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Abstract

System Support for Efficient Network Communication

by Chandramohan A. Thekkath

Co-Chairpersons of Supervisory Committee: Professor Henry M. Levy

Professor Edward D. Lazowska

Department of Computer Science

and Engineering

Recent advances in processor and network technology have significantly changed the hard-

ware base for distributed systems. However, high-speed networks and fast processors

alone are not sufficient to deliver the end-to-end performance that users of these systems

expect; good software design is critical. This thesis explores software mechanisms needed

to support efficient network access for the next generation of workstations and networks.

The thesis proposes a new communication mechanism or model based on remote access

(read and write) to protected memory segments. This model has two key aspects. First, it

simplifies input data demultiplexing and reduces data copying costs. This allows users of

the model very efficient access to remote data. A second and more significant feature of the

model is that it separates the transfer of data from the transfer of control. That is, a remote

data access can complete at the target process without invoking a thread of control within

the target.

The communication model is implemented on DECstation workstations connected by

an ATM network and provides performance close to the limits imposed by the hardware.

Using example applications, we show how the model can provide excellent performance

for both parallel applications and conventional distributed system mechanisms like remote

procedure call (RPC).

However, we argue that conventional communication mechanisms, e.g., message pass-

ing or RPC, do not fully exploit the potential of newer networks. These mechanisms closely

couple the transfer of both control and data. We demonstrate, using the read/write com-



munication model, that separating data transfer and control transfer in distributed systems

can both (1) eliminate unnecessary and expensive control transfers and (2) facilitate tighter

coupling of a distributed system. This has the potential to increase performance and reduce

server load, which supports scaling in the face of an increasing number of clients.
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Chapter 1

INTRODUCTION

A cluster of workstations connected by a local-area network has traditionally been used

as a hardware base for distributed systems. Such a configuration, with appropriate software,

has long held the promise for significant cost-performance, flexibility, and scalability ben-

efits over more dedicated architectures. However, relatively slow communication links and

high software processing overheads can impose a stiff penalty for cross-machine commu-

nication. These high costs can limit the extent to which a workstation cluster can be used

as a solution for either structuring-related or performance-related problems in distributed

applications.

Some recent developments, however, offer the potential to change the way workstation

clusters can be used:

� New switch-based network technologies, such as Asynchronous Transfer Mode

(ATM), offer more than a 10-fold bandwidth improvement over Ethernet [46]. An-

other order-of-magnitude improvement to one gigabit per second seems close at hand.

Further, these switch-based networks are scalable since multiple network links can

be aggregated to give bandwidths far greater than individual link bandwidths.

� New processor technologies and RISC architectures have already given us an order

of magnitude improvement in processing power, with further improvements in the

offing. Workstations using these processors are capable of using the bandwidth

that new networks provide. Also, processors in modern high-end workstations are

typically comparable to the fastest available uniprocessors and superior to those used

in massively parallel machines.

Taken together, these technology advances represent a dramatic change in distributed

system hardware. This change, in turn, should enable us to build a new generation of



2

novel, high-performance distributed applications. Consider the following two motivating

examples.

In a cluster of networked workstations, paging to spare memory lying idle on other

nodes could be much faster than paging to disk [20]. A distributed server could manage

the idle memory in the network; on a page fault, the page fault handler would communicate

with the server and transfer pages to or from remote nodes. The effectiveness of this scheme

is highly influenced by the communication performance between client and server.

As another example, better communication would greatly facilitate the use of networked

workstations as a loosely-coupled multiprocessor or shared virtual memory system [14, 41].

Careful software design is essential if we are to exploit the advances in hardware. High-

speed networks and fast processors are necessary but not sufficient by themselves. We

illustrate this point below with a simple example.
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Figure 1.1: Performance of Ultrix Remote Procedure Call

Distributed systems are typically structured using remote procedure call (RPC) as the

cross-machine communication mechanism [12, 51]. Figure 1.1 shows the performance

of the Ultrix remote procedure call system between a pair of otherwise idle 25 MHz

DECstations making small packet RPCs. In one case, the machines are connected by the

traditional 10 Mb/sec Ethernet, and in the other, by a modern 140 Mb/sec ATM network.

The RPC system being measured is in everyday use as the underlying communication

mechanism for distributed services on Ultrix and other Unix-like systems. Ultrix RPC
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software has not been particularly optimized and thus, on a network that is over ten

times faster, the performance of small packet exchanges does not change significantly.

Unfortunately, small data exchange is a common occurrence in distributed systems [6]. In

short, the advantages gained from increased network hardware performance can be almost

completely masked without proper software design.

Designing software mechanisms so that applications can efficiently use the next gen-

eration of high-speed networks is a difficult challenge. This thesis offers new software

solutions to improve the performance and the usefulness of distributed systems by ex-

ploiting opportunities enabled by technology. New technology has created two distinct

opportunities for software innovation.

First, by suitable design we should be able to build low-latency and high-bandwidth

communication mechanisms on the new networks. This, in turn, enables us to improve

the performance of distributed systems that rely on these low-level mechanisms. In other

words, we seek improved system performance by improvements in traditional low-level

communication primitives, such as RPC, upon which conventional distributed systems are

built.

Technology trends also create a second, and far more significant, opportunity for new

software design, especially for switch-based, local-area networks. While the hardware

base for distributed systems is changing dramatically, both in terms of speed and reliability,

the software structure of distributed systems has not changed significantly in recent times.

Rather than redesigning just the lower levels of the communication system, we can reeval-

uate our basic notions of distributed systems structure, making it possible to build systems

with performance more commensurate with hardware capabilities.

The next two sections set out, in greater detail, the challenges in building high-

performance distributed systems, how current designs address them, and what the new

contributions of this thesis are.

1.1 The Challenges for High-Performance Distributed Systems

In a distributed system, good application level performance is fundamentally dependent

on the performance of four layers of the system as sketched in Figure 1.2.

These layers can be thought of as a vertical slice through a distributed system. They are

not supposed to indicate the various layers of the ISO OSI reference model, but simply the

various parts of a distributed system discussed in this thesis. The layers are interdependent,
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Distributed Services

Distributed Programming Model

Network Access Model

Network Controller
    and Network

Figure 1.2: Layers of a Distributed System

i.e., a particular layer provides services to the layer above it and uses the services of the

layer below it.

The uppermost layer of the system represents distributed services. Familiar examples

of distributed services are distributed file systems such as NFS [56], name servers such as

the Internet Domain Name Service DNS, electronic mail services, and others.

Distributed services are programmed using various distributed programming models.

Perhaps the most common example of a distributed programming model is remote procedure

call (RPC). Variations of RPC include message passing as seen in the V system [16] and

CSP [33]. Another example of a distributed programming model is distributed shared

memory (DSM) such as Ivy [41].

Distributed programming models are implemented on top of a lower level abstraction

referred to, in this thesis, as a network access model. An example of a network access

model is the familiar byte-stream abstraction to the network. For instance, Unix-like

systems provide the notion of sockets that applications can use to send and receive streams

of data bytes. Distributed programming models, e.g., RPC in Unix, are layered on top of

this byte-stream abstraction. Other distributed programming models such as distributed

shared memory can also be implemented on top of the byte-stream abstraction [41]. It

is also important to note that similar abstractions, albeit with different performance or

guarantees, might be implemented at different levels. For instance, using a network access

model based on unreliable byte-streams, one might provide a reliable, byte-stream based

distributed programming model to applications.
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Finally, network access models are layered on top of the network controller that inter-

faces the processor to the network. Some well-known examples of controllers include the

LANCE [1], the VMP-NAB [38], and the Nectar CAB [5]. Typically, controllers buffer

network packets, provide checksum and encryption, and have sophisticated data transfer

capabilities between the network and host memory (such as scatter-write and gather-read).

Some even have on-board implementations of entire protocol stacks.

In recent years, technology has improved the performance of the network. However,

in current systems, the performance seen at the distributed services layer has not benefited

significantly from the advances in technology. There are two closely related reasons for

this.

The first reason is that there are mismatches among the various layers of the distributed

system. A mismatch between two layers can lead to performance inefficiencies that can

accrue to degrade overall performance. For example, complexities of the controller affect

the performance of the network access model. Similarly, if the network access model

provides an interface that is somehow incompatible with typical distributed programming

models implemented on top of it, performance can suffer.

In a related vein, a distributed programming model that either does not exploit the char-

acteristics of new networks or is overly restrictive can limit the performance of distributed

services that use it. Distributed programming models, such as RPC and many of the struc-

turing principles embodied in current systems, date back to the time of 0.5 MIPS Xerox Alto

workstations interconnected by the 3 Mb/sec experimental Ethernet [65]. For instance, tra-

ditional distributed systems have been structured around the client/server model, in which

clients access services using message passing or RPC. This model has the advantage of

providing a convenient and familiar programming abstraction to users. However, the RPC

model encourages an isolation between client and server that may limit performance as tech-

nology permits tighter coupling. Performance may also be compromised by complexities

inherent in RPC-style communication.

1.2 The Scope and Contribution of this Thesis

This thesis discusses techniques for enhancing end-user communication performance through

improvements in the various layers mentioned above.

First, it considers the design of controllers and the effect of controller design on the over-

all performance of the distributed system. In the past, controller design has concentrated on
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throughput; latency has been largely ignored. However, due to the request-response nature

of common distributed programming models like RPC, latency and not just throughput is

often crucial to system performance. We mentioned earlier that one approach to improving

overall distributed systems performance is to improve the performance of distributed pro-

gramming models. Chapter 2 studies the limitations imposed on this approach to improving

performance.

Next, the thesis considers an alternative network access model that allows the efficient

implementation of a variety of distributed programming models. It has good performance

and shows little mismatch with a variety of programming models and can be efficiently

implemented. In fact, the performance of RPC implemented on the new network access

model is superior to a comparable implementation using a traditional byte-stream based

model on identical hardware.

However, next generation local-area networks have many characteristics that make it

appropriate to directly use the memory-based network access model as the distributed

programming model, in preference to alternatives like RPC. Fundamentally, distributed

programming models such as RPC involve control and data transfer, both of which can be

expensive. By directly using the memory-based network access model, it is possible to

restructure distributed systems for higher performance by avoiding control transfer and by

using an optimized data transfer mechanism instead.

To summarize, this thesis makes the following contributions.

First, it identifies ways of improving controller design and makes the observation that

using the appropriate network access model can significantly improve the performance of

communication primitives.

Second, it proposes a network access model based on remote memory. The thesis

demonstrates the effectiveness of the model in getting higher performance in diverse sit-

uations such as RPC and workstation-based multicomputing. The model proposed here

goes beyond earlier memory-based approaches, such as that proposed by Spector [61], by

incorporating notions of virtual memory, protected sharing of the network, and separate

data and control transfer. Separating data and control transfer allows function shipping

mechanisms (e.g., RPC) and pure data shipping mechanisms to be optimized separately.

Third, this thesis proposes a way of structuring distributed systems to achieve high

performance by exploiting the separation of control and data transfer mechanisms provided

by the network access model.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 evaluates the impact of network

controller designs on communication performance. Chapters 3 and 4 are central to the

thesis and describe the network access model. Following these are two chapters describing

experience with layering distributed programming models over the network access model.

Chapter 5 describes a prototype RPC implementation and demonstrates that using the

memory-based network access model gives very high performance. Chapter 6 describes

the organization of a cluster of workstations as a multicomputer using the network access

model as the underlying basis for communication. Chapter 7 describes an alternative

organization of distributed systems based on the network access model and evaluates its

performance implications. Chapter 8 puts the work described in this thesis in the context

of related research. Chapter 9 offers conclusions and some avenues for future research.



Chapter 2

THE IMPACT OF NETWORK CONTROLLERS ON
COMMUNICATION PERFORMANCE

As mentioned in the previous chapter, a network controller interfaces the host processor

and memory system to the network. Typical network controllers for workstation-class

machines are designed to be located on the I/O bus along with other peripherals, such as disk

controllers. Depending on the controller, it can support a wide variety of functions to offload

the processing of network data from the host. Typically, controllers provide support for

checksumming and data transfer mechanisms, e.g., direct memory access (DMA) between

the network and host memory. In some cases, controllers have embedded processors that

can be used to implement entire transport protocols [5, 38].

In this chapter we evaluate the overhead added to cross-machine communication from

two important sources: (1) the network controller hardware and (2) low level controller

software, memory, and CPU interfaces. Given different network and processor technolo-

gies, the relative importance of these components may change; by isolating the components,

we can see how the performance of each scales with technology change.

Controllers targeted for high throughput have been well studied in the past [5, 24, 38, 68].

However, latency is often the overriding concern in distributed systems, and consequently,

for the most part, this chapter considers the impact of the controller on this aspect of

communication performance.

Given the increases in processor and network speed, it is natural to hypothesize that low

latency communication is easily achievable on newer workstation clusters. For example,

through software design and increased processor speeds, it should be possible to reduce

the software protocol processing time. In fact, even early studies of the Internet TCP

protocol determined that protocol processing per se was not an insurmountable source of

latency [17]. Further, with the increased network speed, it should be possible to rapidly

transfer data between the source and destination machines.

However, this hypothesis is too simplistic because it ignores an important component

of potential cross-machine communication overhead—the network controller. That is,
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good protocol software, fast processors, and high network speeds notwithstanding, network

controllers that are poorly matched to the demands of modern distributed systems can lead

to bad performance.

There are two conflicting goals that are often traded off in the design of controllers for

high-speed networks. One goal is not to burden the host processor with frequent interrupts

as network packets arrive. As an extreme example, on a 155 Mbit/sec ATM network,

individual cells, which are fixed size 53 byte packets, can arrive at the host once every 2.7

microseconds. In order to isolate the host from frequent interrupts and protocol processing

overheads, some designs migrate functionality into the controller [24, 68]. However, the

migration of too much functionality into the controller can impact the latency of processing

network messages. In addition, if the controller presents a complex interface to the host,

there could be additional software latency introduced by the host device driver in managing

the controller.

There are two potential sources of controller-related communication inefficiencies that

we should distinguish between. First, the internal design of the network controller intro-

duces inherent latency into the communication path. For example, a complex hardware and

software architecture on-board the controller can increase latency. Second, the external

interface to the host determines the latency costs in managing the controller. For example,

depending on the interface, initiating a transmission or dismissing a device interrupt on

receives could introduce excessive latency. As another example, the particular data transfer

mechanism supported by the controller might not be well suited to the host processor and

memory architecture. This mismatch could also cause latency problems.

In this chapter, we study the effect of both internal and external controller interfaces on

communication latency. Our methodology is to make careful measurements to analyze the

impact of various controller and host combinations. The chapter is organized as follows.

We briefly characterize the experimental testbed and describe the measurement techniques.

Then, we analyze the performance results and discuss the issues for controller design that

affect latency in cross-machine communication.

2.1 Overview of the Networking Environment

Our networking environment consists of traditional Ethernets as well as the faster FDDI

and ATM networks. Each network is accessed using a different type of controller. The

networks are driven using DECstation 5000/200s and SparcStation I workstations.
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2.1.1 Ethernet

The Ethernet is a 10 Mbit/sec CSMA/CD local-area network, which is accessed on the

DECstations and SparcStations by a LANCE controller [1]. The controller is packaged

differently on the two machines. On the DECstations, the controller cannot do DMA to or

from host memory; instead, it contains a 128 Kbyte on-board packet buffer memory into

which the host places a correctly formatted packet for transmission [27]. Similarly, the

controller places incoming packets in its buffer memory for the host to copy. In the case

of the SparcStation, the controller transfers data to and from host memory using DMA. In

this case, a cache flush operation is done on receives to remove old data from the cache.

On both machines, packets are described by special descriptors initialized by either the

host (on send) or the controller (on receive). Descriptors are kept in host memory on the

SparcStations while they are in the special on-board packet memory on the DECstations.

Two message sizes were used in our experiments, a minimum sized (60 bytes) send and

receive, and a maximum sized (1514 bytes) send and receive.

2.1.2 FDDI

FDDI is a 100 Mbit/sec fiber token ring, accessed on the DECstations by the DEC (DEFZA)

FDDI controller. Like the DECstation Ethernet controller, the FDDI controller cannot

perform DMA from host memory on message transmission; instead, it relies on an on-

board packet buffer memory. However, the FDDI controller can perform DMA transfers

directly to host memory on reception of a packet from the network. The controller and

host software share descriptors as described above for the DECstation Ethernet. We used

an unloaded private FDDI ring with two hosts. Thus, the overhead due to token passing is

kept to an absolute minimum; in a more realistic environment token passing delay would

have to be added to the overall latency. Packet sizes of 60 and 1514 bytes were chosen to

facilitate direct comparison with Ethernet.

2.1.3 ATM

ATM (Asynchronous Transfer Mode) is an international telecommunication standard used

to implement B-ISDN. In an ATM network, data is exchanged between entities in fixed

length parcels called cells, usually on the order of a few tens of bytes. An ATM network

typically consists of a set of hosts connected by a collection of switches that form the
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network. In an ATM network, user-level data is segmented into cells, routed, and then

reassembled at the destination using header information contained in the cells.

The particular ATM used has 140 Mbit/sec fiber optic links and cell sizes of 53 bytes,

and is accessed using FORE Systems’ ATM controller [30]. The controllers on the two

DECstation hosts were directly connected without going through a switch; thus there is

no switch delay. Unlike the Ethernet and FDDI controllers, the ATM controller uses two

FIFOs, one for transmit and the other for receive. The controller has no DMA facilities. The

host simply reads/writes complete ATM cells by accessing certain memory locations that

correspond to the FIFOs. The host is notified via interrupt when cells arrive in the receive

FIFO. The host has considerable flexibility in choosing how often it should be interrupted.

Further, the controller does not provide any segmentation or reassembly of cells; that is the

responsibility of the host software. Each ATM cell carries a payload of 44 bytes; in addition

there are 9 bytes of ATM and segmentation-related headers and trailers. The experiments

described below used packet sizes that were an integral number of cells as well as being

close enough to the Ethernet and FDDI packet sizes for comparison.

2.2 The Testbed and Measurement Techniques

In order to isolate the performance of the controller and the network link, we built a

minimal stand-alone software testbed, which simply sends and receives packets on the

network. There is no operating system intervention except for the low level device driver

and interrupt vectoring code. The testbed hardware consists of two workstations (either two

DECstations or two SparcStations) connected through an isolated network. The DECstation

uses a 25 MHz MIPS R3000 processor rated at 18.5 SPECmarks, and the SparcStation I

uses a Sparc processor rated at 24.4 SPECmarks [60]. The DECstations were connected

in turn to an Ethernet, an FDDI ring and an ATM network. The SparcStations were

connected to an Ethernet. The DECstation network devices are connected on the 25 MHz

TURBOChannel [26] while SparcStations use the 25 MHz SBus [64]. The performance

of each configuration in sending a source packet from one node to the other and receiving

a packet in response was measured. Measurements were averaged over at least 10,000

successful repetitions. Packets are sent and received from host memory, so the cost of

moving the data over the host bus is included in the measurements. Network interrupts are

enabled, so both the sending and the receiving hosts are interrupted on packet arrival. While

it is generally possible to access the network in a dedicated fashion by disabling network
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interrupts, conventional time sharing access will involve interrupt processing overheads.

The component costs for the round-trip can be broken up as follows:

� Time on the Wire: This is the transmission time of the packet. The propagation

time can be ignored because it is negligible for the length of cable connecting the two

hosts.

� Controller Latency: This is the sum of two times: (1) the time taken by the

sending controller to begin data transfer to the network once the host has made the

data available to it, and (2) the delay between the arrival of the data at the receiving

controller and the time it is available to the host.

� Control/Data Transfer: Data has to be moved at least once over the host bus

between host memory and the network. Some of the controllers use DMA to transfer

data over the host bus to the network; thus the CPU incurs no data transfer overhead.

However, the CPU incurs a control transfer overhead because it has to use special

memory descriptors to describe the location of the data to the controller. With such

controllers, the actual time to do the data transfer is captured by the Controller

Latency component.

� Vectoring the Interrupt: On the receive side, low level operating system software

must vector the packet arrival interrupt to the interrupt handler in the device driver.

The overhead involved is a function of the CPU architecture as well as the organization

of the underlying system.

� Interrupt Service: On taking an interrupt, host software must perform some essen-

tial controller-specific bookkeeping before the interrupt can be dismissed.

To determine the latency of the controller itself, we ran separate experiments between

a pair of hosts with interrupts disabled. Each host polled the controller’s status registers

in a loop. As soon as the register indicated arrival of data, a new transmission was begun.

In the cases where the host was expected to copy data to the controller’s memory before

transmission, the host simply programmed the controller to start the data transfer, without

actually giving it any data. Similarly, when the controller indicated the arrival of new data

for the host to copy, the host ignored the data and began the next transfer. In addition,
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descriptors were prefilled before the data transfer started. In these circumstances very

few machine instructions are executed by the host per round-trip. The time required to

execute these as well as the time spent on the wire were subtracted from the total measured

round-trip. This method gives satisfactory results in most cases but has the disadvantage

that it does not account for any pipelining that the controller might perform. This artifact is

particularly visible in the case of our ATM controller when multi-cell packets are exchanged.

Typically a controller can overlap the transmission of data between its internal buffer and

the network with the transmission between host (or on-board memory) and the chip itself.

For instance, in sending a multi-celled packet through the ATM controller, the host can be

filling the FIFO with a cell, while the controller is injecting the previous cell from the FIFO

into the network.

2.3 Performance Analysis

Table 2.1 shows the cost of round-tripmessage exchanges on the host/network combinations

described above. Before comparing the various combinations, a few points of clarification

are in order here.

Table 2.1: Low-Level Round-Trip Packet Exchange Times

Round-Trip Time (�seconds)
Component Packet Size in bytes (send/recv)

Ethernet (DEC) Ethernet (Sparc) FDDI (DEC) ATM (DEC)
60/60 1514/1514 60/60 1514/1514 60/60 1514/1514 53/53 1537/1537

Time on the Wire 115 2442 115 2442 13 245 5 159
Controller Latency 51 53 89 103 97 230 16 161
Control/Data Transfer 40 600 6 6 40 253 17 458
Vectoring the Interrupt 25 25 12 12 25 25 25 25
Interrupt Service 26 26 42 42 92 140 9 20

Sum of Components 257 3146 264 2605 267 893 72 823
Measured Round Trip Time 253 3137 263 2611 263 894 73 746

First, in the case of the FDDI controller and the SparcStation controller, which perform

DMA directly to host memory on packet receives, the cost of flushing the cache after the

DMA is included in the the Interrupt Service overhead. While it is true that cache flushes

are not strictly necessary if data from the network is kept in uncached memory locations,

this means that the higher level software will eventually pay a performance cost of accessing

this data.
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Second, in the case of the ATM network, Table 2.1 does not include the cost for seg-

menting and reassembling multi-cell packets. In addition, the controller was programmed

so that it interrupted the host only when a complete packet had arrived in the FIFO. Thus,

in our experiments, each round-trip incurs only two interrupts.

Third, the measurements in Table 2.1 involve small amounts of system software written

in a mixture of C and assembly language. Rewritting everything in assembly language

would lead to a 1–2% (on the order of 10 microseconds) decrease in the round-trip latency

of small packets.

Fourth, as noted earlier, both the DECStation and the SparcStation use the same Ethernet

controller. However, recall that on the SparcStation the controller DMAs data over the host

bus. The overhead for this is included in Controller Latency; Control/Data Transfer

only includes the cost of the instructions to program the controller. The controller is able

to overlap the data transfer over the bus with the transfer on the network. Thus the sum

of Controller Latency and Control/Data Transfer is relatively unchanged by the packet

size. In contrast, the DECstation controller incurs a heavy latency overhead because the

host has to first copy the data over the bus before the controller can begin the data transfer.

The row Sum of Components is the sum of the rows above it. Most of the time, the sum

of the component measurements is within 1–9 microseconds (about 2%) of the observed

round-trip time. The only exception is in the case of the ATM network in sending multi-cell

packets, where there is an overestimate of the round-trip time by about 12%. The most

likely cause is an underestimate of the amount of overlap between the host memory–FIFO

data transfers and the FIFO–network transfer.

The next several sections will consider the results of our study in detail. Overall, the

high bandwidth of ATM and FDDI is significant for large packets. For example, latency for

a 1514-byte packet on the DECstation Ethernet is 4.2 times worse than ATM and 3.5 times

worse than FDDI. For packets even larger than 1514 bytes, the Ethernet situation is relatively

worse, because FDDI will require fewer packet transmissions. The ATM comparison is

slightly more complex; as pointed out earlier, ATM segmentation and reassembly costs

were ignored in arriving at the figures in Table 2.1. The particular software implementation

of the segmentation/reassembly in the driver requires about 11 microseconds per cell. If

this is included, then a 1537 byte packet (29 cells) takes about 1065 microseconds, which is

about 1.2 times the FDDI time. The situation further improves in favor of FDDI for packet

sizes beyond this limit.
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However, the packet-exchange times on Ethernet, FDDI and ATM show the important

difference between network bandwidth and latency. If low latency for small packets is the

goal, then a round-trip 60-byte message exchange on the DECstation Ethernet takes only

253 microseconds; FDDI on similar hardware, despite its 10-fold bandwidth advantage,

takes 263 microseconds for the same operation, which is 4% longer. The increased FDDI

bandwidth reduces the time spent on the wire, but other artifacts of the FDDI controller—

increased latency and higher interrupt servicing time—result in overall increased latency.

2.4 Implications for Controller and Network Design

Based on the measurements just described, it is evident that higher speed networks do not

necessarily imply proportionally lower latency. There are many artifacts of the controller

and the processor and memory interface that could impact latency. We discuss these below,

based on the experience with our controllers.

2.4.1 Impact of Internal Controller Structure on Latency

It is interesting to compare the ratio Controller Latency to Time on the Wire from

Table 2.1. For small packets, this is 0.4 on the DECstation Ethernet, 0.8 on the SparcStation,

7 for the FDDI controller and 3.2 for the ATM network. For larger packets of approximately

1514 bytes, these ratios are respectively 0.02, 0.04, 0.9 and 1.0. While these numbers are

specific to the controllers, they are indicative of a trend: network speeds are improving

dramatically, while controller latencies are not.

One factor in controller latency is the complexity of the controller. The FDDI con-

troller is the most complex of all our controllers and its latency is relatively higher than

the others. It contains an on-board processor that executes a control program. In general,

the control program is responsible for scheduling tasks within the controller. These tasks

involve receiving incoming packets, managing internal buffers, interfacing with the host

processor/memory subsystem, and others. An important aspect that influences communi-

cation latency is the type of scheduling that is done by the control program. Scheduling

decisions made in a way that penalizes low latency could result in significant performance

degradation. For instance, firmware revisions to the scheduling rules in the first version of

the DEC FDDI controller led to a 22% reduction in latency for small packets at no cost to

throughput.
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2.4.2 Impact of External Controller Interface on Latency

There are two common types of interface that controllers export to the host to transfer

data between memory and network. One interface designates a range (possibly all) of host

memory to be used as a packet buffer and has the controller and the host share descriptors

in memory. The alternative is to use a simple FIFO for transmits and receives, and have

the host access it directly. Depending on the external interface supported by the controller,

there are three overheads related to latency. First, there is the overhead of transferring data

between the network and memory. Second, there is the interaction with the host memory

hierarchy, and third, there is the cost of managing the controller and servicing its interrupts.

We discuss each of these in turn.

Data Transfer Overheads

Our experiments, which included controllers that are capable of scatter-gather DMA, or-

dinary DMA and no DMA, allow us to examine some of the essential latency-impacting

tradeoffs between these different controller types. Controllers that do not support DMA,

such as our DEC Ethernet controller and the ATM controller, rely on programmed I/O (PIO)

to move data. That is, the processor moves the data across the bus, usually without using a

block transfer primitive.

In addition to the low-level details of data movement,e.g., DMA or PIO, two higher-level

issues influence the cost of data transfer. These arise from protection and demultiplexing

considerations because the communication system has to ensure that users cannot access

unauthorized data. For example, on the sending side, the system has to ensure that the

headers used to direct the packet on the network cannot be tampered with by the user.

Similarly, incoming data has to be correctly demultiplexed before the data is copied to the

authorized recipient.

Certain combinations of controller features and protection requirements make it difficult

to restrict the number of data movements to one, the minimum achievable. Excessive and

unnecessary data movement can lead to bad overall performance of the communication

system.

Table 2.2 summarizes the number of copies that the controller, the kernel and the user

need to perform, respectively, for each type of device: PIO, DMA and DMA with scatter-

gather. The column DMA S-G represents scatter-gather DMA. The column PIO (KM)

represents PIO with an optimization referred to as kernel-level marshaling.
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Table 2.2: Number of Copies for Various Controller Types

Number of Copies (Device/Kernel/User)
Fragment PIO (KM) PIO DMA DMA (S-G)

Send
Header 0/1/0 0/1/0 1/1/0 1/0/0
Data 0/1/0 0/1/1 1/0/1 1/0/0

Receive
Header 0/1/0 0/1/0 1/1/0 1/0/0
Data 0/1/0 0/1/1 1/0/1 1/0/0

Kernel-level marshaling differs from ordinary PIO in the following manner. In normal

PIO, the user assembles pieces of non-contiguous data into a single buffer and traps into the

kernel with a descriptor to the buffer. The kernel uses PIO to transfer this buffer into device

memory. Thus each byte of user data is copied twice. In kernel-level marshaling, the user

traps into the kernel with as many descriptors as there are non-contiguous data items. After

verification, the kernel uses these descriptors to move data directly from user-space to the

device. Thus, each byte is copied only once. Chapter 5 describes an RPC mechanism that

uses this type of marshaling.

Certain implicit assumptions made in the table are clarified below. First, we are ignoring

the cost of copies that might occur between the network and the controller’s internal buffer.

Typically this cost can be made negligible by using video RAMs or some similar technique.

Second, we assume that with PIO, the on-board memory or FIFO cannot be reliably mapped

into multiple user spaces, while with DMA, user data is mapped (instead of copied) to be

adjacent to the header in kernel memory, so that the DMA can use a contiguous set of

addresses. Finally, we assume that with scatter-gather DMA, the controller is capable of

transferring arbitrarily small amounts of data over the bus and that on scatter DMA, the

controller can perform address demultiplexing so that incoming data goes to the correct

destination.

Ideally, one would like to minimize the number of times data is moved over the host

bus between the network and the host memory. With PIO and kernel-level marshaling it

is possible to keep the number of copies to one without compromising protection. With

DMA this would not be possible, in general, because application level data could be located

in multiple non-contiguous locations in memory. Most scatter-gather controllers (e.g.,

LANCE) have minimum size requirements for each segment and a maximum number of
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allowable segments. Thus, the user will have to marshal the data into one (or a few)

location(s), and then have the controller move it. While it is possible to build controllers

to overcome this restriction, using several small segments to gather data comes at a price,

because the controller has to set up multiple DMA transfers, each of which incurs the cost

of remastering the bus. A similar situation is true on the receiving side as well.

As shown in Table 2.2, using PIO with kernel-level marshaling allows the data copying

cost to be kept to the minimum possible. However, one aspect of copying that is not captured

in the table is the different rate at which data is moved over the bus for PIO and DMA.

Typically, word-at-a-time PIO accesses over the bus are slower than block transfers using

DMA; this is the case on both the DECstation TURBOChannel bus and the SparcStation

SBus. While PIO versus DMA is of limited concern for short packets, there is a breakeven

point beyond which PIO will be slower than DMA. Thus, unless the processor is required to

touch each byte of the data for reasons other than moving it across the bus (for instance, to

generate a checksum in software), it is usually more efficient to use DMA beyond a certain

size.

Memory Hierarchy (Cache and TLB) Overheads

While Table 2.2 seems to indicate that PIO and scatter-gather DMA can perform the same

number of copies, very often with current architectures the interaction of the memory

subsystem with DMA might extract a heavier overall penalty than PIO.

In addition to the copying costs outlined above, without adequate support from the

memory and processor subsystem, controller initiated data transfers could be a source of

overhead due to cache effects. If the cache does not snoop on I/O operations, cache blocks

could be left incoherent as a result of the DMA operation to memory, requiring cache

flushes. If the cache is write-back, dirty entries may need to be purged before a DMA

operation from memory.

Table 2.3 shows the contribution of the cache flush cost as a percentage of the total

interrupt handling cost of the controllers with DMA. The total interrupt handling cost is the

sum of cache flush costs and the essential controller-related bookkeeping overhead. The

cache flush cost is simply the time taken to execute the instructions required by the host

architecture to flush the cache lines corresponding to the data that was transferred. As is

evident from Table 2.3, cache flushes are a serious penalty on current memory architectures.

And in fact, the situation is even worse than the table suggests, because, in addition to the
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costs of executing additional cache flush instructions, cache flushes have a negative impact

on performance by destroying locality. Newer processor/cache designs recognize this

problem and provide memory coherence for DMA [59].

Table 2.3: Cache Flush Cost in Different Processor/Controller Configurations

Received Packet Size in bytes
Ethernet (Sparc) FDDI (DEC)
60 1514 60 1514

Total Interrupt Time 21 21 46 70
Cache Flush Time 3 10 7 30
Percentage Overhead 14 48 15 43

Another cost of DMA is the manipulation of page tables that is often necessary. On

packet arrival, the controller stores the data on a page; however there is generally no way

to guarantee that the page is mapped into the correct destination address space. Thus the

kernel is faced with the option of either remapping or performing an extra copy.

To summarize the results of our experiments with the various controllers: DMA capa-

bilities without adequate support from the cache and memory subsystem can be bad for

performance in modern RISC processors. Further, controllers that have simpler interfaces

to the host have the potential for reducing overheads. The next subsection argues for the

use of simple controller/host interfaces.

Controller Management Overheads

Depending on the external interface, controllers can introduce varying amounts of software

complexity on the sending and receiving sides. Based on our experience, ignoring the

overheads of data transfer, on sends, there appears to be no significant cost difference in

programming either a FIFO-based or a descriptor-based controller. However, there can be

a significant difference in the overhead incurred in handling receive interrupts.

The experiments with the two types of controllers mentioned above indicate that the

interrupt handling overhead can be significantly reduced by using a FIFO. Interrupt handling

cost has two components: (1) the CPU-dependent cost of vectoring the interrupt and (2)

the controller-dependent cost of servicing the interrupt. Previous research has studied

interrupt vectoring costs on RISC processors [3, 55] and so we shall examine only the

second component. The objective is to compare a simple FIFO interface such as that found
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in the ATM controller with a more elaborate descriptor interface such as that found in the

Ethernet or the FDDI controllers.

Table 2.4 reproduces some of the measurements from Table 2.1 (recall that Table 2.1

shows round-trip times). It shows the cost of servicing the interrupt and transferring the

data through a copy or a remapping operation, as appropriate. Since the intent here is to

compare the interfaces and not the network, we have ignored the reassembly overhead on

the ATM controller.

Table 2.4: Interrupt Handling Cost in Different Processor/Controller Configurations

Transferred Packet Size in bytes
Ethernet (DEC) Ethernet (Sparc) FDDI (DEC) ATM (DEC)
60 1514 60 1514 60 1514 53 1537

Interrupt Time 13 13 21 21 46 70 5 10
Copy/Mapin Time 11 201 9 39 10 10 5 138
Total 24 214 30 60 56 80 10 148

As the table indicates, for transferring small amounts of data to the user, the overhead of

the FIFO-based controller (10 microseconds) is less than half that of the best-case descriptor-

based controller (24 microseconds for the DEC Ethernet). For larger packets, the balance

is in favor of controllers that allow the kernel to perform page mapping operations, because

the copying cost dominates the interrupt handling cost. The ability to map data into user

spaces at low cost is one alternative to kernel-level marshaling with PIO, which retains the

benefits of protection and reduced data movement without the need to synthesize code. A

typical limitation with FIFO-based controllers, such as the ATM, is that there is no easy

way to map the memory in a protected manner simultaneously into multiple user spaces.

In contrast, with descriptor-based packet memory, it is possible in principle to support

address mapping irrespective of DMA support. However, typically on descriptor-based PIO

controllers, the existence of a small amount of on-board buffer memory makes it difficult

to provide address mapping support, because that memory is a scarce resource that must

be managed sparingly. For instance, the DECstation’s Ethernet controller has only 128K

bytes of buffer memory to be used for both send and receive buffers. Mapping pages of

the buffer memory into user space would be costly, because the smallest units that can be

individually mapped are 4 Kbyte pages. Reducing the number of available buffers this way

could lead to delays due to dropped packets during periods of high load. On the other hand,
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conservatively managing the scarce buffer resource results in the kernel making an extra

copy of the data from user space into the packet buffer.

With a trivial amount of controller hardware support, it is possible to solve the pro-

tection granularity problem, providing a larger number of individually protected buffers

in controller memory. The basic idea is to populate only a fraction of each virtual page

that refers to controller memory. As a concrete example, consider the following alternative

design of the DEC Ethernet controller.

TLB
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Figure 2.1: Address Mapping for Ethernet Buffers

Figure 2.1 shows the sketch of the design. Controller memory is organized as 2K byte

buffers, each of which will hold an Ethernet packet; this would allow us to have 64 buffers

in our 128K controller. To allow user processes to write directly to controller memory

without sacrificing protection, the controller ignores the high order bit of the page-offset

and concatenates it with the physical page number (PFN) field of each physical address

presented by the TLB. This has the effect of causing each 2K physical page of controller

memory to be doubly mapped into both the top half and the bottom half of a 4K process

virtual page.
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2.5 Chapter Summary

Our experience with host/controller interfaces leads us to believe that while simple FIFO-

based controllers are ideally suited for small packets, larger packets would be better served

with a more conventional descriptor-based packet buffer. Thus, it might be beneficial to

support both forms on the same controller. To our knowledge, the only controller which

has multiple host interfaces on board is the VMP-NAB [38].

Our experiments also suggest that, in the absence of memory system support, DMA

may incur the cost of additional copies and/or cache flushing overheads. In such cases, it

would be advantageous to use PIO with descriptor-based packet memory that the host CPU

can either copy or map into user space. The decision to copy or map in will depend on

whether the processor is required to touch every byte of the packet or not. For instance,

if it is necessary to calculate a software checksum, then an integrated copy and checksum

loop (as proposed in [17, 19]) would suggest that mapping is of limited benefit. However,

on next-generation networks under certain conditions, there is evidence to suggest that a

software checksum may be of limited use [75]. In this case, the processor does not need

to mediate the transfer, and I/O-initiated data moves would be of benefit if the memory

system provides adequate support for cache consistency. Fortunately, newer processor and

memory architectures are providing these support mechanisms.

Finally, our experience with an existing ATM controller also suggests that it is appro-

priate to offload some amount of per-cell processing into the controller.

We expect the ideal controller for next-generation workstations and ATM-style local-

area networks to have (1) hardware support for cell segmentation and reassembly, (2) a

FIFO-based interface for single cell transfers and a coherent DMA-based interface for multi-

cell transfers, (3) hardware support for checksums, and (4) a flexible interrupt structure that

allows the host to be conditionally interrupted on cell arrival. At the present time, there

are controllers that implement different subsets of these features. However, trends in high-

performance controller design are promising and we expect controllers with low latencies

to become widely available.

For the rest of the thesis, we assume the existence of fast controllers, high-speed

networks, and fast processors. Given such high performance hardware, it is imperative

that we design suitable network access models and distributed programming models (as

described in Chapter 1) so that distributed services can benefit from advanced hardware. In

the next chapter, we argue that current network access models may be ill-suited for building
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distributed systems, and we propose a different model. Subsequent chapters describe the

implementation and the utility of the new network access model in various situations.



Chapter 3

A NEW NETWORK ACCESS MODEL

3.1 Introduction

Faster processors, high-speed networks, and next generation controllers promise high per-

formance communication hardware in workstation clusters. However, in order to exploit the

hardware performance, it is important that the software layers provide good performance

as well. This chapter considers the design of the network access model, which serves as

a low-level communication layer on which higher-level distributed programming models,

such as RPC, are implemented.

In the past, people have predominantly used a network access model that views the

network as a sequential stream of bytes, accessed with sends and receives. However, in this

chapter we will argue that it is more beneficial to think of the network in terms of a memory

abstraction. By this we mean that rather than using send and receive primitives to access

remote data, programs read and write portions of memory located on a different machine.

The notion of remote memory access on a local-area network has been suggested

before. Spector’s work on the experimental Ethernet is perhaps the earliest example [61].

He suggested that by implementing a set of operations that could be performed efficiently

over the network, we could lower communication overheads. The network access model

we propose here is influenced by his work, but has several significant extensions to it.

These are related to sharing, protection, independent time-slicing among nodes, and others.

Spector’s work, done on the early Xerox Alto workstations [65], left unaddressed important

issues regarding protection and virtual memory, which are common concerns in current and

next-generation workstations but were not supported by the Alto.

Previous work has also investigated support for network-wide coherent shared virtual

memory either in hardware [25] or in software [41]. The network access model we propose

here is quite different from these efforts. Our goal is to provide efficient primitives to access

the network so that distributed programming models, such as shared virtual memory, can

be implemented efficiently on top of it.

At a high level, all models of network access have the same power. For example, from
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a functional standpoint, it is immaterial whether a process chooses to affect the state of a

remote process by sending it messages or by directly changing the contents of its memory.

However, a network access model is more than just an abstractional convenience. From

a pragmatic viewpoint, certain choices may be easier to implement than others. Further,

certain classes of applications and of system organizations can be made more efficient

by an appropriate choice of network access model. For example, we show that we can

exploit the model presented in this chapter in a variety of ways for increased performance.

First, performance of distributed programming models (e.g., RPC) that form the basis

for distributed system communications can be improved by using the model. Second,

distributed systems can be organized in a different and more efficient way without resorting

to the traditional RPC-based approach. Further, the model allows efficient medium-grained

parallel applications to be written for a workstation cluster. Chapters 4—7 explore these

ideas in greater detail.

3.2 The Problem with Existing Network Access Models

Distributed programming models, which are layered over network access models, typically

have the following requirements:

� Low data transfer overhead. Distributed programming models, including RPC, in-

volve frequent data exchanges across machines. If the network access model does not

support mechanisms for efficient data exchanges, overall performance could degrade.

� Low control transfer overhead. Typical distributed programming models require

control transfers to occur at the sending and receiving machines. Control transfer can

be a major component of the overall communication cost, and it is beneficial if the

network access model permits this cost to be minimized.

� Low programming overhead. If the abstraction presented by the network access model

is excessively complex to use, then the performance of distributed programming

models could suffer.

Typical network access models, e.g., send/receive on a network byte-stream, do not

always support these requirements very efficiently. For instance, send/receive primitives

usually depend on messages exchanged between communication end-points, e.g., sockets
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or ports. Ports and sockets allow a degree of flexibility because they can be migrated among

address spaces. However, they have the disadvantage that data is not sent directly to the final

destination, which is either registers or a virtual address region in the recipient’s address

space. Instead, sockets and ports address data to intermediate buffers maintained by the

communication system rather than the end application. Since the ultimate data destination

is not specified in the message, some agent has to move the data to the eventual destination.

This usually incurs processing overhead in the form of data copying (or page mapping) and

input packet demultiplexing.

As a specific example, Unix-like operating systems provide the notion of a socket on

which the data is sent and received sequentially. To receive data, the caller provides a buffer

in which it expects the data from the sender. However, since the data from the sender is

addressed to the socket and not to the buffer, the operating system stores incoming data in

intermediate system buffers associated with the socket until the receiver identifies its buffer

through a receive call. This has the effect of adding buffering and copying overhead, which

can affect performance. Similarly, to send data, the user supplies a data buffer. However

the data from this buffer is not directly sent on the network; instead, data is copied into an

operating system buffer for eventual transmission.

It is possible to modify the send/receive interface to eliminate some of the problems

with data copying, but at the cost of programming complexity. For instance, a send from

a user could signify that the data buffer is freed from the user’s address space, allowing

the operating system to use the user buffer directly for network transmission. However,

buffers “lost” by the user space will have to be replenished by the operating system, which

requires another set of interfaces between the user and the system. Similarly, on receives,

the operating system, rather than the user, can choose where incoming data is placed in user

space. This is a compromise solution because the location may not be the most suitable

for the user, i.e., the user might still incur the cost of moving data to a more convenient

location.

Another typical feature of send/receive interfaces is that both sender and receiver have

to be active participants. For example, a receive must be “posted” (either synchronously or

asynchronously) and a send must complete if the data is to be examined by the recipient.

Further, there is an asymmetric relation between the two communicating parties. For

example, the receiver is not allowed to initiate a request; that must come from the sender.

Many features of the send/receive network access model involve some form of handshake
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or synchronization between sender and receiver, and keep the sender and receiver at arm’s

length, even if they trust each other.

3.3 A Memory-Based Network Access Model

A network access model can be logically thought of at two levels. At one level, it can

be thought of as the software interface provided to the user by the operating system,

implemented using the facilities provided by the host architecture and the network controller.

At another level, it can be viewed as the interface provided by the controller hardware itself.

In practice, one would expect a hybrid scheme where the network access model is provided

by a combination of controller hardware and system software. A natural way to divide the

labor is to put the performance critical functions in the controller, and the rest in system

software.

We describe below an alternative network access model, one that is memory-based. Un-

like a send/receive model, a memory-based network access model directly supports reading

and writing data to the final location, thereby minimizing data copying and demultiplexing

costs. It provides protected and efficient user access to the network with support for virtual

memory and multiprogramming. It incorporates a flexible scheme to minimize the cost of

control transfer, shows good performance, and is a suitable interface on which to efficiently

implement a variety of distributed programming models.

At an abstract level, this network access model consists of a set of remote memory

segments and operations defined on them. Segments are contiguous pieces of user vir-

tual memory; they are defined by user applications and controlled through descriptors

maintained by the controller and privileged software. Applications exchange segment in-

formation through a higher level protocol. Once exchanged, descriptors can be named by

the communicating parties, permitting direct reads and writes of data at specified offsets

within the remote segments. Read and write operations are supported through special

meta-instructions, described in detail below. Segments are protected from unauthorized

access, because applications can selectively grant or revoke access rights to their exported

segments.

It is most convenient to think of the access model as the instruction set of a communi-

cations co-processor. The model supports four non-privileged instructions: WRITE and its

variant WRITEV, READ, and CAS (compare-and-swap).

The standard write instruction has the form: WRITE rd, off, count, notify. Rd specifies
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a descriptor register in the co-processor that identifies a remote memory segment. The

descriptor includes the destination segment size, remote node address, and protection

information. Off denotes the starting byte offset in the segment for the write. Count

specifies the number of bytes to be written. The data for the write is taken from a set of

message registers shared between the sending processor and co-processor. Notify indicates

whether the remote destination is to be notified when the data reaches there.

On a write instruction, the co-processor verifies the rights of the sender. If the check

is successful, it formats the data from the registers and sends it to the remote destination

together with a descriptor identifier, offset, and count. If the network cannot be immediately

accessed, the co-processor buffers the data in an internal FIFO, delivering an exception

should the FIFO overflow. When a write successfully completes locally, the model only

guarantees that the data has been accepted by the network, not that it has been delivered

successfully to the destination.

The read instruction has the form: READ rs, soff, count, rd, doff, notify. Rs and soff

specify the remote source segment and offset where the data to be read can be found. Rd

and doff define a local destination segment and offset where the data is deposited. The

READ request is non-blocking, i.e., the issuing process is allowed to proceed. When the

data is returned from the remote processor, it is deposited in the reader’s address space. No

message registers need to be specified for a READ, which simplifies its operation. Notify

indicates whether the reader should be notified when the read returns the data. In the

absence of notification, the reader has no way of knowing the read returned data except by

repeatedly checking the destination memory location.

The WRITEV instruction is a specialized variant of the standard write instruction that

allows data to be scattered to remote memory. It has the form: WRITEV rd, off, chunksz,

xchunks, xstride, ychunks, ystride, notify. The rd, off, and notify arguments are exactly as

described for the WRITE instructions. The arguments chunksz, xchunks, xstride, ychunks,

and ystride specify how the data is to be scattered at the destination. The total amount

of data scattered with a single call is chunksz�xchunks�ychunks bytes. As in the case of

the WRITE instruction, the data is taken from a set of registers. On the destination node,

remote memory starting at offset off is treated as though it is organized as a rectangular

array of elements each of size chunksz arranged as shown below.

The WRITEV instruction is a special optimization expected to be used by scientific

applications that manipulate 2- and 3-d arrays. Scientific applications that operate on 3-d
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Figure 3.1: Three Dimensional Scatter Write

arrays frequently send data from an entire plane in the array to remote nodes. The 2-d

grid shown above can be visualized as a particular plane of a 3-d array. Thus, using the

WRITEV instruction, an application can write a set of physically non-contiguous locations

in memory that correspond to elements of a plane in the 3-d array. 2-d arrays can be handled

as a special case of 3-d arrays with ychunks = 1.

The CAS instruction is used to provide low level synchronization for communicating

entities by way of an atomic compare-and-swap operation. It has the form: CAS rd, doff,

rs, doff, old-value, new-value. Rd and doff specify the remote location (segment and offset)

whose value is to be compared and swapped. Old-value specifies the value against which

the contents of the remote location is compared. New-value denotes the new value that is to

be atomically written in the remote location if the comparison succeeds. Rs and soff specify

a local segment and offset that contain the result of the compare-and-swap, which is either

success or failure. Our implementation of CAS, described in the next chapter, ensures that

it is reliable under data loss in the network.

Beyond these simple instructions, the model explicitly supports additional mechanisms

to accommodate the needs of applications. These mechanisms include (1) descriptor

maintenance, (2) export and import of segments, (3) application-based pinning/unpinning

of virtual memory pages, (4) segment write inhibit for synchronization, and (5) interrupt

control. Support for these facilities is an important part of the model, and differentiates it

from previous efforts.
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3.4 Details of the Model

This section describes additional functionality of the model related to descriptor mainte-

nance, export and import of segments, protected and shared access to network resources,

application-controlled pinning of virtual memory, and interrupt control. For the purpose of

explaining the details of the model, we will continue to view the model as the instruction set

of a communication co-processor augmented by a few less frequently occurring operations

provided by the operating system as system calls.

3.4.1 Descriptor Maintenance

In a workstation cluster it is important to ensure that applications that timeslice the cluster

do not access segments that do not belong to them. In our model, accessing or modifying

descriptors is a privileged operation; ordinary processes can only name descriptors as

message sources or destinations. Descriptors are maintained by participating kernels which

are trusted. This ensures that the necessary protection information is maintained securely.

Descriptor maintenance is not on the critical path and thus it is appropriate to use reasonably

sophisticated kernel software for this purpose. Certain predefined descriptor registers (and

the associated segments) are reserved for the use of the kernel. Thus packets containing

descriptor maintenance information can be exchanged between nodes using these reserved

descriptors. This mechanism can be used, for example, by a name server to exchange

information about segments that are exported and imported.

3.4.2 Exporting/Importing Segments

Segments are contiguous portions of the virtual address space that are named using de-

scriptors. Before segments can be used by remote processes, they must be named and

communicated between the participants. The model uses the simple notion of exporting

and importing segments by name. No semantics is imposed on the names, which can be

chosen in any way that the exporter sees fit. For instance, long 128 bit integer strings can

be used to guard against the possibility of an unauthorized agent guessing a name. Addi-

tional protection is ensured by specifying protection groups. A protection group names a

collection of users that trust each other.

To export a segment, a process executes the following: EXPORT segment-name, virtual-

address, size, access-type, protection-group. Virtual-address and size specify the start and
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bounds of the segment. Access-type specifies the type of access (read or write) that is

permitted and whether the exporter is to be notified on data arrival. Protection-group

identifies a group of users who are allowed access to the segment. The EXPORT operation

returns a descriptor number to the caller which can be used later to revoke the export

by calling UNEXPORT segment-id. To import a segment a process executes: IMPORT

segment-name. The import operation returns the handle of a descriptor that can be used for

subsequent write and read operations on the exported segment.

Import and export, being less frequent operations that require the facilities of the

operating system, are expected to be supported by system calls. The kernel on the exporting

processor allocates a descriptor, which is initialized with the size and protection information.

When an import request is received by an exporting kernel it ensures that import rights are

not granted outside the protection group. A reference to the exported segment is returned

to the importing kernel, which in turn allocates a descriptor and returns a reference to the

caller of IMPORT.

The model makes no assumptions on how the importer names, locates, or contacts the

exporter. Nevertheless, it provides hooks by way of privileged, predefined descriptors (and

segments) to build a self-contained name server that uses no other facility other than what

is provided by the model. In fact, this is precisely how our name server is implemented.

However, the model does not preclude the use of an existing facility to name segments, e.g.,

by using a distributed file name hierarchy.

3.4.3 Virtual Memory

On multiprogrammed workstations, it is necessary to provide for the case when parts of a

segment are not memory resident. The alternative of pinning entire segments is infeasible

for realistic segment sizes. On the other hand, faulting in pages of the segment at message

reception time could lead to unacceptable delays. The model allows the application control

over its exported segments by making it possible to selectively (and dynamically) pin

portions of each exported segment. Programs can use their knowledge of locality to exploit

this facility. In our scheme, since each application pins a small amount of memory, the

operating system’s pool of pinned network buffers can be reduced. That is, physical

memory usage is comparable to a traditional organization where the operating system pins

a common buffer pool for all applications.

Pinning and unpinning portions of a segment are done by issuing the calls: PIN segment-
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id, addr, size and UNPIN segment-id, addr, size. These operations are relatively complex

because they involve the virtual memory system. However, they do not occur frequently

enough to be a performance bottleneck. Consequently, typical implementations of these

operations (including the one described in the next chapter) will be within the operating

system and not in the co-processor.

On receiving data to be written, the co-processor consults address translation tables to

translate the virtual address in the message to a physical address. If there is no translation

or if the addressed portion of the segment is not resident, the data in the packet is written

to a circular queue. Higher level software in the kernel maintains the buffer queue and

multiplexes data to the correct address. In certain environments, the simpler alternative

of dropping the packet altogether may be feasible; for example, if there are higher level

transport protocols that assume that the network is unreliable. On a data read request where

there is no address translation or if the data is not resident, the request is ignored.

3.4.4 Memory Volatility

The notion of remote reads and writes effectively creates regions of memory that are volatile.

By this we mean that the contents of a memory location in an address space can change

without the address space issuing a store instruction to that location. Usually this is not a

problem if the programming language and compiler support the notion of volatile data, e.g.,

as found in C. However, there are cases where memory volatility could be inconvenient or

error-prone to use. To address this problem, the model allows the application to control

the window of volatility. An application can turn write protections on and off to segments

using lightweight operations implemented by the co-processor itself. These operations

are invoked with the following co-processor instructions: MPROT rd, and MUNPROT rd

respectively to turn off and turn on write permission on the segment named by rd. A

write request arriving for a protected segment is treated exactly as if there were no address

translation for that segment, i.e., the kernel buffers it in a circular queue.

3.4.5 Control and Data Transfer

Control transfer and data transfer are separated in our model. For instance, when data

arrives at the destination it is written to memory but the destination is not automatically

notified. Recall that the READ and WRITE instructions have a bit called notify that is

used to provide control over notification. In addition, each segment descriptor contains
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a notification control flag that can be set by the host in one of three states: (1) always

notify, which causes the destination to be notified whenever a packet destined for that

descriptor arrives, (2) never notify, which causes the destination to be never notified, and

(3) conditionally notify, which causes the destination to be notified only if the notify bit is

set on the remote request instruction.

3.5 Chapter Summary

In this chapter, we have argued that traditional network access models, such as send/receive,

have some limitations that can be overcome by using a new memory-based model. To

summarize, the new network access model that we propose has several key advantages.

First, the notion of local memory is a very natural and well understood one. The model

and the primitives we propose extend this notion to remote memory as well. As we will

show in subsequent chapters, there is a simple implementation of the ideas presented in this

chapter, which ensures that programs can access remote memory almost as easily as local

memory.

Second, the model of remote access is passive. That is, a remote operation, such as

a read or a write, does not involve activity on the part of the target address space. For

instance, a write operation can complete without involving the destination address space.

However, in certain cases, it is important to start the execution of a thread or a particular

procedure at the destination. The model provides this as a separate option. Thus, the

transfer of data and the transfer of control are separate. This has an important implication:

since control transfer and data transfer are separated, both function shipping (e.g., RPC)

and data shipping (e.g., bulk data transport) mechanisms can be independently optimized.

This has many ramifications for the structure of distributed systems, which we expand on

in Chapter 7. Previous memory-based approaches, e.g, Spector’s work, have not pursued

these ideas or studied their impact on distributed system structure.

Third, the model ensures that each request specifies the ultimate data destination. This

allows us to minimize the number of data copies and reduces the overhead of segmentation

and reassembly in modern cell-based ATM networks.

Finally, the model allows users very efficient, protected, and shared access to the

network. In addition to memory instructions, the model provides support functions that are

necessary on modern timesharing workstations. Together, they ensure that the model can

be used as an efficient base for implementing a variety of distributed programming models.
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The network access model described in this chapter has been implemented on an ATM

network. We describe this implementation in the next chapter. While we believe the model

can be implemented on any network, it has some particularly nice properties in the context

of current and next-generation ATM networks.

First, ATM networks offer us the ability to efficiently transfer small amounts of data

in the form of cells. This meshes well with the notion of loads and stores supported by

our network access model. Second, switch-based local-area ATM networks are getting

extremely reliable. For instance, there are ATM networks currently in existence that

guarantee against packet loss once a packet is injected into the network [4]. This implies,

for example, that a set of cooperating applications distributed on a local-area network can

use the network access model as though they were cooperating processes sharing memory

on a single processor. Finally, it is clear that as ATM networks speed up into the gigabit

range, the cost of transferring data is going to be significantly lowered. However, the cost

of control transfer, which involves context switching overheads, does not appear to scale

with processor speeds [3]. Thus, a network access model such as ours, which separates

the notion of control transfer from data transfer, is a key advantage in next-generation

workstation cluster environments.
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AN IMPLEMENTATION OF THE MODEL, AND ITS
PERFORMANCE

We have implemented the memory-based network access model using a software em-

ulation layer on top of an existing ATM controller attached to off-the-shelf workstations.

The implementation is optimized around the expectation that, in general, (1) many opera-

tions are performed on a segment once descriptors are exchanged, and (2) most operations

transfer a relatively small amount of data, e.g., on the order of tens of bytes. In this section

we briefly summarize the characteristics of the controller and the host architecture before

describing our prototype implementation.

4.1 The Testbed

We use the FORE TCA-100 network controllers described in Chapter 2 to connect our

DECstation 5000s to a 140 Mbits/sec ATM network. Recall that the controller is located

on the 25 MHz TURBOChannel I/O bus and does not have DMA capabilities. Instead, it

implements two FIFO queues, one for transmitting ATM cells to the network and the other

to buffer received cells. The processor transmits and receives cells by performing word-

aligned read and write instructions to memory-mapped I/O addresses. Processor accesses

to the FIFOs complete without any wait states.

ATM cells are 53 bytes long and are divided into a five byte ATM header and a 48 byte

payload. The five byte header includes an eight bit header CRC and the payload includes

a separate ten bit payload CRC. Both CRCs can be optionally computed by the controller

hardware; our implementation enables only the header CRC.

The processor transmits a 53 byte cell by performing 14 word writes to the transmit

FIFO. The three (14�4� 53) spare bytes are used to pass various cell processing options to

the controller, e.g., to enable or disable checksums. When the 14th word write is performed,

the cell is transmitted on the wire. Processing of multiple cells is pipelined. That is, while

the processor is writing data for a cell to the FIFO, the controller can potentially be

transmitting data from a previous cell. The controller is capable of transmitting smaller
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sized ATM cells but we do not use this feature because it is non-standard.

The processor receives each 53 byte cell by performing 14 word reads over the TUR-

BOChannel. The three spare bytes include framing information and the CRC syndrome

bits for the header and payload. These CRC syndrome bits can be examined by the host to

correct single-bit errors in the header and the payload. In addition, the processor can detect

a CRC or framing error with a single comparison instruction.

The controller design makes it difficult to use the payload CRC efficiently on receives.

The hardware design enforces a FIFO access discipline not only on the individual cells but

also on words within a cell. Thus, since the ATM payload checksum is at the end of the

cell, all prior words have to be read from the FIFO and buffered before the contents of the

cell can be used safely. In the common case of no errors, this buffering cost represents

unnecessary overhead. Because of this, and because fiber optic links have very low error

rates (1 bit in 10

12), we have chosen not to employ the payload checksum in our prototype

implementation. A simple change in the hardware design that allows random access to the

individual words within a cell would solve this problem.

The transmit FIFO is 512 words deep and can store 36 cells. If the transmit FIFO fills

up, hardware flow control in the controller will cause the processor to stall. The receive

FIFO is deep enough to receive 292 cells. Cells that overflow the receive FIFO are dropped.

ATM cells have a fixed small size to minimize variance in queueing delays in a switched

network. Since cell size is quite small, ATM networks define adaptation layers, called ATM

Adaptation Layers (or AAL) that specify how cells are fragmented and reassembled from

larger packets. There are two AALs that are being proposed as standards — AAL 3/4 and

AAL5. AALs have two sublayers called the segmentation and reassembly (SAR) layer,

and the convergence (CS) layer. Typically, the function of the SAR layer is to handle the

reassembly of cells, while the CS layer checks the final result [32].

There is hardware support for some AAL 3/4 functions, such as CRC generation, in

the FORE controller. However, there is no support for the SAR or CS layers in hardware.

The device driver is capable of handling reassembly and fragmentation in software. We

have measured a latency of 11 �sec per cell for the SAR/CS function in software. Our

implementation of remote memory uses neither the SAR layer nor the CS layer and is not

fully compatible with the device driver’s use of AAL 3/4. That is, although the kernel

contains code for both the device driver and our implementation of the network access

model, they cannot be used simultaneously. There is a system call that allows users to
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switch between one and the other. However, by giving up one word of payload from the

cell and modifying the device driver, we can operate simultaneously. This change adds only

three instructions on the send and receive side and imposes no observable latency reduction.

Throughput will be decreased by 10% because there is a 10% decrease in payload.

The DECstations contain 25 MHz MIPS R3000 processors rated at 18.5 SPECmarks.

Many exceptions, including all I/O interrupts, are vectored to a single handler, which must

then identify both the type of the exception and the originating device for interrupts. This

requires reading the system’s control and status registers as well as accessing the on-chip

control co-processor’s registers. Thus, servicing an interface interrupt requires instructions

in addition to those required to handle the device specific operations.

4.2 The Prototype Implementation

In the prototype, performance critical remote operations have been implemented by em-

ulating unused opcodes in the MIPS instruction set. That is, the application performs a

remote operation by issuing an unprivileged and unused MIPS machine instruction. The

instruction is emulated in the kernel using assembly language instructions. Less frequent

operations of the model such as import and export of segments are handled by the operating

system through standard system calls. The prototype is hosted in an otherwise unmodified

Ultrix operating system.

To the user, network access is through user-level instructions; nevertheless the network

is protected since only kernel code directly manipulates the network. We assume that all the

kernels that are connected to the local ATM network are trusted. These trusted kernels also

ensure that exports and imports of segments are done only between consenting principals.

There is a name server, trusted by the kernel, that cooperates with it in managing segments.

The prototype differs from the model in two minor ways. These differences made the

implementation simpler without sacrificing functionality and without artificially distorting

the performance of the resulting system.

The first difference is related to the way in which control is transferred on cell arrival.

The model assumes that there is a co-processor that implements the instructions and that

the processor is notified only if the notify bit is set in the cell. In our prototype, since we

use software on the host processor to emulate the co-processor, cell arrival causes activity

on the processor. However, the destination process will not be notified unless the notify bit

is set in the cell. Note however that this does not mean that the processor is interrupted on
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every cell arrival because the TCA-100 hardware interface allows the processor to handle

multiple cells with a single interrupt.

Second, the current prototype does not implement the scatter write instruction WRITEV

described in the previous chapter.

The next few subsections supply implementation details of the prototype.

4.2.1 Exporting a Segment

A segment is exported by an application by making the rr export system call. The

declaration and usage of the call is shown in the C code fragment below.

char *rr_export(char *name, int sz, int prot, int *segment,
char *addr);

char *addr;
int segment;

addr = rr_export("ServiceFubar", 8192, 0660, &segment, 0);
if (addr == (char *) -1) {

perror("export failed");
exit(1);

}

The argument name specifies the name of the exported segment that an importer

will subsequently use to refer to this segment. By specifying a null value for name, it is

possible to export anonymous segments that can never be imported by anybody. Anonymous

segments are typically used as destinations of read and compare-and-swap requests. The

argument prot specifies access restrictions that apply before programs can import the

segment. We use the standard Unix convention for specifying file access protection. Thus,

0660 in the example above means that importing applications executing within the same

group and owner may import the segment for reading and writing. The exporter specifies

the size of the segment in bytes with the sz argument. The return value specifies the virtual

address of the newly created segment in the caller’s address space. The variable segment

is the segment handle that can be used by the exporter to perform control operations on

the segment such as virtual memory operations and subsequent unmapping operations as

described below. The last argument to rr export specifies a location at which the

exporter would like the segment to appear in its virtual address space. Specifying zero, as

in the example above, leaves the choice up to the system. A non-zero value, if specified,
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must specify a valid page-aligned virtual address. An exported segment can be deleted with

a rr cleanexport (int segment) call.

Another example of the usage of the call is shown below, this time with a non-zero

address. Here, a 16 Kbyte region in the heap, aligned on a 4 Kbyte page boundary, is

allocated and the first 8K bytes are exported.

char *new,*addr;
int segment;

addr = malloc(4 * 4096 + 4096);
addr = (addr + 4096) & ˜(4096-1);
new = rr_export("ServiceFubar", 8192, 0660, &segment,addr);
if (addr != new) {

perror("export failed");
exit(1);

}

The Segment Descriptor Table

A successful rr export operation allocates an entry, called the segment descriptor (SD),

in a kernel table named the Segment Descriptor Table (SDT). The SDT contains one segment

descriptor per exported segment on the machine (up to a maximum of 2048). In the current

implementation, to save memory resources, the SDT is only large enough to hold eight

SDs.

An SD within an SDT on a particular machine is identified by its index into the table,

called the SDI. The SD contains the process identifier of the exporter, protection bits for

the segment, the size of the segment, and a table of page-mappings. Each SD also contains

a 12 bit generation number that is incremented each time a new export reuses the SD.

The generation number in the segment descriptor is used to detect incoming remote

operations that refer to old exported segments that have since been reused. That is, each

incoming request contains a generation number that is compared against the generation

number in the segment descriptor. The request is discarded if the generation numbers

differ. Since there is only a finite number of bits for the generation number, it will wrap

around eventually. Special care has to be taken to ensure that requests using old generation

numbers do not cause problems. The mechanism for this is straightforward and is described

in the section about the name server (Section 4.2.6).
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The SD does not contain the user-specified name of the segment. Instead, the user-

specified name, the SDI, and the protection information about the segment are registered

with a name server. Certain ATM-specific header information is also registered so that an

importing kernel can set up suitable headers for transmission over the ATM network.

Each SD contains a table of page mappings — one per page of the exported segment.

Each mapping contains either a kernel virtual address to a pinned page frame or a null entry

indicating that the frame is not pinned. Notice that there may be pages in the segment with

resident, but unpinned frames. The mappings corresponding to these pages are also nulled.

In the prototype, the maximum size of an exported segment is 1 Mbyte, which requires 256

map entries corresponding to the 256, 4 Kbyte page frames. The kernel virtual address in

each mapping is consulted by the kernel when an incoming packet is processed to perform

the requested remote load or store.

4.2.2 Importing a Segment

Segments registered with the name server can be imported by the kernel on behalf of users.

Typically, segments are imported as shown below.

#include <file.h>
char *rr_import(char *name, int prot);
int segment;

segment = rr_import("ServiceFubar", O_RDWR);
if (segment == -1) {

perror("import failed");
exit(1);

}

Notice that there is no virtual memory created in the importer’s address space. Instead,

a segment handle is returned. Virtual addresses are constructed and passed to the read

and write routines as <segment, offset> pairs. An imported segment can be subsequently

deleted with an rr cleanimport(int segment) call.

Before an rr import call can succeed, it is necessary for the importing kernel to

contact the name server on behalf of the user. The caller is blocked until the required

information is returned by the name server, or there is an error. The name server returns

an error if the named segment does not exist or if the importing user does not have the

requested privileges on the segment.
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A successful rr import call allocates an entry in a kernel table called the Registry.

Each Registry entry (RE) contains information about the local importing process as well as

network header information, generation number, and the SDI of the remote segment. The

header information, the SDI, and the generation are sufficient to address a specific segment

on a particular node.

Note that the size and protection information of the remote segment are not maintained

in the RE. The reason for this is that the local kernel does not check size and protection

on outbound transmissions. Even if it were to enforce size and protection constraints, the

receiving kernel would have to do a similar check again to verify if the generation was stale,

whether the offset referred to a currently pinned region of the segment, and whether the

exporter had changed access permissions (to be described in Section 4.2.4) on the segment.

4.2.3 Remote Operations

After a segment number has been obtained by a rr import system call, remote operations

can be performed from user-level by issuing an unused MIPS instructions as described

below.

Remote Write

There are two types of remote writes — rwi and rwblk. The instruction rwi always

writes a predetermined amount of data (viz., ten words) to the remote segment. The second

form, rwblk, takes a variable amount of data.

The rwi instruction has the form rwi $r4, $r5. We use the convention that $rN

denotes register number N on the MIPS processor. Register $r4 contains the segment

handle returned by the rr export call. Register $r5 contains the offset and notify bit

for the request. The notify bit is the MSB of the 32-bit register. If set, the remote write

can potentially cause a control transfer on the remote end if the exporter is ready for

notifications. If either the bit is not set or the exporter is not ready for notifications, only

data transfer takes place. The rwi instructions looks for the ten data words in registers

$r6–$r15.

To perform block writes of variable length, the instruction rwblk, which has the

form rwblk $r4, $r5, $r6, $r7 is used. Registers $r4 and $r5 contain the same

information as before. Register $r6 contains the byte count and register $r7 points to a

block of data in (local) memory that is used in sequence until the byte count is satisfied.
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Remote Read

Like the remote write, there are two types of remote read instructions — rri and rrblk.

The first, rri, reads a fixed amount of data (ten words) from a remote memory segment.

It has the following format rri $r4, $r5, $r6, $r7. Register $r4 contains the

segment number of the remote segment, $r5 contains the segment number of an exported

local segment. Typically this is an anonymous segment. Register $r6 contains the offset

in the remote segment to load the data from and register $r7 contains the offset within the

local segment to store the data. Register $r7 contains the notification bit exactly as in the

case of the remote write operation previously discussed.

To specify a block data transfer, we use the instruction rrblk as follows: rrblk

$r4, $r5, $r6, $r7, $r8. Registers $r4 – $r7 contain the same information as

before and $r8 contains the byte count.

A remote read is treated as a read request to the remote node followed by a remote write

operation initiated by the remote node in turn. This makes it easy to implement remote

read operations without any additional machinery beyond that required for remote writes.

For user convenience, various C-callable assembly routines have been provided that

take pointers to buffers and word counts. There are also routines that optionally set the

notify bit on reads and writes. Thus, normally programmers do not deal with loading data

into the correct registers and setting the appropriate bit for notification on the remote end.

Remote Compare and Swap

The usual semantics of CAS (compare-and-swap) are as follows. Let A be a memory

address, O and N be registers. Then performing a CAS A,O,N has the effect that if the

contents of A matches the contents of O, then it is swapped with the contents of N, and CAS

returns the boolean TRUE. The comparison and the swap with the new value is atomic. If

the contents of A does not match the contents of O, then CAS returns FALSE.

It is important to note the guarantees offered by a CAS operation. For example, consider

a multiprocessor that implements CAS. If a particular processor performs a CAS that returns

the value TRUE, then that processor cannot really determine the current contents of the

CAS location. This is so because another CAS could have overwritten the new value. In

effect, all that the CAS guarantees is that at the time of the swap, the value in the location

matched what the processor expected it to be.

Instead of CAS, we implement a primitive (which we shall call CAS-II) that has the
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following semantics: if the contents of A matches that of O, then swap with the contents

of N as before, otherwise do nothing. As before, the comparison and swap are indivisible.

But, whereas standard CAS returns true or false, we return the value contained in A at time

of the comparison and the identity of the entity that did the last successful swap.

Using CAS-II, a processor can have the same guarantees that CAS provides. For

example, a processor P1 can get the semantics of CAS using CAS-II in the following way.

CAS (A, O, N)

X = record
int processor;
int old-value

end X;

X = CALL CAS-II with <A, O, N>
if X.processor is P1 and X.old-value matches the contents of O,

then return true
else

return false
end CAS

Given a reliable network, CAS-II as defined above can be implemented directly. How-

ever, in the presence of network cell loss, we need to modify it slightly in the following

fashion.

Implementation of CAS-II

A process wanting to do a CAS-II issues the rrcsi instruction. The rrcsi is two-phase,

i.e., a processor issues a CAS-II request on a remote memory location and can later check

a local memory location for success or failure. This allows useful computation to be

overlapped with the CAS-II operation.

Each CAS-II address location refers to a 64-bit region that is organized as two 32-bit

words as shown below.
� 32 bits -CAS-II address
-

Value

Nonce

The first word holds the value that is used in the CAS operation. The second word contains

bookkeeping information as described below.
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The exact format of a CAS-II instruction is: rrcsi $r4, $r5, $r6, $r7,

$r8, $r9, $r10. The register pair <$r4,$r6> specifies the segment and offset of the

address used for the compare-and-swap. The register pair <$r5,$r7> specify the segment

(typically an anonymous segment as in the case of remote reads) and offset to be used to

write the result of the CAS operation. Registers $r8 and $r9 contain the old and new values

to be compared and swapped. Register $r10 is special, it contains a 32-bit nonce that the

sender can use to match responses. (The nonce is usually a concatenation of a process

identifier, parts of the host IP address, and a sequence number.)

The kernel emulation code on the requesting node forwards a single cell containing the

CAS-II request parameters to the destination node. The cell contains information about

the local address (specified in <$r5,$r7>) where the returned result should be written. The

requesting user process is allowed to continue without blocking.

If the request cell is lost on the outbound transmission, the sender will eventually timeout

and retry again with the same nonce as before. Note that losing an outbound request cell

poses no problem to the semantics of CAS because it is as if no CAS request was made.

Also note that it is not the emulation code in the kernel that is doing the retry; that is the

responsibility of the user (or the user runtime system). Ultimately, a CAS-II request will

reach the destination node that has exported the segment.

When the request cell reaches the destination node, the kernel emulation code on the

receive side tries to perform a compare-and-swap. This operation is made indivisible by

making sure that all CAS-II operations on a segment always go through the kernel. If the

kernel is successful in the compare-and-swap operation, the incoming nonce is written to

the second word pointed to by the CAS-II address. If the compare-and-swap fails, then

the kernel does not modify either of the words. In any case, the kernel sends a reply cell,

containing the latest nonce and the old value of the location, back to the requester.

If there is no cell loss, the result of the CAS-II operation will reach the requester’s

kernel where it will be written at the local address specified by <$r5,$r7> in the original

rrcsi instruction. The result consists of two words of data — the old contents of the

remote location, and the latest nonce. If the reply cell is lost, the requesting process (or the

runtime) will retry the request with the same nonce until a reply is received.

There are basically two possible outcomes of the reply. If the nonce in the reply matches

the nonce in the request, then the caller knows the compare-and-swap succeeded. The value

returned will match either the value in $r8 (the old value) indicating that no reply cell was
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ever lost, or the value in $r9 (the new value) indicating at least one reply cell was lost. If

the nonce does not match, then the compare-and-swap failed.

We mentioned that the CAS-II address refers to a <segment,offset> pair. Usually this is

a remote segment and offset, except to the exporter of this segment, for whom the CAS-II

address is actually a local memory address. However, the exporter cannot do a simple

compare-and-swap operation on this memory location because the MIPS processor has no

compare-and-swap instruction. In the absence of such an instruction, the exporter would

have to use multiple instructions to simulate a compare-and-swap, during any one of which

a remote CAS-II request could cause the processor to be preempted from the exporter. In

order to maintain indivisibility in the face of network interrupts we force even local CAS-II

requests to take a kernel trap to emulate code for the local case. A trap on the MIPS

architecture automatically turns off interrupts until explicitly reenabled or until the return

from trap instruction is executed.

Notice that in our implementation, we are relying on the participating user-level pro-

cesses (or their runtime systems) to supply nonces. The kernel emulation code does not

enforce or care about the integrity of these values. This is because we assume that entities

that are using CAS-II on a particular location are cooperating to solve a problem. That is,

they are not malicious and will follow an agreed upon protocol. Failure to do so does not

result in any damage to the system; the applications simply hurt themselves by not being

able to perform compare-and-swap. Note also that unauthorized access to a CAS-II value

location is prevented by the kernel through the normal import/export security mechanism

and segment access checking.

Apart from compare-and-swap, which provides synchronization support, our imple-

mentation offers an additional atomicity guarantee that can be used for synchronization.

The implementation guarantees that a single-word local access (read/write) is atomic with

respect to a remote access (read/write) that involves that word.

4.2.4 Local Virtual Memory Operations

Since segments are large and are impractical to pin down indefinitely, we allow the user to

pin a small number of pages (currently up to four) per segment at any given time. By being

able to selectively pin a region of memory, users have some control in ensuring that incoming

remote requests are correctly delivered without any heavyweight kernel operations. Pinning

and unpinning of memory is done by a common system call as follows:
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char *rr_remap(int segment, char *unpin, int unl, char *pin,

int nl);

The first argument refers to the segment returned by a priorrr export call. The argu-

ments unpin and pin point to virtual addresses within the exported segment. Arguments

unl and nl each specifies a length in bytes. A contiguous portion of the segment starting

at unpin and unl bytes long is unpinned first. Next, a portion of the segment starting at

pin and nl bytes long is pinned. Pinning and unpinning are done on a page basis even

though the addresses and counts are based on bytes.

The notion of remote operations introduces memory areas that are volatile. That is,

memory local to a processor can be affected without the processor performing a local store.

Since this might be undesirable in certain applications, the user can set the protection on an

entire segment to read only or read-write. Protection is set by invoking the following sys-

tem call: char *rr setprot(int segment, int prot). The second argument

prot is specified using the standard Unix convention for specifying file access protections,

exactly as described in Section 4.2.1.

4.2.5 Control and Data Transfer

As described in the previous chapter, our model explicitly separates the notions of control

transfer and data transfer. Under the normal pattern of behavior, remote requests do not

require user-level processes to take any action. However, there are times when it is useful

to activate some user level activity in the address space. For example, this could be used to

initiate an RPC request on a server.

Associated with each segment are two file descriptors that the user can access using the

rr getfd system call as shown below.

#include <rrf.h>
int rr_getfd(int segment, int type);
int datafd, controlfd;

control_fd = rr_getfd(segment, RR_CONTROL);
data_fd = rr_getfd(segment, RR_DATA);

The file descriptor control fd becomes ready for reading when a remote operation

causes a notification as determined by the settings of notification flags on the segment
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and the notification bit in the incoming request. For each such remote operation, a record

indicating the type of the request and the location in the user’s address space at which the

request happened is made available on the file descriptor.

The file descriptor data fd is provided to handle exceptional cases when a remote

operation arrives for a portion of the segment that is not currently pinned by the application.

Once again, a record describing the remote request, the location in the user’s virtual address

space and the actual data are made available on the file descriptor. The application can

incorporate such data into its computation in any way appropriate.

We use file descriptors for notifications because they allow Unix applications to deal

conveniently with asynchrony. Applications use the standard Unix “select”, “read”,

“fcntl”, and “signal” calls to receive notifications without having to poll for data

arrival. In an operating system such as Mach that supports asynchrony within a process

with multiple threads, control transfer can instead be implemented with upcalls and a shared

page for transferring control information.

The file descriptor returned byrr getfd can be used like any other Unix file descriptor;

in particular it can be duplicated via the “dup” system call and inherited across “fork”

system calls. However, the SDT entry corresponding to the file descriptor is not duplicated

or inherited across forks and does not survive the death of the process owning the SDT.

Thus, if process B inherits a descriptor from process A, which exported the segment,

and A exits, then subsequent incoming remote requests to the segment will be ignored.

However, process B can use the inherited file descriptors to continue processing data that

was transferred while A was still alive.

An exporter can set the notify flag on the segment in one of three ways to regu-

late how control transfer (if any) is effected when a remote request arrives for the seg-

ment. This is done using the following system call: rr setintr(int segment,

int notifytype). The value of notifytype can be one of the manifest constants

RR NOINTR, RR INTR, or RR CINTR. These respectively indicate that a notification is

(a) never generated, (b) always generated, and (c) conditionally generated when a remote

operation is performed on the particular segment.

4.2.6 The Name Server

The purpose of the name server is to provide a repository of segment names so that importers

and exporters can communicate. The name server provides mechanisms to add exported
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segment names, to lookup names, and to delete names.

The name server maintains a list of named segments, their protection attributes, and the

ATM network information required to get to the exporting host. The name server is trusted

and privileged and is implemented as a collection of user-level processes distributed across

the network.

Communication between the various processes that implement the distributed name

service is implemented using the remote memory model itself. Certain well known segment

identifiers have been reserved on each machine to allow the name service to bootstrap itself.

We defer a complete discussion of the name server until Chapter 7.

As described earlier, generation numbers are used to detect stale remote operation

requests. Segment descriptors are allocated in a round-robin fashion; thus, with a 12

bit generation field and 2048 entries in the segment table, generation wrap-around for

a particular segment will occur after 2048�4096 exports. Assuming that segments are

exported once a second, this wrap-around takes about 97 days. At or before each wrap-

around, a kernel that is potentially using an old, invalid, segment descriptor should refresh

its descriptors from the name service. Given the slow wrap-around rate, the name service

information can be propagated fairly slowly without any major impact on performance or

scalability.

4.3 Performance of the Prototype

Table 4.1 summarizes the instruction counts for remote read rri, write rwi, and

compare-and-swap rrcsi instructions. As indicated in the first row, the cost of crossing

protection boundaries is only 25 instructions. While the instruction counts for each opera-

tion are quite small, we still pay a price for the software implementation. One cost is the

penalty incurred by the interrupt dispatcher in decoding the exception, which accounts for

28%–33% of the total instructions. Another cost is not evident from the table: nearly 50%

of the instructions perform memory loads or stores, which tend to slow down execution.

Despite these factors, a remote write operation containing one ATM cell (40 data bytes)

takes only 30 �s. A remote read takes longer than a write—45 �s—since one cell must be

sent in each direction. A remote compare and swap is slightly faster (38 �s) because there

are fewer memory accesses on the sending and receiving sides.

If the cell size were increased, the incremental cost per word would be 3 or 4 instructions.

In addition, Table 4.1 represents the worst case, because every cell arrival need not cause
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Table 4.1: Instruction Counts for Remote Memory Operations

Number of Instructions for a 40-byte Remote WRITE Operation
Operation Inst. Count

Protection Crossing 25
Access Check & Writing Data to Device 40
MIPS Interrupt Dispatcher (on Destination) 73
Device Interrupt Handler 37
Reading Data and Writing Destination Addr 85
Total 260

Number of Instructions for a 40-byte Remote READ Operation
Operation Inst. Count

Protection Crossing 25
Access Check & Writing Read Request to Device 65
MIPS Interrupt Dispatcher (on Destination) 73
Device Interrupt Handler 37
Reading Request, Accessing Memory & Writing Data to Device 47
MIPS Interrupt Dispatcher on Source 73
Device Interrupt Handler 37
Reading Data and Writing Destination 85
Total 442

Number of Instructions for a Remote CAS Operation
Operation Inst. Count

Protection Crossing 25
Access Check & Writing Read Request to Device 70
MIPS Interrupt Dispatcher (on Destination) 73
Device Interrupt Handler 37
Performing Request, & Writing Result to Device 97
MIPS Interrupt Dispatcher on Source 73
Device Interrupt Handler 37
Reading Data and Writing Destination 63
Total 475
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Table 4.2: Performance Summary of Remote Memory Operations

Read Write CAS
Latency (�s) 45 30 38
Throughput (Mb/s) 35.4
Notification Overhead (�s) 260

an interrupt. If cells arrive back-to-back, only the first arrival would interrupt; the interrupt

handler would then drain the input queue of all packets without further interrupts. Further,

when streaming multiple cells, sending and receiving code can be pipelined.

We summarize the performance of our implementation in Table 4.2. The latency

represents the elapsed time for performing single-cell accesses. Throughput is measured

using the block write primitive on 4K byte blocks (the block read yields essentially identical

performance). The notification cost is the overhead, in addition to the read/write request,

that is incurred when the notification bit is set in an operation. The measurements shown

are between two hosts connected directly without a switch; we expect next-generation

switches to introduce only small additional latency. (The cost of notification is relatively

high because of our reliance on the Ultrix signal handling mechanism.)

It is important to note that although the FORE ATM network has a bandwidth of 140

Mb/s, the best achievable memory-to-memory throughput on the DECstations with the

FORE controller is considerably less than this. Our implementation achieves 70% of what

would be possible if we directly used the FORE controller to transfer data to the memory

of a remote machine.

It is instructive to compare these measurements with the raw performance of the un-

derlying FORE network controller. To obtain this best-case performance, we constructed

a simplified environment, ignoring issues of protection, sharing, and demultiplexing of in-

coming packets. The device was mapped into an address space, which accessed the network

directly. We removed interrupt handling costs as well, because the address space polls the

network constantly. Running two hosts in this configuration, we measured the time to do a

write operation at about 11 �s. Thus, our software implementation has added about 19 �s to

the write operation in order to multiplex multiple users and provide protected accesses. For

read operations the increased cost is greater (about 23 �s), because the interrupt handling

code is invoked twice, once on each end of the transfer.

One might ask whether a design optimized for cell-size writes suffers on larger block
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transfers, relative to a specialized block transfer primitive. To answer this question, we

measured our block transfer instructions (rwblk and rrblk) that transfer data from an

arbitrary-sized user buffer rather than a fixed set of registers. We measured the throughput

achieved for a 4K remote block transfer to be 35.4 Mbits/sec, compared to 34.7 Mbits/sec

using single-cell remote writes. Thus, a single-cell remote operation interface loses little

in the way of throughput relative to block transfer primitives.

The reason for the behavior of block transfers is the following. On the sending side,

only a single emulation trap is made for block transfers, compared to the multiple traps

needed for remote writes. However, the overhead on the receiving side is on a per cell

basis, regardless of the approach. This is necessarily the case because cells from a block

may be interleaved by unrelated cells from other hosts when they arrive at the destination.

Thus, any performance difference is only due to the decreased number of send-side traps,

which is small in our implementation. On the other hand, using the block transfer primitive

to transfer single cells leads to higher latency because of the overhead of pointer checking

inside the kernel.

4.4 Chapter Summary

In this chapter we have described the implementation and performance of the network

access model using software emulation on current generation processors and controllers.

Because of the simplicity of the model, we are able to provide very high performance,

flexibility, and protected user-level network access with minimal overheads. Our imple-

mentation experience confirms our belief that it is useful and feasible to support the notion

of remote memory on modern workstation clusters. Given next generation processors,

with demultiplexed I/O interrupts and special support for emulation code, as found in the

DEC Alpha [59], the cost of software emulation could be substantially lowered. Software

emulation has a flexibility advantage over a pure hardware approach because application-

specific operations can be easily added. Additional performance gains are also possible by

redesigning the network to use the memory or cache bus instead, as is done in dedicated

multiprocessors such as Alewife [2].

In the final analysis though, the network access model is only an intermediate step.

That is, the performance of the network access model is only important in terms of its

contribution to the overall performance of applications that use it. In the remainder of

the thesis, we discuss the impact of the network access model on distributed programming
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models and distributed systems.



Chapter 5

APPLICATIONS OF THE NETWORK ACCESS MODEL — RPC

5.1 Introduction

Remote procedure call (RPC) is the established programming model used in modern dis-

tributed systems. Building high-performance RPC systems is thus an important aspect of

distributed system design.

The purpose of this chapter is two-fold. One goal is to demonstrate that it is possible

to build an efficient RPC system using the memory-based network access model described

earlier. To this end, we describe the design, implementation, and performance of a prototype

RPC system, called RAPID. RAPID is prototyped on the DECstation 5000/200 on the FORE

ATM network running the Ultrix operating system. The implementation and performance

of the low-level remote memory primitives are exactly as described in Chapter 4.

A second goal for this chapter is to demonstrate that the choice of a network access

model can have a dramatic impact on the performance of distributed programming models

such as RPC. To this end, we compare the design and performance of RAPID with another

RPC system that we built, called FRPC [66]. We designed FRPC about three years ago

to study the limitations to latency on high-speed networks like ATM and FDDI compared

to traditional networks like Ethernet. FRPC was a highly optimized system built on a

byte-stream network access model using the same hardware and operating system software

subsequently used to host RAPID.

5.1.1 Structure of RPC Systems

Traditionally, RPC systems have been structured as shown in Figure 5.1a. Clients and

servers are placed on different machines; during the run-time binding process, the client

imports the interface previously exported by the server. RPC stubs create the illusion of

a simple procedural interface for the client and server. Stubs are application-specific and

depend on the particular service function that is invoked. Stubs use the RPC transport layer

to reliably transfer call arguments and results between the client and the server. Typically,
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the transport protocol used in RPC systems is a packet exchange mechanism, where a

response packet from the server acknowledges a call request from the client, and the next

call request from the client acknowledges the previous response from the client.

Conventional RPC design is layered. Even high performance RPC implementations

adhere to this layering principle (except, perhaps, to do upcalls from the device level

directly to the higher levels) [12, 58, 66]. For example, the stubs view the RPC transport

as a provider of reliable packets or linear memory buffers. The stubs translate between

user specified entities (integer, records, arrays) and the packets using marshaling code. The

transport layer is isolated from the network layer and interacts with it via a simple unreliable

packet transmission interface. Reflecting the layered implementation, addressing is done

separately at each level, as is input demultiplexing. For example, stubs use handles as

communication end points, the transport layer uses transport identifiers or ports as end

points, and finally the network layer uses network addresses for communications.

Client/Server

Network
Datagram

Stub

Transport

Figure 5.1a: Conventional

RPC System

Client/Server

Transport

Remote Memory

Stub

Figure 5.1b: RPC with Re-

mote Memory

Client/Server

Shared Memory

Stub

Figure 5.1c: RPC with

Shared Memory

What is essential to RPC, however, is not the layering, but rather the simple procedure-

call-like syntactic and semantic interface provided to the client and server code. This

interface can be supported on top of the remote memory abstraction.

RPC design using the memory-based model is shown in Figure 5.1b. Though layered in

principle, there is much more integration between the stubs, the transport and the network

(as described in detail in Sections 5.2 and 5.3). In particular, addressing and demultiplexing

are done in a uniform fashion (e.g., using <segments, offset> pairs). We view this as an

application of the principle of Integrated Layer Processing (ILP) that can be used to structure

communication protocols for better performance [19]. Some other examples of ILP are

combining data copying and checksum calculations in TCP/IP [17, 75], and exploiting
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application semantics to avoid extra copies of data for UDP/IP [44].

There are many similarities between the structure of cross-machine RPC using the

memory-based network access model and the structure of same-machine RPC on shared

memory (shown in Figure 5.1c). Consequently, techniques that yield good performance for

same-machine RPCs yield good performance in the cross-machine case as well.

Fast cross-machine RPC systems gain performance advantages by trying to reduce the

overhead of marshaling and data copying, protocol processing, and control transfer. The

next three subsections describe the design of RAPID in these areas and compare it to other

high performance RPC systems that use conventional techniques, e.g., FRPC.

5.2 Marshaling and Data Copying

Stubs are pieces of application-specific code that are generated to bridge the procedural

abstraction expected by the client and server and the abstraction provided by the transport

layer. Stubs use a process called marshaling to move procedure call arguments and results

between the application’s procedure variables and the transport layer’s memory buffers.

Related to the cost of marshaling is the cost of making the transport buffer available to the

network in a form suitable for transmission. We refer to collective process of marshaling

and moving data between the various layers of the RPC system as “data motion”. High

speed RPC systems try to minimize the cost of data motion to gain performance.

5.2.1 Data Motion in Conventional Systems

A complete transmission packet contains network and protocol headers, which must be

constructed by the operating system, and user-level message text, which is assembled by

the application and its stubs. Conventional RPC systems use many strategies for assembling

the packet for transmission, with the cost depending on the capability of the controller and

the level of protection required in the kernel.

Kernel/User Buffer Mapping

With a controller that does scatter-gather DMA, the data can be first marshaled in host

memory by the host (in one or more locations) and then moved over the bus by the controller.

In the absence of scatter-gather, the kernel must copy user data an extra time to make it

contiguous to the network and protocol headers before DMA can be started. Likewise, given
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a controller such as FORE’s that uses a FIFO, the straightforward technique of marshaling

the data into a user-level buffer and having the kernel copy it over to the controller requires

an extra copy.

One approach to reducing this cost, for example, the one used in the high-performance

Firefly RPC system [58], is to relax kernel/user protection and permanently map all network

buffers into user space and allow the user direct access. This is a viable technique if the

applications are trusted, or for inter-kernel RPCs.

Kernel Level Marshaling

For general-purpose time sharing systems, though, kernel/user protection is an important

consideration. For such systems, there is an alternative technique that retains full protection

without incurring the cost of extra copies. This technique, called kernel-level marshaling,

was used in the FRPC design.

In an effort to minimize copying of the call arguments, FRPC performs argument

marshaling in the kernel rather than in the user’s address space, as is conventional. To do

this, code is synthesized on the fly, which is then linked into the kernel and executed. Code

synthesis has been used in the past to generate optimized routines for specific situations to

achieve high performance [39, 45]. The focus here is slightly different: it is more concerned

with avoiding the copy cost rather than generating extremely efficient code for a special

situation.

At bind time, when the client imports the server’s interface, the client calls into the

kernel with a template of the marshaling procedure. The kernel directly supports simple-

valued types such as words, bytes, halfwords, and pointers to bytes. Using the template,

the kernel synthesizes a marshaling procedure. In many cases, marshaling is typically

simple and involves only assignments and byte copying [7]. Thus, the task of synthesizing

a procedure is nothing more than assembling the right sequence of primitive instructions.

The marshaling procedure contains code to check the validity of each input argument passed

at run time. This approach has the benefit that since the size of the request and reply are

known in advance, the more general multi-packet code path can be avoided if arguments

and results fit in a single network packet.

The kernel then installs the synthesized procedure as a system call for subsequent use

by this specific client. Thus, the stubs linked into the user’s address space do not marshal;

they merely serve as wrappers to trap into the kernel where the marshaling is done. A client
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RPC sees a regular system call interface with all the usual protection rules that go with

it. This approach has the benefit of performing the minimum amount of copying required

without compromising the safety of a firewall between the user and the kernel, or the user

and the network controller. However, this scheme does impose the overhead of probing the

validity of pointers before data can be copied. Further, there is a relatively heavyweight

trap into the kernel.

On the receive side, especially on the server, it is difficult to fully exploit the benefits

of kernel-level marshaling. This is because a server typically exports several procedures

with different types of arguments. Thus, it is often unclear which particular marshaling

procedure should be invoked. In such cases, a generic unmarshaling procedure is called,

which might make it necessary for the server stub to perform additional copies.

5.2.2 Data Motion Using Remote Memory

The cost of data motion in an RPC system is influenced by the network access model. An

advantage of the remote memory model, which provides protected, remote memory that

can be shared between a client and server, is that it is natural to extend to the cross-machine

case the optimization techniques used for high-performance same-machine RPC, such as

URPC [8].

Following the URPC approach, in our system the server exports stacks that are then

imported by clients at bind time. On an RPC call, the client stub picks an available stack

for the server and builds a call frame on that stack using the remote write operation. In

the absence of call-by-reference, the call frame is identical to that for a local call. There is

really no marshaling or demarshaling per se; data moves directly from source memory to

destination memory without unnecessary copying or buffering. (Using writable stacks to

simplify demarshaling can be done even without the remote memory model [37], however

doing so is more complex.) Once the stack is ready, the client activates the server by writing

a flag word in the server, for which the server polls. Call-by-reference is straightforward to

provide through the remote read and write primitives. In this case, the references placed on

the call frame must contain a segment descriptor and offset into an exported client segment.

The segment can be protected with read-only privileges against unauthorized server access

if necessary.

The technique of sharing a writable stack is most beneficial when the underlying

compiler and processor support separate argument and execution stacks. In this case, only
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the argument stacks are shared between the client and the server. Contemporary RISC

architectures and compilers, however, favor a unified argument and execution stack, which

would permit a malicious or incorrect client to crash the server. The execution stack

must therefore be protected during server execution. Our implementation allows efficient

revocation of segment write access (using the rr setprot call), enabling the server to

execute safely. The server exports each stack as a separate segment, write-protecting the

segment before an RPC begins. The standard argument checking that is performed by the

server is then adequate protection against ill-behaved clients.

It is important to note that data motion is kept to a minimum in the scheme described

above: data moves from source memory to destination memory without any extra copies

or page remapping overheads. A combination of features makes this possible. First,

each network transmission is a write request to a specific location and is therefore self-

identifying. In other words, buffering of data before demultiplexing is not required. Second,

the implementation takes care to avoid extra memory transfers by moving data from user

memory to user registers and thence to the outbound FIFO. In the absence of processor-

initiated DMA to the FIFO, this is the best possible scenario.

5.3 Transport

RPC systems have typically relied on reliable packet exchange protocol similar to the one

first used at Xerox [12]. The packet exchange protocol is layered directly over network

datagrams for communicating within the same physical network, or on top of internetwork

datagrams such as UDP/IP for communicating across multiple networks. The performance

of an RPC system is affected by the transport mechanism, which in turn is influenced by

the access model and the network type. We describe below some aspects of RPC transport

design as it relates to network access models.

5.3.1 RPC Packet Exchange

Modern LANs have low loss rates and the function of the transport layer is to provide an

efficient mechanism to cope with occasional data loss. Traditional RPC transports were

designed for the Ethernet, where typical RPC call arguments and results fit into a single

packet (about 1500 bytes). Consequently RPC protocols have been optimized for single

packet exchanges [12].
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In the standard RPC packet exchange protocol, the client-side transport sends a network

packet containing its arguments to the server. (In the common case, RPC arguments

occupy less space than what the network packet can support.) In the absence of any errors,

the server’s response packet containing the call results acknowledges the client’s request

packet. A subsequent call from the client acknowledges the previous server response packet

as well. Thus in the common case—arguments and results fit into single network packets

and there are few errors on the network—exactly two packets are exchanged per RPC. In

the uncommon case, when multiple network packets are required for sending arguments or

returning results, the RPC packet exchange protocol exchanges an acknowledgement per

network packet.

With the small cell size of an ATM network, however, data for typical RPC packets

may not fit into a single ATM cell. Thus, relying on a packet exchange (in effect, a cell

exchange) protocol is not optimal.

One alternative to exchanging cells is to rely on an intermediate ATM adaptation layer

(AAL) between the RPC transport and the ATM network layer. Recall from Chapter 4 that

the AAL consists of a segmentation and reassembly (SAR) sublayer and a convergence (CS)

sublayer that provides the logical abstraction of an unreliable datagram. The AAL accepts

RPC transport packets and breaks them up into cell-sized fragments that are individually

sent to the destination where they are reassembled into a complete RPC packet. Since

AAL does not provide reliability, an aggregate group of cells is treated as one higher-level

message with one acknowledgement at the RPC transport layer. Thus, the entire message

must be retransmitted even if only one cell is lost. But, if cells are rarely lost, this scheme

has the advantage of a straightforward implementation of the RPC transport at the expense

of a SAR layer. This was the approach taken in the FRPC design.

However, given the per cell cost of segmentation and reassembly processing, especially

in software, performance can be improved by bypassing the SAR and CS sublayers. Notice

that remote memory references are self addressing, i.e., they identify where incoming

data is to be stored. Thus, reassembly is obviated because the data is simply moved to

the right location a cell at a time without being reassembled into an intermediate buffer

and then moved, possibly to multiple discontiguous memory locations. Using unreliable

remote memory access, there is an alternative scheme that not only avoids the cost of SAR

processing but also avoids the cost of per cell acknowledgment that standard RPC packet

exchange would incur if used directly on a per cell basis. This scheme is based on the
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notion of blast protocols and selective acknowledgements [15, 18], and is used in RAPID.

A fixed number of cells (say N ) are grouped into an “acknowledgment unit”. These

cells are written to the remote site without waiting for an acknowledgement. Since ATM

networks guarantee cell sequencing from a particular source, the arrival of the last cell

indicates that the previous cells have either arrived or been lost. When the destination

detects theN th cell (or a timeout occurs), it writes a single cell at the source with a bit mask

indicating the cells it has received. The source then rewrites only the missing cells, if any.

The only challenge in this scheme is to ensure that the destination can detect whether a

cell has been written or not. Since each cell write is guaranteed to be atomic, it is sufficient

to detect if a particular word within a cell has been written. To detect if a particular word

has been written, the destination has to know in advance what the contents of that word is.

Thus the source first writes (to a fixed place in the destination) the contents of a fixed word

within each cell of the subsequent N cells. It then writes the N cells before waiting for

a write from the destination. Thus in the case where no cells are dropped, every group of

N cells requires a constant overhead (2-3 cells) as opposed to the 2N cells that would be

required if each cell were separately acknowledged.

5.4 Control Transfer

Context switching causes a significant portion of the overhead in RPC [58]; in addition,

there is a substantial impact on processor performance due to cache misses after a context

switch [49]. An RPC call typically requires four context switches: switching the client

out, switching the server in, switching the server out, and finally switching the client back

in. Two of these—switching the client or the server out—can be overlapped with the

transmission of the packet. Systems with high performance RPC usually have lightweight

processes that can be context switched at low cost, but unless there is more work to do in the

client and the server, or no work elsewhere, a process context switch usually occurs. The

DECstation 5000/200 running Ultrix has context switching times that can be significant

compared to the latency of a small packet and it is thus desirable to avoid this cost where

possible.

The RAPID implementation is entirely at user level and employs a user-level threads

package. To avoid the cost of context switching, we chose to spin wait the threads at user

level, relying on kernel time slicing for fairness among processes. This scheme clearly

favors latency over throughput, but blocking schemes could be used as well at the expense
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of increasing the latency by the cost of the context switches. Our implementation of the

network access model, as described in Chapter 4, is capable of transferring control to a

process on an incoming remote operation. This mechanism can be used instead of spin

waiting at the cost of increased latency.

FRPC also used spin waiting to avoid the context switch cost. However, this spin waiting

was done inside the kernel and FRPC had to ensure that the spinning did not extend past the

client’s time quantum if there were jobs in the run queue. The basic spin-waiting scheme

used in FRPC can be extended to block the caller without spinning if the expected round-trip

is greater than some threshold related to the context switch penalty. An estimate of the

round-trip could be obtained either statically using a user supplied hint, or dynamically, by

using past response times as an estimate. In general, this technique trades off throughput

for latency if there are processes on the run queue waiting their turn.

In contrast, spin waiting at user level is trivial to implement and requires no support from

the kernel. Further, the decision to spin wait or block can be driven by application-specific

knowledge about the completion time of requests.

To summarize, RAPID implemented on top of the remote memory model has the

following key features:

� The tight integration of RPC stubs, transport, and the network to simplify copying

and demultiplexing.

� Direct marshaling and demarshaling of data into the target address space as done in

URPC.

� A transport based on blast protocols and selective retransmissions instead of the

traditional packet exchange.

5.5 Performance

We describe the performance of FRPC and RAPID on DECstations 5000/200s. In both

systems, stubs were hand generated for the procedures that we measured and spin waiting

was used instead of blocking.

We measured the performance of RPC on two otherwise idle workstations connected

by a switchless ATM network. The results are shown in Table 5.1. The column marked

Minus shows the time required for an RPC involving two integer arguments and the return
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Table 5.1: RPC Performance with Different Network Access Models

Cross-Machine RPC Time (�s)
System Minus MaxArg

RAPID 93 513
FRPC 167 675

of an integer result; the computation time required to calculate the result is negligible, and

the data exchanged between the hosts fits in a single ATM cell. In both systems, this RPC

takes a fast path and is an indication of the fastest speed possible with the two RPC systems.

Notice that the time for RAPID is considerably smaller. The column marked MaxArg

shows the roundtrip time to make an RPC to the server with 1500 bytes of data and to get

an integer result back. It must pointed out that the performance of RAPID for larger data

transfers is sensitive to the choice of N , the “acknowledgement unit”. An earlier version of

RAPID, with N = 6, gave slightly worse performance than the current version, which uses

N = 16.

We attribute the higher performance of RAPID to several factors related to the use of

the remote memory model.

First, the use of the memory-based network access model substantially reduces the

interaction with the kernel and obviates the use of the ATM device driver. The RAPID

RPC transport mechanisms directly perform the low overhead remote writes. In contrast,

traditional RPC implementations, like FRPC, will typically require much more interaction

with the kernel and the device driver.

Second, RAPID avoids data copying without the complexity of page remapping or

kernel-level marshaling used in traditional systems to get good performance. RAPID can

avoid this because the network access model supports addressing and demultiplexing very

efficiently. This also avoids the cost of going through the SAR layer as well.

Finally, since the network access model allows complete protected user-level access to

the network, we avoid kernel context switching overheads by spin-waiting at user level.

This avoids the need to interact with the kernel scheduler.
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5.6 Chapter Summary

In this chapter we have demonstrated that the memory-based network access model is well-

suited for implementing remote procedure call mechanisms, and shown that an RPC system

built on this substrate has better performance than an equally aggressive RPC system built

on top of a conventional network access model.

However, a more fundamental question we have not yet considered is whether RPC is

indeed the correct distributed programming model. While it is the case the RPC has been the

model of choice in past and contemporary distributed systems, we will see in the following

chapter that there may be environments where it is not beneficial to use cross-machine

RPCs. However, there are situations where RPC will continue to be relevant, and in these

cases, memory-based network access models and RPC systems designed along the lines of

RAPID show considerable promise.



Chapter 6

APPLICATIONS OF THE NETWORK ACCESS
MODEL — MULTICOMPUTING ON A WORKSTATION CLUSTER

6.1 Motivation

Recent advances in processor and network performance have increased the attractiveness

of parallel computing on workstation clusters used as multicomputers. The processors in

current high-end workstations are competitive with the fastest available uniprocessors, and

more than competitive with the processors found in tightly-coupled machines. Also, the

new generation of local-area networks narrows the gap with the specialized interconnection

networks found in more tightly-coupled machines. For example, current ATM networks

run at 155 Mbit/sec with 2 Gbit/sec being promised by the mid ’90s, and are scalable in the

sense that the aggregate bandwidth can be much greater than the link bandwidth. The wide

deployment of these elements and the corresponding economies of scale are likely to have

two related effects. First, it becomes possible to use a cluster of preexisting workstations

connected by a high-speed network as a cost effective, loosely-coupled multicomputer

for running parallel applications. Second, it also becomes increasingly attractive to pur-

chase new commodity workstation and networking gear for dedicated use, rather than a

tightly-coupled system. Such loosely-coupled structures built from commodity parts offer

advantages over dedicated multicomputers, such as the Intel Paragon [36] and Thinking

Machines CM-5 [67]: commodity parts are lower in cost and they can be flexibly scaled

and upgraded.

Workstation clusters used for distributed applications rely on heavyweight client/server

models and message-based (RPC) communication while parallel applications favor simpler

models that involve more direct inter-processor data access. For instance, based on the

frequency of calls, and the actual work done by each call, RPC overhead of a few hundreds

of microseconds may be considered acceptable. Realistic parallel applications, on the other

hand, would require network accesses to take tens of microseconds. Thus, for workstation

clusters to facilitate parallel programming, they should support finer-grained, lower-cost

network access.
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This chapter describes a prototype multicomputer based on a workstation cluster and

our initial experience with using it.

6.2 Implementation of a Workstation-Cluster Multicomputer

We implemented our prototype using four DECstation 5000/200s connected by a FORE

ASX-100 ATM switch with four ports, each running at 140 Mbit/sec. Before cells can

be routed through the switch, virtual circuits have to be established between the two

communicating entities. In our multicomputer, between each pair of hosts, we set up a

permanent virtual circuit (PVC) at boot time. Data destined to several remote memory

segments on a single host use the same virtual connection identifier.

Signaling software in the switch allows virtual circuits to reserve a fraction of the link

bandwidth. In our prototype, PVCs are set up to reserve 50% of the link bandwidth. We

expect this level of bandwidth reservation to provide adequate protection against cell loss

due to congestion. In more advanced switches, e.g., AN2 [4], with hardware flow and

congestion control mechanisms, bandwidth reservation may not be needed for protection

against cell loss.

Given this level of guarantee against cell loss due to congestion and low fiber error

rates, it is feasible for the multicomputer to directly use the memory-based network access

model as its sole means of communication. Thus, we believe that with little additional

mechanism, it is possible to adequately support the needs of parallel applications. Ideally,

we do not expect programmers to directly use the network access model to write their

parallel applications on the cluster. That is the task of a protocol compiler [29]. This

notion is similar in spirit to the idea of using RPC stub generators to hide the details of

marshaling from users. In general terms, a protocol compiler analyses a parallel application

for communication and computation phases. It then generates communication instructions,

e.g., remote reads and writes, at appropriate locations to minimize data and communication

overheads.

Our cluster-based multicomputer has good performance and it is useful to compare it

with dedicated architectures, such as the CM-5, the Intel Touchstone DELTA, and the Intel

Paragon, which is a successor of the DELTA.

Table 6.1 compares the (one-way) latency of sending small amounts of data in the

various systems. The average time required to perform a remote write of a given size

is shown in the first row. This includes the latency introduced by the switch, which we
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Table 6.1: Comparative Communication Latencies in Multicomputers

Latency (�s)
System 40 bytes 80 bytes
DECstation 5000/200 ATM 37 55
CM-5 (CMMD) 12 16
Intel Paragon (PUMA OS) 55 55
Intel Touchstone DELTA 71 75

Table 6.2: Comparative Throughputs in Multicomputers

System Throughput (Mbytes/s)

DECstation 5000/200 ATM 4.3
CM-5 (CMMD) 24
Intel Paragon (PUMA OS) 165.0
Intel Touchstone DELTA 10.0

measured to be about 7 �s for each cell. However, this is not a fundamental limitation of

ATM switches. We expect that as the technology matures, switching times can be brought

down to a few hundred nanoseconds with faster datapaths and virtual cut-through. We did

not perform measurements on the CM-5 and the Intel machines, but use values reported

elsewhere [43, 69, 73].

Row two shows the one-way cost of sending data to a pre-allocated buffer using the

CMMD scopy routine, which is comparable in functionality to a remote write [69].

Row three represents the performance of send/receive using the facilities of the PUMA

operating system [73]. At the time of writing, this represents the best performance reported

in the literature. Row four represents send/receive performance reported by Littlefield [43].

Send/receives have an overhead cost for buffer setup and flow control associated with them.

The table indicates the performance including the startup cost that is needed for the 3-phase

protocol to set up buffers.

Table 6.2 compares the sustained throughput achieved by the various systems. Our

implementation overlaps multiple write requests; switch overhead is included in the mea-

surement. Once again, we did not measure the CM-5 and the Intel figures, but quote from

the literature.

In relation to the other systems, our implementation has traded off bandwidth for latency.
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We chose this bias because we expect applications to use many exchanges of small amounts

of data rather than being throughput intensive. However, it is important to recall from

Chapter 4 that our implementation achieves about 70% of the throughput that the raw

controller hardware is capable of providing.

6.3 Performance of Applications on the Workstation-Cluster Multicomputer

To test the effectiveness of our cluster-based multicomputer and the network access model

as a base for building parallel applications, we report on the performance of two parallel

programs. These applications were translated from message passing versions that ran

on dedicated multicomputers such as the Intel Cube and the CM-5. We did not have a

protocol compiler capable of generating remote reads and writes and so the applications

were translated by hand.

6.3.1 Ising Model

The first application is an optimization problem that arises in the Ising model, which is used

to model the behavior of crystal lattices. Each lattice atom has a characteristic value called

“spin”. Atoms interact with their nearest neighbors. Each interaction has an “interaction

coefficient”. The lattice as a whole has an energy which is a function of the spins and

the interaction coefficient. The objective is to assign spins to the atoms to minimize the

total lattice energy. The problem is known to be NP hard, so our particular solution uses a

heuristic.

Our program has an optimizer that scans the grid and changes spins if doing so would

lower the total energy. The optimizer contains two loops that are written using red/black

coloring [54], a common parallelization technique used in scientific applications.

The grid is spatially distributed amongst the processors’ memories such that each

processor has two nearest neighbors. The boundaries of the grid contain data that is shared

between neighboring processors. During program execution, spin values of atoms that have

changed and are on adjacent processors have to be exchanged. The processor that changed

the spin writes the new values to the adjacent processor using remote writes. At the end of

each sweep through the grid, adjacent processors synchronize with each neighbor using the

compare-and-swap primitive.

Table 6.3 indicates the observed speedup of the multi-node algorithm relative to an
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Table 6.3: Ising Speedup

Speedup
Number of Nodes Grid Size

20 X 20 40 X 40 80 X 80

2 1.5 1.8 2.0
4 1.9 3.0 3.6

otherwise identical single-node solution that uses local memory and no synchronization.

For an N X N grid, evenly distributed among P processors, the computation per processor

on each sweep is proportional to N

2

=P and the data exchanged is proportional to N .

For small grid sizes, the time to perform the floating-point computation to calculate the

new lattice energy is small relative to the time required to communicate the spin values.

Consequently, speedups are modest with increasing processor count. Our measurements

indicate that 40X40 is the smallest problem size for which our implementation can be

expected to achieve good speedups.

6.3.2 Circuit Simulator

The second application we used was a general-purpose, gate-level circuit simulator that

uses a conservative (Chandy-Misra) distributed simulation algorithm. The simulator reads

a circuit description and distributes the gates of the circuit among the various nodes. Each

gate input is modeled as a queue of events into which output gates write their signal values

as the circuit is being simulated.

Each node performs a simple simulation loop. For each gate on the node whose inputs

are ready, it calculates the output signal value based on the type of the gate. The output

signal values are then fed to the appropriate input gates, some of which might be on a

remote node. Most of the parallelism of the application is achieved because the different

nodes may proceed independently if their gates have valid inputs.

The simulator is a natural candidate for exploiting remote memory, e.g., the current

version has a much simpler communication interface than the message-based version from

which it was ported. Gates whose inputs are fed by remote gates are located in an exported

segment that is imported by the remote gate. New signal values are simply written by using

a remote write.

Table 6.4 shows the results of running the simulator on a 32-bit adder circuit. Perfor-
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Table 6.4: Simulator Speedup

Speedup
Number of Nodes Random Linear

2 1.7 1.8
4 3.4 3.5

mance from two distribution of input gates are shown: linear and random. In the linear

distribution, with P nodes and N gates, the first N=P gates are given to the first node, the

next N=P are placed on the second one, and so on. In the random distribution, the gates

were distributed using a random number generator. The particular circuit we used is quite

modest and has about 225 gates.

6.4 Chapter Summary

Based on our experience, we believe that the remote read/write model is well suited for

building parallel applications. There are two interesting issues to consider here regarding

the usefulness of the model.

The first relates to the classic debate between shared-memory and message passing

paradigms for programming parallel applications. The network access model that we pro-

pose is similar in spirit to shared-memory primitives. It is sometimes argued that typical

shared-memory programs, and thus, by extension, applications written using the network

access model, may be harder to program than message passing programs due to synchroniza-

tion constraints. That is, while message passing programs get automatic synchronization as

a side effect, shared-memory programs have to explicitly use synchronization primitives.

However, despite this seeming disadvantage, many programmers still prefer the shared-

memory model because it offers simple semantics and the performance advantage of using

only as much synchronization as necessary. (We will return to the issue of synchronization

in greater detail in Chapter 7 when we discuss the structure of distributed systems using

the memory-based network access model.) Further, with mechanical aids like protocol

compilers, the distinction between shared-memory and message passing primitives might

be less important in the future.

The other issue is whether the primitives provided by our model are inferior in some

ways to the primitives in shared-memory machines. Our prototype has some features
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that could be viewed as inconvenient compared to dedicated shared-memory architectures.

First, our prototype, in contrast to true shared-memory machines, provides remote memory

access instructions that are slightly different from those used for local memory. This is a

clear tradeoff that allows us to use commodity parts at low cost and with high flexibility. In

contrast, machines like SHRIMP 1 provide uniform local and remote access instructions, but

at the expense of customized hardware [13]. Second, our model does not provide automatic

memory coherence as most shared-memory machines do. Once again, we believe this is a

reasonable tradeoff of performance for functionality. Rather than mandate coherence that

would be difficult to efficiently support on commodity workstation clusters, we provide

users high performance instructions to keep memory consistent at the application level.

At present, our experience with the scaling properties of our workstation cluster and

the network access model is limited. Remote reads and writes are point-to-point and thus

communication costs could grow quadratically with the number of nodes. However, relative

to message passing, which is also point-to-point, we expect remote reads and writes to scale

equally well.

1 Strictly speaking, SHRIMP is not a shared-memory machine, but it has many similar features.



Chapter 7

RESTRUCTURING SERVICES IN A DISTRIBUTED SYSTEM

As we have mentioned earlier, the hardware base for distributed systems has changed

significantly over the last decade. Advances in processor architecture and technology have

resulted in workstations in the 100+ MIPS range. As well, newer local-area networks such

as ATM [48] promise a ten- to hundred-fold increase in throughput, much reduced latency,

greater scalability, and greatly increased reliability, when compared to current LANs such

as Ethernet.

Previous chapters have considered a new network access model tuned for next-generation

networks. We have also shown that this model can be used in two ways: (1) to support

parallel programming on local-area workstation clusters using techniques such as proto-

col compilers, and (2) to build efficient RPC systems to support distributed applications.

In other words, though the technology had changed dramatically, we were considering

traditional system and application structures on top of a new communication model.

In this chapter we make a more radical departure, and consider a novel organization

of distributed systems made possible by the memory-based network model and the new

technology. It is our contention that new network and processor technologies will permit

tighter coupling of distributed systems at the hardware level,and distributed system structure

should change as a result in order to benefit from that tighter coupling.

Distributed systems are typically structured as clients and servers that communicate

using RPC- or message-based communication. Such RPC-based client/server systems are

highly tuned and relatively efficient for current-generation networks, which are relatively

slow, relatively unreliable, and permit only a loose coupling between distributed compo-

nents. However, such protocols and structures may well be sub-optimal for next-generation

networks, for which these assumptions no longer hold.

The rest of the chapter is organized as follows. We first describe the structure of RPC-

based distributed systems and the limitations of this structure in newer LAN environments.

Next, we discuss the alternative structure for distributed services. The alternative structure

is based on the underlying network access model described in Chapter 3. We present data



72

from a simple name server application and from measurements of NFS [56].

7.1 The Trouble with RPC

RPC is the predominant communication mechanism between the components of contempo-

rary distributed systems1. For this reason, an enormous amount of energy has been devoted

to increasing its performance [37, 58, 66, 70]. Still, RPC times are substantial compared to

the raw hardware speed. While this cost is due in part to the latency of network controllers

and the software protocols used for network transfer, it is due as well to the semantics of

RPC.

RPC performs two conceptually simple functions:

� It transfers data between a client’s address space to a server’s address space. De-

pending on the implementation, data transfer may be costly due to the (sometimes

overly general) stubs required to marshal and unmarshal parameters for transmission,

and due to the (sometimes repeated) copying of data between the client or server and

the wire.

� It transfers control from a client thread to a server thread and back. The work to

perform this control transfer involves at least: (1) blocking the client’s thread and

rescheduling the client’s processor, (2) processing the RPC message packet in the

destination operating system, (3) scheduling, dispatching, and executing the server

thread, (4) rescheduling the server’s processor on return by the server thread, (5)

processing the reply packet on the client’s operating system, and (6) scheduling and

resuming the original client thread.

These functions of data transfer and control transfer are fundamentally bound together in

the RPC model. Thus, to copy just one byte of data from client to server, an RPC system

must perform the control transfer (e.g., the thread scheduling and management in steps 1,

3, 4, and 6 above) as well, which has little to do with the transfer of that byte. Even in

high-performance RPC systems, control transfer can take a substantial amount of time. For

example, measurements of Firefly RPC, a highly optimized system, showed that control

transfer was responsible for 17 percent of the overall time of an RPC with no arguments

1 In this context, we consider RPC and message passing to be essentially identical.
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Table 7.1: Summary of NFS RPC Activity

Number of Percentage of
Activity Calls Total

Get File Attribute 8960671 31
Lookup File Name 8840866 31
Read File Data 4478036 16
Null Ping Call 3602730 12
Read Symbolic Link 1628256 6
Read Directory Contents 981345 3
Read File System Stats. 149142 0.5
Write File Data 109712 0.4
Other 109986 0.3

Total 28860744 100

and no results, and 7 percent of the overall time for a call with no arguments and a 1440

byte result [58]. Spin waiting, e.g., as done in our prototype FRPC and RAPID systems,

may not be a feasible option in many environments.

Given this problem, we should ask whether distributed applications require a single

primitive that unifies data and control transfer. To examine this question for one application,

we consider NFS, which is probably the most common example of a distributed service

in daily use. We instrumented and measured the primary NFS file server for a collection

of 80-100 workstations in our department. Most of our workstations have local disks

where individual user files are stored. The file server exports X-terminal fonts, source

trees for systems like the Ultrix kernel and GNU distribution, and the /usr partition

containing executable binaries, in addition to hosting a small complement of users. The

exported partitions have a mix of read-only and read-write files, but with a relatively higher

proportion of read-only files. Table 7.1 shows an analysis of operations performed at the

server over the course of several days. It is significant to note that for the most part (i.e., for

all rows except the “Null Ping”), the goal of the RPCs in Table 7.1 is to transfer data—either

file data or file metadata—between the server and the client. If that data could be transferred

directly between the server and the client, then we could avoid control transfers. Thus,

ignoring the issues of synchronization for the moment, these RPCs potentially could be

replaced with simpler mechanisms that involve only transfer of data, if the system were

structured in a way that facilitates such transfers.

Using an RPC scheme to perform simple data transfers has two bad effects. First, there
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Table 7.2: Breakdown of NFS RPC Traffic

Activity Control Traffic Data Traffic Ratio of Control
(MBytes) (MBytes) to Data

Get File Attribute 214 481 0.44
Lookup File Name 246 761 0.32
Read File Data 185 2176 0.09
Read Symbolic Link 59 19 3.10
Read Directory Contents 54 1862 0.03
Read File System Stats. 4 3 1.33
Write File Data 4 271 0.01

Overall Total 766 5573 0.14

is the overhead of scheduling and procedure invocation. Further, RPC-style communication

imposes a secondary overhead, because it creates unnecessary network traffic in addition

to the actual data bytes being transferred. This additional data that is transferred due to

RPC semantics can be a non-trivial fraction of the total data exchanged. We illustrate this

phenomenon by considering the network traffic between an NFS client and the server. We

classify the activity into “data traffic” and “control traffic”. Data traffic represents the data

that is required by the particular distributed file system protocol. That is, if there was

a communication primitive that permitted direct and protected data transfers from server

memory to client memory, this is the amount of data that NFS would have to transmit.

Control traffic represents additional data that is transmitted because NFS uses RPC as

the communication primitive. This classification is significant, because it identifies the

amount of traffic that can be eliminated by avoiding an RPC or message passing style of

communication with its integrated transfer of control and data.

Table 7.2 shows the breakdown of the data and control portions of the client/server

traffic for the snapshot shown previously. Note that this is a cumulative picture of the

system after it has been running for a long time. We have not included the overhead of

network protocol specific headers. Overall, the control traffic due to the RPC model is

about 12% of the total.

An alternative model that reduced control traffic would, in turn, reduce processing on

the server side. Most interactions between the client and the server involve only data

accesses that should not require much server involvement. If we can eliminate both the

traffic and the server involvement, we have the potential to improve scalability by lowering
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both network and server load. That potential can be realized if we use the memory-based

network access model and a new structure for distributed applications.

7.2 An Alternative Structure

In this section we describe an alternative structure for distributed applications. We briefly

outline the goals of our design and the environment in which we expect to run. We then

describe the structure of distributed applications using our memory-based model of network

access.

Simply stated, our objective is to improve the performance and scalability of distributed

services. To accomplish this, we consider three important design goals. First, the commu-

nication system should avoid bottlenecks that might hurt service request times. Second, the

load on server machines should be minimized, using client machines for processing where

possible, in order to improve scalability. Third, the load on the shared network should be

minimized, again to improve scalability. Modern networks using switched point-to-point

links can tolerate loads better than bus-based networks like Ethernet, because multiple links

can be aggregated between nodes to provide increased capacity when required. However,

loading at switches is a potential performance problem that we would like to reduce.

Our design is based on certain assumptions about the underlying workstation and net-

work environment that we expect to use. We wish to build tightly-integrated distributed

system clusters, consisting of a modest number of high-performance workstations commu-

nicating within a single LAN-connected administrative domain. Newer LAN technologies

include hardware flow-control and bandwidth reservation schemes that can guarantee that

data packets are delivered reliably [4, 5]. We therefore feel justified in treating data loss

within the cluster as an extremely rare occurrence, and regard it as a catastrophic event. This

permits the use of simplified communication primitives, such as our simple read/write prim-

itives; a request-response protocol, e.g., RPC packet-exchange, is not needed for reliability

and need be used only if a response is required by the sender.

7.2.1 Structuring Applications

The objective of our structure is to separate control transfer and data transfer in a distributed

service, in order to remove superfluous cross-machine control transfers, while optimizing

data movement. We use the network access model described in previous chapters to effect
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this separation. Our structure has four important components:

� Clients and Servers. The system is structured as clients and servers, as in existing

distributed systems. Clients and servers exist on different machines within the cluster,

connected by a high-speed local-area network.

� Specialized Data Transfer Mechanism. We use the specialized communication prim-

itives described in previous chapters to support direct, protected, remote memory

access.

� Server Clerks. Each distributed service has server clerks that execute on the client

machines. All client-server interactions are done through local cross-address space

communication between the client and the server clerk. Server clerks do not trust their

clients; however server clerks and servers are considered part of the same service,

and trust each other.

� Clerk-to-Server Data Transfer. Clerks and servers can cache data if necessary. Com-

munication might be necessary between clerks and the server to keep the caches con-

sistent. Whenever possible, this communication is done using the remote read/write

data transfer mechanism.

Figure 7.1 shows the organization of a distributed service along these lines. Notice

that for the most part, control transfers are restricted between a client and its server-

clerk. That is, control transfers are primarily intra-node cross-domain calls, which have

been shown to be amenable to high-performance implementation [7, 42]. Notice also

that our organization maintains the firewalls between untrusted clients and services and

the abstractional convenience of procedural interfaces, without relying on conventional

mechanisms like RPC for cross-machine communication.

There are obviously many possible variations to the scheme shown, which we do not

discuss explicitly; for example, in some cases it might be possible to eliminate the server

completely and have the state maintained by the clerks alone.

Our structure bears resemblance to a traditional distributed system that does caching,

however, it has some distinctive features. First, we use local caching to reduce cross-

machine communication (this is similar to earlier systems). Second, we specifically elim-

inate cross-machine control transfers in many cases where the clerk can satisfy the client
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Figure 7.1: Structuring a Distributed Service Without RPC

request by data transfer only. Finally, we simplify data-only communication in both direc-

tions; that is, it is possible for the server to eagerly update data on its client-side clerk, or

for the clerk to eagerly push data to or pull data from the server.

Our use of clerks has much in common with earlier systems, e.g., Grapevine [11]. For

example, the client is not aware that it is talking to a server’s clerk. It sees the same abstract

RPC interface, albeit local RPC. However, there are some important differences in our use

of clerks. Critically, in traditional organizations, clerks communicate with servers using

cross-machine RPC, in contrast to our organization, which explicitly avoids its use where

possible. In our design, clerks and servers have direct (remote) access to each other’s

memory and are consequently more tightly integrated with each other.

In our system, the state of the server is distributed and cached locally. Thus, there is

a cache coherence and consistency issue that needs to be addressed if client requests are
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to be correctly satisfied. While the details of the coherence protocol are not significant,

it should be noted that we do not require a broadcast capability from the network or the

communication mechanism. We do not believe there is one single cache coherence policy

that is appropriate for all services. Our structure permits an individual service to use

schemes that are most convenient for that service.

In the usual case, we expect the communication between clerks and the server to

involve only one-way transfer of data. Since there is no transfer of control to generate

responses or acknowledgments on the server, we expect server load to decrease relative to

a request-response model.

7.2.2 Locating Remote Data

A key feature of our organization is that the parts of the system that are distributed across

the network are parts of the same application. Thus, we can exploit application-specific

information to optimize the cross-machine transfer of data and control. For example,

the server and server-clerk understand the organization of each other’s data structures: a

server-clerk can read and possibly modify the server’s data structures, and vice versa. (In

Section 7.3.1 we show a particular organization of data that allows this kind of access.) This

is in contrast to traditional organizations, which typically cannot exploit such knowledge,

because the distributed components are different applications separated from each other

through message exchanges.

7.2.3 Synchronization

The system structure we propose has several options for handling synchronization issues

that commonly arise in building distributed systems.

The first option is that in certain situations we can do without synchronization at all.

For instance, consider the case of load balancing in a workstation cluster. Each workstation

could update a shared variable with its current load using remote writes. Other workstations

would read this value and take appropriate load balancing actions. In this situation, the

exact value of the load seen by a reader is not of significant concern, because it is being

used as a hint. A similar solution applies in other situations in distributed systems where

hints are used.

Often, hints alone will not suffice. In some of these cases, one can exploit certain

atomicity properties of the communication model for achieving synchronization. For
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example, we mentioned earlier that single-word local memory access are atomic with

respect to remote memory accesses. This property can be used to ensure, for example, that a

flag word in a record is atomically updated. This allows a sufficient level of synchronization

in cases where there is single writer and multiple readers. In fact, we use precisely this

mechanism in the implementation of the name server described in Section 7.3.1.

A third option is to use the synchronization provided by the CAS operation supported

by the network access model. This primitive is sufficiently powerful to build higher level

synchronization primitives.

A final option is to use the control transfer option supported by the network access

model to implement RPC-like synchronization semantics. In other words, by providing

a mechanism to implement RPC-like behavior, we allow applications to use the implicit

synchronization inherent in RPC. We should note in passing that, traditional organizations,

with their exclusive reliance on RPC semantics, offer only a single option for synchroniza-

tion. Unfortunately, this option has performance disadvantages that cannot be avoided in

current systems.

7.2.4 Security

In the new organization, clients access the services of the clerk using local RPC, which

maintains complete protection firewalls. Thus, clients cannot damage servers or their clerks.

Further, our network access model based on remote segments is secure under the

assumption that the kernels and privileged users on each machine are trusted. With this

assumption, it possible for servers and server clerks, which execute on different machines,

to trust each other. This might appear to be a security flaw in the design, but it need not be

so. For instance, many environments routinely share files through NFS servers with exactly

the same guarantees.

However, there are environments where such trust may not be warranted. Distributed

systems running in these environments have traditionally used encryption techniques to

ensure authentication and security [10, 63]. The underpinning for such schemes is that

data is encrypted and decrypted using secret or public key schemes. The choice of the

particular communication primitive—RPC or remote memory—is irrelevant. With the

memory-based access model, this implies that each read and write has to be encrypted and

decrypted. The software emulation technique that we use in our implementation will not

provide adequate performance in this case. However, it is feasible to do encryption and
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decryption in hardware. In fact, the AN1 controller [57] has mechanisms to decrypt and

encrypt data using different keys as data is transmitted or received. Thus, we expect that

with suitable hardware support, the network access model and the structure that we propose

can be used in a secure fashion.

7.2.5 Heterogeneity

It might appear that the proposed structure and the memory-based network access model

rely heavily on the existence of a set of homogeneous machines. In fact, this need not be the

case. The most common case of heterogeneity— different byte orders—is straightforward

to accommodate as a simple extension to the current implementation of the network access

model. Recall that since we use programmed I/O to move data between the controller FIFO

and memory, byte swapping can be readily performed. This scheme requires a bit in each

incoming request to decide whether to swap or not. Even with a hardware implementation

of the model, this functionality can be provided. In fact, even very early network controllers,

such as the Ethernet LANCE, have a facility to swap bytes during data transfers between

host memory and the network [1].

Other kinds of heterogeneity, such as different word sizes or different floating point for-

mats, are more difficult to deal with. We expect that some form of presentation conversion,

as found in RPC stubs, will be required before applications can access the data sent from a

heterogeneous machine.

7.2.6 Cache Consistency and Recoverability

Our structure encourages local caching of data and state, and thus cache consistency

mechanisms and recoverability from machine crashes are important concerns. However,

these issues are independent of whether we use our structure or a traditional RPC-based

structure. For example, many file system designs, e.g., Sprite [52], SNFS [62], and

AFS [34], which use RPC, require mechanisms for recoverability and cache maintenance.

In traditional RPC-based distributed systems, the RPC runtime and transport implement

timeout and exception mechanisms to automatically notify the user of remote machine

failures. It might appear that in our organization, fault-tolerance might be a difficult goal

to achieve. In fact, while the read/write primitives by themselves do not provide fault-

tolerance, they can be used by a language or runtime system to provide notifications of

remote machine failures.
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The key distinction between RPC-based services and our organization is that RPC-based

systems integrate fault-tolerance with data and control transfer. In our organization, the

communication primitives by themselves do not provide fault tolerance, but they can used

with timeouts to provide the required level of failure protection. For example, a service

that required fault tolerance could implement a periodic remote read request of a known

(or monotonically increasing) value. Failure to read the value within a timeout period

can be used to raise an exception. Notice also that in both approaches, the fundamental

mechanism needed for failure detection is timeouts. Thus, as long as the system supports

efficient timeout mechanisms, we expect comparable functionality can be achieved with

either approach.

7.3 Example: A Simple Name Server

To gain experience with our restructuring strategy we performed two studies. In the first,

we implemented a name server that is relatively simple, but which exposed us to some of

the implications of the new structure. In the second study, we estimated the performance

improvement of minimizing control transfer in a traditional distributed file system. This

section describes the first of these experiments, and the lessons we learned from it. The

following section describes the second study.

For the future, we expect distributed systems based on our structure to run on workstation

clusters on highly reliable networks. For the purposes of our experiments, we used a testbed

that behaved like our target environment. Our testbed consists of a pair of DECstations

connected to a switchless ATM network. Being a private, isolated network, the environment

is practically error free and meets our assumptions concerning the processor and network

environment.

7.3.1 Design of the Simple Name Server

Recall from Chapters 3 and 4 that our communication primitives rely on named segments.

Users export segments by name for other users to subsequently import. An owner of the

segment may also revoke a segment (i.e., make it unavailable). The purpose of the name

server is to maintain the registry of segment names and information so that importers and

exporters can communicate.

The name server is logically structured as a centralized service, but it is physically
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organized as a distributed collection of clerks, one per machine. Unlike the organization

shown in Figure 7.1, there is no centralized server. Communication between the clerks

implementing the distributed name service is done using the remote access primitives

themselves. Certain well-known segment names have been reserved on each machine to

allow the name service to bootstrap itself.

The name server implements procedures to add information about exported segment

names, to lookup name information, and to delete names. The name server is trusted and

privileged; its clients are not ordinary users but kernels. The relationship between a user

exporting or importing a name, the kernel, and the name server is described below.

A user exports a segment by name by making a kernel call, which is turned by the kernel

into an ADDNAME RPC to the name service. This RPC is serviced by the local clerk of

the name service, which enters the relevant information into its name registry. A segment

import by a user results in a kernel call, which in turn makes a LOOKUPNAME RPC to the

name service. Similarly, segment names that are deleted by users result in a DELETENAME

RPC.

Each time a segment is exported, the kernel assigns it a monotonically increasing

generation number. Generation numbers accompanying each remote request allow the

kernel to disallow operations on stale segments. Generation numbers allow a simple

implementation of the delete operation within the clerk. A delete operation merely marks

the entry invalid in the local cache. There are sufficient bits in the generation number so that,

even under heavy load, it wraps around slowly enough to allow name clerks considerable

latitude in propagating deletions.

Name additions are handled slightly differently from deletions. One option we consid-

ered was for the clerk on the exporter’s machine to propagate the name to each of the other

clerks. Thus, a subsequent LOOKUPNAME RPC can be satisfied by a simple local lookup.

Unfortunately, this can limit the scale of the name service, because it involves writes to all

remote machines, most of which may not require the name in any case. A better option,

and the one we have implemented, is for the clerk on the importing machine to do a remote

read operation to retrieve the name.

A name server clerk periodically refreshes its cache of imported names. At the end

of each refresh operation, imported entries that are no longer valid are purged from the

name cache and from the kernel’s tables. Thus, a lookup operation after a cache refresh

will cause a remote read to get the most up-to-date information. Also, after a refresh (but
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not necessarily before), remote operations using stale entries will fail locally at the source

allowing the source a chance to recover. Further, the source can timeout on a read that

uses stale information and redo the import operation. In addition to these mechanisms for

coping with stale name entries, users can force a specific import operation to do an explicit

remote lookup.

7.3.2 Implementation

Name clerks are created at boot time. When each name clerk is started, it exports a well-

known segment granting write privileges to other clerks. The kernel treats this export

operation as special and uses it to update the in-kernel export segment table against which

incoming remote operations are checked. After a name server clerk has exported its

segment, it imports the well-known segment from each of the other machines on which it

expects to do lookup operations.. Once again, this import operation is simply for the kernel

to update its information of imported segments.

Each clerk’s well-known exported segment is used as a registry to hold information

about other named segments. The registry is organized as an open-addressed hash table.

When a user exports a segment, the information about the segment is hashed by name

into the clerk’s hash table. Each clerk uses the same hash function. Thus, unless there

are collisions, information about a particular name will be in the same position on all the

clerks. This is a convenient performance optimization as described below.

In response to an ADDNAME RPC from the kernel, the clerk adds the information about

the exported segment into its hash table using local memory operations. Subsequently,

a remote importer, via a kernel call, can contact its local clerk, and present a name for

retrieval. The clerk first checks in its local table for the appropriate name. If it finds it,

the information is returned to the kernel, which updates its tables and returns a handle to

the user who made the import call. If the clerk’s local lookup fails, it uses a user-supplied

hint, specifying a remote machine, to perform a read operation on the appropriate remote

clerk’s well-known segment. It is in this situation that using identical hash functions on

all clerks pays off. Identical hash functions allow the importer’s clerk to locate the name

usually with a single remote read operation. Sometimes this will fail, for example, if the

remote clerk encountered a hash collision when originally inserting the name and rehashed

the name to some other hash bucket. If the result of the read operation does not return

the appropriate name, the local clerk has three options: (1) keep probing different hash



84

location using remote reads until the record is located or the hash table is exhausted, (2)

use a remote write with control transfer to request the other side to check its name table,

and (3) probe a few times and then transfer control. The choice of which option to use is

application dependent and is related to the cost of doing lookups, the number of expected

lookups, and the cost of transferring control. Given the relative costs of remote data transfer

in our implementation, we use the first option, because that gives us the best performance.

Control transfer is a viable option in our case only if we expect seven or more collisions to

occur in the hash table.

In the case of this particular name server example, the organization follows the ideal

model described in earlier sections. Thus, all remote communications involve only transfer

of data. Communication between the user, the kernel, and the clerk involves only local

transfer of data and control. Since Ultrix has no efficient same-machine RPC mechanism,

we use the existing system call mechanism to transfer data and control locally. Initially, the

name clerk makes a special system call that blocks it in the kernel. When a user request

is made, the kernel blocks the user and unblocks the clerk’s call. The clerk performs the

requested function and calls back into the kernel, which uses the call arguments as the

return result of the original user request.

We should mention that the name server described here is a low level service. Its only

responsibility is to help the kernel manage the export and import of segment name informa-

tion. We have therefore used a set of coherency mechanisms, such as generation numbers,

periodic cache flushes, and kernel-supplied hints, that are appropriate to this service. Un-

doubtedly, other kinds of name services may require different coherency guarantees. By

implementing the segment name server, we gained experience with locating information,

synchronization, and organizing clerks in the new structure.

7.3.3 Performance

Table 7.3 shows the performance seen by the user for exporting, importing, and deleting a

segment. On all three operations, the kernel mediates between the name server and the user.

Notice that the difference in time (68 �s) to perform a lookup when the data is available

locally and when it is not, is comparable to the cost of a remote read operation (45 �s)

from Table 4.2. That is, cross-machine communication cost is basically the cost of simple

data transfer. The information that is retrieved on a lookup operation fits in a single ATM

cell. With improved same machine communication performance, we expect the overall
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Table 7.3: Name Server Performance

Elapsed Time (�s)
Operation Cached Uncached

Export (ADDNAME) 665 N/A
Import (LOOKUP) 196 264

Revoke (DELETENAME) 307 N/A
LOOKUP with notification 524

performance to improve even further.

The last row represents the cost of doing a lookup operation with control transfer. In

this case, the importing clerk performs a remote write with notification. The write contains

arguments for the lookup operation including a pointer back to the importer’s exported

memory segment. Upon notification, the exporting clerk uses the arguments to do the

lookup. The results of the lookup are directly written to the importing clerk’s memory

using a remote write. In the meantime, the importing clerk spin waits (at user level) for the

data to arrive. Another option, though correspondingly more expensive, is to not spin wait

the importer but instead have the exporter use a remote write with notification.

7.4 Example: A Distributed File Service

Distributed file systems, such as NFS, are perhaps the most common examples of distributed

services in daily use. Most distributed file systems are implemented using RPC-based clients

and servers. However, much of the traffic in a file system need only involve data transfer;

the control transfers are sometimes an unneeded cost imposed by the use of RPC between

clients and servers. Recall from Section 7.1 that the benefits of eliminating control transfer

are: (1) lowered overheads due to context switching, blocking, and procedure invocation,

and (2) eliminating the processing overhead for unnecessary data traffic. In this section,

we analytically evaluate the impact of the new structure on the performance of a distributed

file system service using a functional model of the system.

7.4.1 The Distributed File System Model

We assume that the client machine runs a server clerk and that the clerk and the server

cache data. This is fairly general model and even encompasses systems such as traditional
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NFS (where the client kernel acts as the clerk for the remote server). Since we use caches

on clients and servers, it is necessary to have a policy for cache-consistency. However,

we are not directly concerned with the particular choice of protocol that is used and our

system model does not implement one. Many coherency protocols are well known and are

in use in current distributed file systems, e.g., the Spritely NFS system [62], Sprite [52], and

AFS [34] all use cache-consistency schemes. (Even NFS has a cache-consistency policy,

albeit a weaker one.) Traditional multiprocessor cache-coherency schemes can also be

used, as suggested by the work on the xFS protocol [21].

Although our file system model does not explicitly account for coherency traffic, we

believe coherency schemes can be built using our communication primitives and our file

system model. For example, workstation-cluster file system designs such as Calypso [50]

use an RPC-based distributed token management scheme to handle cache coherence. This

scheme can be extended to use our communication primitives without involving control

transfers in most cases. Token acquire and release can be implemented using compare-

and-swap operations. Token revocation is trickier. One option is to use control transfer

(e.g., using Hybrid-1 as described below); another is to delay revocation during certain

conditions, as is done in Calypso, which can be done without control transfer. For the

commonly occurring sharing patterns in distributed file systems, we expect the usage of

control transfer for coherence to be rare.

Our system model organizes the cache into different distinct areas, each containing

different types of information organized as shown below. This organization, allows us to

exploit pure data transport mechanisms without the penalty of control transfer.

File Data This is the traditional file buffer cache that caches regular file data and forms the

bulk of the cache. Data within the cache can be located using a file handle and block

number within the file.

Name Lookup Data This area contains information to translate file names to file handles.

Most conventional systems have a separate name cache that serves this purpose.

File Attributes This cache area contains file attributes such as creation time, file size, etc.

Entries in this cache can be retrieved given a file handle.

Directory Entries We keep the contents of directories in a specifically designated area

of the cache. This allows fast directory searches. From measurements on our
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departmental file server, which is typical, we observed that the entire directory

contents of the server could be cached with about 2.5 Mbytes of data. With an

additional 40 Kbytes of memory, even symbolic link information on our server can

be completely cached. Caching this information is helpful, because reading symbolic

links and directory entries accounts for about 8% of the activity in Table 7.1.

Our model of the file service is simple but captures the performance effect of separating

control transfer from data transfer. Our underlying communication primitives allow several

alternatives to coordinate the movement of data between server and clerk caches. We

consider four of these alternatives below:

Write Requests Only The first alternative, and the simplest, is for the source of the data

(server or clerk) to supply data to the destination using remote writes with no notifi-

cations at all.

Read Requests Only The second alternative is for the eventual destination of the data to

fetch the data from the source. This was the method of choice in the name server of

the previous section. In the current experiment, we use block read requests to fetch

data from the server.

Hybrid-1 Unlike the previous two schemes, which are pure data transfer schemes, this

scheme uses a single write request with notification, followed by one or more return

write requests. This was one of the alternatives we considered in the name server

example. The destination makes a write request (with notification) describing the

data transfer parameters. The source then performs one or more return write requests

back to the destination.

Hybrid-2 This is the same as Hybrid-1 above except that the source sets the notification

bit on the last write request to the destination.

7.4.2 Performance

We show below the quantitative impact of separating control and data transfer on file

system operations. First, as a simple metric, we measured the transfer times for various

data transfer sizes, for the four data and control transfer alternatives described above. The



88

measurements were done on DECstation 5000/200s connected to a private ATM network.

Figures 7.2a and 7.2b show the performance of the various alternatives. For comparison,

we show the performance of the native RPC currently used by distributed services within

Ultrix. The Y-axis shows the elapsed time for transferring data, excluding any other clerk

or server activity and assuming a perfect hit rate in the remote cache. The X-axis shows the

amount of data transferred. Figure 7.2a shows overall performance and Figure 7.2b shows

the performance for the small- and medium-sized cases.

The performance figures for the RPC system include the cost of marshaling and demar-

shaling data. Native Ultrix RPC uses UDP/IP as its underlying transport. Since the Ultrix

UDP implementation does not permit single RPCs larger than 8 Kbytes, we measured the

large byte cases using multiple RPCs as needed.
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The graphs show that the remote memory schemes have substantially better performance

than Ultrix RPC. Even the two hybrid schemes, which involve limited control transfer,

outperform RPC. However, the performance of Ultrix RPC must be taken in context,

because there are many finely-tuned RPC systems that have better performance that Ultrix

RPC.

To evaluate the impact of separating data and control transfer, we compare the perfor-
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mance of two alternative structures for a distributed file system. From the perspective of a

distributed system, we are interested in two performance metrics: (1) the total latency seen

by a client and (2) the load on the server.

We assume both alternatives cache data locally. However, in the first alternative, the

file system uses a fast RPC-like cross-machine mechanism, viz., Hybrid-1 (the faster of the

two hybrid schemes that transfer control and data). This is similar in spirit to the design of

traditional RPC-based systems, e.g., NFS.

The second alternative uses the proposed new structure and relies primarily on a pure

data transfer scheme. That is, the clerks and the server directly access each other’s caches

using remote reads and writes, just as was done in the name server example of the previous

section. If there is a miss in the remote cache, control is transferred to the remote process,

where a procedure is activated to locate the missing data and write it back to the source

using remote write operations.

We are assuming in our model of the file service that the caches (as described in

Section 7.4.1) are organized as several hash tables in a fashion similar to the name service.

Thus, we expect synchronized access to data to be implemented analogously to the name

server. That is, a file system clerk would perform one (or more) remote reads to fetch a

block of data or metadata. A flag word in the block would indicate if the data is valid or not.

The atomicity of remote access guarantees this. If the data is valid, then a comparison of

the block number shows if there was a miss or not. Thus, we expect only minimal overhead

(a few compare and branches) for proper synchronization and miss detection. We have

therefore ignored this cost in the comparative measurements below.

For the sake of concreteness, we assume that the file system presents an interface similar

to NFS, i.e., it implements operations like those shown earlier in Table 7.1.

Since both the schemes that we compare cache data locally, the performance of client

requests that hit in the local cache would be similar in both. However, the performance

of client requests that miss in the local cache could be different. In the first scheme,

using Hybrid-1, client latency is affected by (1) the time to send the request and control

information to the server, (2) the processing time on the server, and (3) the time to write

the results back to the client. To evaluate these components, we directly measured the

cost of all three for each file system operation. Items (1) and (3) were measured from our

implementation of Hybrid-1. To estimate the processing time at the server, we measured the

processing times on an actual NFS server with warm caches on an isolated ATM network.
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Ultrix RPC and marshaling costs are not included in this measurement. In the second

scheme, the latency seen by the client is dependent primarily on the low-level cost of

emulating the remote memory operations, since there is no server involvement.
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Figure 7.2: Request Processing Latency Seen by Client

Figure 7.2 compares the performance of the two schemes for representative file opera-

tions. The measurements were done on DECstation 5000/200s connected to a private ATM

network. We assume 100% hit rates in the server cache. We also neglect the communication

cost between client and clerk. Thus, these are best-case figures. Note however, that if there

is a miss in the server cache, overall performance will be dependent on the disk transfer

time rather than differences in the structure of the service. For each file operation, we show

the total latency for that operation implemented using Hybrid-1 (HY), and the total latency

for the pure data-transfer scheme (DX). In the case of Hybrid-1, the latency includes two

components: the time to transfer data and control, and the server processing time. In the

case of pure data transfer, the entire latency is due to the data transfer primitives. We

must point out that in the pure data transfer scheme, we have ignored the small cost the

clerk incurs in calculating the location of the data that it wants to retrieve from the remote

side. This will be typically on the order of a few tens of microseconds to calculate a hash
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function, and can be neglected relative to the remaining times.

Notice that in all cases, the pure data transfer scheme does significantly better than the

RPC-like scheme. As the amount of data transferred increases, the benefits of separating

control and data decrease a little. This is a natural consequence of the fact that the cost of

a single control transfer operation is now amortized over a larger data transfer.

Separation of data and control yields better performance for the operations shown in the

graph because each operation is logically a simple one involving only data transfer. The

costs of context switching and procedure invocation are overheads of the communication

primitive. Thus, a specialized data transfer operation is advantageous.
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Figure 7.3: Breakdown of Server Activity

Figure 7.3 shows a detailed breakdown of activity on the server CPU. In the pure data

transfer scheme, the server CPU is involved only in emulating incoming and outgoing remote

memory operations. With a communications co-processor, even this CPU involvement

could be eliminated. In contrast, the hybrid model incurs the cost of control transfer and

the cost of executing the server’s procedure, in addition to the cost of data transfer.

For example, in the LookupName operation, the only server processing for the pure data

transfer scheme is the data reception, which is the service-side interrupt-level processing



92

of the remote memory read of the name lookup cache. For the same operation in the

hybrid scheme, there are four components: data reception (of the request), control transfer,

procedure invocation, and data reply (sending the response), as shown in Figure 7.3. On

the average, we see that the pure data transfer scheme imposes less than half the server

load imposed by control and data transfer schemes; therefore, the server should be able

to accommodate more clients using pure data transfer. Once again, we note that as the

amount of data transferred increases, the overhead of control transfer can be amortized

more effectively.

7.5 Chapter Summary

We have described a new structure for building distributed systems. Traditionally, dis-

tributed systems have been organized around the RPC-based client/server model for a

variety of good reasons: a simple programming paradigm, and networks with low band-

width, high latency, and unpredictable reliability. Changes in technology make it both

possible and necessary to re-think the structure of distributed systems. Among the things

that have changed are the bandwidth, latency, and reliability of networks.

Our alternative structure is based on the observation that by separating the transfer of

control from the transfer of data, we can eliminate one or the other if it is not required.

The underpinning for our technique is a set of high-performance network access primitives

based on the notion of remote memory. Our technique has three elements to it: (1) server

clerks and servers that cache data, (2) an efficient communication primitive that allows

quick access to this cached data on remote hosts, and (3) restricting control transfers to

occur predominantly within a machine boundary.

Our experiments and measurements with this structure show the promise for improving

distributed system performance and scalability through lowered elapsed times and signifi-

cantly reduced server load. For example, our analysis shows a 50 percent reduction in server

load for NFS-style file server operations when using pure data transfer, when compared to

a communications model using combined data and control transfer.

The proposed structure is applicable in environments other than distributed systems,

e.g., in large-scale dedicated multiprocessors, where the cost of control transfer is high

relative to that of data transfer. Traditionally, these multiprocessor systems, e.g., the J-

Machine [22], *T [53], etc., have opted for a single primitive that unifies remote transfer of

data and control, in contrast to our approach.



93

It is important to make two final points in passing. First, note that the structure we

propose here is one innovative alternative to organizing distributed systems, but not the only

one. Second, the proposed structure should be thought of as an application of the network

access model, but again, not the only one.



Chapter 8

RELATED WORK

The problem of providing efficient access to networks has been studied in the research

community for over a decade using a variety of techniques, both software and hardware.

At one stage in the state-of-the-art, software protocols were considered the key factor in

performance. This led to several studies that tried to reduce the cost of software processing,

e.g., [17], [28], [72] and many others. Reduced protocol costs led to research on the structure

of network controllers and other host-architectural effects, e.g., [5], [23], [38], [66] to name

a few. The advent of a new generation of ATM networks has, in turn, resulted in many new

research efforts, including ours, aimed at higher performance network communication.

The work described in this thesis shares similarities with many previous studies. For

example, network access based on a memory abstraction has been previously studied in the

literature. Similarly, there have been earlier distributed system designs that are related to the

approach suggested in this thesis. The following sections compare our work with previous

approaches. For the most part, the discussion below is organized in rough chronological

order.

8.1 Spector’s Remote References

As far as I am aware, the notion of remote memory access was first suggested by Spector [61].

Spector proposed a taxonomy of remote memory access primitives based on five factors:

(1) whether remote references were fault tolerant in the face of network and host failures,

(2) whether references returned values or not, (3) whether they were synchronous with

respect to the issuing host and process, (4) whether they were flow controlled or not,

and (5) whether the remote references were executed directly by a specialized privileged

communication process or a regular user process that required additional context switching.

The model presented in this thesis draws heavily on Spector’s approach but makes significant

extensions to support virtual memory, protection, and timeslicing. These issues were largely

unaddressed in Spector’s work on the Xerox Altos [65], which neither had virtual memory

nor address protection among a set of applications.
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Spector implemented a small subset of the possible remote access types from his

taxonomy. The subset consisted of processor synchronous remote reads, writes, and test-

and-set. By implementing the primitives using microcode and software on Altos connected

by the experimental Ethernet, Spector demonstrated the feasibility of remote references as

a low-level mechanism for data transfer on a workstation cluster. Owing to technology

available or anticipated in the late ’70s and early ’80s, Spector’s experiments led him to

conclude that realistic multicomputing would not be practical on a cluster of workstations.

In contrast, experience with the model described in this thesis leads us to conclude

otherwise. First, it demonstrates that the model can be used as the basis for improving

the performance of traditional distributed mechanisms like RPC and for coarse-grained

workstation-based multicomputing. Second, it argues that distributed systems can be

structured differently by separating the notions of control transfer and data transfer.

8.2 Grapevine

In its use of clerks, our distributed system design has something in common with Grapevine [11].

We have already discussed the relationship between the two systems in Chapter 7, so we

only mention the important differences here. Our clerks and servers are more tightly in-

tegrated, they are part of the same application, and they trust each other. They do not use

RPC for communication, but rely on direct access to each other’s memory.

8.3 VAXclusters

DEC’s VAXclusters system used a set of communication controllers to provide a variety of

message operations on a cluster of computers [40]. The controller supported, in hardware,

reliable message sends, unreliable datagrams, and block data transfers. The block transfer

primitive is similar to a remote write operation, in that the sender specifies where in

destination memory the data is to be deposited.

Like our approach, the goal of VAXclusters was to provide a tight integration of

machines in a distributed environment. However, unlike our approach, there is a fairly

complex protocol for each host to communicate with the communication controller. Further,

the controller itself had a complicated implementation. Also, there was no notion of user-

level access to the controllers. For example, the major use of the block transfer primitive

was to transfer data from the disk server directly to file buffers in kernel memory.
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8.4 Mether and Memnet

Mether is another system that provides remote memory accesses on a network of work-

stations [47]. The primary focus of this system is to provide distributed shared memory

(DSM) using the page fault handlers in the VM system. To gain performance, the system

has mechanisms to avoid data shipment, leaving the sharing and consistency semantics to

the application. In contrast, our model is concerned with the implementation of a general

purpose, high-performance communication system suitable for next generation networks

and processors. A whole range of DSM protocols can be implemented using our model.

Depending on the complexity of the DSM protocols, more or less software needs to be

layered on top of our system. We believe that the Mether protocol can be layered quite

easily on our model. Thus, though Mether and our design may resemble each other in form,

the two are not functionally interchangeable.

The Memnet system, a precursor to Mether, also proposed a memory abstraction to ac-

cess the network. Memnet implemented a hardware based approach that provided coherent

remote page access on a token bus. Like Mether, the focus of this system is on coherent

memory abstractions rather than efficient data movement per se.

8.5 DEC AN1

The AN1 network designed at the DEC System Research Center is a high-speed point-to-

point network [57]. The network controller for AN1 has hardware support that permits

some control over the placement of data at the destination.

In the AN1 network, a single field, called the BQI, in the link-level packet header

provides a level of indirection into a table kept in the controller. The table contains a ring

of descriptors that specify host memory buffers into which data is transferred. Incoming

network packets contain a BQI field that is used by the controller in determining which ring

to use. The controller initiates DMA into the next buffer in this ring and hands the buffer

to host software.

This mechanism allows some control over data placement, but this is at a much coarser

grain than the remote memory model provides. For instance, the sender has no control

over where data is placed; only the receiving kernel can do that. Often, the sender knows

precisely where the data is to be sent. There are similarities in both approaches, to the

extent that both try to provide efficient demultiplexing mechanisms for incoming data.
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8.6 Active Messages

Active Messages is a low-level mechanism that has been proposed for communicating

between nodes in a dedicated, closely-coupled multicomputer [71]. The key idea in this

design is that an incoming message carries with it an upcall address of a handler that

integrates the message into the computation stream for the node. Thus, using Active

Messages, data and control are very closely-coupled. An Active Message arriving on a node

exhibits characteristics similar to that of a network packet arriving on a workstation, with

the key difference that the interrupt handler can be different for each message. The general

notion of remote memory access (as embodied in our model) is substantially different from

the notion of interrupt driven messages that is at the core of Active Messages. In particular,

as mentioned in previous chapters, our model explicitly separates the notion of data transfer

from control transfer.

In Active Messages, the upcall handler refers, in general, to user code. Dedicated

multicomputers like the CM-5 [67], on which Active Messages has been implemented,

typically have hardware and network support to ensure that the upcalled user code cannot

impact performance of other jobs by misbehaving. Workstation hosts on general purpose

networks do not have such mechanisms. Thus, implementing the Active Message model

in this environment may require additional functionality, e.g., hardware to allow multiple

users to map in the network controller or compiler techniques to ensure that the upcall

handlers that execute are well-behaved [35].

8.7 Hamlyn

Wilkes describes the design of a hardware controller for a reliable multicomputer inter-

connection network [74]. Some of the Hamlyn ideas are similar to the ones described in

this thesis. For example, fundamental to the design is the concept of “sender-controlled”

data transfer where the sender specifies the location at the receiver where data is to be

deposited. Message destinations are kept pinned in memory as long as they are in use. That

is, unlike our approach, there is no notion of selectively pinning or unpinning regions of

segments. This design choice was made in Hamlyn on the assumption that in a dedicated

multicomputing environment the number of senders per node is small enough that each

receiver can dedicate memory for each sending node.

The Hamlyn design handles packet notifications using a slightly less general model
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than ours. In Hamlyn, a message is assumed to be composed of multiple packets which

are the fundamental units of data transfer. As packets for a message arrive at the receiver,

a preloaded counter associated with the message is decremented; when the counter reaches

zero a notification is scheduled. Special hardware is provided to keep these per-message

counters.

Protected access to the network is provided by using a hardware structure called a

“terminus” that acts as a connection end point on the sender and receiver. The termi-

nus is initialized with protection information by trusted operating system software and

mapped directly into the user’s address space. There is a fixed number of termini, which is

implementation dependent, that can be used in this manner.

Hamlyn shares many of its goals with our work but is primarily concerned with a

dedicated multicomputer environment rather than a workstation cluster. Many of the design

choices are therefore different in the two approaches. It is difficult to make a quantitative

comparison of the two designs because, at the time of writing, there is no implementation

nor any simulation results based on the paper design described in [74].

8.8 SHRIMP

The network interface for the SHRIMP multicomputer being designed at Princeton also

proposes direct remote writes to memory [13]. Like Hamlyn and our work, the SHRIMP

approach shares a common ancestry with Spector and VAXclusters. However, the main

focus of SHRIMP is (1) to provide hardware-supported memory coherence between multi-

computer nodes and (2) permit the overlap of communication and computation at the level

of individual instructions.

In SHRIMP, buffers in virtual memory are mapped between communicating nodes,

which can then directly perform loads to the mapped buffer. In parallel to the processor,

the network interface snoops on the memory bus and forwards the request to the remote

network interface which updates remote memory. Virtual to physical address mappings are

kept in tables in the network interface. When a physical frame backing a virtual buffer page

is paged out, the system performs a page shootdown mechanism to other network interfaces

that might be remotely storing to the page.

Many of the techniques used in SHRIMP are specific to dedicated multicomputers with

specialized hardware. For instance, SHRIMP relies on its ability to selectively change the

caching policy of a memory location from write-back to write-through. This is supported on
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their particular platform but is atypical of hardware platforms. Also, unlike our approach,

there are no read operations. Further, the SHRIMP design does not focus on issues of

separating control and data transfer in distributed systems.

8.9 Channel Model, V System, Network Objects

The distributed system structure we propose is loosely related to the Channel Model [31],

Network Objects [9], and other systems, like V [16], that use RPC for small data and a

separate bulk data transport mechanism. Unlike most of these systems, in our model, there

is no explicit activity or thread of control at the destination process to handle an incoming

stream of data. Also, no specific request is required by the receiver to initiate data receipt.

The V system also proposed the notion of “problem-oriented shared memory,” which is

related to our idea of using a memory based interface between server clerks and the server.

However, the V approach depended on the notion of multicast and remote invocation,

neither of which is used in our approach.
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CONCLUDING REMARKS

This dissertation has identified some of the key requirements for high-performance

cross-machine communication on next-generation networks. It has tried to argue that,

beyond fast processors, networks, and controllers, the view of the network—the “network

access model”—can have a big influence on both the performance and the structure of

distributed systems. We have demonstrated the design of a network access model that

shows good performance and is useful in a variety of situations that arise in current and

future uses of a workstation cluster. The key features of the model are that it

� provides efficient and protected user-level access to the network

� eliminates unnecessary data copies

� separates the transfer of control from the transfer of data

� admits a very simple implementation

An important implication of the network access model is that since it decouples the

control and data transfer mechanisms, it allows newer organizations of distributed systems.

Traditionally, these systems have been organized around the RPC-based client/server model

for a variety of good reasons. Changes in technology make it both possible and necessary

to re-think the structure of distributed systems. Among the things that have changed are

the bandwidth, latency, and reliability of networks.

The significance of new distributed system organizations is likely to increase in the

future. As networks speed up, the cost of data transfer is likely to decrease. Relative to

the cost of data transfer, the cost of control transfer is not likely to decrease with increased

processor speed. Furthermore, we expect remote control transfers to be even less amenable

to optimization than local control transfers. Thus, a structure such as the one proposed

here that eliminates remote control transfer in favor of local control transfer is likely to

be of increasing performance benefit. The organization is also of benefit in distributed
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memory multiprocessors where the cost of control transfer is much larger than the cost of

data transfer because of dedicated network links and interfaces. The approach we suggest

is, in fact, quite different from conventional thinking in distributed memory multiprocessor

environments, where control and data transfer mechanisms are usually unified.

Technology trends in networks and processors seem to indicate that the distributed

systems of the future are likely to resemble the distributed memory multiprocessors of

today. Thus, we argue that network interfaces and system structure should be tailored for

this environment rather than a loosely-coupled cluster of workstations. A recurring theme

in this thesis has been that it is advantageous to have a tight coupling of the network and

the processor. This tight coupling between processor and network controller is typically

seen in dedicated multiprocessors, but usually not on a workstation. For example, in a

multiprocessor, the network controller is tightly tied to the processor and is aware of the

cache and memory architecture. The processor manipulates the network interface directly

using a few, very simple instructions. The network performance varies depending on

whether the network interface is attached to the memory bus or the cache bus. Current

experience indicates that locating the network interface closer to the processor gives better

performance. We refer to these types of interfaces as processor-centric.

In contrast, typical workstation environments contain I/O centric network interfaces.

These have two characteristics. First, they treat the network as a byte-stream providing

primitives to stream data back and forth. Second, they treat the network as a device that

requires servicing by the host, and usually notify it by interrupts. They are typically

accessed over the I/O bus, contain limited memory and have to be programmed by the host.

We refer to them as I/O centric because they are designed with the network in mind, they

offer limited support for host accesses, and they are usually oblivious to the host memory

architecture. Many aspects of I/O centric network interfaces extract a penalty from the host

when it wants to communicate over the network.

A processor-centric implementation of the network access model presented in this

thesis appears to be a promising approach to building future network controllers. Using

such controllers, next generation processors, and networks, we should be able to build

distributed systems that are truly distributed across the network, but whose components are

tightly-integrated.

It is undoubtedly the case that the distributed system structure proposed in this thesis is

more complex than the traditional one. However, this appears to be a reasonable tradeoff of
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performance for complexity. This is similar to the tradeoff that is made when uniprocessor

programs are migrated to multiprocessors for increased performance. Compiler tools,

along the lines of stub generators and protocol compilers, can ease this process. Automatic

tools, such as these, can be of enormous benefit in taking specifications of services and

generating the server-clerk and server portions of the program. Such tools will allow

future implementors of distributed programs the same advantages that stub generators

allow implementors of distributed programs today.

In the next decade, we expect to see a tremendous growth in the deployment of re-

gional and national networks. Computers connected to these networks are likely to more

concerned with the problems of communication rather than computation. This is to be

expected, because we have seen tremendous increases in processor performance while net-

work performance has been more modest. In other words, for efforts like the National

Information Infrastructure to be truly successful, research oriented to new communication

media, devices, and organization principles is likely to be critical.

The ideas presented in this thesis open up many exciting avenues for the future. The

extent to which these ideas enter into the accepted design principles for network controllers,

and the design of distributed system services, will ultimately determine the final contribution

and impact of the thesis.
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