assumption is

somewhat unrealistic, since whenever the server is (momentarily) overloaded, the timestamp of the bit

being served will tend to be greater thanRealTime, while in cases in which the server is not operating at

full capacity, its timestamp may actually surge ahead ofRealTime.3 But clearly, in some sense
bi

r i
reflects

the difference between the flow’s vclock and where it “should” be if the flow were to be serviced at a rate

matching its arrival rate. Thisobservation suggests modifying the timestamps generated by Virtual Clock

by
bi

r i
.

Suppose that the server services flows according to Virtual Clock, and call the generated timestamps

the baseline timestamps. Consider the following modification to the timestamp actually assigned to the

flow’s packets:4

Timestamp= baselineTimestamp−
min(bi ,Wi)

r i

This modified timestamping rule has a number of interesting properties:

• A flow (momentarily) transmitting at a rate higher than its specified rate receives service at a higher

rate. Note that the vtick between the timestamps assigned to two successive bits is
1

r i
−

∆i
b

r i
, where

∆i
b is the change inbi between the arrival of the two bits. If a flow transmits faster than it is serviced,

its backlogbi will increase.∆i
b will be positive, and the vtick will be reduced, speeding up its rate of

service.

3 The fact that the timestamp of the bit being served can surge ahead ofRealTimeis precisely why Virtual
Clock is vulnerable to the punishment phenomenon mentioned earlier. See [10].

4 This rule will be modified slightly below.

31 January 1994

-8-

• No flow can increase its rate of service arbitrarily. Once a flow’s backlog reachesWi , its timestamp

increment reverts to that of the baseline vtick, or
1

r i
.

• No flow can increase its priority arbitrarily, in the sense of arbitrarily reducing the value of its times-

tamps relative to those of the baseline policy and gaining advantage over other flows. Themaximum

priority that a flow can obtain is
Wi

r i
.

• The relative priority of two bits reflects the degree of smoothing that would occur under the baseline

policy. In the idealized case in which the server services the flow at an instantaneous rater i , the

delay that a newly arriving bit will encounter is
bi

r i
. The difference in the expected service delay

between two bits,
∆i

b

r i
, reflects the degree to which the two bits would be smoothed under the baseline

policy. For this reason, we will sometimes refer to the difference in the delay encountered by succes-

sive bits or packets as thesmoothing factor.

• Over a time interval, if the flow transmits at a rate higher than claimed, the timestamp values

assigned to the flow will reflect the ratio of the flow’s actual arrival rate to its actual service rate.

This holds provided that throughout the time interval, 0≤ bi ≤ Wi . Consider a time interval of length

t during which a flow i transmits a total ofn bits at a ratem ri , wherem > 1. Without loss of gener-

ality, we may assume this interval starts at time 0.Suppose that during this time interval, the flow has

been serviced at a ratepr i , wherep > 0. We may assume without loss of generality that the backlog

bi was 0 at the beginning of this time interval. At time t, therefore, the backlog will bet (m − p)r i .

Note also that at timet (oncen bits are received), the baseline value for the timestamp will be
n

r i
.

Assuming the backlogt (m − p) r i ≤ Wi , the actual timestamp at the end of the interval is therefore

n

r i
−

t (m − p) r i

r i

Sincet =
n

mri
, this reduces to

pn

mri
. Since the timestamp value “should” ben/r i (the baseline

value), the timestamp increased onlyp/m of what the actual increase should have been, as claimed.

This property implies that, provided the server is not momentarily overloaded, the flow’s actual

service rate over the time intervalt will reflect the flow’s actual arrival rate.

• Timestamps can be made to increase monotonically. The timestamp assignment rule described so far

doesnot satisfy timestamp monotonicity, though the timestamp values will never decrease. Thelatter

property holds because
bi

r i
never increases faster than the baseline vclock.Tw o bits can receive the

same timestamp, however.

In a timestamp-based discipline, timestamp values must increase monotonically. Furthermore,

the timestamps assigned to bits should not increase too slowly, for otherwise a flow could temporarily

31 January 1994

-9-

monopolize the server. Forcing a minimum timestamp increment solves both problems. As a mini-

mum timestamp increment, we will use
1

r̂ i , the inverse of the flow’s claimed peak rate.

With the modifications required to ensure a minimum timestamp increment, the timestamp assignment rule

becomes:

• compute thebaselineTimestampvalue according to Virtual Clock

• computet1 = baselineTimestamp−
min(bi ,Wi)

r i

• computet2 = previous timestamp value+
1

r̂ i

• set timestamp= max(t1, t2)

The above timestamping rule “defers” the acceleration it gives to a flow; the flow’s rate of service

isn’t actually increased until after all packets ahead of those that the policy timestamps with the reduced

timestamp increment are serviced.We thus call the service policy based on this rule theDeferredpolicy. It

is worth pointing out that the Deferred policy reduces to the baseline timestamping rule in the event that

there is never a backlog of bits to be serviced. Also, because the state used to generate the baseline times-

tamps is never modified, the algorithm reverts to the baseline timestamping algorithm following a period of

non-zero backlog.

The Deferred policy does not work well. Though we will not present detailed results here, the

Deferred policy can give every flow in the system, bothA andD, considerably worse end-to-end latencies

than Virtual Clock, and can increase their burstiness (the ratio of output to input burstiness) as well.The

reason for this poor performance is that the Deferred policy increasesthe effective timestamp increment

beyond the baselinevtick whenever the flow’s backlog is decreasing, reducing the flow’s rate of service.

Thus, though the Deferred policy initially increases a flow’s service rate following a burst, it reduces the

service rate shortly thereafter, once the backlog starts to clear. This behavior leads to poor service, particu-

larly when several flows bursting simultaneously heavily load the server. During the brief time in which a

flow is accelerated following a burst, the server is heavily loaded, so that the flow receives poor service

regardless of its timestamp increment. As the flow’s backlog clears, the flow is decelerated, losing

resources to flows that had not build up a heavy backlog.

Figure 3 illustrates this property of the timestamp evolution under the Deferred policy. It plots the

per-packet timestamp increment vs. time for a bursty flow transmitting a number of constant-sized packets

during each burst. We hav eomitted a significant number of values greater than 0.01. Bycontrast, although

we do not show it here, under Virtual Clock, the timestamp increment is almost always5 approximately

0. 0005,the value of
1

r i
multiplied by the packet size.

5 Except when resynchronizing withRealTime.

31 January 1994

-10-

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

es
ta

m
p

In
cr

em
en

t

Time

Deferred Policy Timestamp Increments

"deferred.tsdelta.data"

Figure 3

Initially, on seeing the first bit from flowi , set vclocki = baseVCi = RealTime.

Let l be the packet length of thej th packet received from flow i . Then do as follows:

• δ i
b =







∆i
b

Wi − bi (j − 1)

0

if bi (j − 1) < bi (j) ≤ Wi

if bi (j − 1) < Wi < bi (j)

otherwise
• vclocki = max(vclocki , RealTime)

baseVCi = max(baseVCi , RealTime)

• vclocki = max

vclocki +

l

r̂ i , vclocki + l vticki −
δ i

b

r i




baseVCi = vclocki + l vticki

• vclocki = max

vclocki , baseVCi −

Wi

r i




• Stamp the packet withvclocki

Figure 4

This analysis suggests modifying the Deferred policy so that the effective vtick never increases

beyond the baselinevtick,
1

r i
. Recall that the Deferred policy’s timestamp increment is

1

r i
−

∆i
b

r i
. The

31 January 1994

-11-

proposed modification is to take as the timestamp increment
1

r i
− max(0,

∆i
b

r i
). Thisrule, however, allows a

flow to receive better service than it should under some circumstances.Even though a flow’s timestamp

values cannot become less thanRealTime(because the vclock is resynchronized withRealTime), its times-

tamp values can become much smaller than those of the baseline timestamping rule.This can happen when

a very bursty flow transmits faster than expected and its timestamps become greater thanRealTime. By

building up backlog, the flow can reduce its timestamp values by as much as
Wi

r i
relative to those of the

baseline rule.By remaining idle until its backlog decreases below Wi , the flow receives another opportu-

nity to reduce its timestamp values. Byrepeatedly building up backlog and then allowing it to drain, a flow

can increase its priority almost arbitrarily

The solution to this problem is to prevent timestamp values from ever becoming smaller than

baselineTimestamp−
Wi

r i
. Figure 4 describes the complete timestamping rule, which we call Axel. vclocki

is the state variable actually used to generate the timestamps.baseVCi is the baseline vclock and prevents a

flow from arbitrarily increasing its priority. vticki is
1

r i
, the baseline vtick.bi (j) is the backlog when the

j th packet is received, so that∆i
b is simplybi (j) − bi (j − 1). Thevariableδ i

b implements bounded accelera-

tion. If packet sizes are small relative to Wi , the definition ofδ i
b can be simplified by using 0 for both the

second and third cases.

Axel retains all the positive qualities of the Deferred policy. A flow cannot increase its rate of service

arbitrarily, because once its backlog reachesWi , its vtick reverts to
1

r i
. Also, because the vclock is resyn-

chronized withRealTimeand is not allowed to lag too far behindbaseVCi , a flow cannot arbitrarily reduce

the value of its timestamps and increase its priority. Lastly, as in Virtual Clock, a misbehaving flow that

transmits faster than claimed will quickly lose priority to flows adhering to their advertised rate. It is also

worth pointing out that if ˆr i is set equal tor i , Axel is equivalent to Virtual Clock.

The Axel policy performs very well. This is demonstrated in the next section.

4. SimulationStudy

This section evaluates the performance of Axel via simulation.

4.1. Network Configuration and Methodology

Figure 5 shows the basic network configuration used for this study. It consists of a chain of 5 servers,

numbered 0 to 4.Tw o A and sixD flows traverse the entire chain of servers, from server 0 to server 4.

These flows were used to study end-to-end latencies.Tw o A and five D cross-flows also traverse each

server. Each of the cross-traffic flows traverses only one server.

31 January 1994

-12-

Server 2

Cross Traffic

Server 0 Server 4Server 1 Server 3

Figure 5

Large W Flow Characteristics

Flow Type r i actual rate r̂ i Wi packet size burst size

A 92160 89834 921600 96000 48 64

D 92160 92198 92160 96000 48 1

Table 1

Small W Flow Characteristics

Flow Type r i actual rate r̂ i Wi packet size burst size

A 76200 74384 921600 24000 48 64

D 76200 76231 76200 9600 48 1

Table 2

The packet sources used to drive the simulation were either Poisson or Poisson-based.We modeled

each smooth source as a simple stream of constant-size packets with exponentially-distributed inter-packet

gaps. We modeled bursty flows as on/off sources. Duringan active period, a bursty source produced a

geometrically-distributed number of packets with constant inter-packet gap
1

r̂ i . Following an active period,

the source remained quiescent for an exponentially-distributed time interval before becoming active again.

Though the limitations of Poisson and Poisson-related packet sources for driving network simula-

tions, and particularly for modeling cross traffic, are well-known [7] , we believe our results are valid, in

that they highlight the significant performance differences between Axel and other policies.

We simulated two principal cases: a “large-W” case, in which the advertisedWi ’s of the flows were

quite large, and a “small-W” case.Tables 1 and 2 describe the flows in the system for these two configura-

tions. All quantities are in bytes and bytes/second, except for mean burst size, which is in packets. All

flows were filtered with a leaky-bucket filter before entering the network. Theactual rate columns show the

actual rate after filtering, averaged across all flows of a particular type.For the small-W case, the “raw”

av erage rate of the bursty flows before filtering was approximately 92,160 bytes/second.

31 January 1994

-13-

For each configuration, we set the capacity of each server so that its utilization would be approxi-

mately 91.5%. Each server was allowed an unbounded amount of buffer space.

For each of the scenarios described below, we used the same packet streams to simulate each policy.

However, we simulated each policy only once and did not compute confidence intervals. Exceptas noted

below, the simulations cover a time interval of 100 seconds. After filtering, each source produced at least

153,000 packets in the small-W case, and at least 184,000 packets in the large-W case.

4.2. Performance Indices

We used two metrics to evaluate the performance of packet service policies: (1) the end-to-end delays

of bursty flows traversing the entire chain of 5 servers. (2)The burstiness increase of the smooth flows,

both at individual servers and over sev eral hops. The burstiness increase is defined as the normalized ratio

of output to input burstiness,
Wout − Win

Win
, after traversing one or more servers.

The burstiness increase of smooth flows is important because it has implications for buffer require-

ments. Greaterburstiness also implies a hidden cost in end-to-end delay, to the extent that a flow made

burstier in crossing the network must be smoothed at its destination.

4.3. Results

In addition to Axel, we studied the performance of several other policies: Pulse, PeakVC, Virtual

Clock (VC), Fifo+, and Fifo.Fifo is ordinary first-come, first-served. PeakVCis Virtual Clock, but with

thevtick based on the peak rater̂ i instead of the average rater i . Pulse and Fifo+ were described in sections

2.3.2 and 2.3.3.

4.3.1. All Flows Behaving

When every flow abides by its advertised long-term average throughputr i , Axel and PeakVC offer

almost identically low delays to bursty flows, while Virtual Clock provides excellent service to the

smoother flows at the expense of the bursty flows. Tables 3 and 4 show the bursty flow end-to-end delays

and delay percentiles for the large-W case, while tables 5 and 6 show the corresponding data in the small-W

case. Inthe large-W case, Axel has a clear performance advantage over all other policies. In the small-W

case, the maximum Axel packet delays are only slightly better than under Fifo+. As table 6 shows, the per-

formance advantage of Axel over Fifo+ increases if the application is willing to tolerate higher packet

losses.

Tables 7 and 8 show the end-to-end delays of the smooth flows. Notsurprisingly, these delays are

quite large under Axel.

31 January 1994

-14-

Bursty Flow End-to-End Packet Delays (ms)
All Flows Behaving, Large W

Axel Pulse Peak VC VC Fifo+ Fifo

Flow mean max mean max mean max mean max mean max mean max

0 1.1 23.5 2.0 186.3 1.1 24.1 53.4 378.4 19.3 61.1 19.0 82.6
1 1.1 29.7 20.6 443.4 1.1 24.9 47.5 545.5 19.1 62.0 18.7 84.6

max 1.1 29.7 20.6 443.4 1.1 24.9 53.4 545.5 19.3 62.0 19.0 84.6

Table 3

Bursty Flow End-to-End Packet Delay Percentiles (ms)
All Flows Behaving, Large W

Axel Fifo+ Pulse

Flow 99% 99.9% 99% 99.9% 99% 99.9%

0 10.3 18.7 41.7 56.8 54.6 151.3
1 10.1 21.5 41.7 58.7 296.4 414.7

Table 4

Bursty Flow End-to-End Packet Delays (ms)
All Flows Behaving, Small W

Axel Pulse Peak VC VC Fifo+ Fifo

Flow mean max mean max mean max mean max mean max mean max

0 1.3 44.7 2.9 214.3 1.4 46.0 18.6 181.5 15.7 46.7 15.6 53.7
1 1.3 38.6 10.9 203.8 1.4 40.1 18.8 178.0 15.8 49.1 15.9 55.4

max 1.3 44.7 10.9 214.3 1.4 46.0 18.8 181.5 15.8 49.1 15.9 55.4

Table 5

Bursty Flow End-to-End Packet Delay Percentiles (ms)
All Flows Behaving, Small W

Axel Fifo+ Pulse

Flow 99% 99.9% 99% 99.9% 99% 99.9%

0 8.4 37.8 33.1 41.5 22.4 145.9
1 9.9 24.3 34.3 43.3 132.6 175.5

Table 6

Tables 9 and 10 show the overall end-to-end burstiness increase and the per-server burstiness

increase of smooth flows. Theentries show the measured
Wout − Win

Win
ratios, normalized so that 100 corre-

sponds to a doubling in the burstiness. Therow labeled “end” shows the overall burstiness increase of the

smooth, end-to-end flow suffering the largest increase. The other entries show the largest burstiness

increase at each server for each class of smooth flow. The columns marked “end” show the maximum

burstiness increase among all the smooth end-to-end flows at each server. The columns marked “cross”

31 January 1994

-15-

Smooth Flow End-to-End Packet Delays (ms)
All Flows Behaving, Large W

Axel Pulse Peak VC VC Fifo+ Fifo

Flow mean max mean max mean max mean max meanmax mean max

2 11.9 123.8 10.2 120.4 11.9 123.8 0.7 49.3 17.3 61.2 16.2 84.6
3 14.4 171.0 11.1 183.0 14.4 171.0 0.8 43.8 17.3 62.0 16.1 84.4
4 5.0 79.0 2.5 68.7 5.1 79.0 0.2 29.7 17.3 61.9 16.1 84.7
5 53.2 291.0 63.4 334.9 53.2 291.0 4.8 128.2 17.3 62.0 16.1 84.6
6 7.1 99.6 3.4 92.2 7.0 99.6 0.3 32.3 17.3 62.0 16.1 84.5
7 18.8 193.8 6.6 124.9 19.0 193.8 1.2 58.7 17.3 62.0 16.1 84.6

max 53.2 291.0 63.4 334.9 53.2 291.0 4.8 128.2 17.3 62.0 16.2 84.7

Table 7

Smooth Flow End-to-End Packet Delays (ms)
All Flows Behaving, Small W

Axel Pulse Peak VC VC Fifo+ Fifo

Flow mean max mean max mean max mean max meanmax mean max

2 17.3 133.9 19.0 144.8 17.3 133.9 6.4 92.0 14.4 49.0 13.8 55.5
3 17.6 135.0 19.0 157.0 17.6 135.0 7.6 109.0 14.4 49.0 13.7 55.4
4 24.0 200.9 32.1 198.2 24.0 200.9 2.1 73.7 14.4 48.8 13.7 55.6
5 8.0 126.1 6.2 113.4 8.0 126.7 0.6 47.6 14.4 48.8 13.7 55.4
6 48.2 265.7 14.9 158.8 48.2 265.5 36.1 234.7 14.3 48.7 13.7 55.4
7 20.6 191.6 13.6 179.7 20.6 191.4 16.5 181.4 14.4 49.0 13.7 55.4

max 48.2 265.7 32.1 198.2 48.2 265.5 36.1 234.7 14.4 49.0 13.8 55.6

Table 8

show the corresponding data for the smooth cross-flows. Not surprisingly, under Axel the burstiness

increases are quite large. Thelarge burstiness increases under Virtual Clock are surprising.

The maximum packet population observed at any of the servers with any of the policies during these

simulations was approximately 730 packets for the small-W case and about 1230 packets for the large-W

case.

Maximum Smooth Flow Burstiness Increase (percent)
All Flows Behaving, Large W

Axel Pulse Peak VC VC Fifo+ Fifo

Server end cross end cross end crossend cross end cross end cross

0 94 160 186 213 94 160 43 53 48 59 48 59
1 10 174 22 162 10 174 1 68 19 29 17 27
2 30 101 25 135 30 102 10 32 11 36 15 34
3 6 176 3 126 6 176 13 48 6 29 12 20
4 8 120 7 109 7 122 22 14 10 19 4 11

end 193 - 238 - 193 - 93 - 68 - 98 -

Table 9

31 January 1994

-16-

Maximum Smooth Flow Burstiness Increase (percent)
All Flows Behaving, Small W

Axel Pulse Peak VC VC Fifo+ Fifo

Server end cross end cross end cross end cross end cross end cross

0 85 98 56 100 85 100 72 75 27 42 27 42
1 20 109 11 63 20 109 14 68 11 34 12 33
2 13 31 18 37 13 31 7 21 3 29 4 29
3 2 86 6 133 2 86 1 58 7 37 7 28
4 6 70 4 83 6 70 2 56 7 31 4 32

end 163 - 94 - 163 - 115 - 37 - 46 -

Table 10

4.3.2. Misbehaving Flows

To study the relative performance of the various policies in the presence of misbehaving flows, we set

one of the bursty flows crossing server 2 (the middle server in the chain) to transmit much faster than

claimed. We reduced the flow’s inter-burst gap to1
10 of that used in the “all flows behaving” case.We also

disabled leaky-bucket filtering for that flow. The misbehaving flow’s actual rate for both the large- and

small-W cases was approximately 490,000 bytes/second.

Tables 11 and 12 show the end-to-end delays of the bursty flows in this case. As can be seen, Axel

effectively insulated the other flows in the system from the badly-behaved flow.

The results shown in the tables should be interpreted with some caution.The simulator used in this

study currently allows only infinite buffer sizes at each server. For this reason, we simulated this configura-

tion for only 10 seconds (instead of 100).Additionally, because no packets were dropped, the packets of

the misbehaving flow did get serviced eventually, and did consume resources.With finite buffers and an

appropriate packet-drop policy, most of the misbehaving flow’s packets would have been dropped.Despite

these caveats, it is clear that Axel can contain the effects of misbehaving flows.

Bursty Flow End-to-End Packet Delays (ms)
Misbehaving Flow at Server 2, Large W

Axel Pulse Peak VC VC Fifo+ Fifo

Flow mean max mean max mean max mean max mean max mean max

0 1.4 23.7 2.8 89.0 747.0 1548.8 34.3 174.0 774.4 1582.0 777.9 1580.7
1 1.6 25.0 1.2 74.0 762.1 1551.6 17.4 105.6 789.2 1584.4 793.1 1587.2

max 1.6 25.0 2.8 89.0 762.1 1551.6 34.3 174.0 789.2 1584.4 793.1 1587.2

Table 11

4.4. Summary

This section has shown that Axel performs extremely well. It provides bursty flows with very low

end-to-end delays and by insulating flows from the ill-effects of misbehaving flows, provides every flow in

the system with guaranteed throughput.

31 January 1994

-17-

Bursty Flow End-to-End Packet Delays (ms)
Misbehaving Flow at Server 2, Small W

Axel Pulse Peak VC VC Fifo+ Fifo

Flow mean max mean max mean max mean max mean max mean max

0 1.9 29.0 4.6 131.4 990.3 1972.7 28.9 168.6 1020.6 2009.1 1021.9 2029.0
1 1.9 26.3 11.8 135.9 971.4 1969.7 34.2 173.7 1000.5 2014.9 1002.4 2030.5

max 1.9 29.0 11.8 135.9 990.3 1972.7 34.2 173.7 1020.6 2014.9 1021.9 2030.5

Table 12

5. Discussion,Limitations, and Futur e Work

The simulation results of section 4 and the informal analysis presented in section 3 demonstrate that

Axel provides very low delay to bursty flows and provides bandwidth guarantees to all flows in the system.

Axel is not perfect, however. In this section we briefly mention some possible improvements and suggest

areas for further research.

Accelerating burstyA flows necessarily diminishes the quality of service received by smoothD flows.

Axel limits the maximum amount of time during which a flow can remain accelerated. It also insulates

other flows from the effects of misbehaving flows and can offer throughput guarantees to all flows in the

system. However, these guarantees relate to long-term behavior. Axel can temporarily reduce the service

rate of smoothD flows to a very low lev el. Thereare at least two interesting areas for investigation on this

front. First,at this time, we have not investigated analytically the worst-case service rate and burstiness

increase that Axel gives to smooth flows. Second,it may be possible to develop a policy that guarantees

ev en individual packets ofD flows a certain minimum throughput, and that also guaranteesD flows a cer-

tain maximum burstiness increase.A policy that doesn’t reduce the service rate ofD flows too low, too

often may be able to give such guarantees and still provideA flows with very low service delays.

We hav enot considered admission control policies.Axel provides each flow with guaranteed band-

width, but guidelines for best allocating resources among flows so as to trade-off delay vs. burstiness need

to be developed. Asimilar tradeoff can be expected when varying the value of the advertisedWi , since it

determines the length of time during which a flow can remain accelerated.We hav enot studied the perfor-

mance impact of varying the advertisedr i andWi . More generally, instead of usingWi to limit the time

during which a flow can remain accelerated, one could introduce an additional parameter.

Axel determines whether or not to accelerate a flow based solely on the flow’s actual arrival pattern.

This is an advantage, to the extent that Axel can preserve a flow’s original arrival characteristics. However,

if the network alters these characteristics, the information needed by Axel to determine whether or not to

serve a flow preferentially will be destroyed. Itseems worthwhile to consider using additional information.

One approach that we are currently investigating is to use information about a packet’s actual measured ser-

vice delays, in the style of Fifo+ or Jitter-EDD [12]. In accelerating a packet, Axel uses the value of
∆i

b

r i
.

This is theexpectedsmoothing factor at a particular server. One could also use information about the

31 January 1994

-18-

actualsmoothing that has occurred in upstream nodes. Fifo+ uses the deviation between a packet’s actual

and expected service delays in upstream nodes to modify the timestamp.The difference in this value

between successive packets reflects the actual smoothing that has occurred. These differences could be

used to supplement or replace
∆i

b

r i
, but their use would add considerable complexity to the policy. Pulse

seems immune to this problem, because it does not use the flow’s actual arrival characteristics in its times-

tamping rule.

Lastly, the Axel timestamping rule is rather complex. Comparedto Virtual Clock, Axel must keep an

additional vclock and must track the change in backlog of the flow. It also incurs some additional complex-

ity in enforcing a minimum timestamp increment.On the other hand, the most significant source of com-

plexity in timestamp-based policies appears to be the need for some sort of priority queue. In this sense,

Axel falls in roughly the same complexity class as Virtual Clock, which appears to be a practical packet ser-

vice discipline [6].

6. Conclusions

This paper has presented the Axel packet service policy, which is targeted at environments composed

of two classes of flows: very bursty, delay intolerant flows, and very smooth, delay-tolerant flows. Incom-

ing years, we expect the ever-increasing volume of continuous-media traffic to produce precisely this sort

of environment. Bursty, delay-intolerant flows will arise from interactive applications such as teleconfer-

encing, while smooth, delay-insensitive flows will arise from non-interactive applications such as video-on-

demand.

The informal analysis in section 3 and the simulation study presented in section 4 show that Axel

provides bursty flows with very low service delays and provides all flows in the system with bandwidth

guarantees. Italso outperforms policies such as Pulse, Fifo+, Virtual Clock, and Virtual Clock using peak

bandwidth allocation.Axel does not appear to be significantly more complex than Virtual Clock or Fifo+.

We believe it is a significant contribution to the support of future network services.

References

1. David P. Anderson, Shin-Yuan Tzou, Robert Wahbe, Ramesh Govindan, and Martin Andrews, “Sup-

port for Continuous Media in the DASH System,” Proceedings 10th International Conference on

Distributed Computing Systems,pp. 54-61, Paris, France (May 28 - June 1 1990).

2. David D. Clark, Scott Shenker, and Lixia Zhang, “Supporting Real-Time Applications in an Inte-

grated Services Packet Network: Architecture and Mechanism,” Proceedings ACM SIGCOMM’92 in

ACM Computer Communications Review, 22, 4, pp. 14-26 (October 1992).

3. ReneL. Cruz, “A Calculus for Network Delay Part I:Network Elements in Isolation,” IEEE Trans-

actions on Information Theory,37, 1, pp. 114-131 (January 1991).

31 January 1994

-19-

4. Alan Demers, Srinivasan Keshav, and Scott Shenker, “Analysis and Simulation of a Fair Queueing

Algorithm,” Proceedings ACM SIGCOMM ’89,pp. 1-12 (September 1989).

5. D. Ferrari, “Client Requirements for Real-Time Communication Services,” IEEE Communications

Magazine,28, 11, pp. 65-72 (November 1990).

6. Srinivasan Keshav, “Congestion Control in Computer Networks,” Technical Report No. UCB/CSD

91/649, Computer Science Division, University of California, Berkeley, CA (1991). PhD Thesis ..

7. Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson, “On the Self-Similar

Nature of Ethernet Traffic,” Proceedings SIGCOMM’93 in ACM Computer Communication Review,

23, 4, pp. 183-193 (October 1993).

8. AmarnathMukherjee, Lawrence H. Landweber, and Theordore Faber, “Dynamic Time Windows and

Generalized Virtual Clock: Combined Closed-Loop/Open-Loop Congestion Control,” Proceedings

IEEE Infocom,pp. 0322-0332, Florence, Italy (1992).

9. PramodPancha and Magda El Zarki, “A look at the MPEG video coding standard for variable bit rate

video transmission,”Proceedings IEEE Infocom,pp. 0085-0094, Florence, Italy (1992).

10. A. Parekh, “A Generalized Processor Sharing Approach to Flow Control in Integrated Systems Ser-

vices Networks,” Technical Report LIDS-TR-2089, Laboratory for Information and Decision Sys-

tems, Massachusetts Institute of Technology (1992). PhD Thesis.

11. JonathanS. Turner, “New Directions in Communications (or Which Way to the Information Age),”

IEEE Communications Magazine,24, 10, pp. 8-15 (Oct 1986).

12. D. Verma, H. Zhang, and D. Ferrari, “Guaranteeing Delay Jitter Bounds in Packet Switching Net-

works,” Proceedings IEEE TriComm,Chapel Hill, NC (April 1991).

13. Hui Zhang and Srinivasan Keshav, “Comparison of Rate-Based Service Disciplines,” Proceedings

SIGCOMM’91,pp. 113-121.

14. Lixia Zhang, “VirtualClock: A New Traffic Control Algorithm for Packet-Switched Networks,” ACM

Tr ansactions on Computer Systems,9, 2, pp. 101-124 (May 1991).

31 January 1994

