
Exploiting Shared Memory for

Protected Services

Ren�e W. Schmidt

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Technical Report 94-06-03

This work was supported in part by the National Science Foundation (Grants No. CDA-

9123308, and CCR-9200832), the Washington Technology Center, Digital Equipment Cor-

poration, Boeing Computer Services, and Intel Corporation.



Exploiting Shared Memory for Protected Services

by

Ren�e Wenzel Schmidt

A thesis submitted in partial ful�llment

of the requirements for the degree of

Master of Science

University of Washington

1994

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date



In presenting this thesis in partial ful�llment of the requirements for a Master's degree

at the University of Washington, I agree that the Library shall make its copies freely

available for inspection. I further agree that extensive copying of this thesis is allowable

only for scholar purposes, consistent with \fair use" as prescribed in the U.S. Copyright

Law. Any other reproduction for any purposes or by any means shall not be allowed

without my written permission.

Signature

Date



University of Washington

Abstract

Exploiting Shared Memory for Protected Services

by Ren�e Wenzel Schmidt

Chairperson of the Supervisory Committee: Professor Henry M. Levy

Department of Computer Science

The client/server model is commonly used to provide sharing and protection of data.

Using this model, distrusted applications (clients) can access and possibly modify shared

data, while guaranteeing data integrity. To ensure this data integrity, the shared data is

managed by a server that is located in a private protection domain. Calls to the server

domain utilize a protected procedure call mechanism, i.e., the calls execute within the

server's domain. While this model provides safety, it can su�er in performance, due to

the domain-crossing costs required by the protected procedure calls.

Porc is a toolkit for building object-based client/server applications. Its main goals

are (1) to provide e�cient access to protected objects and (2) to hide the protection

boundary from clients. In Porc protected server objects are represented as local proxy

objects in the client; the di�erence between a local object and a protected object is thus

transparent to the client. This thesis describes three extensions of the Porc toolkit in

order to provide fast access to protected objects.

The extensions are all based on read-only sharing. First, read-only methods must be

de�ned, which are server procedures that do not modify server state. Read-only methods

can be directly invoked by clients without requiring a protected procedure call. Second,

version-based synchronization is needed; a mechanism, which can be used to e�ciently

synchronize read-only methods. Third, shared proxies are used to avoid the cost of local

proxy creation in clients, making it faster to traverse complex pointer structures. Shared

proxies also increase transparency by reducing pointer aliasing problems.



Table of Contents

List of Figures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : iii

List of Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : iv

Chapter 1: Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1 Object-based RPC : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Goals of the Toolkit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.3 Exploiting Shared Memory : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.4 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

1.5 Organization of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

Chapter 2: Object-based RPC : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.1 The Proxy Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.2 Capabilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.3 Portals and Channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

2.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

Chapter 3: Shared Proxies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

3.1 Transparency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.2 Channel-less Proxies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

3.3 Binding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.4 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

Chapter 4: Read-only Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

4.1 Parameter Passing and Validation : : : : : : : : : : : : : : : : : : : : : : 27

4.2 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

4.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30



Chapter 5: Version-based Synchronization : : : : : : : : : : : : : : : : : : : : : : : 31

5.1 Using Locks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

5.2 Version Numbering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

5.3 Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

5.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

Chapter 6: Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

6.1 The Name Server : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

6.2 Experiments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

6.3 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

Chapter 7: Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

7.1 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

Appendix A: Version-based Synchronization: An Example : : : : : : : : : : : : : : 52

A.1 Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

A.2 Read-only Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

A.3 Write Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

ii



List of Figures

2.1 System Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2.2 Contents of a Capability : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.1 An object-based �le server : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3.2 Example of a shared data structure : : : : : : : : : : : : : : : : : : : : : : 18

3.3 Shared proxies, guards and protected objects : : : : : : : : : : : : : : : : 22

3.4 Stub code for a shared proxy : : : : : : : : : : : : : : : : : : : : : : : : : 23

4.1 A client with read-only access to a server : : : : : : : : : : : : : : : : : : 26

4.2 Sample proxy code for a read-only method : : : : : : : : : : : : : : : : : : 29

5.1 A simple concurrent C++ class using the check-in/check-out scheme : : : 33

5.2 A simple concurrent C++ class using version numbering : : : : : : : : : : 35

5.3 Interface for the LockFreeObject class : : : : : : : : : : : : : : : : : : : : 36

5.4 Interface for the LockFreeMemPool class : : : : : : : : : : : : : : : : : : : 38

6.1 The internal organization of the name server : : : : : : : : : : : : : : : : 40

6.2 Interface for the DirNode Class : : : : : : : : : : : : : : : : : : : : : : : : 41

6.3 Interface for the DirEntry Class : : : : : : : : : : : : : : : : : : : : : : : : 41

A.1 The List and ListElem Classes : : : : : : : : : : : : : : : : : : : : : : : : 53

A.2 The LockFreeObject Class : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

A.3 The LockFreeMemPool class : : : : : : : : : : : : : : : : : : : : : : : : : : 55

A.4 Implementation of the read-only methods : : : : : : : : : : : : : : : : : : 57

A.5 Implementation of getKey with incarnation check : : : : : : : : : : : : : : 58

A.6 Implementation of the write-methods : : : : : : : : : : : : : : : : : : : : : 60

iii



List of Tables

6.1 Performance Measurements : : : : : : : : : : : : : : : : : : : : : : : : : : 44

iv



Acknowledgments

The author wishes to express sincere appreciation to Professor Henry M. Levy and the

Opal group for their help and support during the preparation of this manuscript. In par-

ticular, Je� Chase, with whom the author has spent many hours discussing the projects,

and who provided valuable feedback on earlier versions of this manuscript. Ashutosh

Tiwary and Mike Feeley deserve a special thanks for answering a lot of questions con-

cerning the Opal implementation. Finally, thanks to Geeta Shukla who proofread the

manuscript without having much understanding of the contents.

v



Chapter 1

Introduction

The client/server model is used to provide sharing and protection of data in many soft-

ware systems. Using this model, distrusted applications (clients) can access and possibly

modify shared data, while guaranteeing data integrity. To ensure this data integrity,

the shared data is managed by a server that is located in a private protection domain.

Client applications thus access the data through a �xed procedural interface de�ned by

the server. Calls to the server domain utilize a protected procedure call mechanism, typ-

ically Remote Procedure Calls [Birrell & Nelson 84], to execute code within the server's

domain. For example, an operating system's data structures are protected against unau-

thorized modi�cation by the applications it is running. The applications can only modify

the state of the kernel by invoking a trap that transfers the control of execution to a

kernel-speci�ed point in the trusted kernel code.

Structuring software systems according to the client/server model can improve exten-

sibility, increase maintainability, and provide independence of failure. As long as the

interface to the server is �xed, new clients and new implementations of the server can be

made independent of each other. Also, clients can fail independently without a�ecting

each other. The major drawback is that the model can su�er in performance, due to the

domain-crossing costs required by the protected procedure calls.



2

This thesis describes Porc, a toolkit for building object-based client/server applications

in C

++

. Porc's main goals are (1) to provide e�cient access to protected objects and

(2) to hide the protection boundary from clients. While parts of Porc existed before,

this work concentrates on extensions of Porc to use read-only memory shared between

client and server, in order to provide fast access to protected objects.

1.1 Object-based RPC

Porc consists of a runtime system and binding service that extends RPC to improve

support for object-based services. For an object-based server, each RPC call pertains to

a particular instance of an abstraction supported by the server. For example, an RPC call

to a �le server typically operates on only one of the server's �les. Structuring server data

as objects allows the toolkit to manage complex pointer-based data structures without

having knowledge about the internal representation of each object. The toolkit only

needs to know when pointers to protected objects

1

are being passed between a client

and a server, because they have to be handled specially.

Object-based services have many needs that are not met by RPC alone. Each object

must have a name or reference that a client can use to bind to the server and identify

the object; access must be controlled on an object basis; objects must be reclaimed

when clients no longer need them; some form of accounting for objects must exist. Porc

is designed to support these needs on top of a standard RPC mechanism, i.e., it is

built below the application but above the operating system's RPC facility. This ap-

proach contrasts with systems ranging from Hydra[Wulf 74], a capability-based system,

to Mach[Accetta et al. 86], a micro-kernel operating system, which have built object

support into the operating system kernel.

The toolkit simpli�es the development of RPC clients and servers in the C

++

program-

1

Protected objects refer to objects managed by a server.



3

ming language. Protected objects are represented by local proxy objects[Shapiro 86],

which make the RPC calls to the server. Proxies are heap-allocated and named by vir-

tual addresses. Similarly on the server side, the details of receiving incoming RPC calls

and converting them into ordinary procedure calls to the protected objects are handled

by guard objects. Proxies and guards minimize the syntactic burden of RPC on both

the server and the client side and e�ciently hide the protection boundary from both.

1.2 Goals of the Toolkit

The goal of Porc is to permit richer uses of RPC, beyond today's access to system

services that are statically bound by symbolic name. Dynamic binding and anonymous

RPC interfaces permit callbacks and transparent binding to services. In particular, this

can make protection easier to use by allowing modular programs to be split into di�erent

protection domains along module boundaries. Three issues are essential to accomplish

these goals:

� Transparency of protected objects for clients,

� Security of protected objects for servers, and

� Synchronization of concurrent access to shared objects

Ideally, it should be completely transparent to the client code that some objects are

protected and others are not. It should require minimal changes to the source code to

add and remove protection boundaries during program development. The transparency

is achieved by representing protected objects as proxies, thereby making them look like

ordinary C

++

objects. Pointers to proxies are, unfortunately, not completely inter-

changeable with pointers to local objects. Using proxies introduces pointer aliasing, and

it is impossible to share proxy pointers between clients. Both of these problems occlude

the transparency of protected objects.



4

Security means that server objects can only be modi�ed by methods supplied by the

server, so it can maintain data integrity. This is vital for securing independence of

failure, i.e., to prohibit one client from corrupting the server and causing other clients to

fail. Note that security implies protected access to modify server data, but not necessarily

complete data hiding from clients.

Access to data managed by a server will inherently be concurrent, because multiple

clients can be connected to a sever at the same time. A server must synchronize access

to its objects. The synchronization must prevent two (or more) clients from updating a

given memory location at the same time, possibly leaving an object in an inconsistent

state, and it must prevent clients from reading data that are in the middle of being

updated. This need for synchronization is the main reason why protection of objects

cannot be done in a completely object transparent way.

1.3 Exploiting Shared Memory

E�ciency considerations are typically the main reason why many programs execute in a

single protection domain, rather than in several protection domains. The cost of perform-

ing an RPC call and validating arguments in the guard is considerably more expensive

than invocation of a local object. Bershad et. al.[Bershad et al. 90] have shown that the

performance of RPC can be considerably improved by using shared memory in the local

case where the sender and receiver are both on the same machine. Lightweight Remote

Procedure Call uses a shared stack (A-stack) to avoid copying parameters and return

values between protection domains.

This thesis investigates how e�cient access to protected services can be further improved,

in the local case, by removing the RPC call altogether, by taking advantage of shared

read-only memory. The following three techniques are presented.



5

Shared Proxies

Each protected object has exactly one proxy which is located in the server and

is callable by all clients. When a client binds to a server, the server maps its

proxies read-only into the client's protection domain. No local proxy objects need

to be constructed in the client's domain, making it faster to pass protected pointers

around. An additional bene�t is that there are no aliasing or sharing problems for

proxy pointers.

Read-only Methods

Read-only methods are an e�cient technique for reading data from a server. The

server's data area is mapped read-only into the client's protection domain, thus

allowing the client to access the objects directly. This eliminates the need for RPC

calls and validation of parameters for querying calls. Modi�cations to the server's

objects must be done with RPC calls, so the security of the server's objects is still

maintained.

Version-based Synchronization

Synchronization of access to shared data turns out to be a problem with read-only

methods, because they cannot directly acquire or release any server locks. A solu-

tion to this problem, based on a technique borrowed from lock-free synchronization,

is presented.

Client/Server applications that employ these techniques need to coordinate their memory

usage, to prevent the server's data area from overlapping with the clients. An implemen-

tation ofPorc/C

++

has been built for the Opal system[Chase et al. 92a, Chase et al. 93],

a single virtual address space operating system. Read-only methods and shared proxies

can be implemented very naturally in Opal's single address space, because there is no

overloading of virtual addresses. None of the techniques described, however, depend on

the single address space model, and can possibly be used on any operating system where

applications can coordinate sharing of memory in some manner.



6

1.4 Related Work

Proxies were de�ned by Shapiro[Shapiro 86] as a structuring mechanism for distributed

systems. They are local server representatives that hide the communication boundary

from clients. In addition to being a structuring mechanism, Shapiro describes several

other bene�ts, such as access control and caching of server data. Porc uses proxies

to represent objects that are not in the client's protection domain to make protection

boundaries transparent to the application programmer. Access control to protected

objects is controlled on a per-object basis by access validation performed by a protected

object's guard in the server. The idea of caching data locally in proxies to provide fast

access to server data is generalized in Porc by the use of read-only methods, which let

clients access server data directly without the need for RPC calls.

Object-based RPC has been used in numerous operating systems and distributed

programming systems. Systems such as Hydra[Wulf 74], Eden[Almes et al. 85],

Clouds[Allchin & McKendry 83], and Choices[Dave et al. 92] have all built object sup-

port into the operating system kernel. Objects are protected from each other with

hardware protection boundaries. In Eden and Clouds, objects are represented as sep-

arate address spaces making them inappropriate for building applications with �ne-

grained sharing. Another approach is taken by systems such as Emerald[Jul et al. 88]

and Pilot[Redell et al. 80]. They provide �ne-grained sharing by ensuring protection

through the use of a single safe language. Porc provides a combination of the two ap-

proaches by relying on hardware protection between applications and language protection

within an application. The trade-o� between hardware protection and performance are

controlled by the application programmer.

The goal of Emerald is to create a system that e�ciently supports �ne-grain mobility of

objects. To achieve high performance, all objects on a local machine are located in the

same protection domain, so access to local objects can be done directly with load and

store operations (as mentioned above, security is ensured by the use of a safe language).



7

Similarly, read-only methods in Porc provide fast read access to servers that are located

on the same machine, but without the need for a safe language.

The proxy implementation in Choices is similar to shared proxies, but the rationale

behind the design is di�erent. In Choices proxies are allocated in read-only memory by

the kernel to assure authentication of proxies and to be able to change the implementation

of proxies without having to re-compile client programs, however, proxies are not shared

between clients. Choices has an interesting table-driven RPC mechanism, where the

RPC stub code is chosen dynamically on each call, which could for example be used to

automatically select the use of read-only methods at run-time.

Several experimental operating systems, such as Monads[Rosenberg 92],

Mungi[Heiser et al. 93] and Opal[Chase et al. 92a, Chase et al. 92c] provide a single

shared address space for all applications. Protection and addressing are decoupled in

these systems which makes it possible (among other things) for applications to easily

coordinate sharing of data at run-time. The techniques for improving the performance

of an object-based toolkit by using read-only shared memory presented in this thesis are

inspired by these systems.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. The next chapter describes the structure

and implementation of the object-based RPC toolkit. Chapter 3 discusses the design

and implementation of shared proxies. Chapter 4 explains the concept of read-only

methods and their implementation. Chapter 5 describes version-based synchronization,

a technique for read-only methods to e�ciently synchronize access to protected objects.

Chapter 6 evaluates the performance bene�t of the techniques that are presented. Finally

Chapter 7 presents the conclusion.



Chapter 2

Object-based RPC

Porc is a toolkit for building object-based client/server applications. The toolkit is

used as a testbed for implementing and evaluating the performance improvements of

shared proxies and read-only methods. This chapter gives an overview of the proxy

model and the implementation of Porc in su�cient detail to understand the design and

implementation issues of the techniques presented in this thesis.

The original toolkit was written by Je� Chase and Mike Feeley. It was conceived as

a way to extend Emerald's[Jul et al. 88] uniform object model to a traditional system

with protection domains. It was developed as a sideline to the Opal[Chase et al. 92b]

project, whose primary goal is to make protection easy to use, and to allow protection

con�guration decisions to be deferred as long as possible, through the use of a single

address space architecture. Porc furthers this goal by allowing object-based applications

to be separated into protection domains in arbitrary ways, with minimal e�ect on the

source code. It also provides a uniform way to support rich RPC interaction between

protection domains.

The goal is to build a uniform object system that uses two referencing forms: virtual

addresses and capabilities, each optimized for the particular style of object. Local ob-



9

jects are named with virtual addresses, and protected objects are named with capabili-

ties [Levy 84, Mullender & Tanenbaum 86]. A capability is an unforgeable reference that

a client uses to name an object in another protection domain. Shapiro's proxy model

is used to hide the non-uniformity, by encapsulating the capabilities in proxy objects,

which in all respects act like the protected object. This approach gives application pro-

grammers almost everything they would get from capability hardware, only faster and

on conventional hardware.

The following sections will describe in detail how the proxy model is used in Porc,

how protected objects are named with capabilities, and how the toolkit interfaces to

the underlying operating system's RPC mechanism. Only the aspects of Porc that are

essential for understanding the design and implementation of read-only methods and

shared proxies are discussed. Several other important issues, such as the type model,

initial binding and reclamation of objects, are not discussed.

2.1 The Proxy Model

The proxy model is used to hide the protection boundary from the application. A high-

level view of the model is shown in Figure 2.1. Protected objects are represented as

proxy objects in the client's domain. A proxy marshals the parameters and executes

an RPC call. On the server side, the RPC call is handled by a guard object, which

unmarshals and validates the parameters and executes a local object invocation. The

code for proxies and guards is ideally generated by a stub generator.

Proxies and guards correspond to client stubs and server stubs, respectively, in a standard

RPC system[Birrell & Nelson 84]. Primitive values such as integers and text strings are

marshaled and unmarshaled in the same way as for RPC. However, in addition, the proxy

model allows pointers to protected objects to be passed between clients and servers.

Pointers to protected objects are passed as protected object references (capabilities), so



10

RPC Connection

proxy

Application

Runtime

Client’s domain

Runtime

Server’s domain

Obj
 1

Obj 
 2

Obj
 3

proxyproxy
guard guardguard

Figure 2.1: System Overview

both servers and clients can detect invalid pointers and avoid dereferencing them.

Each protected object has at most one guard, which among other things contains the

capability for the protected object. Passing a protected pointer to a client involves

creating the guard object (if it does not already exist), retrieving the capability from

the guard, and handing the capability to the underlying RPC mechanism. On the client

side, the proxy that receives the RPC call translates the capability into a proxy pointer.

Translating a capability consist of looking it up in a hashtable that maps capabilities

to proxy pointers. The proxy pointer is directly returned if the capability is found in

the hashtable. Otherwise, the client instantiates a new proxy for that object, stores a

pointer to it in the hashtable and returns the proxy pointer.

Passing a protected pointer from a client to a server is slightly di�erent. Protected

pointers are passed as capabilities, which also are stored in the proxies. The guard that

receives the RPC call statically knows whether the capability refers to an object that is



11

local to the server or not. For capabilities that refer to a local server object, the object

can be found directly by examining information stored in the capability, thereby avoiding

a hashtable look-up. A capability that refers to a non-local object is handled exactly as

explained above, i.e., by looking the capability up in a hashtable.

Porc almost completely hides the protection boundary by employing the proxy model,

however, it introduces pointer aliasing. Pointer comparison cannot be used to detect

object identity, because there can be several proxies that refer to the same protected

object.

Finally, how do we get the �rst proxy? Initially, a client has one or more proxies for

objects exported by the server. These proxies could be read from shared or persistent

storage, or they could be built locally from capabilities retrieved from a name server.

2.2 Capabilities

Capabilities are unforgeable objects used to name protected objects. A capability gives

the owner the right to bind to the protected object and invoke its methods. Porc uses

password capabilities [Anderson et al. 86, Chase et al. 92c] to uniquely name protected

objects. A password capability is probabilistically rather than absolutely impossible to

forge. Each capability has a (64-bit) password associated with it. The run-time system

checks the password on each object invocation to authenticate the request. Capabilities

are supported independent of the particular RPC transport, allowing portability across

operating system platforms and compatibility with optimized RPC implementations. In

particular, Porc can be used on systems with no explicit support for capabilities.

The contents of a capability are shown in Figure 2.2. The portal identi�er is a unique

64-bit value that functions as a global name for an RPC end-point. From this value a

client can obtain an RPC connection to the server. This will be explained in more detail

in the next section. The object identi�er uniquely names an object within a server, and



12

256 192 128 64 0

Portal ID (unused) Object ID Password

Figure 2.2: Contents of a Capability

the password is the randomized check �eld.

The capability is minted by the guard for a protected object. The guard knows the

portal ID of the RPC channel on which it is receiving its calls. The object ID is used

to identify the guard object. This object ID could be anything, for example, an index

into a table of guards. In the current implementation it is simply the virtual address of

the guard. This pointer must itself be validated before it is followed. This is done with

a magic number stored in each guard. The password is randomly assigned by the guard

and stored in both the capability and locally in the guard.

Security for protected objects relies on access control checks within the server after a

request has arrived. The guard object for the protected object is located using the object

ID in the received capability. The guard then validates the capability by comparing the

password �eld with the value it has stored before calling the protected object. In general,

the server-side application code is not aware of the identity of its clients | or even that

the call originated from another protection domain. Thus the capability checks are

critical for safe functioning of the system.

2.3 Portals and Channels

Objects are named uniquely within a server by their object identi�ers. System-wide

names are achieved by identifying each service with one or more portal identi�ers, which

are global names for RPC end-points. Porc includes a location broker service, the Portal



13

Service, that assigns unique numbers for portals and maintains a mapping from portal

IDs to RPC bindings. Applications can call the portal service to obtain an RPC binding

for a speci�c portal.

Porc is designed to use any message-passing or RPC mechanism as a transport, with

the caveat that marshaling of protected pointers must be handled specially as explained

above. The underlying transport is hidden in two C

++

classes. The PorcCall class

represents a call or reply message bu�er, and the Channel class represents a client-side

message connection to a particular portal. The interfaces to these classes are �xed, but

the contents and implementation are transport dependent. For example, in the Mach-

based implementation a Channel caches the send-name of a Mach[Accetta et al. 86] port

to the server. In an LRPC-based implementation[Bershad et al. 90], the Channel would

hold the portal ID and a pointer to a memory region (A-stack) which is shared with the

server.

For e�ciency, Portal-ID-to-Channel bindings are cached in a hashtable (the PortalID

table) locally in each client to avoid a call to the PortalService each time a Portal ID

needs to be converted to a Channel object. The Portal Service is only called when a

new server is instantiated or when a client imports a capability from a name server. In

the �rst case, the server is assigned a unique portal number, and in the second case, the

client needs to obtain an RPC connection to the server. A client has one Channel for

each server it is connected to. Each proxy caches a pointer to the Channel for its server,

so it can be located quickly. This is essential for performance, but unfortunately has

the disadvantage that proxies cannot be shared between clients. The RPC mechanism

hidden by the Channel is usually domain-speci�c, so Channels can therefore only be used

by the domain that created them.



14

2.4 Summary

This chapter provides an overview of the key ideas behind Porc. Protected objects are

located in designated servers; distrusted clients name protected objects with capabilities,

and call them using standard RPC as a transport; protected calls indirect through proxy

and guard objects whose methods are marshaling stubs; proxy objects cache the channel

to its server; and the guard objects uses a password �eld to authenticate access before

directing incoming calls to their associated objects.

The transparency of protected objects is occluded in several ways in the version of Porc

described above. First, it is not safe to compare pointers to detect object equality,

because two di�erent instances of a proxy can reference the same protected object.

Second, clients cannot pass proxy pointers in shared memory, because proxies contain

domain-speci�c state. Third, protecting objects might be undesirable, because of the

overhead involved with binding to protected objects and invoking their methods. The

next two chapters will describe two concepts, read-only methods and shared proxies,

that address these problems.



Chapter 3

Shared Proxies

The toolkit as explained in the last chapter provides a programmer with the basic mech-

anisms for implementing object-based clients and servers. Protected objects are com-

pletely separated from the client and can only be accessed indirectly through local prox-

ies. The proxy model is used to hide the protection boundary from the client, making

protection nearly transparent.

However, the proxy model introduces extra overhead when accessing protected objects.

When a server passes a capability (a protected pointer) to a client, it has to be converted

into a pointer to a local proxy. This involves (1) looking up the capability in a hashtable

and (2) possibly instantiating a new proxy. Creating proxies locally in each client also

prevents that proxies from being shared between clients. For example, if a server contains

a hierarchical structure of �les, and a client wants to calculate the total number of bytes

used to store the �les, a local proxy is instantiated in the client for each single �le in the

server. If another client decides to do exactly the same operation, it cannot reuse any

of the proxies already created, but again has to create a local proxy for each protected

object (Figure 3.1).

Shared proxies are designed to avoid these problems. A shared proxy is created by the



16

Proxies

B CD EB

Server

Root

A

B C

D E

Application

Client

Application

B CD EB

Client

RPC Connection

Proxies

Figure 3.1: An object-based �le server

server when a new protected object is created and it is located in the server's protection

domain. When a server exports a reference to a protected object, it maps the proxy

read-only into the client's protection domain and returns a pointer directly to the shared

proxy. The key concepts behind shared proxies are:

� Exactly one proxy per protected object. A shared proxy is created by the server

and located in the server's protection domain. This contrasts to normal proxies,

where there is one proxy per protected object per client. The server can directly

pass a proxy pointer to the client, thereby avoiding a hashtable look-up on the

client side.

� Callable by all clients. A proxy might be used by multiple clients at the same time,

so it dynamically chooses which Channel object to use on each call.

� Read-only. Shared proxies are mapped read-only into the client's domain to main-



17

tain the security of the system. All clients share the same proxy, so if a client could

intentionally or unintentionally corrupt a proxy that might cause other clients to

fail.

Attachment of shared proxies to clients is done eagerly, i.e., when a server exports a

reference to one of its protected objects, it attaches the shared proxies for that object

and all other objects that the client is likely to access. This makes future accesses to

objects in the server faster because proxies are already attached, and amortizes the cost

of attaching proxies over many server invocations. The cost of attaching segments to a

client is high compared to the cost of allocating memory, because it requires a system

call. For the �le server example above, when a client has access to the root-directory,

it can potentially access all of its sub-directories. Therefore, all the proxies for the

directories can be mapped into the client's domain when the root-directory is initially

accessed. Another example where shared proxies are useful is when a new domain is

instantiated in Opal[Chase et al. 92b]. The Opal server can instantiate proxies for all its

system services, simply by attaching a single segment containing all the shared proxies

to the new domain.

An additional bene�t of shared proxies is that pointers to them are almost completely

interchangeable with pointers to local objects. There are a few subtleties with shared

proxies. A mechanism for e�ciently locating channel objects dynamically on each call on

a shared proxy must be devised, and binding to shared proxies is di�erent than binding

to ordinary proxies. These issues will be discussed in the following sections.

3.1 Transparency

One of the goals of Porc is to make protection of objects transparent to clients, so pro-

tection boundaries can be inserted and removed with minimal source code modi�cations.

For example, it should be possible to insert extra protection boundaries when debugging



18

Clients Shared Data Structure Server

proxy

proxy

proxy

guard

guard

guard

object 1

object 2

object 3

Shared segments Private Segments

Figure 3.2: Example of a shared data structure

large applications to track down run-away pointers.

The implementation of Porc, described in Chapter 2, introduces pointer aliasing and

does not allow pointers to protected objects to be shared between clients. This occludes

the transparency of the toolkit.

Shared proxies eliminate the problems with pointer aliasing and domain-speci�c proxies.

Each protected object has exactly one proxy, so no pointer aliasing occurs. Furthermore,

proxies are callable by all clients, so pointers to shared proxies can be stored in shared

memory and can be used by any client. Figure 3.2 shows an example of two clients

sharing a data structure containing pointers to protected objects.



19

3.2 Channel-less Proxies

Channel objects, which represent a communication channel between a client and a server,

are inherently domain-speci�c, because Porc is designed to use the native RPC me-

chanism supported by the underlying operating system. A shared proxy can be used

by an arbitrary number of clients at the same time, so it has to dynamically select the

Channel to use on each call. This contrasts with a non-shared proxy, which only has to

cache a reference to a single Channel.

The PortalID table caches all the channel objects that connect a client to its servers.

The Channel a shared proxy must use to communicate with the server can therefore be

retrieved from the PortalID table that belongs to the client that is executing the call

1

.

Channel objects are looked-up by their portal ID. The capability for the protected object

is already stored in the proxy, hence, the proxy has direct access to the Portal ID of the

server.

Security is maintained, even though shared proxies are accessing unprotected PortalID

tables, because proxy code is executed by clients and a client can only access its own

PortalID table. A corrupted PortalID table will not a�ect the server or other client

applications. Reclamation of Channels when a client terminates trivial, because they

are stored locally in the client, and the complexity of locating a Channel solely depends

on how many channel objects the calling client itself has stored.

The overhead of making calls on shared proxies is necessarily higher than on ordinary

proxies, because a Channel has to be looked up on each call. Access to an object-

based server is expected to often consist of following pointers from one protected object

to another protected object in the same server, i.e., a client thread will, with high

probability, use the same Channel as it used on the previous call on a shared proxy. The

look-up scheme has been optimized for this situation by caching the most recently used

1

How the calling client's PortalID table is located will be described in section 3.4.



20

Channel in a thread's control block. The added overhead of looking up channel objects

is expected to be small compared to the overhead of making RPC calls that is already

present.

3.3 Binding

Normally, when a client binds to a protected object the server passes it a capability; the

client uses the capability to instantiate a local proxy and to retrieve an RPC binding

to the server. For shared proxies, the proxy already exist in the server. It has to be

attached read-only into the clients domain and the client must retrieve a pointer to it

from the server.

Binding to protected objects with shared proxies is very e�cient in the common case,

where the server returns a reference to one of its own objects. In this case, the server

directly returns the shared proxy pointer to the client. The client is required to trust

the server, because it cannot verify the pointer in any (straightforward) manner, but it

avoids a relatively expensive hashtable look-up to translate a capability.

A client still has to pass pointers as capabilities to a server, so they can be validated.

The server can directly convert a capability for one of its own objects to a pointer by

decoding the Object ID �eld in the capability. However, in the situation where a server

receives a capability for a non-local object (or an application is receiving a capability

from a name server) a method for binding to the shared proxy, given a capability, is

needed.

Porc handles this situation by implementing a hidden bootstrap method for each pro-

tected object with a shared proxy. The bootstrap method, when called, maps the shared

proxy read-only into the caller's protection domain and returns a pointer to it. The

guards know statically if a capability refers to an object with a shared proxy, so they can

automatically generate an RPC call to retrieve the shared proxy pointer. This method



21

requires an extra RPC call, but it is believed to be an uncommon case that a client

passes capabilities for non-local objects to a server.

The performance increase that shared proxies provide is in part achieved by eagerly

attaching a group of proxies into a client's protection domain when the client initially

imports a reference to a single protected object. Proxies are by default organized into

groups by type, i.e., all proxies that refer to objects of the same type are attached to

a client's domain together. Several types can also be grouped together, so they will be

attached at the same time. For each group the toolkit maintains a list of which clients

have got proxies attached to prevent redundant attaches.

A granularity of a type may be too coarse for certain applications, which need to have

�ner control over which objects a server has access to. The group an object belongs to

can therefore also be controlled on a single object basis, but that requires extra code by

the implementor.

3.4 Implementation

Three extensions need to be made to Porc in order to support shared proxies: (1)

creating shared proxies in the server, (2) a way for shared proxies to locate a client's

local PortalID hashtable, and (3) attaching shared proxies to clients.

A shared proxy is created along with the guard. Shared proxies are by default created

lazily when the �rst reference to a protected object is exported, but they can also be

created eagerly by proxy code. Figure 3.3 shows how a server keeps track of proxies and

guard objects. The protected object contains a pointer to both the guard and the shared

proxy; the guard and the proxy both contain a pointer to the protected object. There is

also an RPC connection (Channel) between the proxy and the guard. The pointer from

the protected object to the shared proxy is used by the guard stub code for converting

a real object pointer to a shared proxy pointer.



22

Protected Object

Shared Proxy Guard

Shared proxy segment

Private Segment

Figure 3.3: Shared proxies, guards and protected objects

Stub code for the guard needs to �nd the PortalID table that is local to the client that

executes the call. A semi-independent thread package[Feeley et al. 93] that comes along

with the toolkit is modi�ed to support this. In the thread package, a thread's stack is

power of two aligned and of �xed size. Given a stack pointer, the top of the stack can be

found by masking o� a constant number of bits, and the �rst word of each stack contains

a pointer to the thread control block (TCB). Each running thread can therefore access its

TCB by masking o� a number of bits of the current stack pointer. The TCB has been

modi�ed to hold a pointer that caches a Channel and to hold a pointer to the client's

PortalID table. A method getChannel is added to the thread package, which returns

the Channel for a given portal ID. The method �rst checks is the Channel is cached in

the TCB and in that case directly returns the cached pointer, otherwise it resolves to a

hashtable look-up into the PortalID table. Figure 3.4 shows a code fragment for a shared

proxy.



23

NameProxy::set(char *name)

{

Channel *cnn = thisthread->getChannel(portal_id);

... Marshal parameters and executes RPC call ...

}

Figure 3.4: Stub code for a shared proxy

The �nal change to the implementation of Porc is to attach a server's proxy segments

read-only into clients' protection domains. Opal's single address space greatly simpli-

�es this, because it assures that all applications are located in separate non-overlapping

address ranges, and it also provides a mechanism for mapping segments from one pro-

tection domain into another protection domain. A server might need to attach segments

to a client each time a capability to one of it's objects is exported. For those methods

Porc silently passes an attach-segment-capability for the client's domain to the server,

so it can attach the proxy segment read-only to the client . The server stores the client's

attach-segment-capabilities in a hashtable to prevent further redundant attaches.

3.5 Summary

This chapter introduced shared proxies and explained how they can improve performance

of the Porc toolkit. Shared proxies make binding to protected objects potentially faster

by mapping shared proxies read-only into client's protection domains in bulk, thereby

avoiding allocation of memory and initialization of proxy objects locally in clients; they

allow the server to pass proxy pointers directly to the client, avoiding the cost of trans-

lating between virtual addresses and capabilities; and a higher degree of transparency is

achieved, because they do not introduce pointer aliasing and pointers to shared proxies

can be shared by multiple clients.

However, calls on shared proxies are inherently slower than calls on ordinary proxies,



24

because the Channel must be located dynamically on each call. A scheme that caches

the most recently used channel in each thread has been devised, so only one extra

indirection is needed to �nd the channel object in the common case where a thread calls

the same server multiple times in a row. The overhead of locating the channel object

is expected to be low in comparison to the performance gains from eliminating proxy

instantiation and conversion of protected pointers. An evaluation of shared proxies is

presented in Chapter 6.



Chapter 4

Read-only Methods

Read-only methods provide a technique for optimizing read-only access to protected

objects. Like shared proxies, the scheme is based on the use of shared read-only memory

for improving the performance of object-based client/server communication.

Access to protected objects is inherently more expensive than access to a local object,

due to the cost of the RPC call to the the server's protection domain. Even on highly

optimized RPC protocols such as LRPC[Bershad et al. 90] it will be considerably more

expensive. The extra overhead for an RPC call consists of marshaling the arguments

and return values, two kernel invocations to transfer the marshaled arguments between

the domains, and validation of the arguments in the guard.

The context-switch can be avoided for functions that do not modify the state of the

server, but only read data from it. We will call these read-only methods or r-methods

1

.

The idea is to give the client read-only access to the server's data, so protected objects

can be queried as e�cient as local objects. Figure 4.1 shows an example of a client

that has read-only access to a server. The client has pointers directly to data structures

managed by the server and can follow pointers stored in the server directly without

1

In contrast to write-methods or w-methods that modi�es the state of a server



26

Client

ServerA

B C

D E

Private Segment Shared read−only segment

Figure 4.1: A client with read-only access to a server

having to translate them.

The key concepts of read-only methods are:

� A server attaches its data and code segments read-only to a client's protection

domain, thereby allowing the client to directly query its objects.

� The security of the server is maintained. Clients only have read-only access to the

server and therefore cannot directly modify any of its objects. Modi�cations must

be done with RPC calls to the server's domain.

� They are completely transparent to the client application. Read-only methods are

implemented as proxy methods. However, parameter validation is relaxed, because

they are executed by the client, leaving the server una�ected even if a bad pointer

is followed.



27

There are certain pitfalls the server implementor has to be aware of when implementing

read-only methods. Granting clients read-only access to the server implies that the

server does not have any control over which objects are being accessed. Only the objects

that a client is allowed to access should be attached read-only to the client's domain.

The segments that get attached to the client should also not contain any information

that makes it possible for a client to synthesize fake capabilities. Synchronization of

concurrent access to objects with r-methods causes a problem, because r-methods cannot

directly modify locks in the server. The next chapter is devoted to that problem. Despite

these problems, r-methods are perfect for achieving high performance for applications

that are divided into multiple protection domains to increase extensibility and provide

independence of failure.

In Shapiro's original proposal of the proxy model he describes a method for optimizing

client/server communication by caching immutable data in proxies, thereby avoiding a

context-switch. Read-only methods generalize this idea by accessing the data directly

in the server. They have several advantages over caching of data in proxies. By storing

data only in the server, it is possible to change data and all the clients will see the change

instantly. Another bene�t is that the cost of copying data into a proxy is avoided.

The next section describes how parameter validation di�ers for read-only methods, and

section 4.2 discusses how read-only methods support is implemented in Porc and how

stub code can be generated for them.

4.1 Parameter Passing and Validation

A key mechanism for ensuring security for the servers is the pointer validation done by

the guards. Pointers must be passed as capabilities, so the server can make sure that a

pointer is valid and actually pointing to a protected object of the type the server expects.

This prevents the server from following an invalid pointer.



28

Read-only methods are implemented as proxy methods, but instead of executing an RPC

call, they make an ordinary invocation of the corresponding method on the protected

object in the server. Validation of arguments and return-values for r-methods can be

relaxed, because they are executed by the client. If a client tries to follow an invalid

pointer it can only hurt itself. The server will always remain una�ected. In particular,

pointers can be passed directly to r-methods without translating them to capabilities,

making it possible to access complex pointer structures e�ciently, without sacri�cing

security.

However, pointers need to be translated between proxy-pointers and protected-object-

pointers in the stub code for r-methods. All pointers that are manipulated by a client

are proxy pointers, so the stub code for read-only methods must convert (proxy) pointers

passed as arguments to pointers that point directly to the protected object, and vice-versa

for pointers that are returned as a result. The proxy-pointer is translated by looking up

the protected-object-pointer in the proxy. Translating pointers returned from the server

is a little more complicated. If a protected object uses ordinary proxies, the r-method

needs the capability from the guard to �nd or instantiate a proxy in the client's protection

domain. Otherwise, if the protected object has a shared proxy, then the pointer to the

shared proxy can be returned. In either case, the guard (and the possible shared proxy)

must exist, because an r-method cannot modify the server. Guards and shared proxies

must therefore be instantiated eagerly.

Read-only methods can also return pointers directly to a protected object, so a client

can access the object directly without the indirection through the proxy. This can be

useful when a server wants clients to have very e�cient access to linked data structures.

The disadvantage is that clients cannot modify the object a pointer refers to, because the

client does not have access to the proxy pointer. However, returning pointers directly

to protected objects could, for example, be used for a server that caches WWW pages.

These pages are never changed by clients, and contain links to other pages that can be

followed directly.



29

ObjectProxy *ObjectProxy::potato(ObjectProxy *p)

{

Object *real_p = p->GetObjectPtr();

Object *real_r = GetObjectPtr()->potato(real_p);

return real_r->GetProxyPtr();

}

Figure 4.2: Sample proxy code for a read-only method

4.2 Implementation

This section describes how stub code is generated for read-only methods, and how the

standard Porc implementation is extended to support read-only methods. Two key

additions are made: initialization of a pointer to the protected object in proxies, and

support for attaching server segments to clients.

Generating proxy code for read-only methods consists mainly of translating proxy point-

ers. Figure 4.2 shows the stub code for a function that takes a pointer to a protected

pointer as an argument and then returns a pointer to another protected object. The

method GetObjectPtr on a proxy object returns a pointer to the protected object, and

the method GetProxyPtr on a protected object returns a pointer to the proxy for that

object. Returning the proxy pointer consists of either returning the shared proxy pointer

or of looking the proxy up in the PortalID table, depending on if shared proxies are used

or not.

In order for a proxy to return a pointer to the protected object when the GetObjectPtr

method is called, a new instance variable, ObjPtr , is added to each proxy, which points

to the real object's locations in the server. The variable is initialized when the proxy

is created, i.e., each time a new capability is passed to a client or server as a result of

executing a method on a protected object. The capability does not contain the speci�c



30

location of the protected object within the server, so that information must either be

passed along with the capability or requested from the server after the capability has

been received.

Clients are required to trust servers, therefore a server passes the pointer to the protected

object with the capability. The pointer is stored in the proxy when it is instantiated. In

the case where clients pass protected object pointers to a server, this scheme cannot be

used, because a server does not have any way of validating a passed pointer. Instead, a

mechanism where a server, given a capability, can make a protected call to the server to

obtain the location of the protected object are implemented. This requires an RPC call,

but it avoids the need for servers to trust pointers passed by clients. The extra protected

call is executed by the guard objects and are completely transparent to applications.

A server might need to attach segments to a client each time a capability to one of its

objects is passed. This is similar to attaching shared proxies into a client's domain and

is implemented as explained in Section 3.4.

4.3 Summary

Read-only methods allow clients to obtain data directly from protected objects, avoiding

the overhead of RPC calls and without sacri�cing protection. As a side-e�ect, parameter

validation is relaxed, so pointers can be passed directly as parameters or returned from

r-methods. The underlying mechanism for supporting read-only methods is read-only

sharing of memory between the client and the server. The next chapter will discuss how

the synchronization of read-only methods can be handled.



Chapter 5

Version-based Synchronization

The previous chapter introduced read-only methods, which permit clients to e�ciently

read data from a server. Read-only methods eliminate the context-switches that transfer

control between the client's and the server's domain. The client has read-only access to

the server's domain, thereby allowing it to directly execute functions that only read data

from the server.

An r-method cannot modify any data in the server, because otherwise a protection fault

will occur when it is executed by a client. This causes a problem with synchronization

of concurrent access to protected objects.

Synchronization of shared data is typically done with locks. A thread which is about to

modify shared data acquires a write-lock before it applies any changes. This lock assures

that it is the only thread accessing the data. After the modi�cations have been applied

it releases the lock again, so other threads can access the data. Threads that are only

reading shared data, i.e., executing an r-method, require a read-lock, so the data it not

modi�ed while they are reading it. In contrast to a write-lock, which only allows one

thread to execute at a time, a read-lock allows several r-methods to execute at the same

time.



32

Read-only methods cannot directly modify the server's locks, so the traditional mecha-

nism described above can therefore not be used. Two ways of solving the synchronization

problem are presented in this chapter: the obvious way of acquiring locks using RPC

calls to the server and a scheme based on version numbers, a technique borrowed from

lock-free synchronization[Herlihy 91].

5.1 Using Locks

For certain kinds of servers it might be pro�table to arrange access to data in a check-

in/check-out manner. A client makes an RPC call to the server (through a proxy) to

check-out an object it wants to access. The check-out call requires a lock in the server

for the speci�ed object. Read-only access to the object can then be done by r-methods

without any need for synchronization. When a client is done with an object, it checks it

in, which releases the lock. For example, an object-based �le system could be structured

this way. Read-only access to �les can then be implemented without any copying of the

�les. A simple example of a C

++

class that uses this method is shown in Figure 5.1.

The server has to protect itself against ill-behaved clients that check-out objects and

terminate. This could, for example, happen if a client gets prematurely terminated by

the user with a kill command. The objects that are checked out will never be checked

in, leaving them inaccessible forever. A simple mechanism to prevent this is to associate

a timer with each server lock. For a client to maintain a lock it has to periodically make

calls to the server to renew its ownership. The refresh calls can be hidden in the Porc

run-time, thereby being completely transparent to the application.

Acquiring and releasing locks with RPC calls to the server is expensive. For the scheme

to be faster than just executing a single RPC call to retrieve the data, the cost of the

check-in/check-out calls must be amortized over cheap r-methods calls. The scheme is

therefore best suited for servers with large objects and coarse-grained sharing.



33

const int MaxNameLength = 32;

class Name {

Mutex mutex;

char name[MaxNameLength];

public:

void checkIn() { mutex.unlock(); }

void checkOut() { mutex.lock(); }

void setName(char *);

void getName(char *); // Read-only method

};

void Name::setName(char *n)

{

CheckOut();

strncpy(name,n,MaxNameLength); // Copy data into object

CheckIn();

}

void Name::getName(char *n)

{

strncpy(n,name,MaxNameLength); // Copy data out of object

}

Figure 5.1: A simple concurrent C++ class using the check-in/check-out scheme



34

5.2 Version Numbering

Version numbering of objects is another scheme for r-methods to synchronize access to

shared data. In contrast to the check-in/check-out scheme, it is best suited for servers

with small objects and �ne-grained sharing.

Instead of requiring a lock to make sure that the data is not modi�ed, the technique

is based on detection of modi�cation and recovery. The server marks an object incon-

sistent during an update. Read-only methods can detect if an object has been marked

inconsistent while it was executing, and in that case it can restart itself. The assumption

is that the data accessed by an r-method is rarely modi�ed during its execution.

The method relies on two version-numbers, check[0] and check[1], that are added

to each object. If the two counters have the same value, the object is in a consistent

state, otherwise it is not. A w-method marks an object inconsistent by incrementing

the value of check[1] before its applies any modi�cation to it. When the update is

done, the object is marked consistent again by incrementing check[0]. The code for

an r-method stores the value of check[0], copies the data out of the object, and then

compares the stored value against check[1]. If the two values are equal then the method

returns successfully, otherwise the method is restarted. A read-only method is guaranteed

to detect if its execution overlaps that of a w-method, because the r-methods and w-

methods access the version-numbers in reverse order. An example of how the technique

is used is shown in Figure 5.2. Note that synchronization for w-methods is still done

with locks.

The version numbers can be hidden by the subclass mechanism in C

++

. Figure 5.3

shows the interface for a class that encapsulates the version numbers and provides high-

level methods to manipulate them. Objects that use version-based synchronization are

derived from this class. Read-only methods read the value of the two version numbers

using lf �rst and lf last. Write-methods use lf inconsistent to mark an object inconsistent



35

const int MaxNameLength = 32;

class Name {

Mutex mutex;

long check[2];

char name[MaxNameLength];

public:

void setName(char *); // Update method

void getName(char *); // Read-only method

};

void Name::setName(char *n)

{

Mutex.lock();

check[1]++;

strncpy(name,n,MaxNameLength); // Copy data into object

check[0]++;

Mutex.unlock();

}

void Name::getName(char *n)

{

long first, last;

do {

first = check[0];

strncpy(n,name,MaxNameLength); // Copy data out of object

last = check[1];

} while(first!=last);

}

Figure 5.2: A simple concurrent C++ class using version numbering



36

class LockFreeObject

long lf first ()

long lf last ()

void lf inconsistent ()

void lf consistent ()

Figure 5.3: Interface for the LockFreeObject class

before they apply any modi�cations, and call lf consistent when the changes have been

applied. The class also interacts with a class built to provide memory management,

which are explained in the next section.

The e�ciency of this scheme depends on how often r-methods are restarted, which in

turn depends on the execution time of r-methods and the update rate of objects. The

scheme is therefore best for objects where reads are more common than writes, and where

r-methods execute quickly. A potential problem with read-only methods are starvation.

For long executing r-methods or r-methods that access objects that are modi�ed often,

the probability of getting restarted is high. The execution-time of an r-method can

therefore be arbitrary long. This can be avoided by having an upper limit on the times

an r-method can be restarted; if that limit is exceeded an ordinary RPC call to the server

is made to execute the function.

5.3 Memory Management

Memory management for objects that are accessed by read-only methods is special be-

cause memory for deleted objects cannot be freely reused, but can only be used for objects

of the same type. A client cannot tell if an object it invokes by a read-only method has

been deleted or not. If it is the case that the object has been deleted and its memory

is reused for another object, then it is very likely that the read-only method will return

garbage data, because the memory region now contains a di�erent bit-pattern. What



37

is even worse, is that a read-only method might be restarted in�nitely, if the memory

locations where it expects to read the version-numbers do not have the same values.

However, recycling the memory region to objects of the same type is possible, because

they have the same memory layout. The drawback is that an r-method might return

unexpected data, because the object it was accessing got deleted and replaced with

another that belongs to a di�erent data structure. How to handle this problem depends

on the data structure. For example, for a linked list, the �rst and next primitives can be

implemented so the e�ect of the above problem is that some elements will be accessed

twice when the list is traversed. Another solution is to include an object identi�er in each

object, so an r-method can detect that the object has been deleted and return an error

code. Appendix A shows how a singly linked list can be implemented with version-based

synchronization, and explains the implications of the memory management in detail.

To manage the reuse of memory, each object type has a free-list associated with it. It

is a linked list of pointers to memory regions that has contained objects of the speci�c

type. When an object is deleted it is put unmodi�ed on the free-list, so r-methods that

are currently accessing it can still proceed, unaware that the object has been deleted.

Memory for a new object is allocated by �rst checking the free-list and then if that is

empty allocate memory directly from the heap. The new object is marked inconsistent

while it is initialized to prevent r-methods from reading inconsistent data. However,

managing a separate free-list for each type of object introduces memory fragmentation.

A server might not be able to allocate memory for a new object, even thought there is a

lot of unused memory, because the free memory region can only be for objects of another

type.

The management of free-lists and allocation and deallocation of memory is supported

by the LockFreeMemPool class. The standard new and delete operators in C

++

are

overloaded, so memory is allocated and deallocated through the use of an instance of the

LockFreeMemPool class. The interface for the class is shown in Figure 5.4.



38

class LockFreeMemPool

LockFreeObject* allocate ()

void recycle (LockFreeObject *)

Figure 5.4: Interface for the LockFreeMemPool class

5.4 Summary

This chapter describes the problem of synchronizing concurrent access to shared data

for read-only methods and presents two solutions. One is based on a check-in/check-out

mechanism, which is suitable for large objects when sharing is coarse-grained. The other

solution, based on version numbers, is suitable for small �ne-grained shared objects. In

the common case, where data is not modi�ed, version-based synchronization provides

read-only methods with a low overhead mechanism for synchronizing concurrent access

to shared objects.



Chapter 6

Evaluation

The previous chapters have presented shared proxies, read-only methods and version-

based synchronization. These are techniques developed for improving the performance

of object-based RPC in the local case where both the client and the server reside on

the same machine. This chapter will evaluate the techniques and present performance

results.

A name server is used as a test program. Four di�erent versions of the name server are

built using di�erent combinations of shared proxies and read-only methods to analyze

the performance improvements of the techniques both individually and combined.

The rest of this chapter describes the implementations of the name server in detail,

presents the benchmark and evaluates the results.

6.1 The Name Server

The name server o�ers its clients a general purpose name-to-capability mapping. The

name space is structured as a hierarchical collection of directories. A name is stored

in a directory and contains either a reference to a capability or a reference to another



40

DirEntry

Name: News
DirNode

Name: .cshrc

Capability

DirEntry

Capability

DirEntry

Name: mbox

DirNode

Capability

DirEntry

Name: Broccoli

Figure 6.1: The internal organization of the name server

directory. Clients can resolve names to capabilities, browse directories, add new names

and delete existing ones. The name server can, for example, be used as a simplistic

object-based �le server, where entries name capabilities for user �les.

The organization of the internal data structure is shown in Figure 6.1. Two C

++

classes

are used to represent the structure, DirEntry and DirNode, which respectively models a

name and a directory. A DirNode contains a single linked list of DirEntry objects, and

a DirEntry stores either a capability or a pointer to a DirNode. Figure 6.2 shows the

interface for a DirNode. Capabilities can be added, deleted and looked up by name with

the methods insert, remove, and resolve. Similarly, directories can be manipulated with

the methods createDir, removeDir, and resolveDir. The two functions �rst and next are

provided for browsing through the entries in a DirNode. A pointer to the �rst DirEntry

object is returned by the �rst method and the link from one DirEntry object to the next

is returned by the next method. Figure 6.3 shows the interface for a DirEntry object.



41

Method Read-only

boolean insert (char *)

boolean remove (char *)

boolean resolve (char *, Capability&)

p

DirNode* createDir (char *)

boolean removeDir (char *)

DirNode* resolveDir (char *)

p

DirEntry* first ()

p

DirEntry* next (DirEntry *)

p

Figure 6.2: Interface for the DirNode Class

Method Read-only

DirEntry* get (char *, Capability&)

p

boolean isSubDir ()

p

DirNode* getSubDir ()

p

Figure 6.3: Interface for the DirEntry Class

It provides methods for accessing the capability or the subdirectory depending on what

the object contains.

Synchronization of concurrent access to the name server is done with locks for the write-

methods and with version-based synchronization for read-only methods. The implemen-

tation is explained in detail in appendix A.

Shared proxies and read-only methods can with advantage be used to implement the

client/server communication for the name server. Access to the name server is expected

to consist mostly of browsing the structure and retrieving capabilities, i.e., mostly read-

only access. Share proxies eliminate the overhead of creating local proxies in the client

and reduce the time it takes to pass pointers from the server to the client. Read-only

methods (see Figures 6.2 and 6.3) eliminate the expensive protected procedure calls,

clients can follow pointers in the server's data structure directly.



42

6.2 Experiments

The benchmark consists of a client that creates, traverses, and deletes a directory struc-

ture in the server. The directory structure is a balanced tree with a branching level of

two and a depth of ten. It contains a total of 3069 objects, where 2046 are DirEntry ob-

jects and 1023 are DirNode objects. The implementation of the operations is explained

below.

Create

Creating the tree structure consists of executing a createDir method for all the

internal nodes in the tree, and executing an insert for all leaf nodes. Only write-

methods are executed.

Traverse

Traversing the tree structure is implemented as a recursive procedure. It uses �rst

and next to iterate through the entries in a DirNode. For each entry it checks

if it has a subdirectory with isSubDir, and whether it has one or not, a pointer

to the subdirectory is fetched with a call to getSubDir and recursively traversed.

Traversing the tree only requires invocation of read-only methods.

Delete

The tree is traversed recursively as explained above. After a node or leaf has been

visit a call to removeDir or remove is generated, respectively. Deleting the structure

involves executing a combination of read-only methods and write-methods.

To evaluate the e�ect of shared proxies and read-only methods four di�erent implemen-

tations of the name server and client were built. The source code for the programs is

unchanged for all implementations, but they are linked with di�erent proxy and guard

stub code. The implementations are:



43

Unprotected

The client and the server execute in the same protection domain without the use of

Porc and stub code. The client invokes the server directly with ordinary procedure

calls. This version gives a lower bound for the execution times.

Protected

The client and server execute in separate protection domains using the standard

implementation of Porc. Calls to the server are done with RPC calls and neither

shared proxies nor read-only methods are used.

Shared

The client and server execute in separate protection domains and shared proxies are

used for all protected objects. Shared proxies are created lazily when a reference

to an object is �rst exported to a client.

Read-only

In addition to using shared proxies, read-only methods are also used. The read-

only methods return pointers to shared proxies, so the client can modify (or delete)

the object that a pointer refers to. Shared proxies are created eagerly.

The experiments are run on a dedicated DECstation 5000 running Mach 3.0 and a

prototype of the Opal[Chase et al. 93] server. The Opal server provides an environment

in which all applications run in a single address space on top of the Mach kernel. Porc

uses Mach ports as its transport mechanism, and read-only sharing of memory is directly

implemented as attach-segment calls to the Opal server.

6.3 Results

The results of the experiments are shown in Table 6.1. The table shows the absolute

times for coordinating sharing of memory (attach), creating the directory tree, traversing



44

Table 6.1: Performance Measurements (in seconds)

Unprotected Protected Shared Read-only

Attach 0.00 0.13 0.13 0.13

Create 0.29 0.77 0.75 0.80

Traverse 0.03 1.45 1.17 0.04

Delete 0.18 1.74 1.45 0.59

Total 0.50 4.09 3.50 1.52

it, deleting it, and the total execution time.

It comes as no surprise that the Unprotected version is much faster than the Protected

version, because there is no overhead of executing remote procedure calls. However,

inserting a protection boundary changes the relative cost of the di�erent operations.

For the Unprotected version allocating memory is an expensive operation compared to

executing a procedure call, so creating the data structure is the most expensive task. For

the Protected version, traversing and deleting the structure is more costly than creating

the structure, due to the high cost of remote procedure calls. The Traverse and Delete

operations make more than three times as many calls to the server than the Create

operation.

Introducing shared proxies makes creating, traversing, and deleting the tree slightly

faster. For Traverse the overhead of instantiating local proxies is eliminated. The per-

formance is also improved because the server returns pointers directly to shared proxies,

thereby eliminating hashtable

1

look-ups to convert capabilities into local proxy pointers.

The results show that the extra cost of retrieving the Channel pointer from a thread's

control block is dominated by the savings from passing proxy-pointers directly and elim-

inating instantiation of local proxies.

Attaching the name server's data segment read-only to the client signi�cantly improves

the performance of traversing and deleting the structure. Creating the structure is

1

The hashtable used in the experiments has 2048 buckets.



45

slightly slower because shared proxies and guards are created eagerly. Traversing the

structure in the Read-only version is a little slower compared to the Unprotected version,

because the stub code for the read-only methods must convert pointers and call the

method indirectly. The �rst and next methods only consist of returning a pointer stored

in the server, so adding an extra level of indirection slows them down by a relatively

large amount.

The total execution times show that the extra time spent attaching segments read-only

to clients can easily be amortized by the use of shared proxies and read-only methods,

thereby improving the overall performance of object-based RPC.



Chapter 7

Conclusion

An object-based RPC toolkit allows modular software systems to be split up in sev-

eral protection boundaries to provide extensibility, maintainability, and independence of

failure. It makes the protection boundary transparent to the client and provides pro-

tected access to the server. However, while the toolkit provides safety, it can su�er in

performance, due to the domain-crossing costs required by the protected procedure calls.

This thesis focuses on how the performance of object-based RPC can be improved in the

local case where both the client and the server reside on the same machine. In the local

case, the client and the server can take advantage of read-only shared memory. Sharing of

memory allows clients to directly query protected objects and makes it possible to share

proxy objects between clients. Security is maintained, because protected procedure calls

must still be used to modify protected objects. Three techniques are presented:

� Shared Proxies,

� Read-only Methods, and

� Version-based Synchronization

Shared proxies eliminate the cost of instantiating local proxies in clients, and allow servers



47

to pass proxy pointers directly to clients. In addition they improve the transparency

of the toolkit, by eliminating pointer aliasing and allowing sharing of proxy pointers

between clients. Read-only methods provide clients with e�cient read-only access to

protected objects. The techniques have been evaluated on a test application where they

show signi�cant performance improvements. In particular, read-only methods shows a

drastic performance improvements by eliminating the protected procedure calls.

Version-based synchronization, an e�cient synchronization of concurrent access to pro-

tected objects with read-only methods, is presented. Version-based synchronization relies

on detection of concurrent access and recovery. It provides fast access to server data in

the common case where an object is not modi�ed. The scheme introduces some problems

with memory managements. A partial solution that recycles memory among objects of

the same type has been presented.

The techniques have successfully been implemented in an existing object-based RPC

toolkit (Porc). The modi�cations are completely transparent to existing applications,

i.e., the same syntax and semantics have been preserved for all functions. Porc is built

on top of Opal, a single address space operating system, which greatly simpli�ed the

implementation, because no a priori negotiation about sharing of memory between clients

and servers is needed.

7.1 Future Work

There are several areas where future work is possible.

Real Applications

The techniques presented in this thesis are evaluated on a name server with a fairly

arti�cial workload. Incorporating the methods into existing applications to gain

more knowledge about their strengths and weaknesses would be interesting.



48

Distributed Virtual Memory Systems

The techniques could be used in the remote case on systems that implement dis-

tributed virtual memory[Chase et al. 92b, Heiser et al. 93, Carter et al. 91]. It is

not clear how the techniques will perform compared to doing RPC calls directly to

the remote host, and how they will interact with the underlying consistency policy

of the DVM system.

Synchronization of Read-only Methods

Version-based synchronization has been presented as a way of e�ciently synchroniz-

ing read-only methods and write-methods. The scheme needs further investigation

to fully understand its viability.



Bibliography

[Accetta et al. 86] N. Accetta, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. MACH: A new kernel foundation for UNIX development. In

USENIX Summer Conference, July 1986.

[Allchin & McKendry 83] J. Allchin and M. McKendry. Synchronization and recovery

of actions. In Proceedings of the 2nd ACM Symposium on Principles of Dis-

tributed Computing, pages 31{44, August 1983.

[Almes et al. 85] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe. The Eden

system: A technical review. IEEE Transactions on Software Engineering, SE-

11(1):43{59, January 1985.

[Anderson et al. 86] M. Anderson, R. D. Pose, and C. S. Wallace. The password-

capability system. The Computer Journal, 29(1):1{8, February 1986.

[Bershad et al. 90] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight re-

mote procedure call. ACM Transactions on Computer Systems, 8(1), February

1990.

[Birrell & Nelson 84] A. D. Birrell and B. J. Nelson. Implementing remote procedure

calls. ACM Transactions on Computer Systems, 2(1):39{59, February 1984.

[Carter et al. 91] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation

and performance of Munin. In Proceedings of the Thirteenth Symposium on

Operating Systems Principles, pages 152{164. ACM, October 1991.

[Chase et al. 92a] J. S. Chase, H. M. Levy, M. Baker-Harvey, and E. D. Lazowska. How

to use a 64-bit virtual address space. Technical Report 92-03-02, University of

Washington, Department of Computer Science and Engineering, March 1992.

Shortened version published as Opal: A Single Address Space System for 64-

Bit Architectures, Third IEEE Workshop on Workstation Operating Systems

(WWOS-III), April 1992.

[Chase et al. 92b] J. S. Chase, H. M. Levy, M. Baker-Harvey, and E. D. Lazowska. Opal:

A single address space system for 64-bit architectures. In Proceedings of the

Third Workshop on Workstation Operating Systems, April 1992.



50

[Chase et al. 92c] J. S. Chase, H. M. Levy, E. D. Lazowska, and M. Baker-Harvey.

Lightweight shared objects in a 64-bit operating system. In Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Ap-

plications, October 1992. University of Washington CSE Technical Report

92-03-09.

[Chase et al. 93] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing

and protection in a single address space operating system. Technical Report

93-04-02, University of Washington, Department of Computer Science and

Engineering, April 1993. To appear in ACM TOCS.

[Dave et al. 92] A. Dave, M. Se�ka, and R. H. Campbell. Proxies, application interfaces,

and distributed systems. In Proceedings of the Second International Workshop

on Object Orientation in Operating Systems, September 1992.

[Feeley et al. 93] M. J. Feeley, J. S. Chase, and E. D. Lazowska. User-level threads

and interprocess communication. Technical Report 93-02-03, University of

Washington, Department of Computer Science and Engineering, March 1993.

[Heiser et al. 93] G. Heiser, K. Elphinstone, S. Russell, and J. Vochteloo. Mungi: A

distributed single address-space operating system. Technical Report SC&E

Report 9314, School of Computer Science and Engineering, The University of

New South Wales, 1993.

[Herlihy 91] M. Herlihy. A methodology for implementing highly concurrent data ob-

jects. Technical Report CRL 91/10, DEC Cambridge Research Laboratory,

1991.

[Hoare 78] C. A. R. Hoare. Communicating sequential processes. Communications of

the ACM, 21(8):666{677, 1978.

[Jul et al. 88] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in

the Emerald system. ACM Transactions on Computer Systems, 6(1):109{133,

February 1988.

[Levy 84] H. M. Levy. Capability-Based Computer Systems. Digital Press, Bedford,

Massachusetts, 1984.

[Mullender & Tanenbaum 86] S. Mullender and A. Tanenbaum. The design of a

capability-based operating system. The Computer Journal, 29(4):289{299,

1986.

[Redell et al. 80] D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch, P. McJones,

H. Murray, and S. Purcell. Pilot: An operating system for a personal computer.

Communications of the ACM, 23(2):81{92, February 1980.



51

[Rosenberg 92] J. Rosenberg. Architectural and operating system support for orthogonal

persistence. Computing Systems, 5(3), July 1992.

[Shapiro 86] M. Shapiro. Structure and encapsulation in distributed systems: The proxy

principle. In Proceedings of the Sixth International Conference on Distributed

Computing Systems, May 1986.

[Stroustrup 91] B. Stroustrup. The C++ Programming Language. Addison-Wesley,

Reading, Massachusetts, second edition, 1991.

[Wulf 74] W. A. Wulf. Hydra: The kernel of a multiprocessor operating system. Com-

munications of the ACM, 17(6):337{345, June 1974.



Appendix A

Version-based Synchronization:

An Example

This appendix gives an example of how version-based synchronization can be imple-

mented. A singled linked list that provides read-only methods to access and iterate

through the list is used as an example. The implementation described here is identical

to the one used for implementing the DirNode class in the name server

1

.

The list has methods for inserting elements, removing elements, and iterating through the

elements in the list. For simplicity are the type of the elements stored in the list integers

in this example. The list is implemented with two C

++

classes, whose declarations

are shown in Figure A.1. Each integer stored in the list is encapsulated in a ListElem

object, which also contains the link-pointer to the next element. The List class contains

a pointer to the �rst element in the list and has access to the internals of ListElem,

so it can access the link-pointer from one element to the next. Both of the classes

are subclasses of LockFreeObject (Figure A.2) which contains the version-numbers and

provides methods to manipulate them.

1

The name server is described in Section 6.1



53

class List : public LockFreeObject {

Mutex lock;

ListElem *head;

public:

void insert(int key);

int remove(int key);

ListElem *first () // read-only

ListElem *next (ListElem *) // read-only

void *operator new(size_t);

void operator delete(void *);

};

class ListElem: public LockFreeObject {

int key;

ListElem *link;

friend class List;

public:

int getKey(); // read-only

void *operator new(size_t);

void operator delete(void *);

};

Figure A.1: The List and ListElem Classes

The following sections describe how memory is managed for the list, and explains how

the read-only methods and the write-methods are implemented.

A.1 Memory Management

Recycling of memory is implemented by overloading the new and delete operators. An

instance of the LockFreeMemPool class (see Figure A.3) contains the free-list of objects.

The LockFreeMemPool is a simple queue of LockFreeObject elements, where objects can



54

class LockFreeObject {

ulong check[2];

LockFreeObject *link; // Used by LockFreeMemPool

friend class LockFreeMemPool;

public:

ulong lf_first() { return check[1]; };

ulong lf_last() { return check[0]; };

void lf_inconsistent() { check[0] = check[1]+1; };

void lf_consistent() { check[1]++; };

};

Figure A.2: The LockFreeObject Class

be pushed onto the queue with the recycle method, and popped o� with the allocate

method. The allocate method returns a null pointer if the queue is empty. The class has

access to the internals of LockFreeObject and uses its link pointer to queue elements.

There is a global instance of the LockFreeMemPool class for each type of object that is

accessed with read-only methods, i.e., types that are a subclass of LockFreeObject. For

the List and ListElem class, the following statements instantiate the two queues:

static LockFreeMemPool ListMemPool;

static LockFreeMemPool ListElemMemPool;

The code for the overloaded new and delete operations are the same for all classes,

except that each class accesses its own LockFreeMemPool and casts to its own type.

The code for the List class is shown below.

void *List::operator new(size_t s) {

List *elm = ListMemPool.allocate();

return (elm) ? (elm) : (::new List);

}

void operator List::delete(void *obj) {



55

class LockFreeMemPool {

Mutex *mutex; // Mutex

LockFreeObject *head,*tail;

public:

LockFreeMemPool();

~LockFreeMemPool();

LockFreeObject *allocate ();

void recycle (LockFreeObject *obj);

};

Figure A.3: The LockFreeMemPool class

ListMemPool.recycle(obj);

}

A.2 Read-only Methods

Read-only methods are executed directly by clients, and therefore cannot modify any

state of the server. Version-based synchronization of read-only methods relies on detect-

ing and recovering from reading inconsistent data. In contrast to locks which are based

on prevention. The technique relies on write-methods to mark objects as inconsistent

while they are being modi�ed.

The guidelines for implementing read-only functions are:

� No code modi�es the object,

� All access to the object is enclosed in a do-while loop, so the method can be re-tried

if the version-numbers changed during its execution, and

� Only local variables are accessed outside the do-while loop



56

The implementation of the read-only methods in the List and ListElem is shown in

Figure A.4. All of the methods have the same structure. The only di�erence is what

data is accessed and which object's version-numbers are checked.

A.3 Write Methods

Write-methods are executed by the server, so they can freely modify, create, and delete

objects. In particular, they can synchronize access to shared data with standard syn-

chronization primitives such as critical sections and monitors[Hoare 78]. A write-method

must modify the version-numbers before and after it modi�es an object to prevent read-

only methods from returning inconsistent data. The implementor does not have to

access the version-numbers directly, but can manipulate them via the methods in the

LockFreeObject class.

The implementation of the insert and remove methods of the List class is shown in

Figure A.6. A lock (the mutex) is used to ensure that only one thread is inserting

or removing elements at a time. Before changes are applied to an object it is marked

inconsistent with a call to lf inconsistent, and afterwards it is marked consistent with a

call to lf consistent. These calls guarantee that concurrent executing read-only methods

will be restarted.

One subtlety with the implementation is the interaction between read-only methods

and write-methods. What happens if elements are added and removed while a client is

traversing the list with the read-only �rst and next methods?

Consider the case where only elements are added to the list. New elements are always put

at the beginning of the list. Elements that are added after the client obtains a pointer

to the �rst element (with the �rst method) will therefore not be traversed. Removing

elements from the list is a little di�erent. Removing an element that the client has already

traversed will make no di�erence, because it has already been accessed. Similarly, the



57

int ListElem::getKey() {

ulong first, last;

int k;

do {

first = lf_first();

k=key;

last = lf_last();

} while(first!=last);

return k;

}

ListElem *List::first() {

ulong first, last;

ListElem *h;

do {

first = lf_first();

h = head;

last = lf_last();

} while(first!=last);

return h;

}

ListElem *List::next(ListElem *e) {

ulong first, last;

ListElem *n;

do {

first = e->lf_first();

n = e->link;

last = e->lf_last();

} while(first!=last);

return n;

}

Figure A.4: Implementation of the read-only methods



58

int ListElem::getKey(ulong i) {

ulong first, last, I;

int k;

do {

first = lf_first();

k=key;

I= lf_incarnation();

last = lf_last();

} while(first!=last);

if (i!=I)

//Raise exception

else

return k;

}

Figure A.5: Implementation of getKey with incarnation check

client will not see objects that are removed from the part of the list that has not yet been

traversed. The element that the client is currently holding a pointer to is guaranteed

to be traversed, even if it is deleted while the client is accessing it. When the element

is deleted it is just being put on a free-list with the recycle call to a LockFreeMemPool

object with all its state intact.

However, because memory is recycled, the implementation of the linked list has an

abnormality. It occurs when the current accessed element is removed from the list and

its memory region is recycled to a new element. The new element is inserted into the

front of the list, so the traversal will, in e�ect, be reset to the beginning of the list,

making it possible for a client to traverse some elements more than once. This behavior

might be undesirable for some applications. For example, a client cannot traverse the

list to determine its length. An even worse situation can happen if the element is deleted

and recycled onto a di�erent list.

An alternative implementation strategy uses incarnation numbers. This makes it possible



59

for a read-only method to detect when the object it is accessing has been recycled, so

an error code can be returned to the application. The application can then restart its

operation by retrieving a new pointer to the start of the list.

The idea is to let the clients keep track of which incarnation of an object a pointer refers

to. The incarnation number is an instance variable in the LockFreeObject class

2

. It is

incremented each time an object is recycled, hence, it is constant as long as the same

memory region contains the same object. Instead of only returning the pointer to an

object, the server returns a two-tuple contain the pointer and the incarnation-number.

The incarnation number is passed to the server when the pointer is used, so the object

can be authenticated. An example of the technique is shown in Figure A.5. Unfortu-

nately, implementing read-only methods with incarnation-numbers are not completely

transparent to clients, which jeopardize the goals of the toolkit.

2

It is not shown in Figure A.2



60

void List::insert(int key) {

mutex.lock();

ListElem *elm = new Listelem;

elm->lf_inconsistent();

elm->key = key;

elm->link = head;

elm->lf_consistent();

lf_inconsistent();

head = elm;

lf_consistent();

mutex.unlock();

}

void List::remove(int key) {

NameServerEntry_r *cur = head,

*prv = NULL;

mutex.lock();

while(cur && key!=cur->key); // search

prv=cur,cur = cur->link;

if (cur)) {

if (prv) { // remove

prv->lf_inconsistent();

prv->link = cur->link;

prv->lf_consistent();

} else {

lf_inconsistent();

head = cur->link;

lf_consistent();

}

delete cur;

}

mutex.unlock();

}

Figure A.6: Implementation of the write-methods


