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Abstract

Automatically synthesizing device drivers, the hardware and soft-

ware needed to interface a device to a processor, is an important ele-

ment of hardware/software co-design. Driver software consists of the

sequences of instructions needed for the processor to control its inter-

actions with the device. Driver hardware consists of the digital logic

necessary to physically connect the devices and generate signal events

while meeting timing constraints. We describe an approach that be-

gins with device speci�cations in the form of timing and state diagrams

and determines which signals can be controlled directly from software

and which require indirect control through intervening hardware. Min-

imizing this hardware requires solving a simultaneous scheduling and

partitioning problem whose goal is to limit the number of wires whose

events are not directly generated by the processor software. We show

that even the simplest version of this problem is NP-hard and discuss

a heuristic solution that should work well in practical situations.
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1 Introduction

In synthesizing the hardware and software that make up an embedded

control application, timing constraints on the system arise from two main

sources: the low-level signaling requirements of the peripheral devices the

microcontroller interacts with, and high-level performance constraints such

as response time and execution rate constraints. Since the performance

constraints are generally expressed on a time scale an order of magnitude

larger than the signaling requirements, it is natural to separately handle

the two sources of timing constraints. These low-level signaling constraints

can be satis�ed by creating device drivers for each peripheral device. Such

drivers consist of a script of software instructions for the microcontroller,

and interface hardware between the microcontroller and peripheral devices.

These device drivers allow the higher-level software, which implements sys-

tem functionality, to invoke the appropriate signal sequence to interact with

a device correctly without explicitly attending to the hardware and timing

details of the peripheral devices. This creates a useful layer of abstraction

between hardware requirements and system performance requirements while

permitting optimization within the device drivers themselves. The problem

of determining the best implementation of the driver { so that it meets the

timing constraints imposed by the device and makes e�cient use of hard-

ware resources { can be posed as a combined scheduling and partitioning

problem.

Previous work in the �eld of interface synthesis [Bor88] considered the

problem of generating glue logic to interconnect devices whose interfaces

were speci�ed by timing diagrams. The synthesized logic was guaranteed to

meet all devices' timing requirements. Given the presence of a microproces-

sor in the systems we are considering, it is natural to implement much of

that interface logic as software routines and thus reduce the cost of interface

hardware while providing added 
exibility. However, interface hardware

may still be necessary, even with today's microprocessors and microcon-

trollers for several reasons including: the processor may not be fast enough

to meet the timing constraints of the devices; the processor may not be able

to achieve the interface throughput required; or the processor may not have

enough external pins (ports) to directly connect with all the devices that it

must control.

Furthermore, di�erent processors with di�erent speeds, instruction sets,

and I/O ports will change the possible and preferable content of the software

routines. Though it is possible to write a standard suite of device driver
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routines for each device-processor combination, there are several reasons

why it may be advantageous to synthesize new drivers for each new use of

a device. For example, an application which uses only a subset of a device's

functionality may not require as much interface hardware as one using a

comprehensive set. In addition, even when the microprocessor speed is well

matched to the device's communication requirements, tighter system-level

real-time constraints may overload the microprocessor and thus force more

system functionality to be pushed to hardware.

A device interface speci�cation consists of a collection of timing and state

diagrams explaining the exact sequence of events required on the device wires

and the timing relationships between those events. Di�erent sequences of

events are used to execute the various device operations (e.g., read or write).

The designer must analyze these speci�cations and determine which wires

can be controlled directly from software and which require external digital

logic. The external logic may take the form of straightforward memory-

mapped register or decoders and multiplexors to overcome the limited I/O

ports of a microcontroller. Sequential logic in the form of a �nite-state

machine is required when the device interface speci�es events that are too

close together in time to be generated or sensed by the processor.

This report is composed of six sections the �rst of which was this in-

troduction to the problem. The next section considers a simple example to

help illustrate the main concepts in the paper. Section 3 provides a formal

description of the combined partitioning/scheduling problem along with an

illustration of why even a simpli�ed version is NP-hard and section 4 dis-

cusses an approach to solving this problem. Section 5 describes the role of

this tool in the Chinook hardware-software co-synthesis system under devel-

opment at the University of Washington. Finally, section 6 concludes and

discusses our further plans.

2 Device Driver Synthesis Issues

Device behavior is generally described with timing diagrams as shown in

Figure 1 for the ISA bus ready read operation. In this example, a sim-

ple software device driver would read and write from its i/o ports directly

connected to device inputs and outputs to cause the following steps:

� provide data for Address1 and Address2

� drive MEMR* low

� sense the request ack (poll Ready until its value was 0)
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� sense the valid data ack (poll Ready until its value was 1)

� read word from DATA line

� drive MEMR* high

setup hold

setup hold

hold

request ack valid ack

data driven data valid
hold

tri-state

cpu->bus

cpu->bus

cpu->bus

bus->cpu

bus->cpu

Address1

Address2

MEMR*

Ready

DATA

Figure 1: Timing diagram for ISA read operation.

Suppose, however, that the amount of time between the read acknowl-

edge and valid acknowledge on the Ready line is small enough that the mi-

croprocessor we have chosen cannot be guaranteed to catch the zero value

on the Ready signal line. Were this event missed, the microcontroller would

have to assume that the read command it issued was not serviced by the

bus. However, we could introduce a small �nite state machine to watch the

MEMR* and Ready lines and lower a new signal Data ready* once the valid

ack has occurred. The microcontroller could then poll this new signal at its

leisure to determine if the data is valid. Figure 2 shows a possible device

driver for this scenario. It consists of: microcontroller code, a hardware

�nite state machine, port allocation information, and a depiction of the new

timing relationships between signals in a timing diagram.

Events represented in the timing diagram fall into two categories: device

events, which are generated by the device itself, and driver events, which

must be generated by any user of the device. Creation of the device driver

suite consists of three steps. First, for each device functionality used, we

partition the driver events into two sets { those that can be controlled di-

rectly by software and those that necessitate external hardware. This step

will introduce intermediate signals controlling the interactions between the

software and external hardware. Second, we schedule the software events

into subroutines corresponding to each operation of the device. Third, we
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ISA Read(in adr1,in adr2, out dataReg):

Address1 := adr1;

Address2 := adr2;

MEMR* := 0;

While(Data ready* == 1);

dataReg := DATA ;

MEMR* := 1;

PortAllocation :

Port1 == Address1

Port2 == Address2

Port3, bit 0 == MEMR*

Port3, bit 1 == Data ready*

Port4 == DATA

MEMR* == 0 and Ready == 0

reset

Ready == 1 / Data ready* := 0
MEMR* == 1 / Data ready* := 1

setup hold

setup hold

hold

request ack valid ack

interface delay
interface

data driven data valid
hold

tri-state

cpu->bus

cpu->bus

cpu->bus,interface

bus->interface

bus->cpu

interface->cpu

Address1

Address2

MEMR*

Ready

Data ready*

DATA

Figure 2: Device driver for ISA read operation, consisting of a microproces-

sor routine and hardware �nite state machine.
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generate a speci�cation for a �nite-state machine that will be used to inter-

face the processor with the device and generate and sense any events that

we have determined cannot be handled by software directly. Note that in

actuality one such �nite state machine is shared among all device function-

alities used. Issues of port allocation or memory-mapping are handled by

the algorithm described in [COB92] and are outside the scope of this paper.

The synthesis of the hardware corresponding to the FSM is also not covered;

it is assumed that sequential logic synthesis tools are available for this task.

3 Formal ProblemDe�nition and NP-completeness

Reduction

In e�ect, we have the problem of scheduling a set of signal events over

two di�erent \processors" { the microprocessor itself and the additional

hardware we generate. This problem is distinguished from other scheduling

problems as we are partitioning events into two radically di�erent domains:

software, in which the costly resource is time, represented by the individual

events, and hardware in which it is area which is closely correlated to the

number of signals to be generated or sensed.

In our treatment, we make a few simplifying assumptions. First, we

assume that the microprocessor can issue port read and write instructions

with constant, regular spacing in time. Second, we assume that all driver

sequences are called atomically by the processor (possibly in response to

an interrupt from the device) and cannot be overlapped or otherwise inter-

rupted. These are all acceptable assumptions in the domain of real-time

embedded controllers.

We can now provide a more formal description of a simpli�ed version of

the combined partitioning/scheduling problem. Given

� a set of signal wires, W = fw

1

; w

2

; : : : ; w

k

g, the inputs and outputs of

the device,

For the timing diagram of Figure 1 these signals are Address1, Ad-

dress2, MEMR*, Ready, and DATA.

� a set of events, E = fe

1

; e

2

; : : : ; e

n

g, with each event assigned to occur

on one wire or bundle of wires,

For signal Ready, the events generated by the device itself are the down

and up transitions of the signal indicating request acknowledge and

data validity. In addition, there are two implied events required of the
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driver, namely reading a zero value on the Ready line, and then reading

a one value.

� �, a relation of integral maximum skews between events in E such

that �(e

i

; e

j

) = � implies that e

j

may be scheduled no later than �

time units after e

i

, that is, t(e

j

) � t(e

i

)+ � (minimum separations are

represented with negative � values); such constraints and guarantees

specifying maximum and minimum separations between the events as

obtained from the device's data book, and

� a processor scheduling quantum, q, the time separation between suc-

cessive instructions on the microprocessor,

determine whether a schedule exists for the events such that

� driver events are partitioned between interface hardware and software;

� those events that are scheduled in software are assigned times which

are multiples of q, the processor scheduling quantum, with at most

one event per such time slot,

� and all scheduled times of events meet the given timing constraints.

In this partitioning, we further attempt to minimize the number of distinct

signal wires on which some event assigned to the �nite state machine occurs

in order to minimize the amount of interface hardware generated.

If we simplify this problem to one in which we consider only devices

with static timing behavior (i.e., the processor never needs to sense device

outputs in order to determine when to schedule another event) we can show

that it is still NP-hard. As would be expected, the scheduling portion alone

of this problem is NP-complete. (The transformation is from 3-Partition

as in [GJ79, GJ77] with timing constraints � used to build jobs of appro-

priate duration.) Appendix A gives a reduction from 3-SAT in which the

event scheduling subproblems are extremely simple. This suggests that the

partitioning portion of the problem is also di�cult.

4 A Flow-Based Approach to Partitioning and

Scheduling

In designing an approach to solving the partitioning portion of the combined

partitioning and scheduling algorithm, two methods most readily come to
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mind: simulated annealing [KGV83], and the Kernighan-Lin [KL70] algo-

rithm. However, neither of these methods are particularly appropriate. Nei-

ther simulated annealing nor Kernighan-Lin perform well on graphs with

small degree [BCLS87], as is the case with the constraint graphs induced

by the timing diagrams. Furthermore, if we are to combine the partition

and scheduling steps, we need a method which can accommodate changes

in the cost of moving events to hardware as will occur when events can-

not be scheduled on the microcontroller. The Kernighan-Lin method uses

a cost measure which is straightforwardly updated between iterations. In

addition, given a good initial partition, Kernighan-Lin does perform well

[BHJL89]. Thus we hope to solve the partitioning portion of the problem

using a Kernighan-Lin [KL70] style iterative improvement algorithm on top

of a 
ow-based initial partition inspired by [BCLS87].

The graph bisection method of [BCLS87] for graphs with small ( o(

p

n))

bisection width de�nes a neighborhoodN(v) of a vertex v to be all nodes

within a given distance ( log

d�1

(

p

n� 2) where d is the degree of the nodes

in the graph) of v. It then �nds the mincut for all pairs u; v where u and

v's neighborhoods in the graph are respectively replaced with an in�nite

capacity source and sink. If the minimum such cut is indeed a bisection it

is output as such. For graphs with small regular degree d, they show that

this method nearly always works.

Our problem di�ers from this in several respects, but it is our intuition

that these di�erences will not be great liabilities. We wish to �nd a partition

of the graph such that one of the pieces is schedulable on the microcontroller,

and the other is of smallest size possible given this condition, and thus

we will not require that the routine ever return an exact bisection. We

know that certain events in our graph naturally belong to one half of the

partition or the other. For example, device-generated events always occur

in the hardware portion of the system, and reading device-generated data

most naturally occurs on the microcontroller, since to do otherwise requires

signi�cant additional hardware to store the value until the microcontroller

later reads it. This indicates that our u and v for the bisection algorithm

are already determined { one simply collapses all events that naturally occur

in hardware into a source with in�nite supply, and all events that naturally

occur on the microcontroller are collapsed into a sink with in�nite demand.

Although our graphs are not d-regular, they will generally be of small degree.

In forming our partitioning problem edges in the 
ow graph can arise in

three ways:
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� All events on the same wire will have connecting edges to each other

to encourage them to be placed in the same portion.

� At �rst, all events will be connected to the microcontroller source to

encourage the events to remain scheduled on the microcontroller.

� Events with tight timing constraints can be encouraged to occur in

the same portion by introducing edges with weight proportional to

the inverse of the timing constraint.

� When scheduling events on the microcontroller, those in areas with

\high congestion" (i.e. more events need instruction slots than are

available) will have edges added between themselves and the hardware

\sink", in hopes that one or more of them will be pulled into the

hardware portion.

We would begin by performing the max-
ow mincut algorithm followed by

Kernighan-Lin iterative improvement using edges of the �rst three types

mentioned above, and then attempt to schedule the microcontroller events

using a scheduling method as in [KD92]. If the events cannot be scheduled

without overlap, then edge weights and the Kernighan-Lin gain measures

are updated as in the fourth condition above, and the iterative improvement

continues.

Figure 3 gives a graphical representation of the events and capacity re-

lationships for the timing diagram of Figure 1. Note that this �gure shows

that if lack of instruction slots on the microprocessor indicated moving some

event to hardware, moving the two reads of the Ready signal from software

to hardware would be most appropriate since they are less connected to

other driver events.

Figure 4 shows what the 
ow diagram might look like for a device with

three di�erent operations that appear in the system speci�cation.

� Each of the three rows represent one of the three driver calls.

� Nodes of di�erent colors represent events occurring on di�erent wires.

� Nodes in the leftmost boxes represent events generated by the device

hardware.

� Nodes in the rightmost column of boxes represent events generated

outside the device and which may therefore occur either in new inter-

face hardware or software.
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Ready high

Ready low

read Ready high

read Ready low

read DATA

MEMR* high

MEMR* low

DATA driven

DATA tri-state

DATA invalid

DATA valid

Address2 invalid

Address2 valid

Address1 invalid

Address1 valid

software
sink

hardware
source

device events driver events

timing relationships
events on same wire
structural relationships

capacities express relationships
between events

Events ordered top to bottom

Figure 3: Flow solution for ISA bus read function.
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hardware
source

software 
sink

driver eventsdevice events

Figure 4: Flow solution for several device functionalities.

The depiction above shows the situation in which all events not gener-

ated by the device (i.e., the driver events in the rightmost column) can be

generated directly from software at the appropriate times The cut has the

device events on one side and the driver events on the other. Note that if

there were not enough instruction slots to schedule in software all the events

in the device call corresponding to the middle row then it may make more

sense to move the \white" signal, and thus all its events, to hardware. This

will cause fewer of the device's events to be generated by hardware, even

though it moves more events from the given device call to hardware.

Once the partitioning has been determined we must generate the software

routine and possibly a hardware state machine. Both of these tasks are

straightforward. The software is essentially scheduled at the end of the

iterative improvements. The hardware state machine can be constructed

directly from the speci�cation of the events on the signals to be generated by

the hardware. More sophisticated FSM synthesis methods will be required

when complex and tight timing constraints are involved.
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5 Device Driver Synthesis in a Co-Synthesis Sys-

tem

Device driver synthesis is a critical task in hardware-software co-synthesis.

It is executed as soon as a designer selects the processor and devices to be

used in the design to be synthesized. The result, as we have seen, is a set of

device driver routines and additional hardware needed for proper interfacing

of the devices to the processor.

Device speci�cations are stored in a library in a form that is indepen-

dent of any processor considerations. There is a formalized timing diagram

[Bor92] for each device operation. This consists of a hybrid state and timing

diagram annotated with timing constraints. In addition, each device also

includes information as to which device inputs can share a microcontroller

port without interfering with each other. This information is used by the

port allocation step ([COB92]) to ensure that a device is not triggered to

execute an operation inadvertently.

During device driver synthesis we must consider the e�ects that port

allocation will have on the instruction sequences. It is often the case that

the number of device wires that must be connected to the processor greatly

outnumbers the number of available ports. However, if ports are judiciously

shared then one microcontroller port may be connected to several device

ports. To accomplish this, additional hardware to latch, tri-state, multi-

plex, or decode signals may be necessary. The e�ect of this is that it may

no longer take just a simple instruction to alter or sense the value on a

device wire. Instead, the device driver routine must now orchestrate the

external hardware to have the desired e�ect. This may now require multiple

instructions where one may have su�ced.

In our device driver synthesis approach, the device drivers are written

�rst without assigning microcontroller ports to device ports. A separate

port assignment routine [COB92] makes the assignments with the help of

the sharability information. After this step is completed, the device driver

routines can be further re�ned to re
ect the port assignment. To accommo-

date the extra instructions that may be required, the sequence of signaling

instructions includes information about where the sequence can be stretched

to accommodate the extra steps.

Certain port allocations may be discarded if the device driver routine

cannot be stretched in the necessary places. This can be viewed as an

additional scheduling step that could not be handled prior to knowing the
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details of the port allocation. If no port allocation is feasible due to an

overly tight driver routine, it may be necessary to go back to the synthesis

procedure and modify some of the timing constraints. Re-synthesis may now

lead to a di�erent partitioning and scheduling that may move more signals

to hardware in order to be able to accommodate port allocation.

6 Conclusion and Plans

We have presented the problem of automatically synthesizing device driver

routines as a step in the design of embedded controllers. A possible solution

was sketched that exploits algorithms from graph theory to partition and

schedule interface events. Our plans are to implement these ideas in the

Chinook Hardware/Software Co-synthesis System under development at the

University of Washington. Our �rst step is to develop a device library

format that represents the timing diagrams for the devices. We will then

interface the results of device driver synthesis with the port allocation step

including the feedback to generate a di�erent partition or schedule when

a port allocation cannot be accommodated. A description of the complete

system is available in [CWB94].
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A NP-Completeness Reduction

The following reduction of 3-SAT to our combined partitioning and schedul-

ing problem, has event scheduling subproblems which are extremely simple.

This suggests that the partitioning portion of the problem is also di�cult.

We de�ne 3-SAT with a set of Boolean variables, U = fu

1

; u

2

; : : : ; u

n

g,

and a set of disjunctive clauses C = fc

1

; c

2

; : : : ; c

j

g, with individual clauses

c

j

= (y

j

1

+ y

j

2

+ y

j

3

) where y

j

�

= u

i

or y

j

�

= u

i

for some u

i

2 U . The

reduction then works as follows:

� there is a single \reference" wire and event, w

0

and e

0

with e

0

assigned

to occur on wire w

0

;

� for each variable x

i

, there are two wires, w

i

and w

i

;

� for each variable x

i

there are two events �

i

and �

i

with �

i

assigned to

w

i

and �

i

assigned to w

i

;

� for i from 1 to n

�(e

0

; �

i

) = �(e

0

; �

i

) = i and �(�

i

; e

0

) = �(�

i

; e

0

) = �i;

� for each clause c

j

there are three events, e

j

1

, e

j

2

, and e

j

3

with

e

j

k

assigned to wire w

i

if y

j

k

= u

i

and e

j

k

assigned to wire w

i

if

y

j

k

= u

i

;

� for i = 1 to n and for k from 1 to 3

�(e

0

; e

j

k

) = 2j + n and �(e

j

k

; e

0

) = �(2j + n� 1);

� q = 1;

If our combination scheduling and partitioning algorithm can solve this prob-

lem with exactly n wires moved to hardware, then there exists a satisfying

solution to the formula. To see this, note that the �rst four items above

indicate that at least one of fw

i

; w

i

g must be moved to hardware. Moving

a wire w

i

(w

i

) to hardware is equivalent to literal w

i

(w

i

) being true. The

last four items above ensure that at least one literal from each clause will be

true by forcing an event on the corresponding wire to be moved to hardware.
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This is done by forcing the scheduling of three events (one on each literal's

wire) within a time period where only two slots are available.

It should be obvious that to verify a device driver routine's partition

and schedule, one reforms the problem into that of \Is there a solution with

only k wires moved to hardware?" and then veri�es that all events in the

schedule meet the requirements of �. Note that if the values in � are

consistent (that is, there exists no set E

0

� E with E

0

= fe

0

0

; e

0

2

; : : : ; e

0

k�1

g

such that

P

k�1

i=0

�(i; (i+1) mod k) < 0) Then there always exists a solution

to this problem by moving all events to hardware.
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