A Self-Accelerating Packet Service Discipline
for
Low-Delay Service to Bursty Flows

Ricardo Pincheira

Department of Computer Science, FR-35
University of Washington
Seattle, V' 98195
pinch@cs.washington.edu

Technical Report 94-05-07

ABSTRACT

In this paperwe onsider the transmission of compressed vides aetworks.
We cevdop a packt service discipline called Axel that provides veny kervice delays
to bursty flows while providing guaranteed throughput to all flows in the system. In con-
trast to existing policies capable of piding bandwidth guarantees, Axel can \ide
low delay service to lirsty flows without the need for resourceeereseration. We
study the behavior of Aet through analysis and simulation, and conclude that Axel meets
its stated goals. The pojids targeted at a netwrk environment composed of a mixture
of bursty, delay sensitie traffic and smootherdelay insensitie traffic. We expect such
an enironment to arise from a mixture of interaeti compressed video streamgy(e
tele-conferencing) and non-interagtiompressed video streams (eg., video-on-demand).

31 January 1994

1. Introduction

There is little doubt that in coming years, continuous-mediasfleuch as digital video and audio
will form an ever-increasing fraction of tré€ in data netwrks. Animportant prerequisite for continuous
media flows is guaranteed bandwidth; in 30 framesspeond video, for example, awmérame must be
awailable for consumption at the reegi every 33 milliseconds (see also[5] peveral service disciplines
able to provide guaranteed bandwidthvéndeen proposed in recent years [14,10,4,13hfortunately,
these policies are able to guarantee bandwidth by decoupling, to a large extent, the servigeginatohe
a flow from the flav's arival behavior Such a decoupling is necessary to provide Walks” between
flows and preent ary one flov from monopolizing system resources at the expense of othey. fidav-
eva, it prevents a flav from receiving a higher rate of service when its bitvarfester thanxpected. Asa
result, these policies penalizarbty flows and provide them with considerably higher service delays than

smoother types of traffic.

Continuous media flows can be broadly divided into thasses: flos with stringent end-to-end
delay requirements, and flows that are not delay semsifihe first class arises from teleconferencing or
other simultaneous tele-interactions. In an intevaatbnference, for example, maximum tolerable end-to-
end delays are measured in the 100-200 millisecond range, and one can e&sily &riure methods of
tele-interaction, such as distributed music rehegt$ain which end-to-end delay requirements avene
more stringent. The second class arises from services such as video-on-démamdi-to-end delay of
several seconds is acceptable wheatehing a previously-recorded video clip or in avé€libut non-

interactve gplication.

Due to the interaction of delay requirements with variable bit-rate (VBR) compressionrdtindss
characteristics for these tmdasses of flows also dérs. Itis well known that applying variable bit-rate
(VBR) compression to video yields a very bursty stream of data[9¢). Though a bursty fle can be
smoothed before it enters the network, smoothing results in additional délege delays are not signifi-
cant for flows with loose end-to-end delay requiremeirtsleed, when all the data to be transmitted is
known in advance, as in video-on-demand services, the resultmgdlobe smoothed to a practically con-
stant data rate. By contrast,Vile with stringent delay requirements precludg significant degree of

smoothing.

In sum, we can identify tavdistinct classes of continuous medianfto hursty flows with stringent
end-to-end delay requirements, and smoother flows with loose end-to-end delay conShadetsisting

policies providing bandwidth guarantees penalize bursty flowg atkell-suited to this environment.

In this paper we delop a packet service policcalled Axel, that offers very \ end-to-end delays
to bursty flows while providing smoother flows with bandwidth guarantiétdmlongs to a class of service

disciplines that we ternself-accelerating because the accelerate the rate of service ofvit® being

31 January 1994

serviced at a rate that is toaMoelative © their actual arxial rate. Thg can thus provide bursty flows with
very low service delays.We dso require that self-accelerating policies provide bandwidth guarantees to all

flows in the system and prant ary one flaw from arbitrarily increasing its rate of service.

The idea of increasing a ¥los rate of service so as to clear a burst of data more quickly is not
new. [8] (reviewed in section 2.3.2) describes a pylkelled Pulse that tries to alleviate congestion quickly
It services pacdits according to a discipline that models the behaviourdtf [2]discusses the relad
merits of enforcing total isolation between flows vs. ity statistical sharing when trying to pide
bursty flows with lav delay jitter (\ariability). TheAxel policy devdoped here provides verywoservice
delays to bursty flows by allowing a controlled amount of sharing; yet, by enforcing isolatioryidegro

all flows in the system with guaranteed throughput.

The rest of this paper isganized as follavs. Section? introduces our system model andieg/s
some background material. Section ¥deps a self-accelerating pojicalled Axel. SectioM uses simu-
lation to ealuate the performance of Axel and compare it againsrakebenchmark policies. Section 5
discusses potential imprements to Axel and suggests areas for future researastly, section 6 con-

cludes.

2. Definitionsand Background

2.1. SystemModel

We assume a network in which paetk originate at paek sources traverse one or more paek
servers and terminate at paeksinks A paclet serer k has an agggste service capacitR,. Sources,
seners, and sinks are joined by links having infinite capaciy a condition for receing a guaranteed
level of service, each client flp enters into a contract with the negwk, in which the client promises to
adhere to a certain traffic generation pattern and the network promises a cegtaihdervice in return.
We will use a very general characterization for eactv flosmilar to that used ifi3,10,2,1]. EacHlow i
adwertises 3 parametens, ', andW'. r', the average rate, describes thevlfs long-term &erage beheor
and bandwidth requirement', the peak rate, bounds the peak rate at which thewith present packets to
the network and is based on minimum ifpeclet caps. Hereafteme will often user' andr* to refer both
to bit rates and packet ratéd/henever the distinction matters, the particular interpretation should be clear
from context. We do rot require that the network satisfy the peak rate constraints interriallpay

increase if packets clump together at some server and are then output in a large burst.

The last parameteW', describes the urstiness of the flg, a shown in figure 1. The solid cuev
shawvs the cumulatie rumber of bits transmitted by somevilover its lifetime. The dotted line genents,

which hare doper', show the number of bits the flowould hae ransmitted if it neer produced bits

1 The finite capacity of a physical link is captured by the server capacity.

31 January 1994

v -~ -

Time

Figure 1
faster than its claimedvarage rate during ae# periods. W' bounds the difference between these tw
quantities; in the figurd\/' is simply the maximum vertical distance between the solid and dotteelscurv

W' is a measure of burstiness because it bounds the size of a burst.

An equiaent definition ofW' is to consider an idealized servthat alvays services fia i at an
instantaneous raté. ThenW' bounds flv i’'s queue length at the ideal serv A flow with an aerage

rater' can be forced to abide to avgi (W', r', f') parameterization with a leaky-bucket filter [11].

Because of the dual interpretation ¥, we will sometimes calWW' the maximum workaheaof the
flow (when viewed from the standpoint of data generation) or thentéxémum badog of the flov (when

viewed from the standpoint of an ideal server).

Let the servers that a fiotraverses be denoted by D,2..m—1, and its sink be denoted At each
hopk a b,lrstinesswf< can be defined in a manner analogous to the definiti@n ér the flav's kburstiness
at the edge of the network by considering the output from the previousWo thenW},. The input

burstinessof the flav at a frticular servek is Wy, while itsoutput burstinesis Wi, .

Two of the policies we will discuss here, Virtual Clock (section 2.3.1 [14]) and Pulse (section 2.3.2
[8]), use a parametekl' instead ofW' to describe the burstiness of anfloAl' is called theavemging
interval, and has the following interpretatiorif a flow's behavior is monitored wer successie dsjoint

intenvals of lengthAl', then in @ery such interval the flo transmits at mosAl'r' bits. For these policies,
i

we define a suitablealue for Al' via Al' = i This comversion corresponds to a flotransmitting\W'

bits at the beginning of ave&aging interval.

31 January 1994

2.2. Classesf Flows

In the introduction, we alluded to thrigtence of tw dasses of flows, one composed of burstwé§lo
requiring very lav end-to-end latencies, and another composed of very smooth flows able to tolerate rela-

tively high end-to-end latenciesVe all the first of these classes tharsty or A flows; they are character
i N

W f
ized by high values foﬁ andﬁ. We all the second class of flows temoothor D flows; they are char

. W' P N ,
acterized by lov values forﬁ and o The A and D designations arise from the fact that whene

bursty flov generates aubvst, its service rate should be temporarily accelerated in order to provide it with
low end-to-end lateng while the service rate of delay-tolerant smooth flows can be temporarily decelerated

while part of their resources arevdted to improving the servicegn to A flows.
2.3. Relatedwork

2.3.1. \Mrtual Clock

The Axel packet service polidevdoped in section 3 uses maaf the ideas of Virtual Clockl4].
Virtual Clock belongs to the class tifhestamp-based service disciplineéBhese operate by assigning a
timestamp to the packets of eachwflimaversing the serer and servicing the packets in timestamp oréler
Virtual Clock, the timestamp for floi is generated using the following rulexclock (called auxVC
in [14]) is a gate variable that tracks theakution of the timestampytick' is a constant set tori/and is

the “tick” size at whichvclocK ticks; andRealTimestands for wall-clock time at the packet server.
Initially, on ®eing the first bit from flow, setvclock = RealTime
For each packet recegd from flowi, letl be the packet length. Then do as follows:
« vclock = maxRealTimevclocK)
« vclocK = vclocK +1 vtick
« Stamp the packet witliclock

Note that the timestamps of avilaransmitting close to its claimed rateclosely trackRealTime whereas
the timestamps of a flotransmitting faster than expectedblye faster tharRealTime Such a misbeha

ing flow quickly loses priority to flows abiding to their claimeeksage rate, because its timestamps will be
larger Note also that the resynchronizatiorvofockwith RealTimevia vclock = maxRealTimevclocK)
prevents a flav from arbitrarily reducing its timestamp values refato those of flows that transmit close

to their claimed rate. Consequenthyp flow can arbitrarily increase its prioritwer other flows.

Through these ta mechanisms, Mual Clock is able to provide each lo with a guaranteed

throughput. Indeedf n flows, 1,...n, traverse a serer k having aggrgate service capacitR,, then pro-

n . .
vided thatR, = > r!, Virtual Clock provides each floi with average throughput at least. More
=1

31 January 1994

generallythe long term rate of service reea by flow i is —— Ry. 2

2 1
j=1
Though Virtual Clock preides guaranteed throughput to all flows in the system, it clearly penalizes
bursty flows, &en when thg adhere to their claimed long-termesage throughput'. Whenever a tursty
flow generates aurst, itsvclock advances rapidly and the floloses priority to smoother fie. For this
reason, Virtual Clock does not work well in an environment composed of delay-intolenasty, Aflows

and delay-tolerant, smoohflows.

2.3.2. Pulse

The Pulse polig[8] aims to minimize congestion by attempting to claasts quickly Pulse gener
alizes Virtual Clock by using tavvalues for the timestamp incrememili,Ckiarge > 1/r" andvtickgmg < 1/r'.
The vclock is incremented usingick’,,,; until a certain number of bits are ras. Thevclock is then
incremented once withtick,‘arge. The two values of vtick are thus used alternatingBulse models the
behavior of on/off-type sources quite closely and can be expected to provide themwgihvioe delays.

For the performance study of section 4, we gkl . to A—ll and vtickjyge to ﬂl - W' vtick

f ri

Initially, the flov hasW' “credits” for the smaller timestamp increment, which it consumes as bits. arri
Once the flav exhausts its credits, the timestamp is incremented once with the large vtick andsthe flo

receves an aditionalW' credits.

Pulse also differs from Virtual Clock in that tiielockis not resynchronized witRealTimeif it lags
behind. Thatis, unlike Virtual Clock, the Pulse timestamping rule does not include the step

vclock = maxvclock RealTimé.

2.3.3. Fib+

Fifo+ [2] is a modification of ordinary FifoFifo can be implemented as a timestamp-based service
discipline by using a paeks actual arrival time at the seer as its timestamp. Fifo+ modifies the Fifo
timestamp by the deviation between the jpdiskectual delay in reaching the server from its source and the
delay that the packetomld hare encountered if, at each of the upstream serversvierBad, it had been
delayed by that seev's average observed delayA paclet that has recegd higher than serage delay in
traversing upstream servers reges a snaller timestamp than it would under Fifo, while one that has

receved lower than gerage delay is assigned a larger timestamp.

2 As [10] points out, haever, Virtual Clock is vulnerable to a “punishment” phenomenom and does not
guarantee eacpadke of flow i a rvice rater’. The closely related Weighted Fair Queueing or PGPS
policy [10,4], can guarantee this rateee to individual packets of a fle (within a very small factor to account
for priority inversion — a server services each packet non-preeehptd completion). The PGPS timestamp-
ing rule is syntactically identical to that of Virtual Clockitlits slightly different semantics for the time associ-
ated with a server pvent punishment.

31 January 1994

Under Fifo+, end-to-end delays change re&yi slowly, and one can predict a flos expected end-
to-end delays from the observed mean service delays at the servexssetra Ouinterest in Fifo+ stems
from the fact that it attempts tovgi Smilar end-to-end delays to all packets of avfldlo the extent that its
paclets encounter similar delays, avils aiginal arriva characteristics are approximately presetv
Since ag increase or decrease in a flswriginal burstiness implies an increase in its end-to-end daiay

would expect Fifo+ to service bursty flows with relaly low delay.

3. A Self-Accelerating Service Discipline

This section introduces the concept of self-acceleration in slightly more precise terms than has been
done to this point and delops a self-accelerating service pglimlled Axel. Inintroducing Axel, we will
first present a policthat does not wrk well, and then modify it to yield Aet. Axel provides very lav end-
to-end delays to bursty flows, yet also provides bandwidth guaranteesydlew in the system and pre-
vents a malicious fl@ from monopolizing system resourceghis will be demonstrated in section 4 which

presents the results of a simulation study.

Consider a flav i traversing a serer, and suppose thatver a anall time interval the fia’'s input rate
into the server ig}, = 0 while its output (service) rate js,, = 0. A self-acceleating service policys one
that increaseg),, whenaer p!, > ol .. Clearly, a isable polig cannot increase!,, to an arbitrary dgree
or for an indefinite period of time, for otherwise, thevfllould monopolize resourcedhus, in defining a
self-accelerating service polieve dso require that anperiod of acceleration be bounded, so that ne flo
can arbitrarily increase its quality of service at the expense of othes. fldhislast condition rcludes

policies such as ordinary first-come, first-served (Fifo) from the class of self-accelerating policies.

The idea underlying our delopment of a self-accelerating service pplis the observation that gn
discrepang in o\, and ol is reflected in the number of bits back-logged (queued) inside ther.s&mv
particular if pib denotes the rate at which the backlog changes, withymosé#iues denoting an increase in

backlog and rgetive values a decrease, wevka

Pin = Pout * Ob

Suppose that a flois srviced using Vtual Clock, and consider an idealized case in which the flo

is in a steady-state, with,, = pl,, = r' and p}, = 0. If the flow bursts, the timestamp willvelve at he rel-

i _ _ _ i i
ative rate%, or, substituting o, + o, for o, 1+ % where 1 is the rate at whidRealTimeevdves. %

is thus the rate at which the flefmestamp sures ahead dRealTimeand, in some sense, reflects the dif-
ference between the rate at which the vclockvaveng and the rate at which it “shouldVave if the
flow’s srvice rate were to match its input rate. This holds to the extent that the timestamp value associated

with a bit bounds the time by which the bit is serviced.

31 January 1994

TS= RealTime ArrivalTime = RealTime
\\ i
N V
O=—] 0000 =—— O
4

TS= RealTime+ F

Figure 2

Figure 2 illustrates. The figure shows the state of somei Babits following a burst by the flo. b

denotes the current backlog in bits for thevflt the server and@'S denotes the timestamp of the indicated

bit. Thefigure shows an idealized case in whiclwfichad no back-logged bits at the server befansth

ing and the timestamp value of the bit being serviced closely maigad$ime This latter assumption is

somavhat unrealistic, since wheve the server is (momentarily)verloaded, the timestamp of the bit

being served will tend to be greater tHRealTime while in cases in which the senvis not operating at

Lo . . b
full capacity its timestamp may actually surge aheadReflTime® But clearly in some senseri reflects

the difference between theits vclock and where it “should” be if the flowere to be serviced at a rate

matching its arkial rate. Thisobsenation suggests modifying the timestamps generatedityal/Clock

Suppose that the senvservices flows according to Virtual Clock, and call the generated timestamps

the baseline timestampsConsider the follawing modification to the timestamp actually assigned to the

flow’s packets?

min(b', W)

Timestamp= baselineTimestamp o

This modified timestamping rule has a number of interesting properties:

3 The fact that the timestamp of the bit being sdrean surge ahead BealTimeis precisely wi Virtual

Clock is vulnerable to the punishment phenomenon mentioned e&die10].

4 This rule will be modified slightly bela

A flow (momentarily) transmitting at a rate higher than its specified rate receives service at a higher

. 1A
rate. Note that the vtick between the timestamps assignedaautecessie lits is T le where

A} is the change ib' between the awil of the two hits. If a flow transmits faster than it is serviced,

its backlogb' will incr(::ase.Ai,D will be positive, and the vtick will be reduced, speeding up its rate of

31 January 1994

-8-

No flow can increase its rate of service arhitty. Once a flov's backlog reache®V', its timestamp

.) . 1
increment reerts to that of the baseline vtick, (r;'{

No flow can inagase its priority arbitarily, in the sense of arbitrarily reducing the value of its times-
tamps relatie © those of the baseline pali@and gaining adantage wer other flavs. Themaximum

Wi
priority that a flev can obtain '%

The relative priority of two bitseflects the dgee of smoothing that would occur under the baseline

policy. In the idealized case in which the server services the dtoan hstantaneous rate, the
N b _ _ _
delay that a newly awing bit will encounter |%. The difference in the expected service delay
Al
between tw bits, r—lb reflects the degree to which theothits would be smoothed under the baseline
policy. For this reason, we will sometimes refer to the difference in the delay encountered by succes-

sive kits or packets as ttmmoothing factar

Over a time interval, if the flow transmits at ate higher than claimed, the timestamp values
assigned to the flow will reflect the ratio of the flowacttual arrival rate to its actual serviceate.
This holds provided that throughout the time intervat, iy <W'. Consider a time interval of length

t during which a flav i transmits a total ofi bits at a raten r', wherem > 1. Without loss of gener
ality, we may assume this interval starts at timeSuppose that during this time interval, thevfleas
been serviced at a rape', wherep > 0. We may assume without loss of generality that the backlog

b' was 0 at he beginning of this time inteal; At time t, therefore, the backlog will be(m - p)r'.
Note also that at time (oncen bits are receied), the baseline value for the timestamp will?ge

Assuming the backlog(m~- p) r' < W', the actual timestamp at the end of the interval is therefore
n_t(m-pr

ri rl
H n H pn N H 13 ” | H
Sincet = gl this reduces teﬁ. Since the timestamp value “should” bé&' (the baseline
value), the timestamp increased omlym of what the actual increase shouldd&een, as claimed.

This property implies that, provided the server is not momentaréfoaded, the flo's actual

service rate wer the time intervat will reflect the flows actual arrval rate.

Timestamps can be made to emse monotonicallyThe timestamp assignment rule describedaso f

doesnot satisfy timestamp monotonicjtthough the timestamp values willvee decrease. Thiatter

bl : , : .
property holds becausrq never increases faster than the baseline vclobko bits can recee the
same timestamp, hower.

In a timestamp-based discipline, timestamp values must increase monotorkaaihermore,

the timestamps assigned to bits should not increase toty sfor otherwise a fi could temporarily

31 January 1994

monopolize the seer. Forcing a minimum timestamp increment sboth problems. As a mini-

_ . o1 . :
mum timestamp increment, we will usg, the inverse of the flons daimed peak rate.
f

With the modifications required to ensure a minimum timestamp increment, the timestamp assignment rule

becomes:
. compute thebaselineTimestamyalue according to Virtual Clock

min(b', W')

. computetl = baselineTimestamp i

. . 1
. computet?2 = previous timestamp valu’ef—i
. settimestamp= maxt1,t2)

The abee imestamping rule “defers” the acceleration iegito a fbw; the flov's rate of service
isn't actually increased until after all pagtis ahead of those that the pgltanestamps with the reduced
timestamp increment are servicedde tus call the service polidhased on this rule theeferredpolicy. It
is worth pointing out that the Deferred pglieduces to the baseline timestamping rule in tleatethat
there is neer a backlog of bits to be serviced. Also, because the state used to generate the baseline times-
tamps is neer modified, the algorithm kerts to the baseline timestamping algorithm following a period of

non-zero backlog.

The Deferred polig does not wrk well. Though we will not present detailed results here, the
Deferred polig can gve ewery flow in the system, botth and D, considerably worse end-to-end latencies
than Virtual Clock, and can increase thairdtiness (the ratio of output to input burstiness) as \ildile
reason for this poor performance is that the Deferredypoireaseshe efective imestamp increment
beyond the baselinetick whenever the flav's backlog is decreasing, reducing thewfls rate of service.
Thus, though the Deferred pagliénitially increases a fle's srvice rate following a burst, it reduces the
service rate shortly thereaftence the backlog starts to cledrhis behavior leads to poor service, particu-
larly when seeral flows bursting simultaneously heavily load the seruring the brief time in which a
flow is accelerated following a burst, the server is\ilgaoaded, so that the flo receves poor service
regadless of its timestamp increment. As thewfl® backlog clears, the flo is decelerated, losing

resources to flows that had not build up a heavy backlog.

Figure 3 illustrates this property of the timestamplgion under the Deferred polic It plots the
per-paclet timestamp increment vs. time for a burstyvftoansmitting a number of constant-sized sk
during each brst. W\ haveomitted a significant number of values greater th&i 0By contrast, although

we do not shw it here, under Wtual Clock, the timestamp increment is almostagls® approximately
1 - .
0. 0005 the value o% multiplied by the packet size.

5 Except when resynchronizing witkealTime

31 January 1994

0.01

0.009

0.008

0.007

0.006

0.005

0.004

Timestamp Increment

0.003

0.002

0.001

-10-

Deferred Policy Timestamp Increments

T T T T T T T T T 3
"deferred.tsdelta.data" <
L . |
o
L o |
& ©
& kol
L . .
©
L @ .
© o ©
- © © ¢ © o © o © |
4 o S IS o o
o & o
L © o
o o & Ao 80
<& & <& <&
L 06 4 & &% S o o P o o @ © o
o
@00 o © ® o 8 o @ o o
-8 ¢ & N © <% g 0% £°-
o o
8&0@0 &8 Qo & o Z & ® %0 Qg & 0 o® g
.m 0®> W xR % o8 & oo © o © @@@ @_
8%
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time
Figure 3

Initially, on ®eing the first bit from flow, setvclocK = baseVC = RealTime

Letl be the pacl@} Jlength of tH&' P% cket recenepl from flowi. Then do as follows:

-b'(j-1) Ifb'(] 1)<W'<b‘(j)

otherwise
vclod%) maxvclocK, RealTime

baseVC = maxbaseVC, RealTime
| ,)
vclock = maxd/clock + — ,vclocK +1 vtick' - '.bD
fi r O
baseVC = vclocK + 1 vtick!
. . W
vclock = maxglclock, baseVC - fD
r g

Stamp the packet witkiclocK

Figure 4

This analysis suggests modifying the Deferred gotio hat the ekctive vtick never increases

_ 1 1 A
beyond the baselinartick, o Recall that the Deferred polits imestamp increment |& -2 The

rl

31 January 1994

-11-

o . . 1 A .
proposed modification is to talas he timestamp mcremeFr}tr - max_0, r—ib). Thisrule, havever, dlows a

flow to receve letter service than it should under some circumstangesn though a fl's imestamp
values cannot become less tHamalTime(because the vclock is resynchronized viRialTimé, its times-
tamp values can become much smaller than those of the baseline timestampimgisutan happen when

a very bursty flav transmits &ster than expected and its timestamps become greateR#adhime By
i

w
building up backlog, the fle can reduce its timestampes by as much ar&l relative o those of the

baseline rule.By remaining idle until its backlog decreases teW', the flav receires another opportu-
nity to reduce its timestamp@hlues. Byrepeatedly building up backlog and then allowing it to drain,va flo

can increase its priority almost arbitrarily
The solution to this problem is to pemt timestamp alues from eer becoming smaller than
i

basellneTlmestampF. Figure 4 describes the complete timestamping rule, which we call Azlock

is the state variable actually used to generate the timestdragsVC is the baseline vclock and pests a
1 .
flow from arbitrarily increasing its priorityvtick' is T the baseline vtickb'(j) is the backlog when the

i paclet is recaied, so thai\, is simplyb'(j) - b'(j — 1). Thevariable 5, implements bounded accelera-
tion. If paclet sizes are small relaéi o W', the definition ofé{) can be simplified by using 0 for both the

second and third cases.

Axel retains all the posite qualities of the Deferred poljc A flow cannot increase its rate of service

arbitrarily, because once its backlog reachi¢'s its vtick reverts to mE Also, because the vclock is resyn-

chronized withRealTimeand is not allowed to lag toarf behindbaseVC, a flow cannot arbitrarily reduce
the value of its timestamps and increase its priolitgstly as in Mrtual Clock, a misbehaving flothat
transmits faster than claimed will quickly lose priority torboadhering to their advertised rate. It is also

worth pointing out that if “is set equal to', Axel is equivalent to Virtual Clock.

The Axel polig performs very well. This is demonstrated in the next section.

4. Simulation Study

This section galuates the performance of Axel via simulation.

4.1. Network Configuration and Methodology

Figure 5 shows the basic network configuration used for this.stidgnsists of a chain of 5 sems,
numbered O to 4Two A and sixD flows traverse the entire chain of servers, from &erQ to server 4.
These flows were used to study end-to-end latendie& A and five D cross-flavs also traerse each

server Each of the cross-traffic flows trecses only one server.

31 January 1994

-12-

~

Cross Traffic

1N

1N

.
NP

.
N>

N

N

/\]>

N

Server 0 Server 1 Server 2 Server 3 Server 4
Figure 5
Large W Flav Characteristics
Flow Type r! actual rate| ! wi packet size| burst size
92160 89834 921600 96000 48 64
92160 92198 92160 | 96000 48 1
Table 1
Small W Flav Characteristics
Flow Type r! actual rate| ! wi packet size| burst size
76200 74384 921600 24000 48 64
76200 76231 76200 9600 48 1
Table 2

The packet sources used tovdrine simulation were either Poisson or Poisson-bagéelnodeled
each smooth source as a simple stream of constant-size packetspoitbreially-distriluted interpacket

gaps. We nodeled lrsty flows as on/éfsources. Duringan actve period, a bursty source produced a

geometrically-distribted number of packets with constant ifaclket gapF. Following an actie period,
the source remained quiescent for an exponentially-distributed time interval before becowéngyanti

Though the limitations of Poisson and Poisson-related packet sourcesviog detwork simula-
tions, and particularly for modeling cross traffic, are well-known [7] , we \eelar results are alid, in

that the highlight the significant performance differences between Axel and other policies.

We smulated two principal cases: a “large-W” case, in which the etisedW'’s of the flows were
quite large, and a “small-W” cas@ables 1 and 2 describe the flows in the system for theseamfigura-
tions. All quantities are in bytes and bytes/secomxdept for mean burst size, which is in patsk All
flows were filtered with a legkbuclet filter before entering the netvk. Theactual rate columns siwahe
actual rate after filtering,varaged across all flows of a particular tygeor the small-W case, the ‘né

aveage rate of the bursty flows before filtering was approximately 92,160 bytes/second.

31 January 1994

-13-

For each configuration, we set the capacity of eachesesw that its utilization would be approxi-

mately 91.5%. Each server was allowed an unbounded amount of buffer space.

For each of the scenarios described belare uised the same paekstreams to simulate each pglic
However, we dmulated each policonly once and did not compute confidence irdésv Exceptas noted
belov, the simulations oger a ime interval of 100 seconds. After filtering, each source produced at least

153,000 packets in the small-W case, and at least 184,000 packets in the large-W case.

4.2. Rerformance Indices

We wsed tvwo metrics to galuate the performance of packet service policies: (1) the end-to-end delays
of bursty flows traersing the entire chain of 5 sens. (2)The burstiness increase of the smootkw$lo

both at individual servers ande sevaal hops. The burstiness increase is defined as the normalized ratio

. . Wout = Win .
of output to input burstiness,—————, after traversing one or more servers.
in

The burstiness increase of smoottwBadis important because it has implications foffdr require-
ments. Greateburstiness also implies a hidden cost in end-to-end dtdathe extent that a fle made

burstier in crossing the network must be smoothed at its destination.

4.3. Results

In addition to Axel, we studied the performance ofesal other policies: Pulse, PeakVCirtdal
Clock (VC), Fifo+, and Fifo.Fifo is ordinary first-come, first-sead. PeakVds Virtual Clock, but with
the vtick based on the peak rateinstead of the\serage rate'. Pulse and Fifo+ were described in sections
2.3.2and 2.3.3.

4.3.1. AllFlows Behaving

When eery flow abides by its advertised long-ternaeeage throughput', Axel and PeakVC der
almost identically lav delays to bursty flows, while Virtual Clock prdes excellent service to the
smoother flows at the expense of the burstySloTables 3 and 4 shothe bursty flav end-to-end delays
and delay percentiles for thedarW case, while tables 5 and 6 stthe corresponding data in the small-W
case. Inthe large-W case, Axel has a clear performance advantagelloother policies. In the small-W
case, the maximum Ak packet delays are only slightly better than under Fifo+. As table 6 shows,the per
formance advantage of Axelv@ Fifo+ increases if the application is willing to tolerate higher pack

losses.

Tables 7 and 8 shothe end-to-end delays of the smoothwBo Notsurprisingly these delays are

quite large under Axel.

31 January 1994

-14-

Bursty Flav End-to-End Packet Delays (ms)
All Flows Behaving, Large W
Axel Pulse Peak VC VC Fifo+ Fifo
Flow | mean max| mean max | mean max | mean max | mean max | mean ma
0 11 23.5 20 1863| 11 24.1| 534 378.4| 193 61.1| 19.0 826
1 11 29.7| 20.6 443.4| 1.1 249| 475 5455 19.1 62.0| 18.7 84.6
max 11 29.7| 206 4434 11 249| 534 5455| 193 62.0| 19.0 84.6
Table 3
Bursty Flav End-to-End Packet Delay Percentiles (ms)
All Flows Behaving, Large W
Axel Fifo+ Pulse
Flow | 99% 99.9% | 99% 99.9% 99% 99.9%
0 10.3 18.7 41.7 56.8| 54.6 151.3
1 10.1 215 41.7 58.7| 296.4 414.7
Table 4
Bursty Flav End-to-End Packet Delays (ms)
All Flows Behaving, Small W
Axel Pulse Peak VC VC Fifo+ Fifo
Flow | mean max| mean max | mean max | mean max | mean max | mean ma
0 13 44.7 29 2143| 14 46.0| 18.6 181.5| 15.7 46.7| 156 53.7
1 13 38.6| 109 203.8| 1.4 40.1| 18.8 178.0| 158 49.1| 159 554
max 1.3 44.7 10.9 2143 14 46.0| 18.8 181.5| 15.8 49.1 15.9 55.4
Table 5

Bursty Flav End-to-End Packet Delay Percentiles (ms)

All Flows Behaving, Small W

Axel Fifo+ Pulse
Flow | 99% 99.9% | 99% 99.9% 99% 99.9%
0 84 37.8 | 33.1 41.5 22.4 145.9
1 9.9 243 | 34.3 43.3 | 132.6 175.5
Table 6

Tables 9 and 10 shwo the overall end-to-end burstiness increase and thespeer hurstiness

. . -W, . .
increase of smooth fies. Theentries shar the measure(XM ratios, normalized so that 100 corre-

in

sponds to a doubling in theitstiness. Theow labeled “end” shows theverall burstiness increase of the

smooth, end-to-end flo suffering the largest increase. The other entriesnshie largest brstiness

increase at each servfor each class of smoothvlo The columns marked “end” sWwothe maximum

burstiness increase among all the smooth end-to-end flows at eaeh Sév® columns marked “cross”

31 January 1994

-15-

shav the corresponding data for the smooth crossslo Not surprisingly under Ael the hrstiness

increases are quite @. Thelarge burstiness increases under Virtual Clock are surprising.

The maximum packet population observed st @fithe servers with anof the policies during these

Smooth Flav End-to-End Packet Delays (ms)
All Flows Behaving, Large W
Axel Pulse Peak VC VC Fifo+ Fifo
Flow | mean max mean max| mean max mean max meamax | mean may
2 11.9 123.8 10.2 120.4 11.9 123.8| 0.7 49.3| 17.3 61.2 16.2 84.6
3 14.4 171.0 11.1 183.0 14.4 171.0, 0.8 43.8| 17.3 62.0 16.1 84.4
4 50 79.0 2.5 68.7 5.1 79.0| 0.2 29.7| 17.3 61.9 16.1 84.Y
5 53.2 291.0 63.4 334.9 53.2 291.0| 4.8 128.2| 17.3 62.0 16.1 84.6
6 7.1 99.6 3.4 92.21 7.0 99.6| 0.3 32.3| 17.3 62.0 16.1 84.5
7 18.8 193.8 6.6 124.9 19.0 193.8| 1.2 58.7| 17.3 62.0 16.1 84.6
max 53.2 291.0 63.4 334.9 53.2 291.0| 4.8 128.2| 17.3 62.0 16.2 84.y
Table 7
Smooth Flav End-to-End Packet Delays (ms)
All Flows Behaving, Small W
Axel Pulse Peak VC VC Fifo+ Fifo
Flow | mean max mean max mean max mean max meamax | mean ma
2 17.3 133.9 19.0 144.8 17.3 133.9 6.4 92.0| 14.4 49.0 13.8 55.5
3 17.6 135.0 19.0 157.0 17.6 135.0 7.6 109.0 144 49.0Q 13.7 55.4
4 24.0 200.9 32.1 198.2 24.0 200.9 2.1 73.7| 144 48.8 13.7 55.6
5 8.0 126.1 6.2 1134 8.0 126.7 0.6 476| 14.4 488 13.7 55.4
6 48.2 265.7 14.9 158.8 48.2 265.5| 36.1 234.7 14.3 48.7 13.7 55.4
7 20.6 191.6 13.6 179.7 20.6 191.4| 16.5 181.4 14.4 49. 13.7 55.4
max 48.2 265.7 32.1 198.2 48.2 265.5| 36.1 234.7 14.4 49. 13.8 55.6
Table 8

simulations was approximately 730 packets for the small-W case and about 1230 packets fge-the lar

case.
Maximum Smooth Fler Burstiness Increase (percent)
All Flows Behaving, Large W
Axel Pulse Peak VC VC Fifo+ Fifo
Sener | end crossf end crogs end crgosend cross| end cross end cross

0 A 160 186 213 94 160| 43 53 48 59 48 59
1 10 174 22 162 10 174 1 68 19 29 17 27
2 30 101 25 135 30 102 10 32 11 36 15 34
3 6 176 3 126 6 176 13 48 6 29 12 20
4 8 120 7 109 7 122 22 14 10 19 4 11

end 193 - 238 - 193 - 93 - 68 - 98 -

Table 9

31 January 1994

-16-

Maximum Smooth Fler Burstiness Increase (percent)
All Flows Behaving, Small W

Axel Pulse Peak VC VC Fifo+ Fifo
Sener | end cross| end cross| end cross| end cross| end cross| end cross

0 85 %8 | % 100 85 100 72 75 | 27 42 27 42
1 20 109 11 63 20 109 14 68 | 11 34 12 33
2 13 31 18 37 13 31 7 21 3 29 4 29
3 2 86 6 133 2 86 1 58 7 37 7 28
4 6 70 4 83 6 70 2 56 7 31 4 32

end 163 - o4 - 163 - 115 - 37 - 46 -

Table 10

4.3.2. Misbehaing Flows

To dudy the relatie performance of thearious policies in the presence of misbehaving flows, we set
one of the bursty flows crossing server 2 (the middleesdrvthe chain) to transmit much faster than
claimed. V¢ reduced the flo’s inter-turst gap toll0 of that used in the “all flows behaving” cas&le dso
disabled leak-bucket filtering for that fla. The misbehaving flo’'s ectual rate for both the large- and

small-W cases was approximately 490,000 bytes/second.

Tables 11 and 12 skothe end-to-end delays of the bursty flows in this case. As can be setn, Ax
effectively insulated the other flows in the system from the badlyeehigow.

The results shown in the tables should be interpreted with some catitiersimulator used in this
study currently allows only infiniteuffer sizes at each sev For this reason, we simulated this configura-
tion for only 10 seconds (instead of 10@dditionally, because no packets were dropped, the packets of
the misbehaving flo did get servicedentually, and did consume resourcedVith finite kuffers and an
appropriate packet-drop pojficmost of the misbehdng flow’s paclets would hee keen droppedDespite

these ceeats, it is clear that Axel can contain the effects of misbehaving flows.

Bursty Flav End-to-End Packet Delays (ms)
Misbehaving Flav at Server 2, Large W

Axel Pulse Peak VC VvVC Fifo+ Fifo

Flow mean max mean max mean max mean max | mean max mean max
0 14 23.7 2.8 89.0 747.0 1548.8| 34.3 174.0| 7744 1582.0f 7779 1580
1 16 25.0 1.2 74.00 762.1 1551.6| 174 105.6| 789.2 1584.4| 793.1 1587

max 16 250 2.8 89.0| 762.1 1551.6| 343 174.0| 789.2 1584.4| 793.1 1587

Table 11

4.4, Summary

This section has shown that éxperforms extremely well. It provides bursty flows with veny lo
end-to-end delays and by insulatingaffofrom the ill-effects of misbehaving flows, providesrg flow in

the system with guaranteed throughput.

31 January 1994

N

-17-

Bursty Flav End-to-End Packet Delays (ms)
Misbehaving Flav at Server 2, Small W

Axel Pulse Peak VC VC Fifo+ Fifo

Flow mean max mean max mean max mean max mean max mean

max

0 19 29.0 46 131.4| 990.3 1972.7| 28.9 168.6| 1020.6 2009.1] 1021.9
1 19 26.3| 11.8 135.9| 9714 1969.7) 34.2 173.7| 1000.5 2014.9] 1002.4

2029,
2030,

max 19 290 | 118 135.9) 990.3 1972.7| 34.2 173.7| 1020.6 2014.9] 1021.9

2030,

Table 12
5. Discussionlimitations, and Futur e Work

The simulation results of section 4 and the informal analysis presented in section 3 demonstrate that
Axel provides very v delay to bursty flows and priles bandwidth guarantees to all flows in the system.
Axel is not perfect, hwever. In this section we briefly mention some possible inipnoents and suggest

areas for further research.

Accelerating brsty A flows necessarily diminishes the quality of service xeckby anoothD flows.
Axel limits the maximum amount of time during which anfloan remain accelerated. It also insulates
other flows from the effects of misbehavingaftoand can offer throughput guarantees to all flows in the
system. Hwever, these guarantees relate to long-term bieia Axel can temporarily reduce the service
rate of smoottD flows to a very lav levd. Thereare at least tainteresting areas forvestigation on this
front. First,at this time, we ha ot investigated analytically the wrst-case service rate andr&tiness
increase that Axel ges to snooth flavs. Secondit may be possible to @elop a poligy that guarantees
even individual packets oD flows a certain minimum throughput, and that also guaramidgksvs a cer
tain maximum burstiness increas@ policy that doesn’ reduce the service rate bfflows too lav, too

often may be able tog auch guarantees and still providdlows with very lav service delays.

We havenot considered admission control policiesxel provides each fle with guaranteed band-
width, but guidelines for best allocating resources amongsfkn as to tradefofielay vs. burstiness need
to be deeloped. Asimilar tradedfcan be expected when varying the value of theesitbedW', since it
determines the length of time during which avflcan remain acceleratedVe havenot studied the perfor
mance impact ofarying the adertisedr’ andW'. More generallyinstead of usingV' to limit the time

during which a flaw can remain accelerated, one could introduce an additional parameter.

Axel determines whether or not to acceleratewa Hased solely on the flds actual arrval pattern.
This is an advantage, to the extent that Axel can presefow's original arrival characteristics. Hweever,
if the network alters these characteristics, the information needed by Axel to determine whether or not to
sene a fow preferentially will be destrged. Itseems worthwhile to consider using additional information.

One approach that we are currentlyestigating is to use information about a pat& ectual measured ser

: : : : _ A
vice delays, in the style of Fifo+ or JitEDD [12]. In accelerating a packet, Axel uses the valueriihf

This is theexpectedsmoothing factor at a particular serv One could also use information about the

31 January 1994

-18-

actual smoothing that has occurred in upstream nodes. Fifo+ uses the deviation betweest's: ok
and expected service delays in upstream nodes to modify the timestdmapdifference in this alue

between succes@ paclets reflects the actual smoothing that has occurred. These differences could be

A . . : :
used to supplement or repla%@, but their use wuld add considerable complexity to the pplidulse

seems immune to this problem, because it does not usewhe dbtual arrval characteristics in its times-

tamping rule.

Lastly, the Axel timestamping rule is rather compleComparedo Virtual Clock, Axel must keep an
additional vclock and must track the change in backlog of the flicelso incurs some additional comple
ity in enforcing a minimum timestamp incremer@n the other hand, the most significant source of com-
plexity in timestamp-based policies appears to be the need for some sort of priority queue. In this sense,
Axel falls in roughly the same compilgy class as Virtual Clock, which appears to be a practical packet ser

vice discipline [6].

6. Conclusions

This paper has presented theeRgacket service poljc which is targeted at environments composed
of two dasses of flows: veryussty, delay intolerant flows, and very smooth, delay-toleramtd$lolncom-
ing years, we expect thees-increasing volume of continuous-media traffic to produce precisely this sort
of ervironment. Burstydelay-intolerant flows will arise from interae#i gplications such as teleconfer
encing, while smooth, delay-insenggiflows will arise from non-interacte gplications such as video-on-

demand.

The informal analysis in section 3 and the simulation study presented in sectiow thahével
provides bursty flows with very @ service delays and provides all s in the system with bandwidth
guarantees. llso outperforms policies such as Pulse, Fifo+, Virtual Clock, and Virtual Clock using peak
bandwidth allocation Axel does not appear to be significantly more comiian Virtual Clock or Fifo+.

We telieve it is a ggnificant contribution to the support of future network services.

References

1. David P Anderson, Shin-Yuan Tzou, Robert Wahbe, Ramesh Govindan, and MartinvAntgeip-
port for Continuous Media in the ABH Systeni, Proceedings 10th International Conference on

Distributed Computing Systenpg. 54-61, Paris, France (May 28 - June 1 1990).

2. David D. Clark, Scott Sherd, and Lixia Zhang, “Supporting Real-Time Applications in an Inte-
grated Servicesdeket Network: Architecture and Mechani$nRroceedings ACM SIGCOMM’92 in
ACM Computer Communications Rewi€2, 4, pp. 14-26 (October 1992).

3. Renel. Cruz, ‘A Calculus for Netwrk Delay Part I:Network Elements in Isolatioh|EEE Trans-
actions on Information Theor$y7, 1, pp. 114-131 (January 1991).

31 January 1994

10.

11.

12.

13.

14.

-19-

Alan Demers, Sriniasan Kesha, and Scott Sherdq, “Analysis and Simulation of aalf Queueing

Algorithm,” Proceedings ACM SIGCOMM '8pp. 1-12 (September 1989).

D. Ferrari, “Client Requirements for Realrife Communication ServicEslEEE Communications

Magazine28, 11, pp. 65-72 (N@mber 1990).

Srinvasan Kesha, “Congestion Control in Computer Neivks; Technical Report No. UCB/CSD
91/649, Computer Science Division, Maisity of California, Berkelg CA (1991). PhD Thesis ..

Wl E. Leland, Murad S. dgqu, Walter Wlinger, and Daniel V Wilson, “On the Self-Similar
Nature of Ethernet raffic,” Proceedings SIGCOMM’93 in ACM Computer Communicatioviere
23, 4, pp. 183-193 (October 1993).

AmarnathMukherjee, Lawrence H. Landwebend Theordore &ber “Dynamic Time Vihdows and
Generalized Virtual Clock: Combined Closed-Loop/Open-Loop Congestion CbrRrokeedings
IEEE Infocompp. 0322-0332, Florence, Italy (1992).

PramodPancha and Magda El ZarkiAl ook at the MPEG video coding standard fariable bit rate
video transmission Proceedings IEEE Infocomp. 0085-0094, Florence, Italy (1992).

A. Paekh, ‘A Generalized Processor Sharing Approach tavRBontrol in Integrated Systems Ser
vices Netvorks; Technical Report LIDS-TR-2089, Laboratory for Information and Decision Sys-

tems, Massachusetts Institute of Technology (1992). PhD Thesis.

Jonathars. Turner “New Directions in Communications (or Whichay/ to the Information Ag€),

IEEE Communications Magaziri24, 10, pp. 8-15 (Oct 1986).

D.Verma, H. Zhang, and D. Ferrari, “Guaranteeing Delay Jitter BoundadkefSwitching Net-
works,” Proceedings IEEE TriComnThapel Hill, NC (April 1991).

Hui Zhang and Srinesan Kesha, “Comparison of Rate-Based Service Disciplihéapceedings

SIGCOMM'91,pp. 113-121.

LixiaZhang, “VirtualClock: A Nev Traffic Control Algorithm for Rcket-Switched Netarks,” ACM
Transactions on Computer Syste®s?, pp. 101-124 (May 1991).

31 January 1994

