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Preface

These are the lecture notes from CSE 522, a graduate algorithms course I taught at the University

of Washington in Spring 1994. The topic of the course was Message Routing in Parallel Machines.

These notes are not intended to be a survey of that area, however, as there are numerous important

results that I would have liked to cover but did not have time.

I am grateful to Allan Borodin, Tom Leighton, Prabhakar Raghavan, Baruch Schieber, and

Hisao Tamaki, who helped me both with overview and with technical points in the proofs. I

am particularly thankful for the students who attended faithfully, served as notetakers, asked

embarassing questions, made perceptive comments, solved problems I claimed were open, and

generally make teaching exciting and rewarding.

| Martin Tompa
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Lecture 1

Overview of Routing in Parallel Machines

March 29, 1994

Notes: M. L. Fulgham

1.1. Responsibilities

1. Rotating notetaking: Notes are to be written up in L

a

T

E

X, and sent to tompa@cs. See

the instructions in /homes/june/tompa/522/DIRECTIONS. Notes are due 10 a.m. the day

following lecture, so that they may be distributed at the next lecture. The instructor will

insert any citations for bibliography entries that don't already appear in the bibliography �le.

2. Assignments (which will be relatively open-ended)

3. Class participation

1.2. Prerequisites

1. Analysis of Algorithms (CSE 521)

2. Basic probability theory (expectation, conditional probability and expectation, independent

and mutually exclusive events)

1.3. Review of Order Notation

� f(n) = O(g(n)) if and only if (9c)(9n

0

)(8n � n

0

) jf(n)j � cg(n)

� f(n) = 
(g(n)) if and only if (9c)(9n

0

)(8n � n

0

) f(n) � cg(n)

� f(n) = �(g(n)) if and only if (9c)(9c

0

)(9n

0

)(8n � n

0

) cg(n) � f(n) � c

0

g(n)

� f(n) = o(g(n)) if and only if lim

n!1

f(n)

g(n)

= 0

� f(n) = !(g(n)) if and only if lim

n!1

f(n)

g(n)

=1
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1.4. Routing Context

The overview of routing problems in this section is derived in large part from the survey article of

Leighton [13]. Other excellent surveys include those of Borodin [3] and Valiant [20], and Leighton's

book [11].

The types of systems of parallel processors we will discuss include many possible arrangements

of tightly-coupled processors. For instance, the system can be synchronous, in which processors

execute commands simultaneously in \lock-step", or asynchronous, in which processors operate

independently unless an explicit synchronization command is performed. The memory modules of

the system can either be attached, with each processor having a share of the memory, or separate,

with some nodes consisting of processors and others containing memory.

In any of these cases, nodes are connected to other nodes by an interconnection network, which

can be modeled as a directed graph with nodes representing processors and memory modules, and

edges representing direct communication links. For practicality, the nodes must have low degree,

and the network must have a path between any two nodes.

How do processors simultaneously get the data they need? In order to communicate and share

data, nodes send messages to each other. Since a node is not directly connected to all other nodes, a

message is moved from one node to another until the message reaches its destination. The hardware

responsible for directing messages is called the router. The router implements the routing algorithm,

that is, rules by which messages travel through the network. Real machines devote a large portion

of their resources (such as time and hardware) to this communication. Therefore, our goal is to

route messages e�ciently.

The most common abstract parallel model is the parallel random access machine (PRAM). The

PRAM is composed of processors with a single shared memory. In one time step any processor

can read or write to any memory location. Although this model is not realistic because the cost of

data movement is ignored, it has the advantage of being easy to program. Because of this, there is

already an extensive library of PRAM algorithms in the literature. In order to implement one of

these algorithms on a real machine, the data needs to be routed among processors explicitly.

There is a wealth of variations on the routing problems in theory and practice. This is what

makes routing an attractive and open area of research. Some of these variations are described

below, both to give an idea of the scope of the �eld, and to introduce speci�c concepts and terms.

1. Topology: how are the nodes interconnected? (Some of these topologies will be de�ned in

later lectures.)

(a) Trees

(b) Arrays (meshes) of various dimensions

(c) Hypercubes

(d) Butter
ies
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2. Flow control: how are messages transmitted from node to node?

(a) Store and forward: Messages are broken up into packets and each packet is sent indi-

vidually. Each packet is completely received in a node before it is forwarded to the next

node. Only one packet is allowed to traverse each link per step.

(b) Circuit-switching: The entire path from source to destination is reserved. After the path

is established, the message is sent. When message transmission is �nished, the links are

released. This is commonly used in telephone switching networks, but is rarer in parallel

machines.

(c) Worm routing: This is a cross between store and forward and circuit-switching. Messages

are divided into a sequence of 
its (about a byte or two of data). All 
its follow the �rst


it in a pipelined fashion, so that consecutive 
its are located in the same or adjacent

nodes. Again, only one 
it is allowed to traverse each link per step.

3. Processor clocks

(a) Synchronous: costly, but easier to reason about than asynchronous

(b) Asynchronous

4. Types of routes

(a) Minimal (messages are required to take a shortest path from source to destination) vs.

nonminimal

(b) Oblivious (a packet's route depends only on the source and destination of the message)

vs. adaptive (the route may depend on the state of the network as the packet traverses

it, including other packets encountered)

5. Queueing discipline at nodes (in routing, the word \queue" is used interchangeably with

\bu�er", and does not necessarily connote FIFO):

(a) First-in-�rst-out (FIFO)

(b) Farthest-�rst

(c) Nearest-�rst

(d) \Hot potato" or \de
ection" (no queue at all)

(e) Incoming queues: queues associated with the input link (i.e., heads of directed edges)

(f) Outgoing queues: queues associated with the output link (i.e., tails of directed edges)

(g) Central queues: queues associated with the node as a whole rather than with its links

6. Types of routing problems

(a) Static: all messages are known and ready to be sent at the �rst step.

i. (Partial) permutations: at most one message is sent from and sent to each processor.

ii. Multibroadcast or one-to-many: a single node may send messages to many nodes.

iii. Many-to-one: many nodes may send messages to a single node.

(b) Dynamic: messages are injected by processors continually.
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7. Performance measures

(a) Deadlock: there exists a set of messages none of which can move.

(b) Livelock: there exists a message that can move, but never reaches its destination.

(c) Total time to route all messages (in the case of static routing) or delay per message (in

the case of dynamic routing)

(d) Queue size per node

(e) Hardware per node, e.g., area or number of pins

(f) Switching time per node

(g) Worst case vs. average case

(h) Fault-tolerance: routing with faulty links or nodes

1.5. Greedy Algorithms on the Mesh

One of the simplest routing algorithms to describe is the \greedy" algorithm on the n � n mesh

[11]. The following are the assumptions made for and a description of this algorithm.

� Topology: There are n

2

nodes arranged in an n � n array. Each node is adjacent to its row

neighbors and its column neighbors, so has indegree at most 4 and outdegree at most 4. The

mesh is popular since it is an easy topology to build.

� Network assumptions: Store and forward 
ow control is used. The nodes are synchronous

and have unbounded queues. Routing is restricted to partial permutations, with messages

that �t in a single packet.

� Routing algorithm: First correct the column position by moving in the source row to the

destination column. Then correct the row position by moving in the destination column to

the destination. Note in general that some packets will be moving along rows while others are

already moving along their destination columns. This algorithm is minimal and oblivious.

� Queueing discipline (to resolve link contention): Prefer the packet with the farthest to go in

the direction of the link under contention.



Lecture 2

Greedy Routing on the Mesh

March 31, 1994

Notes: Brendan Mumey

2.1. Greedy Static Permutation Routing

Theorem 2.1: On the n�n mesh with unbounded queues, the greedy algorithm using farthest-

�rst discipline can route all packets for any permutation in at most 2n� 2 steps.

Note: This is optimal, since 2n� 2 is the diameter of the n� n mesh.

Proof: Within the rows there is no contention for links, so every packet arrives at its column

destination in at most n � 1 steps. Within the columns, northbound and southbound packets do

not contend for the same links, so we restrict attention to northbound packets. Number the rows

1; 2; : : : ; n from north to south.

Because of the farthest-�rst discipline, we would like to argue that a packet destined for row i

can be delayed only by those destined for rows 1; 2; : : : ; i� 1, and by each of those only once. The

total time would then be i� 1 steps of delay plus n � i steps of link traversals. This argument is

incorrect because it is possible for a given packet to delay another more than once. An example

that illustrates this is given below. Numbers indicate destination rows, and the packet destined for

row 5 delays the one destined for row 6 more than once.

.

.

.

.

.

.
1

.

.

.
1 2

1,2 ) 2,3 ) 3,4

3,4 4,5 5,6

5,6 6

.

.

.

.

.

.

.

.

.

Taking this example into account we can state a correct proof. Let an i-priority packet be a

packet destined for one of rows 1; 2; : : : ; i. For each i, we will show that every i-priority packet is

in rows 1; 2; : : : ; i within another n � 1 steps. The result will follow from this, since the packet

destined for row i will stop as soon as it gets there.

6
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Ignore packets that are not i-priority; they cannot delay i-priority packets because of the

farthest-�rst discipline. Call the �rst time when all packets are in their destination columns time 0.

We need to be done by time n� 1. Consider the northernmost i-priority packet in a given column

at time 0, breaking ties by the one that has farthest to go. It moves undelayed to its destination

and so reaches rows 1; 2; : : : ; i within n � i steps. Next consider the second northernmost packet

at time 1. It can be delayed at most one step at time 0, but from then on is undelayed and so

reaches rows 1; 2; : : : ; i in at most 1+(n� i) steps. Continuing in this fashion, the ith northernmost

i-priority packet at time i� 1 can be delayed at most i� 1 steps and travels at most n� i steps to

reach rows 1; 2; : : : ; i. Thus by time n � 1 all i-priority packets reach rows 1; 2; : : : ; i. 2

Scott Hauck observed a simpler proof in class. It rests on the fact that the longest distance left

to travel by any packet in a given column always decreases by one at each step. Since this distance

is bounded initially by n � 1, the result follows directly.

Exercise 2.2: Show that some permutation causes some queue to have �(n) size. Keep in

mind that some packets can already be moving along their destination columns while others are

still moving along their source rows.

Exercise 2.3: Consider a one-dimensional array with n nodes and unbounded queues, and the

routing problem with n packets having distinct destinations, but not necessarily distinct sources.

Show that there is a routing algorithm that delivers each packet in O(d) time, where d is the

distance from that packet's source to its destination.

Exercise 2.4: Consider the permutation routing problem on the n� n mesh with unbounded

queues. Show that there is a routing algorithm that delivers each packet in O(d) time, where d

is the distance from that packet's source to its destination. (Hint: Use the greedy algorithm with

nearest-�rst queueing. Unlike the proof of Theorem 2.1, you must take care about packets entering

the columns while the packet you are considering is already advancing along its destination column.

That makes this proof more complicated than that of Exercise 2.3.)

Open Problem 2.5: Consider the permutation routing problem on the n�n mesh with queues

of size q. Using the greedy algorithm with nearest-�rst queueing, what is the time to deliver a packet

whose distance from its source to its destination is d, as a function of d and q? Can you achieve

time O(d) with constant queue size using this or some other more practical queueing discipline?

2.2. Greedy Dynamic Routing

In this section we examine a result of Leighton [11, 12] concerning the behavior of the same algorithm

on the same network in the dynamic setting. At each step each node injects a packet with probability

� and uniformly distributed destination. These events are all independent.

Proposition 2.6: � � 4=n is a necessary condition for stability.
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Proof: If � > 4=n the expected number of packets injected into the left half of the mesh that

are destined for the right half is

n

2

2

� � �

1

2

> n. The delay will grow without bound because there

are only n links from the left half to the right half. 2

Let � =

�n

4

� 1 denote the load.

Theorem 2.7: On an n� n mesh, consider the greedy algorithm with farthest-�rst discipline.

Suppose packets are injected dynamically with load � < 0:99. Then

1. the probability a given packet is delayed � steps is e

�
(�)

,

2. for any window of T steps, the maximum delay incurred by any packet injected during those

steps is O(logT + logn) with probability at least 1�O

�

1

Tn

�

, and

3. in any window of T steps, the maximum queue size is O

�

1 +

logT

logn

�

with probability at least

1� O

�

1

Tn

�

.

Despite the fact that Theorem 2.7 is dealing with the dynamic case, the time and queue size

are considerably better than those given for the static case by Theorem 2.1 and Exercise 2.2. The

reason is that the random destinations give Theorem 2.7 more of an average case 
avor.

De�nition 2.8: X is a Bernoulli random variable if and only if Pr(X = 0) + Pr(X = 1) = 1.

We next state a Cherno�-style bound that will be used in the proof of Theorem 2.7.

Lemma 2.9: Let X

1

; X

2

; : : : ; X

n

be independent Bernoulli random variables satisfying

Pr(X

h

= 1) � P

h

for 1 � h � n. Let � > 1, X = X

1

+X

2

+ � � �+X

n

, and P = P

1

+ P

2

+ : : :+ P

n

.

Then

Pr(X � �P ) � e

(1�

1

�

�ln�)�P

:

Note: For � � 1, 1�

1

�

� ln � decreases as � increases: this can be veri�ed by noting that the

derivative with respect to � is negative. Therefore, the exponent in Lemma 2.9 is negative for all

� > 1.

Note:

E(X) = E

 

n

X

h=1

X

h

!

=

n

X

h=1

E(X

h

) �

n

X

h=1

P

h

= P;

so Lemma 2.9 says that the probability that X exceeds its expectation decays exponentially.

Proof: The proof appears in Leighton [11, Lemma 1.7]. 2

Exercise 2.10: Show that, for any network with N nodes, if each of N packets is assigned a

destination randomly and independently, then the maximum number of packets destined for any

node is O

�

logN

log logN

�

with probability 1�O(1=N).



Lecture 3

Greedy Dynamic Routing on the Mesh

April 5, 1994

Notes: Sung-Eun Choi

In this lecture, we begin the proof of part (1) of Theorem 2.7. We begin by introducing the

\wide-channel" model.

The wide-channel model states that certain links in the network can be traversed by an arbitrary

number of packets at each time step, that is, there are no delays on those links. Though not

practical, this model will be a useful device in the proof of the theorem. In particular, for analyzing

delays of packets while traveling along rows, we will use the wide-row model to indicate that there

are no delays on any row edge. Likewise, for analyzing delays while traveling along columns, we

will use the wide-column model to indicate that there are no delays on any column edge, but the

normal restriction of one packet per link per step on any row edge. The term wide-channel model

will refer to either of these two models.

In broad outline, the proof of part (1) of Theorem 2.7 is as follows. We will show that, if a

packet is delayed a long time in the standard model, then

1. some edge e has tra�c on it at every step for a long time in the standard model, and so

2. e has a lot of tra�c on it for a long time in the wide-channel model.

We will show that this last event is unlikely by the Cherno� bound (Lemma 2.9).

Lemmas 3.1 and 3.2 below deal simultaneously with row delays and column delays.

Lemma 3.1: If packet P crosses row (column) edge e at step T in the wide-row (respectively,

wide-column) model, and crosses that same edge e at step T + � in the standard model, then a

packet crosses e at every step in the interval [T; T + �] in the standard model.

Proof: The proof is by induction on �.

Basis (� = 0): The packet P crosses edge e at time T in both models.

Induction (� > 0): Consider the con�guration C (see Figure 3.1) immediately after the �rst

step in which P is delayed in the standard model, but not in the wide-channel model. Suppose

that packet Q delayed P , that is, Q used the link denied P . By the farthest-�rst discipline, we

know that Q will also cross edge e. It does so at time T in the wide-channel model and at some

time in the interval [T; T + � � 1] in the standard model. By applying the induction hypothesis to

9
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Q

e

P

Figure 3.1: Con�guration C.

Q, some packet crosses e at time T in the standard model. Starting the wide-channel model from

con�guration C, P will cross e at time T + 1. In the standard model, P still crosses e at time

(T + 1) + (� � 1). By applying the induction hypothesis to P , some packet crosses e at every step

in [T + 1; T + �] in the standard model. 2

Lemma 3.2: For any T , any �, and any x � �, if x packets cross row (column) edge e during

the interval [T + 1; T + �] in the standard model, then there is a t � 0 such that at least x + t

packets cross e during [T + 1� t; T +�] in the wide-row (respectively, wide-column) model.

Proof: Let t � 0 be the minimum value such that no packet crosses e at time T � t in the

standard model. Then x + t packets cross e during the interval [T + 1� t; T + �] in the standard

model. By Lemma 3.1, in the wide-channel model, all x + t packets cross e after time T � t;

otherwise, some packet would cross e at time T � t in the standard model. Therefore, they all cross

e in the interval [T + 1� t; T +�] in the wide-channel model. 2

The next two lemmas specialize to delays on row edges.

Lemma 3.3: Let � � 0:99 be the load of the network. For any �xed 1 < � � 1=�, and for any

T , �, and row edge e, let

p = Pr(at least ��� packets cross e during [T + 1; T + �] in the standard model):

Then p = O(e

(1�1=��ln�)���

).

Proof: Let

q = Pr((9t � 0) at least ���+ t packets cross e during [T + 1� t; T +�] in the wide-row model):

By Lemma 3.2, p � q.

Suppose without loss of generality that e is the edge from node (i; j) to node (i; j + 1). For a

packet P to cross e at step � in the wide-row model, P would have to be injected at some node

(i; k), where 1 � k � j, during step � � (j � k) � 1 and have destination in one of the columns

j + 1; j + 2; : : : ; n. (See Figure 3.2.)
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(i,j) (i,j+1)

e

(i,k)

Figure 3.2: A packet injected at node (i; k) destined for the shaded region must cross edge e.

For �xed � and k, the probability of this event is �(n� j)=n, where � is the injection rate. For

�xed � , the expected number of such packets is

�(n� j)j

n

�

�(

n

2

)(

n

2

)

n

=

�n

4

= �:

Note that (T + 1� t) � � � (T +�).

In Lemma 2.9, let the number of independent random variables be j(� + t), let P

h

=

�(n�j)

n

,

and let P =

j(�+t)�(n�j)

n

. De�ne � so that �P = ���+ t, that is,

� =

(���+ t)n

�j(n� j)(�+ t)

�

4(���+ t)

�n(�+ t)

=

���+ t

�(�+ t)

�

��(�+ t)

�(�+ t)

= �:

Then, by Lemma 2.9,

p � q �

1

X

t=0

e

(1�1=��ln�)(���+t)

�

1

X

t=0

e

(1�1=��ln�)(���+t)

(Note following Lemma 2.9)

= e

(1�1=��ln�)���

1

X

t=0

e

(1�1=��ln�)t
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=

e

(1�1=��ln�)���

1� e

1�1=��ln�

= O(e

(1�1=��ln�)���

):

2



Lecture 4

Greedy Dynamic Routing (Continued)

April 7, 1994

Notes: Rakesh K Sinha

We will complete the proof of parts (1) and (2) of Theorem 2.7. A packet can be delayed along

both row and column edges. We will bound these delays separately.

4.1. Row Delay

Lemma 4.1: The probability that a given packet P is delayed at least � steps before reaching

its destination column is e

�
(�)

.

Proof: Let e be the last row edge P crosses before reaching its destination column. Assume P

crosses e at time T in the wide-row model, and at time T + � or later in the standard model. By

Lemma 3.1 some packet crosses e at each step in [T; T + �] in the standard model.

By Lemma 3.3, with � = 1=�, the probability of this event is e

(1��+ln �)(�+1)

= e

�
(�)

. 2

This proves part (1) of Theorem 2.7 for the delay along row edges. Next, we will consider the

delay along column edges.

4.2. Column Delay

Suppose, without loss of generality, that e is the column edge from node (i; j) to node (i+ 1; j).

Lemma 4.2: For any T;�, column edge e, and constant � > 0, let p be the probability that

there is a packet P that crosses edge e during [T + 1; T +�] in the wide-column model after a row

delay of � � ��. Then p = e

�
(�)

.

Proof: For this event to happen, P must be injected at some node in the �rst i rows during

the interval [T + 1� l � �; T + �� l � �], where l is the distance from v to e, with destination in

the last n � i rows of column j.

At any particular time step, the probability of P getting injected in the �rst i rows is �in; the

probability of it having a destination in the last n� i rows of column j is

n�i

n

2

; and, by Lemma 4.1,

the probability of P getting delayed for � steps before reaching its destination column is e

�
(�)

.

13
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Summing over all possible time steps that packet P can be injected and all possible values of the

delay �, we have

p �

X

����

��in

n� i

n

2

e

�
(�)

� ��

(

n

2

)(

n

2

)

n

X

����

e

�
(�)

� �(

�n

4

)

X

����

e

�
(�)

< �

X

����

e

�
(�)

(� =

�n

4

< 1)

= �

e

�
(��)

1� e

�
(1)

= e

�
(�)

:

2

Lemma 4.3: Let 0 < � <

1��

�

and 1 < � �

1

�(1+�)

be constants. (Note that �(1 + �) < 1.) For

any T;�; t, and column edge e, let p be the conditional probability that at least ��(1 + �)� + t

packets cross e during [T +1� t; T +�] in the wide-column model, given that all such packets have

a row delay at most �(� + t). Then p � e

(1�1=��ln�)(��(1+�)�+t)

.

Proof: This is similar to the proof of Lemma 3.3. There are in nodes where such a packet

could be injected, and n� i (out of the n

2

) possible destinations, if it is to cross e. This packet has

to cross e within a time interval of length �+ t and can get delayed at most �(�+ t) many steps in

the rows, so there are at most (�+ t) + �(�+ t) = (1 + �)(�+ t) distinct time steps during which

it could be injected.

In Lemma 2.9, let the number of random variables be in(1 + �)(�+ t), P

h

= �(n� i)=n

2

, and

P = �(n� i)i(1 + �)(� + t)=n. De�ne � so that �P = ��(1 + �)� + t, that is,

� =

n��(1 + �)� + t

�(n� i)i(1+ �)(�+ t)

�

��(1 + �)� + t

�(1 + �)(� + t)

�

��(1 + �)(� + t)

�(1 + �)(�+ t)

= �:

There is a subtle point here: the Cherno� bound (Lemma 2.9) only applies to independent

random variables, but the events of the various packets crossing edge e during [T+1�t; T+�] are not
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independent because of possible interaction on the rows. However, the probabilities given are simply

those for injection with appropriate destinations at appropriate times, which are independent. That

is, the independent events we consider are the injections of all packets that could possibly cross e

in the right interval, rather than those that actually do so.

By Lemma 2.9, then, p � e

(1�1=��ln�)�P

� e

(1�1=��ln�)(��(1+�)�+t)

. 2

Lemma 4.4: For any T , �, and column edge e, let p be the probability that � packets cross

e during [T + 1; T + �] in the standard model. Then p = e

�
(�)

.

Proof: Let q be the probability that there is a t � 0 such that at least � + t packets cross

e during [T + 1 � t; T + �] in the wide-column model. By Lemma 3.2, p � q. Let � =

1��

2�

, and

� =

1

�(1+�)

=

2

1+�

. Let W

t

be the event that � + t packets cross e during [T + 1� t; T +�] in the

wide-column model, and let R

t

be the event that all such packets have row delay at most �(�+ t).

Then

p � q �

1

X

t=0

Pr(W

t

)

=

1

X

t=0

(Pr(W

t

^ R

t

) + Pr(W

t

^ :R

t

))

=

1

X

t=0

(Pr(W

t

jR

t

) Pr(R

t

) + Pr(W

t

j:R

t

) Pr(:R

t

))

�

1

X

t=0

(Pr(W

t

jR

t

) + Pr(:R

t

))

�

1

X

t=0

e

(1�

1+�

2

+ln

1+�

2

)(�+t)

+

1

X

t=0

e

�
(�+t)

(Lemmas 4.2 and 4.3)

=

1

X

t=0

e

�
(�+t)

(

2

1+�

> 1)

= e

�
(�)

1

X

t=0

e

�
(t)

= e

�
(�)

:

2

Lemma 4.5: Let p be the probability that packet P is delayed for at least � steps in its column

before reaching its destination. Then p = e

�
(�)

.

Proof: Let e be the last column edge P crosses before reaching its destination. Assume P

crosses e at time T in the wide-column model, and at time T + � or later in the standard model.
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By Lemma 3.1, � packets cross e during [T + 1; T + �] in the standard model. The result then

follows from Lemma 4.4. 2

4.3. Maximum Delay in a Window of T Steps

Lemmas 4.1 and 4.5 prove part (1) of Theorem 2.7. Now we give the proof of part (2).

Corollary 4.6: For any window of T consecutive steps, the maximum delay incurred by any

packet injected during those steps is O(logT + logn) with probability at least 1�

1

Tn

.

Proof: In part (1) of Theorem 2.7, we proved that the probability that any particular packet

P is delayed � or more steps is e

�
(�)

. For ease of notation, let us choose a constant c > 0 such

that this probability is at most e

�c�

.

Choose � =

1

c

(2 lnT + 3 lnn). Then

Pr(P is delayed at least

1

c

(2 lnT + 3 lnn) steps) � e

�(2 lnT+3 lnn)

=

1

T

2

n

3

:

Since at most Tn

2

packets can be injected in T steps, the probability that any of them is delayed

1

c

(2 lnT + 3 lnn) or more steps is at most (Tn

2

)

1

T

2

n

3

=

1

Tn

. 2



Lecture 5

Queue Size in Greedy Dynamic Routing

April 12, 1994

Notes: Rakesh K Sinha

5.1. Maximum Number of Packets in Any Queue

The remainder of the proof of Theorem 2.7 refers only to the standard model; we are done with the

wide-channel model. We will need the following lemma in order to prove part (3) of Theorem 2.7.

Lemma 5.1: For any t, �, q, and edge e, let p be the probability that the queue at edge e

contains at least q packets at time t, given that it is empty at least once during [t��+1; t]. Then

p =

�

O(�)

qn

�

q

+ qe

�
(�)

:

Proof: Fix a time t

0

2 [t��+ 1; t] when e's queue is empty. Let v be the node at e's tail.

Case 1: e is a row edge. The number of packets in e's queue at time t is at most the number

of packets injected by v during [t

0

; t].

p � Pr(at least q packets are injected by v during [t

0

; t])

� Pr(at least q packets are injected by v in a window of � steps)

�

 

�

q

!

�

q

�

�

�e

q

�

q

�

4

n

�

q

(Stirling's approximation)

=

�

O(�)

qn

�

q

:

Case 2: e is a column edge. A packet will be said to turn at e if and only if it enters e's queue

either after being injected by v, or after entering v from the east or west. The number of packets

in e's queue at time t is at most the number of packets turning at e during [t

0

; t].

We will consider the following two events:

� A is the event that at least q packets turn at e during [t

0

; t].

17
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� B is the event that the �rst q packets turning at e during [t

0

; t] each have row delay at most

� steps.

Then

p � Pr(A)

= Pr(A ^B) + Pr(A ^ :B)

= Pr(A j B) Pr(B) + Pr(A j :B) Pr(:B)

� Pr(A j B) + Pr(:B):

We already have a bound on Pr(:B): By Lemma 4.1, Pr(:B) = qe

�
(�)

so all that is left is to

prove an upper bound on Pr(A j B).

The �rst q packets turning at e must be injected at one of the n nodes in v's row during an

interval of length at most 2�. (More speci�cally, a packet with row delay at most �, and originating

at distance d from v must have been injected during [t

0

� d��; t� d].)

For each source node and injection time, the probability of injection with a destination that

would cause a turn at e is at most

�n

n

2

�

4

n

2

.

Pr(A j B) �

 

2�n

q

!

�

4

n

2

�

q

�

�

2e�n

q

�

q

�

4

n

2

�

q

(Stirling's approximation)

=

�

O(�)

qn

�

q

:

Thus, p � Pr(A j B)+ Pr(:B) =

�

O(�)

qn

�

q

+ qe

�
(�)

2

We are now ready to prove part (3) of Theorem 2.7.

Lemma 5.2: In any window of T steps, the maximum number of packets in any queue is

O

�

1 +

logT

logn

�

with probability 1� O

�

1

Tn

�

.

Proof: Fix an edge e and a time step t in the given window of T steps. We de�ne the following

two events:

� A is the event that the queue at e is empty at least once during [t ��+ 1; t], where � will

be determined later.

� B is the event that the queue at e contains at least q packets at time t.

We will prove that, for an appropriate choice of q, B is very unlikely.
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Pr(B) = Pr(A^B)+Pr(:A^B) = Pr(B j A) Pr(A)+Pr(B j :A) Pr(:A) � Pr(B j A)+Pr(:A).

Pr(:A) = Pr(e's queue is not empty during [t��+ 1; t]).

= Pr(� packets cross e during [t��+ 1; t])

= e

�
(�)

(Lemmas 3.3 and 4.4)

By Lemma 5.1, Pr(B j A) =

�

O(�)

qn

�

q

+ qe

�
(�)

, so Pr(B) =

�

O(�)

qn

�

q

+ (q + 1)e

�
(�)

:

For su�ciently large �, we can choose constants c

1

and c

2

such that

Pr(B) �

�

c

1

�

qn

�

q

+ (q + 1)e

�c

2

�

Choose � =

3

c

2

(lnn + lnT ) and q = 6

�

1 +

lnT

lnn

�

. Then

c

1

�

qn

=

c

1

lnn

2c

2

n

�

1

p

n

, for su�ciently large n.

Pr(B) �

�

1

p

n

�

6

(

1+

lnT

lnn

)

+

�

7 +

6 lnT

lnn

�

e

�3(lnn+lnT )

�

�

e

� lnn

2

�

6

(

1+

lnT

lnn

)

+

7 + 6 lnT

T

3

n

3

� e

�3(lnn+lnT )

+

1

T

2

n

3

(for su�ciently large T )

�

2

T

2

n

3

Since we have T choices for t and n

2

choices for e, the probability that some edge has more

than 6

�

1 +

lnT

lnn

�

packets during the window of T steps is at most Tn

2

�

2

T

2

n

3

�

= O

�

1

Tn

�

2

This completes the proof of Theorem 2.7.

5.2. Decreasing Queue Size for Permutation Routing

We now return to the topic of Section 2.1, which was (worst case) permutation routing on the

mesh, and we concentrate on improving the queue size. Recall that the greedy algorithm for static

permutation routing uses �(n) size queues (Exercise 2.2). Our goal is to �nd an e�cient algorithm

with constant size queues.

The �rst approach to reducing queue size uses randomness, and is based on ideas of Valiant and

Brebner [21] (see Lecture 19). It works in two phases: in the �rst phase, each packet is sent to a

randomly chosen nearby node in its source column; in the second phase, we use the greedy algorithm

with farthest-�rst queueing to route the packets to their destinations. This is still oblivious, but

nonminimal. (See Section 1.4 for terminology.)
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Leighton [11, Section 1.7.3] describes such an algorithm that, with high probability, routes any

permutation within 2n+O(logn) steps and uses O(1) size queues. Note that the probability here

is with respect to the random decisions made by the algorithm and not the input permutation; the

time and queue size bounds hold for the worst case permutation.

Open Problem 5.3: Show that this randomized algorithm works well in the dynamic case.

It is unreasonable to assume that injected packets have random destinations (since Theorem 2.7

shows that this problem is solved by the simpler greedy algorithm), nor that injected packets have

worst case destinations (since degeneracies arise if all have the same destination). One possible

assumption is that packets are injected at random times according to a reasonable rate �, and

destinations are assigned by an adversary that is subject to the restriction that not too many

packets with the same destination can be active at any time.
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Notes: Tracy Kimbrel

We continue with the topic of Section 5.2, namely (worst case) permutation routing on the n�n

mesh, using small queues. The goals for the algorithms considered are as follows:

� The running time should be at most cn, with c a small constant as close to 2 as possible.

� The queue size should be small (preferably a small constant).

6.1. Deterministic Permutation Routing Based on Sorting

Suppose that there are x packets in the mesh, at most one per node, each containing a key. They are

to be routed in such a way that, at completion, the �rst x nodes in column-major order contain the

x packets arranged in sorted order according to their keys, one packet per node, and the remaining

nodes contain no packets. We will refer to this process simply as sorting the packets. We will

assume as a primitive that packets can be so sorted in 4n + o(n) steps with a queue of size 1 for

each link. (See Leighton [11, Section 1.6.3].) Three algorithms based on sorting will be described.

All are adaptive and nonminimal (because the sorting phase is adaptive and nonminimal).

The �rst two algorithms are due to Kunde [10]. The �rst of these routes permutations using

6n+ o(n) steps and a queue of size 1 for each link. The algorithm consists of three phases:

Phase 1: Sort the packets using their destination columns as keys, and breaking ties arbitrar-

ily.

Phase 2: Route each packet along its current row to its destination column.

Phase 3: Route each packet along its destination column to its destination.

After Phase 1 of the algorithm is �nished, for any row i and column j, there is at most 1 packet

in row i destined for column j. (If there were two, then at least n + 1 packets would be destined

for column j.) After Phase 2, therefore, there is at most 1 packet in each node. Thus, there is no

contention for links in Phase 2 or in Phase 3, and these two phases require at most 2n � 2 steps.

Thus the total time of the three phases is 6n+ o(n), as claimed, and queues of size 1 are su�cient.

21
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The second algorithm, also due to Kunde, provides a tradeo� between the algorithm above

and the greedy algorithm, in an attempt to improve the time bound without sacri�cing too much

in queue size. Speci�cally, for any 1 � q � n, the algorithm uses (2 + 4=q + o(1=q))n steps and

queues of size 2q � 1. Examining the endpoints of this tradeo� curve, we see that for q = 1 the

algorithm uses 6n + o(n) steps and queue size 1 as does the �rst algorithm, and for q = n it uses

2n+O(1) steps, and queues of size O(n) as does the greedy algorithm. (In fact, these limiting cases

of the second algorithm are identical to the algorithm presented above, and the greedy algorithm,

respectively.) Assume for simplicity that q divides n. The algorithm has two phases:

Phase 1: Partition the mesh into q

2

blocks, each of size

n

q

�

n

q

. Sort each block independently

using the destination column as the key, and breaking ties arbitrarily.

Phase 2: Finish routing using the greedy algorithm with farthest-�rst queueing discipline.

To prove the claim for the running time, observe that if the queue length were unbounded,

by Theorem 2.1, Phase 2 uses only 2n � 2 steps. Phase 1 uses 4

n

q

+ o(

n

q

) steps, for a total of

2n+4

n

q

+o(

n

q

) steps (with unbounded queues). Now we need only show that, in fact, no queue size

ever exceeds 2q � 1. Queues of size 1 are enough for the sorting phase, so we need consider only

the maximum queue size during Phase 2. Notice that the maximum queue size during this phase

is at most the maximum number of packets in any row at the end of Phase 1 that are destined for

the same column, since the size of the queue for a column edge can increase only by the arrival of a

(turning) packet on a row edge. (There is no contention for row edges.) For a given row i, suppose

that the k

th

block containing some piece of row i has r

k

packets destined for a given column j.

Note that

P

q

k=1

r

k

� n. Only dr

k

q

n

e packets destined for column j can be in row i of the k

th

block,

because of the sorting done within each block in Phase 1. Thus the maximum queue size is at most

q

X

k=1

dr

k

q

n

e <

q

X

k=1

�

r

k

q

n

+ 1

�

= q +

q

n

q

X

k=1

r

k

� q +

q

n

n

= 2q:

Exercise 6.1: Suppose that D is the maximum, over all packets P , of the distance from P 's

source to P 's destination. Modify this algorithm so that it uses O(D) steps and constant size

queues. Can you do the same if you do not know the value of D?

The third algorithm is more complicated than the �rst two and will not be presented. It is due

to Rajasekaran and Overholt [19], and uses 2n� 2 steps and queues of size 112. This improves the

queue size of an earlier algorithm of Leighton, Makedon, and Tollis [14].
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6.2. Discussion of Practical Routing on the Mesh

Are these algorithms really practical? Some of the algorithms require a large (albeit constant) queue

size. Sorting requires complex logic (implemented either in hardware or software) at each node.

The cost (either in hardware or time) may be prohibitive for large networks. Sorting doesn't seem

to extend to the dynamic routing problem: in the dynamic case, packets are not all available at the

start in order to sort them. Even if the algorithm delayed until some number of packets was ready

to sort, what would it do with packets that were injected once the sort phase had begun? Also, the

sorting algorithm (and even our analysis of the greedy algorithm) depends on the assumption of

a synchronous network. In real applications, synchronization is prohibitively expensive. But then,

in real applications, the routing problems encountered are not static permutations; why consider

static permutation routing at all? Permutation routing serves as an analyzable benchmark for

comparison of routing algorithms, with the hope that performance on permutations is indicative of

performance in more practical settings.

Open Problem 6.2: Is there a simple and practical algorithm for routing all permutations on

the n � n mesh? The algorithm should meet the following criteria:

� It should be deterministic.

� It should run in time cn for a small constant c (or, even better, a packet with distance d from

source to destination should be delivered in at most cd steps).

� The queue size should be bounded by a small constant.

� It should use a simple and fast queueing discipline.

� It should extend to the asynchronous and dynamic settings.

There is a negative result that bears on Open Problem 6.2. A routing algorithm will be called

destination-exchangeable if and only if it does not depend on any packet's full destination address,

but only on knowing which links from the current node take the packet closer to its destination.

For instance, the greedy algorithm with FIFO queueing discipline is destination-exchangeable, but

the algorithms based on sorting are not. Destination-exchangeability is an attempt to characterize

the simplicity of the queueing discipline.

Chinn, Leighton, and Tompa [6] show that any deterministic, minimal, destination-exchangeable

routing algorithm on the n � n mesh requires 
(n

2

=q

2

) steps to route some permutation, where

q is the queue size. (Note that the sorting-based algorithms are neither minimal nor destination-

exchangeable, which is why they do not contradict this lower bound.)
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De
ection routing is a form of packet routing in which every message is required to traverse a

link at every step, preferably moving closer to its destination. Thus, de
ection routing does not

require queueing at the nodes. More accurately, each node has a queue of size one for each incoming

link, and every queue must be emptied at every step. Since the packets are continuously moving

from node to node, de
ection routing is often called \hot potato" routing. The key motivation

for de
ection routing is to achieve fast cycle time. Hence, each node's routing decision should be

simple and based on local information such as the node's identity and its current messages' sources,

destinations, and incoming links.

In this lecture, three de
ection routing algorithms will be described that route permutations

on the n � n mesh. They are presented in increasing order of di�culty. Not surprisingly, as the

di�culty of the algorithms increases, the time complexity decreases. These results are due to

Bar-Noy, Raghavan, Schieber, and Tamaki [1].

7.1. An O(n

2

) Time Algorithm

At �rst glance, it is not clear that de
ection routing algorithms can avoid livelock. The following

theorem should be viewed simply as such an existence proof.

Theorem 7.1: There exists an O(n

2

) time de
ection routing algorithm that routes any per-

mutation on the n� n mesh, for even n.

Proof: Fix any directed Hamiltonian cycle of the mesh. Route all packets along this cycle until

they reach their destinations. Since n is even, there is such a Hamiltonian cycle. 2

Exercise 7.2: Give a de
ection routing algorithm for any permutation on the n � n torus

that delivers each packet in O(d

2

) steps, where d is the distance from the packet's source to its

destination.

24
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7.2. An O(n

1:5

) Time Algorithm

In this algorithm, each packet moves east and west in its source row from end to end. Whenever a

packet reaches its destination column during a westbound pass, it attempts to turn either north or

south, independent of its destination row. Packets already traveling in that column have priority

for those links, so two such packets using the north and south links can prevent the turn. Once the

packet successfully turns into its column, it moves from end to end until its destination is reached,

which takes at most 2n additional steps. (This algorithm is nonminimal, and is adaptive since a

packet's ability to turn into its column is dependent on other packets encountered.)

Theorem 7.3: Any permutation will be routed in O(n

1:5

) steps by this algorithm.

Proof: The execution of the algorithm is partitioned into intervals of 4n steps each. For any

�xed column j, let N

i

be the number of packets destined for column j that have not yet been

delivered at the beginning of the ith interval. In particular, N

1

� n.

Let l be the number of packets in column j at any time during the �rst 2n steps. N

i

� l packets

are blocked from turning into column j during these 2n steps, despite the fact that each tries once.

A packet is blocked by some pair of the l packets in column j, and each such pair blocks at most

2 packets from turning, since the pair meets at most twice before they are delivered. Hence,

2

 

l

2

!

� N

i

� l;

l

2

� l � N

i

� l;

l �

l

p

N

i

m

(since l is an integer).

Since each of these l packets is delivered before or during the last 2n steps of this interval,

N

i+1

� N

i

�

l

p

N

i

m

:

Claim: Let x be an integer. If N

i

� x

2

, then N

i+2

� (x� 1)

2

.

Proof: Assume N

i+1

> (x� 1)

2

, since otherwise the claim is proved. Then,

(x� 1)

2

< N

i+1

� N

i

� x

2

;

x� 1 <

p

N

i+1

�

p

N

i

� x;

l

p

N

i+1

m

=

l

p

N

i

m

= x (since x is an integer).

It follows that N

i+1

� N

i

�

�p

N

i

�

� x

2

�x and N

i+2

� N

i+1

�

�

p

N

i+1

�

� (x

2

�x)�x < (x�1)

2

,

which proves the claim. 2

Now the claim will be used to obtain a bound on the number of intervals in terms of n. As

mentioned earlier, N

1

� n � d

p

n e

2

. By induction on k, it follows from the claim that N

2k+1

�

(d

p

n e�k)

2

, so that N

2d

p

n e+1

� 0. Hence, the total number of intervals is at most 2 d

p

n e. Since

each interval takes 4n steps, the total time of the algorithm is at most 8n d

p

n e � 8n

1:5

+ 8n. 2

Exercise 7.4: Find a permutation that causes this algorithm to use 
(n

1:5

) steps.
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7.3. An n2

O(

p

logn log logn)

Time Algorithm

The �nal algorithm for de
ection permutation routing on the mesh achieves a time bound of

n2

O(

p

logn log logn)

. Notice that this is faster than n

1+
(1)

but slower than n log

O(1)

n. Hence, this

algorithm is fairly close to being linear in n. This lecture will �nish with a description of the

algorithm, and the analysis will follow in the next lecture.

This algorithm is a recursive version of the algorithm of Section 7.2. The mesh is partitioned

into level 1 squares, each of which is partitioned into level 2 squares, etc., for � levels (� to be

determined later).

For any packet P , let P 's level i square be the level i square that contains P 's destination. The

goal of a packet at level i is to get into its level i + 1 square, assuming it is already in its level i

square.

To prevent packets from being de
ected out of the level i square after entry, do the following.

Any row or column whose index mod � equals i will be said to be \colored" i. The rows and

columns colored i are dedicated to level i packets, and all packets in level i but not in level i + 1

travel on rows and columns colored i.

The algorithm will concentrate �rst on aligned packets, which are those whose source row is

colored 0 and whose destination column is colored � � 1. The routing of other packets will be

described later.

Level 0 is the whole n� n mesh. The level 0 square is divided into n

2

=m

2

level 1 squares, each

of size m�m (m to be determined later). Assume for simplicity that m j n and � jm.

The goal of an aligned packet at level 0 is to get into a row colored 1 in its level 1 square. This

process is divided into two stages.

1. Column Turn Stage: Let P 's slice be the n � m submesh containing its level 1 square. P

travels east and west in its source row from end to end. Whenever it reaches any of the m=�

columns colored 0 in its slice during a westbound pass, it attempts to turn either north or

south, independent of its destination row. Any packets already traveling in those columns

have priority for the north/south links.

2. Row Turn Stage: Once in its slice, P travels north and south in its current column from

end to end. Whenever it reaches any of the m=� rows colored 1 in its level 1 square during

a southbound pass, it attempts to turn either east or west, independent of its destination

column. Any packets already traveling in those rows have priority for the east/west links.

Once P is in its level 1 square, it continues recursively, using rows and columns colored 1, and

the same algorithm restricted to its m�m level 1 square.

At level � � 1, the O(n

1:5

) algorithm of Section 7.2 is used to complete the route. Note that

that algorithm will keep P on rows and columns colored � � 1, since an aligned packet must be

destined for a column colored � � 1.
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Notes: Donald Chinn

In this lecture, we analyze the running time of the algorithm described in Section 7.3, when

restricted to the aligned packets only.

Lemma 8.1: For any permutation, the algorithm of Section 7.3 delivers all aligned packets in

n � 2

O(

p

logn log logn)

steps.

Proof: Let T (n; �) be the time to deliver all aligned packets on the n� n mesh with � levels.

Fix any n�m slice S. At most nm=� aligned packets are destined for S. We will show that they

are all delivered in the required number of steps, and the lemma will follow from the fact that S is

an arbitrary slice.

Partition the algorithm's execution for the aligned packets destined for S into phases: for t � 1,

phase t consists of steps in which the number of undelivered packets destined for S is contained in

the half open interval (nm=(2

t

�) ; nm=(2

t�1

�)]. Each phase is further divided into subphases of

4n� 4 + 2T (m; �� 1) steps each. Our goal is to bound the number of subphases.

Consider the �rst 2n�2 steps of a subphase. Let r be the number of aligned packets that travel

in any of the columns colored 0 of S at any time during these 2n� 2 steps. Call these slice packets.

Case 1: At least nm=(2

t+1

�) packets destined for S fail to turn into S in the �rst 2n� 2 steps.

We will �rst argue, as in Theorem 7.3, that many packets must have turned into S already to

prevent so many others from turning. (Case 2, in which at least nm=(2

t+1

�) packets are in S after

step 2n� 2, will be simpler, since this �rst argument is unnecessary.)

Suppose some column colored 0 in S has l aligned packets, each on it sometime during the �rst

2n � 2 steps. Each pair of these packets can meet at most twice in 2n � 2 steps, and each time

prevents at most one packet from turning. There are at least nm=(2

t+1

�) packets that have not

turned, and each one will attempt to turn into this column once in the 2n� 2 steps. Thus,

2

 

l

2

!

�

nm

2

t+1

�

l

2

� l �

nm

2

t+1

�

l �

r

nm

2

t+1

�
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Since the same argument holds for each of the m=� columns colored 0 in S, then r �

(m=�)

1:5

p

n=2

t+1

.

We now argue the same way for these r slice packets during the row turn stage of the algorithm,

using the next 2n � 2 steps of the subphase.

For 1 � i � n=m, let d

i

be the number of slice packets destined for the ith level 1 square of

slice S, and let r

i

be the number of aligned packets that travel in any of the rows colored 1 of this

square at any time during the �rst 4n� 4 steps of the subphase. The goal now is to obtain a lower

bound on

P

r

i

. Such a bound will yield an upper bound on the number of subphases in phase t,

since these

P

r

i

packets will be delivered by the end of the subphase.

Case 1.1: r

i

� d

i

=2, i.e., at least d

i

=2 packets fail to turn into a row colored 1 during the �rst

4n� 4 steps. Suppose some row colored 1 in the ith level 1 square has l aligned packets, each on it

sometime during these 4n� 4 steps. Each pair of these packets can meet at most (4n� 4)=(m� 1)

times during the 4n� 4 steps, since the square is m nodes wide. Each of at least d

i

=2 packets tries

to turn into this row twice during these steps. Then using the same reasoning as above,

4n� 4

m� 1

 

l

2

!

� 2 �

d

i

2

l

2

� l �

d

i

(m� 1)

2n� 2

�

d

i

m

4n

l �

s

d

i

m

4n

Since this is true for each of the m=� rows colored 1 in this square, r

i

� (m

1:5

=(2�))

p

d

i

=n.

Case 1.2: r

i

� d

i

=2.

In either case, r

i

� min

n

(m

1:5

=(2�))

p

d

i

=n ; d

i

=2

o

.

Recall that we want to obtain a lower bound on

P

r

i

, and we are subject to the following

constraints:

1. d

i

� m

2

=�, since the square has only that many nodes in columns colored � � 1, and

2.

P

n=m

i=1

d

i

= r � (m=�)

1:5

p

n=2

t+1

.

The minimum value of

P

r

i

is achieved when

p

n=(m�2

t+1

) of the d

i

's are m

2

=� and the

rest are zero, because min

n

(m

1:5

=(2�))

p

x=n ; x=2

o

is a concave downward function in x: if

0 < d

j

� d

i

< m

2

=�, then r

i

+ r

j

cannot increase if d

i

is increased by � and d

j

is decreased by �.

For d

i

= m

2

=�, we have d

i

=2 � (m

1:5

=(2�))

p

d

i

=n (since we can assume that n � 2m), so

n=m

X

i=1

r

i

�

r

n

m�2

t+1

�

m

2:5

2�

1:5

p

n

=

m

2

�

2

� 2

0:5t+1:5

: (8:1)

Since

P

r

i

packets are in their level 1 squares after 4n� 4 steps and 2T (m; �� 1) steps remain

in the subphase, all of them are delivered by the end of the subphase. (The extra factor of 2 is for

skipping over rows and columns colored 0; a factor of �=(� � 1) would be more accurate.)
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The number of subphases in phase t is at most the number of packets that need to be delivered

before phase t + 1 begins, divided by the number of packets delivered per subphase, which is at

most

nm

2

t

�

�

m

2

�

2

� 2

0:5t+1:5

=

n�

m � 2

0:5t�1:5

: (8:2)

The number of steps to deliver all aligned packets is the sum over all phases of the number of

subphases in that phase, times the number of steps per subphase:

T (n; �) <

1

X

t=1

n�

m � 2

0:5t�1:5

(4n+ 2T (m; �� 1))

=

4n

2

� + 2n�T (m; � � 1)

m

�

2

p

2

p

2� 1

<

28n

2

�

m

+

14n�

m

� T (m; � � 1) (8.3)

Before we solve this recurrence relation, we must look at Case 2.

Case 2: At least nm=(2

t+1

�) packets are in S after step 2n � 2. In the worst case, all these

packets are not yet in their level 1 squares, i.e., r � nm=(2

t+1

�). The analysis is similar to Case 1,

with di�erences as follows:

� The minimum value of

P

r

i

is achieved when n=(m2

t+1

) of the d

i

's are m

2

=� and the rest are

zero.

� The right hand side of Equation 8.1 (the sum of the r

i

's) is

m

1:5

p

n

�

1:5

� 2

t+2

:

� The right hand side of Equation 8.2 (the number of subphases in phase t) is

4

s

n�

m

:

� The right hand side of Equation 8.3 (the recurrence relation) is

4

s

n�

m

� (4n + 2T (m; � � 1))

�

log

2

nm

�

�

:

Solving the Recurrence Relation. In either case, for su�ciently large n and provided m =

o(n= log

2

n) (which will turn out to be the case),

T (n; �) �

28n

2

�

m

+

14n�

m

� T (m; � � 1): (8:4)
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To solve this recurrence relation asymptotically, choose m so that T (m; � � 1) = n, and let C

�

be

de�ned by T (n; �) = C

�

� n

1+1=(�+1)

. That is, we guess that T (n; �) is of this form, and then we

will verify that the guess is correct.

Note that n = T (m; � � 1) = C

��1

�m

1+1=�

= C

��1

�m

(�+1)=�

, so that

m =

 

n

C

��1

!

�

�+1

=

 

n

C

��1

!

1�1=(�+1)

:

Thus,

C

�

� n

1+1=(�+1)

= T (n; �) �

42n

2

�

m

= 42n

2

�

�

C

��1

n

�

1�1=(�+1)

� 42�C

��1

� n

1+1=(�+1)

:

That is, C

�

� 42�C

��1

. This has solution C

�

� 42

�

�!, noting for the basis that C

1

� 42 (where

C

1

is the constant in Theorem 7.3). Since C

�

is independent of n, we have veri�ed our guess of the

form of T (n; �).

Now choose

� =

s

logn

log logn

to balance C

�

and n

1=(�+1)

asymptotically. This gives us

T (n; �) = C

�

� n

1+1=(�+1)

= n � 2

� log

2

�+O(�)

� 2

(log

2

n)=(�+1)

= n � 2

O(

p

logn log logn)

:

Note that m < n=C

��1

= o(n= log

2

n), as promised. 2

We still need to show how to route the unaligned packets, and we will do that in the next

lecture.
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In this lecture, we conclude the algorithm begun in Section 7.3 by describing the routing and

analyzing the running time of the remaining unaligned packets.

An unaligned packet for the most part meanders around, getting de
ected by aligned packets

until it is its turn to get aligned. It will turn out that the unaligned packets do not interfere with

the analysis from Lemma 8.1 of the aligned packets, since unaligned packets will be routed on any

free link in deference to aligned packets, which have higher priority.

9.1. Algorithm for Unaligned Packets

Assign �

2

di�erent priorities to the packets according to the colors of the source row and destination

column. A packet with destination column color d moves from end to end in its current column,

trying to turn into any row colored (d+1) mod � whenever it is in a southbound pass. From there

it uses the algorithm of Section 7.3, with the change that at level i it uses rows and columns colored

(i+ d+ 1) mod �. (This puts it on the correct row and column color at level � � 1, namely d.)

Call a packet aligned if it is executing the algorithm of Section 7.3, and unaligned if it is trying

to turn into its level 0 rows.

If two packets of di�erent priority contend for a link, the one of lower priority is de
ected and

starts over as an unaligned packet. If packets of equal priority contend for a link, the unaligned

ones, if any, are de
ected. Finally, if unaligned packets of equal priority contend for a column link,

the one (if any) that entered the node via a column link has priority. If an unaligned packet is

de
ected onto a row link, it tries to turn into any column to resume its attempt to get to a level 0

row.

A priority packet is an undelivered packet of highest priority among all undelivered packets.

This algorithm has the nice property that there is no global control, which might be used, for

instance, to keep lower priority packets from being injected until all priority packets are delivered.

Instead, each packet optimistically proceeds as if it was a priority packet.

Note that there are initially n

2

=�

2

packets of each priority.

Lemma 9.1: Suppose at time T that there are p priority packets, where 0 < p � n

2

=�

2

. Then

after n � 2

O(

p

logn log logn)

additional steps, at least p=(4� + 8) of them are delivered.

31
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Proof: Let d be the destination column color of the priority packets. Let r be the number of

aligned priority packets at time T + 2n � 2. For some row i colored (d+ 1) mod �, at most r�=n

priority packets travel along row i sometime during the interval [T +1; T + 2n� 2] of 2n� 2 steps,

because they cannot become unaligned and change rows once aligned.

How many unaligned priority packets try to turn into row i during these 2n � 2 steps? Any

unaligned priority packet that is never de
ected from its column during these steps will try to

turn into row i, so we will bound the number of such packets. First notice that, at any step in

[T + 1; T + 2n � 2], at most p=2 unaligned priority packets travel on row links, since otherwise

some node would route more unaligned priority packets on row links than total priority packets

on column links, which contradicts the fact that the unaligned packets are trying to turn into any

column. Thus, at any step in [T + 1; T + 2n� 2], at least p=2� r unaligned priority packets travel

on column links. Each of the at most r aligned priority packets P can de
ect at most � of these

p=2 � r unaligned packets from their columns, once for each time P succeeds in a column turn

stage. Thus, at least p=2 � (� + 1)r unaligned priority packets each try to turn into row i once

during [T + 1; T + 2n � 2], and at least p=2� (� + 2)r of them fail.

As in Lemmas 7.3 and 8.1, every pair of aligned priority packets on row i can prevent at most

two such turns during these 2n� 2 steps, so

2

 

r�=n

2

!

�

p

2

� (� + 2)r

r

2

�

2

n

2

�

p

2

� (� + 2)r

r

2

+

(� + 2)n

2

�

2

r �

pn

2

2�

2

� 0

r � �

(� + 2)n

2

2�

2

+

s

(� + 2)

2

n

4

4�

4

+

pn

2

2�

2

=

(� + 2)n

2

2�

2

 

s

1 +

2p�

2

(� + 2)

2

n

2

� 1

!

�

(� + 2)n

2

2�

2

  

1 +

p�

2

2(� + 2)

2

n

2

!

� 1

!

(since 0 < p � n

2

=�

2

)

=

p

4(� + 2)

:

By Lemma 8.1, these r aligned priority packets will all be delivered within n � 2

O(

p

logn log logn)

additional steps, as they cannot be de
ected by lower priority or unaligned packets. 2

Theorem 9.2: For any permutation, this algorithm delivers all packets in n � 2

O(

p

logn log logn)

steps.
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Proof: By Lemma 9.1, all priority packets are delivered in

n � 2

O(

p

logn log logn)

ln

�

n

2

�

2

�

ln

�

4�+8

4�+7

�

� n � 2

O(

p

logn log logn)

(2(4� + 8) lnn)

steps, using the identity ln

�

1

1�x

�

� x. Thus all packets are delivered in

�

2

n � 2

O(

p

logn log logn)

(8� + 16) lnn = n � 2

O(

p

logn log logn)

(9:1)

steps, recalling from the proof of Lemma 8.1 that � =

q

logn

log logn

. 2

By making the dependence on the parameter � explicit, we can show that there is a spectrum

of de
ection routing algorithms, generalizing Theorem 9.2:

Theorem 9.3: For � � 2, there is an algorithm that delivers all packets in any permutation

on the n � n mesh in time

�!2

O(�)

n

1+

1

�+1

logn:

Larger values of � lower the exponent of n but drastically increase its coe�cient.

9.2. Is This Algorithm Practical?

In contrast to the 8n

1:5

time algorithm of Section 7.2, this one may not be as practical. The big-Oh

in the running time hides logn factors and large constants. The logic for the routing nodes must

calculate alignment, priority, and distance to destination.

Is the algorithm practical for � = 2? This is the choice for � in any case as long as n � 2

16

(that is, a 65; 536� 65; 536 mesh). By choosing m = (n=2)

2=3

and using Equations (8.4) and (9.1),

a crude upper bound on the number of steps is

(28 � 2 � 2

2=3

+ 14 � 2 � 2

2=3

� 8((1=2)

2=3

)

3=2

) � 4 � 32 � n

4=3

lnn � 34; 135n

4=3

lnn:

Exercise 9.4: Make the O(n

4=3

) algorithm more practical by tightening the analysis or the

algorithm itself. In particular, derive a better bound on the constant and eliminate the lnn factor.

Exercise 9.5: Under certain conditions, a node cannot tell whether one of its packets is aligned

or unaligned, unless packets carry this information explicitly. Determine what those conditions are,

and whether the analysis still stands if the node simply assumes such a packet is aligned.
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10.1. Worm Routing

Bar-Noy et al. [1] also discuss worm routing on the n� n torus. The authors use the term \worm"

instead of the common alternative \wormhole", and we will do the same. In this model each

message (or \worm") consists of k \
its", where only one 
it can cross a link per step, and each


it must follow the one in front of it, maintaining a distance of at most one link between them.

We consider the problem of de
ection routing for permutations. If queues are allowed worms may

possibly compress and decompress, but in the de
ection case consecutive 
its must remain exactly

one link apart.

We can have at most

4n

2

k

worms in the torus at any given time, since there are only 4n

2

links.

This means that some method is needed for controlling worm injection. (One new danger in this

case, in addition to the usual danger of livelock, is that four worms simultaneously converge on

a node when that node is in the process of injecting a new worm.) As there may be n

2

worms

and each may have to travel 
(n) distance, 
(kn) is a lower bound on the time to route arbitrary

permutations.

The head of a worm is its �rst 
it. We adopt a head-to-head discipline, in which two worms

contend for a link only at their heads.

10.2. How To Turn a De
ection Packet Router into a De
ection

Worm Router

The �rst de
ection worm routing method uses a novel reduction of worm routing to packet routing.

The version in this section is due to Melanie Fulgham, who generalized a proof of Bar-Noy et al.

[1] so that it would work for any packet router.

Theorem 10.1: For any de
ection packet router that routes arbitrary permutations on the

n� n torus in time T (n), there is a de
ection worm router that does so in time O

�

k

3

T

�

n

p

k

��

.

Proof: Assume for simplicity that there is an integer h such that
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1. h = O(

p

k),

2. h � 2

p

k, and

3. h j n.

Partition the torus into

n

2

h

2

squares each of size h� h, and color the nodes of each square distinctly

with colors 1; 2; : : : ; h

2

in row-major order.

There are h

4

rounds. In round (i; j), where 1 � i; j � h

2

, inject all worms with source node

colored i and destination node colored j. For this (i; j), choose a set of column paths and a set of

row paths satisfying the following properties:

1. Each pair of nodes colored j that are at distance h apart in some column (row) are connected

by a column path (row path) in the torus of length exactly k.

2. These paths are pairwise edge-disjoint.

One way of accomplishing this is to divide each h � h square into four quadrants and grant

exclusive meandering rights in one of the quadrants to one of the row paths and in another quadrant

to one of the column paths. We leave the details to the reader. We will assume that every column

path has the same \shape", in the sense that each is a translation of every other one, and similarly

for the row paths.

Round (i; j) begins by routing every worm head from its source node to the closest node on a

column or row path in the same square, and from there along the column or row path to the node

colored j in the same square. By assuming again that each of these initial routes within its source

square is a translation of every other one, it will be the case that every worm head reaches the node

colored j at the same time. We then simulate the de
ection packet router on the

n

h

�

n

h

torus of

nodes colored j, with column and row paths simulating the column and row links. Note that this

obeys the head-to-head discipline, since routing decisions are only made every k steps, when worm

heads arrive at nodes colored j. If T (n) is the time used by the packet router, this simulation uses

time O(h

4

kT (

n

h

)) = O

�

k

3

T

�

n

p

k

��

.

2

Corollary 10.2: There are de
ection worm routers that route arbitrary permutations on the

n� n torus in time O(k

2:25

n

1:5

) and k

2:5

n � 2

O(

p

logn log logn)

, respectively.

Proof: Apply Theorem 10.1 to the de
ection packet routers of Theorems 7.3 and 9.2. 2

Open Problem 10.3: Design an e�cient worm routing algorithm on the torus that will handle

worms of varying lengths.
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De
ection Worm Routing (Continued)

May 3, 1994

Notes: Sushil Aryal

11.1. An O(kn

1:5

) Time De
ection Worm Router

In this lecture, an O(kn

1:5

) algorithm for de
ection routing of length k worms on the n � n torus

is presented. This improves one of the algorithms of Corollary 10.2, and is again due to Bar-Noy

et al. [1].

It is assumed for simplicity that k j n. A diagonal of the torus is a set of nodes on a north-

west/southeast line. One of the diagonals is distinguished as the main diagonal. An eastbound

(westbound) sliding diagonal is a diagonal that moves one node east (respectively, west) at each

step.

For each c satisfying 0 � c � n=k � 1, the eastbound (westbound) sliding diagonal of color c is

the one that leaves the main diagonal at times that are equivalent to ck mod n.

A worm routing algorithm is said to be a diagonal preserving algorithm if and only if it satis�es

the following two properties:

1. The head of a worm W can only be injected at a node v using v's east or north link (west

or south link) when one of the colored eastbound (respectively, westbound) sliding diagonals

contains v. The worm W has color c if its head is injected on a sliding diagonal of color c.

2. A worm W moving east or north (west or south) turns west or south (respectively, east or

north) only at the main diagonal. That is, worms never change color once they are injected.

These two conditions guarantee the following properties of the algorithm:

1. The routing obeys the head-to-head discipline, since the colored diagonals are k nodes apart.

(It is permissible for worms to intersect each other as long as they are not contending for the

same links.)

2. Worms contend for a link only if they are of the same color, since the two sliding diagonals

that meet at the main diagonal have the same color.

We can now describe the O(kn

1:5

) algorithm, which is a particular diagonal preserving algo-

rithm:

36
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1. A node with an uninjected wormW will inject W onto its east link (on an eastbound colored

sliding diagonal) or its south link (on a westbound colored sliding diagonal) the �rst time

there is no contention for that link.

2. Whenever an eastbound worm reaches its destination column, it tries to turn north. Only a

northbound worm already in the column (which has a higher priority for that north link) can

prevent it from doing so. Once a worm is moving north in its destination column, it continues

to its destination.

3. Whenever a southbound worm reaches its destination row, it tries to turn west. Only a

westbound worm already in the row (which has a higher priority for that west link) can

prevent it from doing so. Once a worm is moving west in its destination row, it continues to

its destination.

4. Whenever an eastbound (southbound) worm reaches the main diagonal, it turns south (re-

spectively, east).

Lemma 11.1: For any T , �, p, and c with 0 � c < n=k, suppose that there are p worms such

that, for each one, there is a time during the interval [T +1; T +�] when it has color c. Then more

than 2

p

p� 2 worms of color c are delivered during [T + 1; T +�+ 3n].

Proof: Let N (respectively, W ) be the number of worms colored c that are moving north

(respectively, west) sometime during [T + 1; T + � + 2n]. Then p � N �W worms colored c try

and fail to turn both north and west during [T + 1; T + �+ 2n].

Each pair of worms, one moving north on column j and one moving west on row i, prevents at

most one worm from its two turns, namely the worm with destination (i; j). (Recall that worms of

color other than c cannot prevent either of these two turns.) Therefore NW � p�N �W , which

implies that NW +N +W � p.

Suppose that N +W � 2

p

p� 2. Then NW � (

p

p� 1)

2

, so NW +N +W � (p� 2

p

p+ 1) +

(2

p

p � 2) = p� 1. Since this contradicts the earlier condition NW +N +W � p, it must be the

case that N +W > 2

p

p� 2.

All of these N +W worms are delivered within another n steps, that is by time T +�+3n, as

claimed. 2

Theorem 11.2: The algorithm described above routes any permutation of length k worms on

the n � n torus in O(kn

1:5

) time.

Proof: The proof is divided into two parts. In Part A, it is shown that the time until all

but 15 worms are injected is O(kn

1:5

). In Part B, it is proved that the additional time until the

delivery of all the remaining worms (including the 15 uninjected worms from Part A) is O(n

1:5

).

We start with the proof of Part A. Suppose that 2

m+1

� n < 2

m+2

. Divide the execution of

the algorithm into m phases. For 1 � t � m, phase t consists of the steps in which the number of

uninjected worms lies in the half-open interval (n

2

=4

t

; n

2

=4

t�1

].



LECTURE 11. DEFLECTION WORM ROUTING (CONTINUED) 38

Let [T +1; T +n] be an interval contained in phase t. Since the number of uninjected worms is

greater than n

2

=4

t

, the number of rows plus columns containing uninjected worms is greater than

twice the side of the smallest square containing n

2

=4

t

nodes, which is n=2

t�1

.

Consider the two sliding diagonals of color c during [T + 1; T + n]. More than n=2

t�1

worms

have color c during [T + 1; T + n], because the eastbound (westbound) sliding diagonal of color c

must have as many worms as there are source rows (respectively, columns) of uninjected worms.

By Lemma 11.1, then, more than 2

p

n=2

t�1

� 2 worms of color c are delivered during

[T + 1; T + 4n]. Among all colors, the number delivered in these 4n steps is greater than

n

k

�

2

r

n

2

t�1

� 2

�

�

n

k

r

n

2

t�1

;

since n � 2

m+1

� 2

t+1

.

The time to end phase t is at most the time to deliver 3n

2

=4

t

worms, which is at most

3n

2

4

t

�

n

k

q

n

2

t�1

4n

=

3kn

1:5

�

2

p

2

�

t�1

:

The time for all m phases is thus at most

3kn

1:5

1

X

t=1

1

�

2

p

2

�

t�1

=

24 + 6

p

2

7

kn

1:5

< 5kn

1:5

:

At the end of phase m the number of uninjected worms is at most n

2

=4

m

< 4

m+2

=4

m

= 16.

This concludes the proof of Part A of the theorem.
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De
ection Routing on Arbitrary Networks

May 5, 1994

Notes: Sung-Eun Choi

12.1. Conclusion of Theorem 11.2

For Part B of the proof of Theorem 11.2, divide the remaining time into intervals of 3n steps each.

For any color c, let N

i

be the number of undelivered worms of color c at the beginning of the ith

interval. Note that N

1

� 4n.

By Lemma 11.1,

N

i+1

< N

i

� 2

p

N

i

+ 2;

so

N

i+1

� N

i

� b2

p

N

i

c+ 1;

since N

i

and N

i+1

are integers.

Claim: For any integer x, if N

i

� x

2

, then N

i+1

� (x� 1)

2

.

Proof: Assume that N

i

> (x� 1)

2

, since otherwise the claim is proved.

Case 1:

p

N

i

= x. Then

N

i+1

� N

i

� b2

p

N

i

c + 1

= x

2

� 2x+ 1

= (x� 1)

2

:

Case 2: x�

1

2

�

p

N

i

< x. Then b2

p

N

i

c = 2x� 1, so

N

i+1

< x

2

� (2x� 1) + 1

= x

2

� 2x+ 2;

so N

i+1

� (x� 1)

2

:

Case 3: x� 1 <

p

N

i

< x�

1

2

. Then b2

p

N

i

c = 2x� 2, so

N

i+1

< (x

2

� x+

1

4

)� (2x� 2) + 1

39



LECTURE 12. DEFLECTION ROUTING ON ARBITRARY NETWORKS 40

= x

2

� 3x+ 3:25;

so N

i+1

� x

2

� 3x+ 3

� (x� 1)

2

(since x � 2 in Case 3).

2

From the Claim, the number of intervals is at most

�p

N

1

�

� d2

p

n e. Thus, the total Part B

time is at most d2

p

n e 3n � 6n

1:5

+ 3n.

The 15 uninjected packets from Part A add another O(n) steps for injection and delivery. 2

Exercise 12.1: Find a permutation of worms showing that Theorem 11.2 is tight. Try starting

with the case k = 1.

Exercise 12.2: What would happen if worms were injected west instead of south and tried to

turn south into their destination columns?

Open Problem 12.3: Extend these de
ection algorithms to the dynamic case.

12.2. Other Results on De
ection Routing on Meshes and Tori

Bar-Noy et al. [1] also present a probabilistic, diagonal preserving, de
ection worm router that

routes any permutation in O(kn) time with probability 1�O(

1

n

).

Returning to de
ection packet routing, Newman and Schuster [17] present a 7n + o(n) time

de
ection packet routing algorithm for any permutation. Although this improves the results of

Theorems 7.3 and 9.2, it is based on sorting. (See Section 6.2 for a discussion of drawbacks of

routers based on sorting.)

Ben-Dor, Halevi, and Schuster [2] present an O(n

p

k) time de
ection packet routing algorithm

that routes any k packets on the n � n mesh in a static (but not necessarily permutation) prob-

lem. We will improve on this result in Theorem 14.4. We will consider this same static setting,

parameterized by the number k of packets, in the next few sections, but on other networks.

12.3. De
ection Packet Routing on General Networks

Consider an arbitrary network with indegree(v) = outdegree(v) for all nodes v, so that de
ection

routing makes sense. Consider an arbitrary static routing problem of k packets (not necessarily

a partial permutation), where the number of packets with source v is at most outdegree(v). The

results in this section are due to Hajek [8].

De�ne one-pass de
ection routing as follows. At each node and each step, there is some ordering

of the packets, and a packet P is de
ected if and only if the outgoing links on all the shortest paths

to P 's destination are assigned to packets earlier in the ordering.
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Such routing algorithms can produce a livelock situation. In Figure 12.1, P

i

denotes a packet

destined for node i. Livelock can occur if P

1

and P

4

have highest priority in the con�guration

depicted on the left and are chosen to move along the links indicated. The resulting con�guration

is shown on the right. Now if P

2

and P

3

have the highest priority and are chosen to move along

the links indicated, the network will return to the �rst con�guration.

1 2

3 4

1 2

3 4

P2

P3
P4

P1 P2

P3

P4

P1

Figure 12.1: Example of a possible livelock situation.

To prevent livelock, de�ne nearest-�rst de
ection routing to be a subclass of one-pass de
ection

routing in which packets are considered in nondecreasing order of distance to destination.

Theorem 12.4: Suppose there are k packets to be routed. If any nearest-�rst de
ection routing

algorithm is used, all packets are delivered in at most �k steps, where � is the diameter of the

network.

Proof: At any step, consider all packets closest to their destinations. One of those is �rst in

its node's ordering, so it will not be de
ected. Thus, the minimum distance to destination over all

undelivered packets decreases by one each step until some packet is delivered, which must happen

in � steps. The result follows by repeating this argument for each of the remaining k � 1 packets.

2

Open Problem 12.5: Can you do better than Theorem 12.4 on an arbitrary network, by

using a scheme in which a packet about to be de
ected can be swapped with another, provided this

decreases the number of de
ections?

Open Problem 12.6: The nearest-�rst ordering based on distance to destination may intro-

duce too much delay to be practical. What happens if a random ordering is used instead of the

nearest-�rst ordering?
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De
ection Routing on the Hypercube
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Notes: Jim Fix

De�nition 13.1: The n-dimensional hypercube H

n

consists of the vertex set f0; 1g

n

and the

edge set

f(u; v) j (9i)(u

i

6= v

i

& (8j 6= i)(u

j

= v

j

))g:

That is, two vertices are adjacent if and only if they di�er in exactly one position. (See Figure 13.1

for an example.) Note that the number of vertices is 2

n

, the indegree and outdegree of each vertex

is n, and the diameter � is n.

For the remainder of this section, we consider any nearest-�rst de
ection routing of k packets

on the n-dimensional hypercube H

n

. Our goal is to improve Theorem 12.4 to show that de
ection

routing on H

n

can be performed in O(�+k) = O(n+k) steps. This result is due to Hajek [8]. (See

Theorem 14.4 for a closely related result.)

De�nition 13.2: Suppose packet P has destination w and is about to traverse the link from

u to v. P 's conditional distance is 1 + dist(v; w), where dist(v; w) is the length of a shortest path

from v to w.

On the hypercube, the conditional distance is either dist(u; w) + 2 or dist(u; w), depending on

whether or not P is de
ected.

111

Z

Z

Z

�

�

�

110

Z

Z

Z

101

Z

Z

Z

�

�

�

011

�

�

�

100

Z

Z

Z

010 001

�

�

�

000

Figure 13.1: The 3-dimensional hypercube.
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Lemma 13.3: Suppose a node v of the hypercube has at least r undelivered packets, each with

distance at most j to its destination, where r � j � 1. If any nearest-�rst de
ection algorithm is

used, then at least r packets will depart v with conditional distance at most j.

Proof: Let the order in which packets at v are considered be P

1

; P

2

; : : : ; P

r

; : : :. Let 1 � i � r,

and let w be P

i

's destination. Let d = dist(v; w). Since i � r and packets are considered in

nondecreasing order of distance to destination, d � j. Note that d links from v are each on shortest

paths from v to w, since v and w di�er in exactly d positions.

Case 1: j � 1 � d � j. The packets P

1

; P

2

; : : : ; P

i�1

use at most i � 1 � r � 1 � j � 2 links

from v, so P

i

will not be de
ected and its conditional distance is d � j.

Case 2: 1 � d � j � 2. Whether or not P

i

is de
ected, its conditional distance is at most

d+ 2 � j.

In either case, the conditional distance is no more than j. 2

In order to understand the routing, we next introduce a graph that captures the trajectories of

the k packets on the hypercube H

n

.

De�nition 13.4: The time-expanded graph G has vertices (t; v), where t � 0 and v is a vertex

of H

n

, and an edge e from (s; u) to (t; v) if and only if t = s + 1 and some packet P traverses the

link from u to v at time s. The label on e is the conditional distance of P at time s.

De�nition 13.5: The traces of G are the directed paths T

1

; T

2

; : : : ; T

k

in G de�ned as follows.

Suppose T

1

; T

2

; : : : ; T

m�1

have been constructed, where 1 � m � k. T

m

begins at any vertex (0; v)

that has an outgoing edge that is not in T

1

; T

2

; : : : ; T

m�1

. Repeatedly add to T

m

the minimum

labeled edge directed out of T

m

's head (the last vertex added) that is not in T

1

; T

2

; : : : ; T

m�1

. Stop

when T

m

reaches a vertex (t; v) such that the number of traces entering (t; v), including the trace

T

m

, is at most the number of packets with destination v that were delivered at time t. (That is, if

p packets had destination v and were delivered at time t, then the �rst p traces to reach (t; v) will

stop there, and any later traces will continue.) Let length(T

m

) be the number of edges in T

m

.

Lemma 13.6: If length(T

m

) � t, the label of the t-th edge of T

m

is at most n+ 2m� t � 1.

Proof: The proof is by induction on m and t.

Basis : Suppose t = 1 and 1 � m � k.

Case 1: m = 1. Then for any node v, the conditional distance of some packet at node v is at

most n = n + 2m� t � 1, since the �rst packet considered at v is not de
ected.

Case 2: m � 2. The conditional distance of any packet at any node is at most n + 1 �

n+ 2m� 2 = n + 2m� t � 1.

Induction : Suppose the lemma holds for all m

0

< m and all 1 � t � length(T

m

0
), and also for

m

0

= m and all t

0

� t. We want to show that the lemma holds for the (t+ 1)-th edge of T

m

. Let

(t; v) be the vertex at the tail of that edge.
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Let

M = fT

i

j 1 � i � m and the (t+ 1)-th edge of T

i

is directed out of (t; v)g:

Note that T

m

2 M . By the induction hypothesis, the t-th edge of any T

i

2 M has label at most

n + 2i� t � 1. That means that there are at least jM j packets at v at time t, each with distance

between 1 and j = n+ 2m� t� 2 to its destination.

Applying the induction hypothesis again and the fact that all edge labels are positive, for

any 1 � i < m we have n + 2i � length(T

i

) � 1 � 1, so length(T

i

) � n + 2i � 2. For T

i

2 M ,

length(T

i

) � t+1, soM � fT

i

j (t�n+3)=2 � i � mg. Therefore jM j � m�(t�n+1)=2 = (j+1)=2.

Case 1: j = 1. Then jM j � (j + 1)=2 = 1, so M = fT

m

g. At least jM j = 1 packet at v at

time t is at a distance between 1 and j = 1 from its destination. By the nearest-�rst discipline,

some packet with distance 1 to its destination will not be de
ected, so has conditional distance 1.

Therefore, the label on the (t+ 1)-th edge of T

m

is 1 = j = n+ 2m� (t+ 1)� 1.

Case 2: j � 2. Then jM j � (j + 1)=2, so jM j � (j � 1). Applying Lemma 13.3 with r = jM j,

at least jM j packets depart v at time t with conditional distance at most j. Hence, there are at

least jM j edges directed from (t; v), each with label at most j. In particular, the (t+ 1)-th edge of

T

m

has label at most j = n+ 2m� (t+ 1)� 1. 2

Theorem 13.7: Suppose k packets are to be routed on an n-dimensional hypercube, with at

most n packets having any single node as source. If any nearest-�rst de
ection router is used, all

k packets are delivered within n + 2(k � 1) steps.

Proof: By Lemma 13.6 and the fact that all edge labels are positive, for all m satisfying

1 � m � k we have n+ 2m� length(T

m

)� 1 � 1. Therefore,

length(T

m

) � n+ 2(m� 1) (13.1)

� n+ 2(k � 1):

Since the termination of each trace corresponds to the delivery of a distinct packet, all k packets

are delivered within n + 2(k � 1) steps. 2

It is informative to compare the proof of Theorem 13.7 with that of Theorem 12.4. Each one

shows that the �rst packet is delivered within the �rst � steps. Whereas Theorem 12.4 goes on

to show that each successive packet is delivered within an additional � steps, the specialization to

hypercubes in Theorem 13.7 shows that each successive packet is delivered within an additional 2

steps. (See Inequality (13.1).)

Exercise 13.8: When applied to permutation routing, Theorem 13.7 only yields an O(2

n

) time

bound for de
ection routing on H

n

. Find a de
ection routing algorithm that improves this bound.

Open Problem 13.9: Find a practical de
ection routing algorithm that routes any permu-

tation on H

n

in O(2

n=2

) steps. (Newman and Schuster [17] have an O(n

2

) bound for a de
ection

router based on sorting. See Section 6.2 for a discussion of the drawbacks of routing algorithms

based on sorting.)
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Notes: Donald Chinn

In this lecture, we conclude our discussion of de
ection packet routing with a recent result of

Borodin, Rabani, and Schieber [5]. The goal of their work is to prove a bound of the following form:

any packet P with distance d

P

from its source to its destination is delivered in time d

P

+ 2(k� 1),

where k is the number of packets in the network. Recall that Hajek's result [8] on de
ection packet

routing on the n-dimensional hypercube (Theorem 13.7) is of the same type, with a bound of

n+ 2(k� 1) steps.

Borodin, Rabani, and Schieber achieve their bound for any multidimensional mesh, including

hypercubes. They employ a novel accounting scheme by which each de
ection of P can be charged

to a unique packet. This charging scheme is not speci�c to meshes, and is the topic of Section 14.1.

14.1. De
ection Sequences and Paths

De�nition 14.1: For any network, any de
ection router, and any packet P , a de
ection se-

quence for P is a sequence (P

0

= P; P

1

; P

2

; : : : ; P

l

) of packets such that, for 0 � i < l, P

i

and P

i+1

meet at node v

i

at some time T

i

, where T

0

< T

1

< � � � < T

l�1

. Let v

l

be the destination of P

l

.

De�ne the de
ection path corresponding to this sequence as the path from v

0

to v

l

that follows the

route of P

i

from v

i�1

to v

i

, for 1 � i � l.

Lemma 14.2: Suppose P is at node v at time T

0

, moves to node w at time T

0

+ 1, and

S = (P

0

; P

1

; : : : ; P

l

) is a de
ection sequence for P starting at v at time T

0

. Let v

l

be the destination

of packet P

l

. If dist(w; v

l

) is at least the length of the de
ection path corresponding to S, then P

l

cannot be the last packet in any de
ection sequence for P that starts at a time after T

0

.

Proof: Suppose P

l

is also the last packet in a de
ection sequence S

0

for P that starts at a node

v

0

at a time after T

0

. Let T

l

be the time at which P

l

is delivered to its destination v

l

. Consider

the path � from w to v

l

that follows the route of P to v

0

and then follows the de
ection path

corresponding to S

0

from v

0

to v

l

.

The length of � is T

l

� (T

0

+ 1). This is less than the length T

l

� T

0

of the de
ection path

corresponding to S, contradicting the assumption in the lemma. 2
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De�nition 14.3: A bidirectional network is one in which the existence of an edge (u; v) implies

the existence of the edge (v; u).

The consequence of Lemma 14.2 is that, if P is de
ected at time T

0

, that de
ection can be

\charged" to P

l

, and costs P two steps if the network is bidirectional. If such a de
ection sequence

can be found for each de
ection of P , then P will be delivered in at most d

P

+ 2(k� 1) steps. We

will show how to �nd such de
ection sequences for multidimensional meshes in Section 14.2.

14.2. De
ection Routing on Multidimensional Meshes

Theorem 14.4: For any d and any d-dimensional mesh G with arbitrary dimensions, consider

all routing problems on G with k packets, at most one per source node. There is a de
ection routing

algorithm for all such problems on G that delivers each packet P in time at most d

P

+ 2(k� 1).

Proof: The proof is a generalization of the O(n

1:5

) time de
ection routing algorithm of Bar-Noy

et al. [1], described in Section 7.2.

Order the dimensions 1; 2; : : : ; d arbitrarily. A packet P traveling along dimension i inductively

has corrected its address positions in dimensions 1; 2; : : : ; i�1 so that they agree with P 's destination

address. P is trying to turn into the dimension i + 1 row at its destination value of dimension i,

preferably toward its destination but, if not, in the other direction. Packets already in that row

have priority. If P is moving away from its destination in dimension i, it tries to reverse direction

at each step, but packets going toward their destinations in dimension i have priority.

The theorem follows from Lemma 14.2, if the appropriate de
ection sequence can be identi�ed.

When P is de
ected from reversing direction in its row, or from turning, it meets some packet

P

1

moving toward its destination. (Note that P

1

may not be the packet using the link that P

wanted, since that packet itself might have been de
ected from turning. In fact, P

1

may be several

dimensions beyond P .) Similarly, follow P

1

until it is either delivered to its destination, or de
ected

and meets P

2

moving toward its destination, etc. Note that, for i � 1, if P

i

is de
ected, this occurs

while trying to turn into the next dimension it needs to correct. Thus, P

i+1

is moving along

a higher dimension than P

i

, so that this sequence of packets terminates. This is the de
ection

sequence (P

0

; P

1

; : : : ; P

l

).

Since the corresponding de
ection path is a shortest path from v to the destination of P

l

, and

P is de
ected away from the destination of P

l

, Lemma 14.2 applies. Thus, each de
ection of P can

be charged to a distinct packet, and each adds 2 to P 's delivery time. 2

Note that the scheduling of packets to outgoing links at each node can be implemented using one

pass over the incoming links in decreasing order of dimension. This scheduling involves very simple

decisions, possibly more practical than Hajek's nearest-�rst scheme [8], which involves sorting the

incoming packets according to their distance to destination.

Borodin, Rabani, and Schieber [5] also give a d

P

+2(k�1) algorithm in the \fully loaded" case,

where each node begins with a number of packets that can be as great as the outdegree of the node.

Open Problem 14.5: Devise an O(d

P

+ k) de
ection algorithm for arbitrary networks.
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Exercise 14.6: What is the running time of the algorithm of Theorem 14.4 when routing

permutations on d-dimensional meshes? Show that it is !(�), where � is the diameter of the mesh,

when d � 3. (Hint: Use the method of Theorem 15.7.) Is this also true when d = 2?



Lecture 15

A Lower Bound for Oblivious Routing

May 12, 1994

Notes: M.L. Fulgham

With this lecture, we return from de
ection routing to permutation routing with queueing,

on the hypercube. We begin with a result on oblivious routing due to Kaklamanis, Krizanc, and

Tsantilas [9]. This work strengthens and is based on earlier work of Borodin and Hopcroft [4].

De�nition 15.1: A routing algorithm is oblivious if and only if the route of each packet is

determined solely by its source and destination.

In particular, the route cannot depend on other packets encountered, congestion, or the state of

the network.

Example 15.2: The following \greedy algorithm" on the hypercube H

n

is oblivious: correct

address positions in which the source and destination addresses di�er in increasing order. Use

unbounded queues, and any of various queueing disciplines, such as FIFO, farthest-�rst, or nearest-

�rst.

Example 15.3: Although at �rst blush the notions of \oblivious" and \de
ection" seem ir-

reconcilable, there is in fact an oblivious de
ection routing algorithm on any network that has a

Hamiltonian cycle; see Theorem 7.1.

We will prove a very general lower bound for any deterministic, oblivious routing algorithm on

any network, even if it uses unbounded queues.

In what follows, let G be a network with N nodes, each with indegree at most d. Assume that

G is strongly connected (i.e., for every ordered pair (u; v) of nodes, there is a directed path in G

from u to v), since otherwise packets cannot possibly get from all sources to all destinations.

De�nition 15.4: Let t be a node of G. The destination graph G

t

is the union, over all N nodes

s, of the path speci�ed by the oblivious router for a packet with source s and destination t.

De�nition 15.5: An edge e in the destination graph G

t

is k-congested if and only if it belongs

to at least k paths with destination t, one for each of k source nodes s. Let S

k

be the set of

k-congested edges in G

t

. Let V (S

k

) be the set of nodes v such that some edge in S

k

is directed

into or out of v.

48
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Lemma 15.6 bounds the number of nodes that are not in V (S

k

) in terms of the number that

are.

Lemma 15.6: Suppose that k � (N � 1)=d. Then for any destination graph G

t

,

N � jV (S

k

)j � (k � 1) d jV (S

k

)j:

Proof: There are N � 1 source nodes other than t, each of which uses one of the at most d

edges directed into t. This guarantees that one of these edges is at least (N � 1)=d-congested and

hence also k-congested. Therefore, t 2 V (S

k

).

For any node s not in V (S

k

), consider the path taken by a packet with source s and destination

t. Let v be the �rst node on this path that belongs to V (S

k

). (Such a node exists since t 2 V (S

k

).)

At most (k� 1)d source nodes s can have v as a �rst such node, since any edge (u; v) used by more

than k�1 sources is k-congested, making u an earlier node for those sources that belongs to V (S

k

).

Thus, this mapping from nodes not in V (S

k

) to nodes in V (S

k

) is at most (k � 1)d{to{1. 2

Theorem 15.7: In any N -node networkG with maximum indegree d, any deterministic, obliv-

ious routing algorithm requires time 


�

p

N=d

�

to route some permutation.

Proof: Let k =

p

N=2=d � (N � 1)=d (since we can assume N � 2). Let G

t

be any destination

graph of G. Then

N = jV (S

k

)j+ (N � jV (S

k

)j)

� jV (S

k

)j+ (k � 1) d jV (S

k

)j (Lemma 15.6)

� 2jS

k

j(1 + (k � 1)d) (jV (S

k

)j � 2jS

k

j)

� 2kdjS

k

j (d � 1).

Solving for jS

k

j shows that each of the N destination graphs has at least N=(2kd) k-congested

edges. Let the weight of an edge e be the number of destination graphs in which e is k-congested.

The total weight of all edges is then at least N

2

=(2kd). Thus, there is some edge e with weight at

least

N

2

=(2kd)

Nd

=

N

2kd

2

=

p

N=2

d

:

That is, e is

p

N=2=d-congested in at least

p

N=2=d destination graphs.

Construct a permutation in which

p

N=2=d packets must cross e, by choosing a distinct source

s from each of these

p

N=2=d destination graphs G

t

, and injecting a packet at s with destination t.

Since only one packet can cross e per step, the time to route this permutation is at least

p

N=2=d.

2

Note that only a small partial permutation with these

p

N=2=d packets is necessary to cause

this much delay.

On the n�n mesh or torus, Theorem 15.7 only implies 
(n=4) time, which is no better than the

obvious lower bound that follows from the fact that the diameter of the network is 
(n). However,

on the hypercube (and many other small diameter networks), the lower bound is more dramatic:
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Corollary 15.8: Any deterministic, oblivious packet routing algorithm on the n-dimensional

hypercube requires time 


�

2

n=2

n

�

to route some permutation.

Note that this is much greater than the diameter n of the hypercube.



Lecture 16

Greedy Routing on the Hypercube

May 19, 1994

Notes: Tracy Kimbrel

16.1. Greedy Static Permutation Routing

In this section, we analyze the greedy routing algorithm on the hypercube, as described in Example

15.2. Recall that the the greedy algorithm corrects the address positions in which the source and

destination addresses di�er, in increasing order. Note that the hypercube can be viewed as an

n-dimensional mesh with side length 2 in each dimension. Thus the greedy algorithm of Example

15.2 is the natural extension of the greedy algorithm on the mesh of Section 1.5: it routes �rst

along the �rst dimension, then the second, and so on.

De�nition 16.1: If b 2 f0; 1g, let b = 1 � b. If v = v

1

� � �v

n

2 f0; 1g

n

, let v

(j)

=

v

1

� � �v

j�1

v

j

v

j+1

� � �v

n

.

Lemma 16.2: In the hypercube H

n

, consider the edge e from node v = v

1

� � �v

j

� � �v

n

2 f0; 1g

n

to node v

(j)

= v

1

� � �v

j

� � �v

n

. When the greedy routing algorithm is used, the only packets that

contend for e are those with

1. source addresses u

1

� � �u

j�1

v

j

� � �v

n

, for some u

1

; : : : ; u

j�1

2 f0; 1g, and

2. destination addresses v

1

� � �v

j�1

v

j

u

j+1

� � �u

n

, for some u

j+1

; : : : ; u

n

2 f0; 1g.

Proof: Address positions are corrected in increasing order. 2

Theorem 16.3: Consider the greedy routing algorithm with unbounded queues, and any

queueing discipline (as long as it never refuses to use a free link). This algorithm routes any

permutation on the n-dimensional hypercube H

n

in O(2

n=2

) steps.

Proof: Assume for simplicity that n is even. Consider a packet P that wants to cross the link

e from v to v

(j)

. By Lemma 16.2, at most N

j

= min(2

j�1

; 2

n�j

) packets contend for e. Because all

queues are unbounded, P will take at most N

j

steps to cross e once it reaches v. Thus the total

time P takes to reach its destination is at most
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n

X

j=1

N

j

�

n=2

X

j=1

2

j�1

+

n

X

j=n=2+1

2

n�j

= 2

n=2�1

X

j=0

2

j

< 2

n=2+1

:

2

Exercise 16.4: Let n be even, and consider the \transpose" permutation on the n-

dimensional hypercube, in which every node u

1

� � �u

n

is the source of a packet with destination

u

n=2+1

� � �u

n

u

1

� � �u

n=2

. Show that the greedy routing algorithm with unbounded queues and any

queueing discipline requires 
(2

n=2

) steps to route the transpose permutation. What is the maxi-

mum number of packets in any queue at one time during the routing?

Kaklamanis, Krizanc, and Tsantilas [9] give an oblivious algorithm that routes any permutation

in O(2

n=2

=n) steps, proving that Theorem 15.7 is tight.

Open Problem 16.5: Find a deterministic algorithm that routes any permutation on H

n

in

o(2

n=2

=n) steps. You may use unbounded queues, but do not base it on sorting. (By using sorting,

permutations can be routed in O(n logn) time: see Cypher and Plaxton [7] and Leighton [11,

Section 3.4.3]. See Section 6.2 for a discussion of the drawbacks of routing algorithms based on

sorting.)

Contrast Open Problem 16.5 with Theorem 2.1, which showed that time proportional to the

diameter can be achieved on the mesh.

Exercise 16.6: Find a deterministic algorithm that routes any permutation on H

n

in o(2

n

)

steps. Use bounded queues, and do not base it on sorting.

Open Problem 16.7: Find a deterministic algorithm that routes any permutation on H

n

in

O(2

n=2

) steps. Use bounded queues, and do not base it on sorting.

16.2. Information Dispersal Routing on the Hypercube

The next topic is an algorithm due to Rabin [18] and based on earlier work of Valiant and Brebner

[21]. Valiant and Brebner's algorithm is the following: for each packet, choose an intermediate

node � at random, and use the greedy route from the source to �, followed by the greedy route

from � to the destination. Valiant and Brebner prove that, with high probability, the number of
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steps to route any permutation on the hypercube H

n

is O(n). (See Lecture 19 for details. This

same paradigm was discussed in Section 5.2 for the mesh.)

The description of Rabin's information dispersal routing will follow Leighton [11, Section 3.4.8].

In information dispersal, each packet is split into n subpackets which are routed along edge-disjoint

paths via a randomly chosen intermediate node. Advantages of this approach include

� balanced communication loads, low congestion, and small queues, and

� fault-tolerance, if subpackets encode the original packet redundantly. (We will return to

the algorithm's fault-tolerance after presenting and analyzing the basic information dispersal

algorithm.)

A disadvantage is that the number of items (subpackets) to be routed is increased, each containing

its own routing information. The original messages must be long (compared to the lengths of node

addresses) to make this worthwhile.

In the information dispersal model, the algorithm execution is composed of \supersteps". In

the jth superstep of Phases 1 and 2 below, each node v sends only those packets that want to go

to node v

(j)

. In one superstep,

� each node can split a packet into n subpackets, or combine those subpackets into a single

packet,

� each node v can select up to 6n of its subpackets that want to go to v

(j)

, and

� up to 6n subpackets can traverse any link.

Because subpackets have size about 1=n times the original packet size, a superstep takes between

�(1) and �(n) ordinary steps. There will be �(n) supersteps, so the total time is between �(n)

and �(n

2

). (Compare to Theorem 16.3 at O(2

n=2

).)

The algorithm is composed of four phases:

Phase 0: Each node v starts with a packet P (v) that has destination �(v). The node v chooses

a random, uniformly distributed intermediate destination �(v) for P (v). It partitions P (v)

into n subpackets P

1

(v); P

2

(v); : : : ; P

n

(v), and sends P

i

(v) to v

(i)

. This is the �rst superstep.

Phase 1: In the next n supersteps, P

i

(v) is routed from v

(i)

to �(v)

(i)

along the greedy route. At

the jth of these n supersteps, P

i

(v) does not move if v

j

= (�(v))

j

.

Phase 2: In the next n supersteps, P

i

(v) is routed from �(v)

(i)

to �(v)

(i)

as in Phase 1.

Phase 3: In the last superstep, P

i

(v) is sent from �(v)

(i)

to �(v), and the n subpackets are combined

to reconstruct P (v).

This algorithm runs in 2n+ 2 supersteps, provided only 6n subpackets contend for any link at

any time. We will prove in the next lecture that this occurs with very high probability.
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Information Dispersal on the Hypercube

May 24, 1994

Notes: Darren C. Cronquist

17.1. Contention for Links in Information Dispersal

Theorem 17.1: With probability 1�O(2

�n

), at most 6n subpackets traverse any link in any

step of the information dispersal algorithm on H

n

.

Proof: Consider an edge f = (w;w

(j)

) during Phase 1. By Lemma 16.2, P

i

(v) crosses f during

Phase 1 only if one of the following conditions holds:

1. i = j, and v has su�x w

j

w

j+1

� � �w

n

and �(v) has pre�x w

1

w

2

� � �w

j

, or

2. i > j, and v has su�x w

j

� � �w

i�1

w

i

w

i+1

� � �w

n

and �(v) has pre�x w

1

� � �w

j�1

w

j

, or

3. i < j, and v has su�x w

j

� � �w

n

and �(v) has pre�x w

1

� � �w

i�1

w

i

w

i+1

� � �w

j�1

w

j

.

Hence, for each individual source node v, there is at most one i such that P

i

(v) crosses f during

Phase 1, since i is uniquely determined by the position where the su�xes of v and w disagree and

the position where the pre�xes of �(v) and w

(j)

disagree. (Restated, this says that all n subpackets

of any packet follow paths that are edge disjoint.)

We now examine the contention for f among all source nodes, each of which contributes at most

one subpacket to that contention. The source nodes are categorized into three types, depending on

the index of the subpacket contributed.

Type 1 (i = j): At most 2

j�1

sources v have su�x w

j

w

j+1

� � �w

n

. For each one,

Pr(P

j

(v) crosses f during Phase 1) = 2

�j

;

since the randomly chosen node �(v) must have pre�x w

1

w

2

� � �w

j

.

Type 2 (i > j): At most (n � j)2

j�1

sources v have su�x w

j

� � �w

i�1

w

i

w

i+1

� � �w

n

for some

j < i � n. For each one,

Pr(P

i

(v) crosses f during Phase 1) = 2

�j

;

since �(v) must have pre�x w

1

� � �w

j�1

w

j

.
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Type 3 (i < j): At most 2

j�1

sources have su�x w

j

� � �w

n

. For each one,

Pr(P

i

(v) crosses f during Phase 1, for some 1 � i < j) = (j � 1)2

�j

;

since �(v) must have pre�x w

1

� � �w

i�1

w

i

w

i+1

� � �w

j�1

w

j

, for some 1 � i < j.

Combining Types 1 and 2 yields the following inequality:

Pr(at least r subpackets each with i � j cross f during Phase 1)

�

 

(n� j + 1)2

j�1

r

!

�

2

�j

�

r

�

 

en2

j�1

r

!

r

�

2

�j

�

r

(Stirling's approximation)

=

�

en

2r

�

r

:

Let r = en. Then

Pr(at least en subpackets each with i � j cross f during Phase 1) � 2

�en

:

Similarly, for sources of Type 3,

Pr(at least r subpackets each with i < j cross f during Phase 1)

�

 

2

j�1

r

!

�

(j � 1)2

�j

�

r

�

 

e2

j�1

r

!

r

�

n2

�j

�

r

(Stirling's approximation)

=

�

en

2r

�

r

:

Let r = en. Then,

Pr(at least en subpackets each with i < j cross f during Phase 1) � 2

�en

:

Combining all three types,

Pr(at least 2en subpackets cross f during Phase 1)

� Pr(at least en subpackets each with i � j cross f during Phase 1)

+Pr(at least en subpackets each with i < j cross f during Phase 1)

� 2

1�en

:

Since the hypercube H

n

contains n � 2

n

links,

Pr(at least 2en subpackets cross any link during Phase 1) � n � 2

n+1�en

:
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Through an analogous derivation, it can be shown that

Pr(at least 2en subpackets cross any link during Phase 2) � n � 2

n+1�en

:

Hence,

Pr(at least 2en subpackets cross any link during Phase 1 or Phase 2) � n � 2

n+2�en

= O(2

�n

);

from which the theorem follows. 2

Corollary 17.2: With probability 1 � O(2

�n

), the information dispersal algorithm on H

n

routes any permutation in 2n+ 2 supersteps.

17.2. Fault Tolerance for Information Dispersal

In all the algorithms we have discussed so far, there has been an implicit assumption that com-

ponents of the network are not faulty. In reality, as networks grow in size this assumption is less

likely to be sound. The chief bene�t of the information dispersal algorithm is that it provides a

certain independence among the subpackets, and this can be used to deliver messages even in the

presence of network faults.

Assume for now that each packet P (v) of size B can be divided into n subpackets

P

1

(v); P

2

(v); � � � ; P

n

(v), each of size approximately 2B=n, such that P (v) can be reconstructed

from any n=2 of these n subpackets. We will return to the question of how to achieve this redun-

dant decomposition after discussing how it is used to achieve fault tolerance in the information

dispersal algorithm.

Assume each node and link fails randomly and independently with probability � �

1

c(n+1)

,

where c is a constant to be determined. A subpacket trying to use such a failed node or link is lost.

The goal is thus to show that, with high probability, half of each packet's subpackets are delivered

successfully.
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Information Dispersal (Continued)

May 26, 1994

Notes: Ruben E. Ortega

18.1. Fault Tolerance

The following lemma ensures that a single node's failure cannot a�ect too many subpackets of a

given packet.

Lemma 18.1: For any nodes x, y, and w, at most two of the n values of i have greedy routes

from x

(i)

to y

(i)

that pass through w.

Proof: By way of contradiction, suppose three distinct values i

1

; i

2

; i

3

of i have greedy routes

that pass through w. For 1 � k � 3, let j

k

be the value such that the greedy route from x

(i

k

)

to

y

(i

k

)

leaves w on edge (w;w

(j

k

)

). Without loss of generality, assume j

1

� j

2

� j

3

. By Lemma 16.2,

for 1 � k � 3,

1. x

(i

k

)

has su�x w

j

k

� � �w

n

, and

2. y

(i

k

)

has pre�x w

1

� � �w

j

k

�1

w

j

k

.

Since j

1

� j

2

;

x = (� � � � � w

j

1

� � �w

j

2

� � �w

n

)

(i

1

)

= (� � � � � � � � � � � w

j

2

� � �w

n

)

(i

2

)

:

It follows that i

2

< j

2

, since i

1

6= i

2

.

Since j

2

� j

3

;

y = (w

1

� � �w

j

2

�1

w

j

2

� � � � � � � � � � � � � � � ��)

(i

2

)

= (w

1

� � �w

j

2

�1

w

j

2

� � �w

j

3

�1

w

j

3

� � � � �)

(i

3

)

:

It follows that i

2

� j

2

, since i

2

6= i

3

. This contradicts the earlier conclusion that i

2

< j

2

, so the

assumption of three routes passing through w is false. 2
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Theorem 18.2: Suppose nodes and links fail randomly and independently with probability

� �

1

c(n+1)

, where c = 2

21

e. (But see Exercise 18.3 below.) Then with probability at least 1� 2

�n

,

every packet for which v and �(v) do not fail has at least n=2 subpackets successfully delivered to

�(v).

Proof: Each of the n subpacket paths from v to �(v) uses at most 2n + 2 links, and at most

2n+ 1 nodes other than v and �(v). Thus,

Pr(at least n=8 nodes and links used by subpackets of P (v) fail)

�

 

n(4n+ 3)

n=8

!

�

n=8

�

�

4en(n+ 1)

n=8

�

n=8

�

1

c(n+ 1)

�

n=8

(Stirling's approximation)

=

�

32e

c

�

n=8

=

�

2

�16

�

n=8

= 2

�2n

:

By Lemma 18.1, each node that fails loses at most two of P (v)'s subpackets in each of Phases 1

and 2. From the proof of Theorem 17.1, the subpackets of P (v) follow edge-disjoint paths, so each

link that fails loses at most one of P (v)'s subpackets in each of Phases 1 and 2. Thus,

Pr(at least n=2 subpackets of P (v) are lost) � 2

�2n

;

so

Pr(there is a node v for which at least n=2 subpackets of P (v) are lost) � 2

n

� 2

�2n

= 2

�n

:

2

Exercise 18.3: Improve the value of c to be more practical. According to Leighton [11, page

608], \it is possible to show that a 1024-node hypercube can withstand dozens of random faults

without destroying too many of the subpacket paths for any packet".

18.2. Coding Theory, and the Redundant Encoding of Packets

Theorem 18.4: Suppose each packet P has B bits of data, excluding the routing information,

where B �

1

2

n log

2

n. Then P can be divided into n subpackets P

0

; P

1

; : : : ; P

n�1

, each of 2B=n

bits, such that P can be recovered from any n=2 of the n subpackets.
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Proof: Let s = 2B=n � log

2

n: Partition the B bits of P into n=2 blocks Q

0

; Q

1

; : : : ; Q

n=2�1

of

s bits each. All operations below are performed over GF(2

s

), the �nite �eld of 2

s

elements.

Let x

0

; x

1

; : : : ; x

n�1

be any n distinct elements of GF(2

s

), which exist since s � log

2

n. Let

A =

0

B

B

B

B

B

@

1 x

0

x

2

0

� � � x

n=2�1

0

1 x

1

x

2

1

� � � x

n=2�1

1

.

.

.

.

.

.

.

.

.

.

.

.

1 x

n�1

x

2

n�1

� � � x

n=2�1

n�1

1

C

C

C

C

C

A

:

The subpackets are computed as

0

B

B

B

B

@

P

0

P

1

.

.

.

P

n�1

1

C

C

C

C

A

= A

0

B

B

B

B

@

Q

0

Q

1

.

.

.

Q

n=2�1

1

C

C

C

C

A

: (18:1)

Given any n=2 subpackets P

i

0

; P

i

1

; : : : ; P

i

n=2�1

, let

P

0

=

0

B

B

B

B

@

P

i

0

P

i

1

.

.

.

P

i

n=2�1

1

C

C

C

C

A

= V

0

B

B

B

B

@

Q

0

Q

1

.

.

.

Q

n=2�1

1

C

C

C

C

A

;

where V is composed of rows i

0

; i

1

; : : : ; i

n=2�1

of A. V is a Vandermonde matrix over distinct

elements, and is invertible over GF(2

s

) (Lipson [15]). Thus Q

0

; Q

1

; : : : ; Q

n=2�1

(and hence P ) can

be recovered by computing the product V

�1

P

0

. 2

The computation of the n subpackets can be done in O(n logn) operations over GF(2

s

), by

choosing a primitive nth root of unity ! and letting x

i

= !

i

. Then Equation (18.1) is equivalent

to the evaluation of the polynomial

P

n=2�1

i=0

Q

i

x

i

at the n values x

0

; x

1

; : : : ; x

n�1

, which can be

accomplished using the fast Fourier transform (Lipson [15]).

Similarly, V

�1

P

0

can be computed in O(n logn) operations over GF(2

s

), since it is equivalent

to interpolation of a polynomial through n=2 points (Lipson [15]).



Lecture 19

Probabilistic Routing on the Hypercube

June 2, 1994

Notes: Jim Fix

In this lecture, we return to the problem of permutation routing with unbounded queues on

the hypercube H

n

. We present the \classical" result of Valiant and Brebner [21], following the

exposition of Motwani and Raghavan [16]. (See Section 16.2 for the closely related information

dispersal algorithm on the hypercube, and Section 5.2 for a related algorithm on the two-dimensional

mesh.)

For each node v, suppose that there is exactly one packet P (v) with source v, and that its

destination is �(v). (Valiant and Brebner [21] show how to extend this result to the case of a

partial permutation.) Each node v randomly and independently chooses an intermediate node

�(v). Routing proceeds in two phases:

Phase 1: Route P (v) on the greedy route from v to �(v). P (v) waits at �(v) until time 7n=2.

Phase 2: Route P (v) on the greedy route from �(v) to �(v).

Every node has a separate unbounded queue for each outgoing link. The exact queueing discipline

is immaterial, as long as a link never goes unused when some packets are queued to use it.

How many steps is a packet delayed in Phase 1? For any packet P (v), let �(v) = (e

1

; e

2

; : : : ; e

k

)

be the sequence of links followed by P (v) during Phase 1 of the algorithm.

Lemma 19.1: Suppose in Phase 1 that some packet P

0

traverses link e

i

, but the next link that

P

0

traverses is not e

i+1

. Then after e

i

, P

0

never again traverses a link in �(v).

Proof: After two packets separate in a certain dimension, they only visit nodes that disagree

in that address position. 2

De�nition 19.2: If a packet is queued for link e

i

at step T , its lag is T � i.

Note that each packet's lag is de�ned in terms of the link number in the path of the distinguished

packet P (v), rather than its own path.

Lemma 19.3: Let S be the set of packets (other than P (v)) whose routes in Phase 1 share at

least one link with �(v). Then P (v) is delayed at most jSj steps in Phase 1.
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Proof: We will show that each step at which the lag of P (v) increases can be charged to a

distinct member of S. Thus, P (v) reaches �(v) by step k + jSj, since its lag never exceeds jSj.

Suppose the lag of P (v) increases from l to l+1. Let T be the last step at which any packet in

S has lag l. (Such a packet exists, since one used the link P (v) wanted when P (v)'s lag increased.)

That is, at time T some packet in S is queued for link e

T�l

. P (v) cannot traverse e

T�l

at this step,

because P (v)'s lag has increased to l + 1 by this time. Thus, some packet P

0

2 S must traverse

e

T�l

at time T . By the maximality of T , P

0

does not enter the queue for e

T�l+1

at time T +1. The

increase in the lag of P (v) can be charged to P

0

since, by Lemma 19.1, the lag of P

0

never exceeds

l. 2

Lemma 19.4: Pr(there is a packet P (v) that uses more than 7n=2 steps in Phase 1) < 3

�n

.

Proof: Fix some packet P (v). For w 6= v, de�ne the Bernoulli random variable

X

w

=

(

1 if P (w) traverses a link in �(v) during Phase 1

0 otherwise

:

By Lemma 19.3, the delay of P (v) in Phase 1 is at most

P

w 6=v

X

w

: The random variables X

w

are

independent, since the nodes �(w) are independent and the routing is oblivious. We want to use the

Cherno� bound (Lemma 2.9) on

P

w 6=v

X

w

, but to do so we need an upper bound on

P

w 6=v

E(X

w

).

For any link e, let the random variable T (e) be the number of packets that traverse e in Phase

1. By symmetry, E(T (e)) = E(T (f)) for any two links e and f of H

n

. (This would not be true in

the general case of a partial permutation.) Since the expected number of positions in which w and

�(w) disagree is n=2,

2

n

�

n

2

=

X

w2H

n

E(dist(w; �(w)))

= E

0

@

X

w2H

n

dist(w; �(w))

1

A

= E

 

X

e

T (e)

!

=

X

e

E(T (e))

= n � 2

n

�E(T (e)), for any link e:

Thus, E(T (e)) =

1

2

. Since every X

w

that is 1 contributes 1 to some T (e

i

),

X

w 6=v

X

w

�

k

X

i=1

T (e

i

):

Thus, the desired upper bound on

P

w 6=v

E(X

w

) is

X

w 6=v

E(X

w

) = E

0

@

X

w 6=v

X

w

1

A

� E

 

k

X

i=1

T (e

i

)

!

=

k

X

i=1

E(T (e

i

)) =

k

2

�

n

2

:
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Using Lemma 2.9,

Pr(P (v) uses more than 7n=2 steps in Phase 1) � Pr

0

@

X

w 6=v

X

w

� 5n=2

1

A

� e

(1�

1

5

�ln 5)5n=2

< 6

�n

:

Hence, Pr((9v) P (v) uses more than 7n=2 steps in Phase 1) < 2

n

6

�n

= 3

�n

: 2

Because Phase 2 is dual to Phase 1, we can show the following:

Lemma 19.5: Pr(there is a packet P (v) that uses more than 7n=2 steps in Phase 2) < 3

�n

.

Theorem 19.6: For any permutation routing problem on H

n

,

Pr(all packets are delivered within 7n steps) � 1� 2

�n

:

Proof: By Lemmas 19.4 and 19.5,

Pr(there is a packet P (v) that uses more than 7n steps in Phases 1 and 2) < 2 � 3

�n

< 2

�n

for n � 2. (For n = 1 the proof is straightforward.) 2

In fact, it can be shown that

Pr(all packets are delivered within 2n+O(n= logn) steps) � 1� 2

�
(n)

:

(See Valiant [20].)

Exercise 19.7: What is the maximum queue size (with high probability) used by this algo-

rithm?

Open Problem 19.8: Find a probabilistic algorithm that routes any permutation on H

n

in

fewer than 2n steps with high probability.
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