
Minimal Adaptive Routing on the Mesh

with Bounded Queue Size

Donald D. Chinn

�

Tom Leighton

y

Martin Tompa

z

Technical Report #94{07{03

July 7, 1994

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Washington, U.S.A. 98195

�

dci@cs.washington.edu; Department of Computer Science and Engineering, University of Washington,

Seattle, WA 98195. This material is based upon work supported in part by the National Science Foundation

under Grant MIP-9213469.

y

ftl@math.mit.edu; Mathematics Department and Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, MA 02139. This material is based upon work supported in part by

AFOSR Grant F49620-92-J-0125 and ARPA Grants N00014-91-J-1698 and N00014-92-1799.

z

tompa@cs.washington.edu; Department of Computer Science and Engineering, University of Wash-

ington, Seattle, WA 98195. This material is based upon work supported in part by the National Science

Foundation under Grants CCR-9002891 and CCR-9301186.



Abstract

An adaptive routing algorithm is one in which the path a packet takes from

its source to its destination may depend on other packets it encounters. Such

algorithms potentially avoid network bottlenecks by routing packets around \hot

spots." Minimal adaptive routing algorithms have the additional advantage that

the path each packet takes is a shortest one.

For a large class of minimal adaptive routing algorithms, we present an


(n

2

=k

2

) bound on the worst case time to route a static permutation of pack-

ets on an n � n mesh or torus with nodes that can hold up to k � 1 packets

each. This is the �rst nontrivial lower bound on adaptive routing algorithms.

The argument extends to more general routing problems, such as the h-h routing

problem. It also extends to a large class of dimension order routing algorithms,

yielding an 
(n

2

=k) time bound.

To complement these lower bounds, we present two upper bounds. One is an

O(n

2

=k) time dimension order routing algorithm that matches the lower bound.

The other is the �rst instance of a minimal adaptive routing algorithm that

achieves O(n) time with constant sized queues per node. We point out why the

latter algorithm is outside the model of our lower bounds.

1. Introduction

In practice, all packet routing algorithms are very simple. For instance, algorithms used in

practice make routing decisions based only on each packet's preferred directions (that is,

which links from the packet's current node bring it closer to its destination), rather than its

full destination address. None of the algorithms used in practice works well with bounded

queues (which most use) in the worst case.

In theory, on the other hand, there are many fast algorithms for static routing problems

on synchronous networks, but all make use of large queues or information about destination

addresses beyond just preferred directions. (See Sections 1.1 and 1.2.) An example of the

latter would be those routing algorithms that are based on sorting packets according to

their destination addresses. Often these complicating considerations render the algorithms

impractical, particularly if one wants to generalize them to dynamic routing problems or

asynchronous networks.

For some time now, both sides have been trying to �nd a simple routing algorithm

that works well in the worst case. In the present context, \simple" will be taken to mean

deterministic, bounded queues, no dependence on destination other than preferred directions,

and minimal (i.e., shortest) routes from source to destination. We will prove that it is

impossible for any such simple routing algorithm to work well in the worst case. In particular,

for any such simple routing algorithm on the n�n mesh, 
(n

2

=k

2

) time is required to route

all packets in some permutation routing instance, where k � 1 is the size of each queue. We

1



also provide a simple algorithm that routes any permutation on the n� n mesh in O(n

2

=k)

time.

The lower bound holds even if the algorithm is \adaptive", meaning that the choice of

path for a packet may depend on the state of the network as the packet traverses the network

and, in particular, which other packets it encounters. This is the �rst nontrivial lower bound

for adaptive routing.

The mesh and torus topologies have attracted much attention in multiprocessor network

design because of their simplicity and their e�cient use of space when physically realized.

Examples of machines that use the mesh or torus topology include the MPP from Goodyear

Aerospace [2], the MP-1 from MasPar [21], the Paragon from Intel Scienti�c, the J-machine

from MIT [23], the Touchstone DELTA from Intel [11], the DASH from Stanford [19], and

the Mosaic from Cal Tech [26].

One of the simplest benchmarks for a router's performance is how it performs in the worst

case on static one-to-one (or partial permutation) routing problems, where each processor

sends at most one message and receives at most one message. At the very least, a good

routing algorithm should be able to route permutations e�ciently.

This introduction concludes by surveying some of the known results for permutation

routing.

1.1. Routing with Unbounded Queues

Borodin and Hopcroft [3] prove an 
(

p

N=d

3=2

) time bound for routing the worst case per-

mutation on any N -node, degree d network using any oblivious routing algorithm (i.e., the

path a packet takes depends only on its source and destination). Kaklamanis et al. [13] im-

prove the bound to 
(

p

N=d). These results are useful for networks such as the hypercube,

whose diameter and degree are log

2

N , but are no better asymptotically than the diameter

lower bound of 2

p

N � 2 on the two-dimensional mesh.

A simple oblivious way to route packets in mesh networks is to use dimension order

paths. In order to reach its destination, a packet �rst travels along its row until it reaches

its destination column. It then moves in that column until it reaches its destination row.

Each move the packet makes reduces the distance to its destination by one. This scheme is

both easy to implement in hardware and simple enough so that the implementation of the

routing logic consumes a relatively small area on a chip, making it the algorithm of choice

in practice.

It is well known that dimension order paths can be used to route any permutation on

the n�n mesh in 2n� 2 steps, matching the diameter lower bound (see Leighton [16, pages

159{162]). Unfortunately, this algorithm requires �(n) size queues at each node. (Leighton

[17] proves that if each packet has a random destination | i.e., the routing problem is

not necessarily a permutation | then with high probability all packets will be delivered in

2



2n+O(log

2

n) steps and none of the queues ever contains more than four packets. However,

this average case setting is not the one we consider here.)

Our goal is to prove that O(n) time routing of arbitrary permutations on the n�n mesh

is impossible in a more practical setting, which includes bounding the queue size of each

node.

1.2. Routing with Bounded Queues

Little is known about lower bounds that exploit the fact that nodes have bounded queues.

Krizanc [14] proves such a bound for any source-oblivious routing algorithm, which is one

where the path a packet takes only depends on its current location and destination. He shows

that for any source-oblivious algorithm on an N -node, degree d network each of whose nodes

can hold up to k packets, there is a partial permutation that requires 
(N=d

4

k(8k)

5k

) time

to route. Krizanc's model, however, is restrictive: if a node sends a packet to a neighboring

node and causes that neighboring node to exceed its capacity, the network is in an illegal

con�guration. A more realistic model would allow the node to detect the state of its neighbor

and not send the packet.

Maggs and Sitaraman [20] prove that for any nonpredictive routing algorithm on an N -

node butter
y with queues of size k at each node, there exists a permutation that requires


(N=(k log

2

N)) time to route. A nonpredictive routing algorithm is one in which contention

for links is resolved independent of destination addresses of packets.

Another approach to permutation routing is to sort blocks of packets by destination and

then advance them to their destinations by the dimension order algorithm. Packets in these

algorithms may take paths that are nonminimal (i.e., make moves that place them farther

away from their destination during the sorting phases). For the n � n mesh, Kunde [15]

shows that such a deterministic algorithm can route every permutation in 2n+O(n=k) time

using queues of size k. Using Kunde's approach, Leighton, Makedon, and Tollis [18] and

Rajasekaran and Overholt [24] improve the bound to 2n � 2 steps using constant (albeit

large) sized queues per node. However, these algorithms may be too complicated, and too

speci�cally tailored to static permutations and synchronous networks to be practical for

general routing.

Han and Stanat [10] provide routing algorithms for the mesh that are not based on

sorting, but do use nonminimal paths and knowledge of full destination addresses. Their

algorithms can route any permutation in O(n) time and require constant sized queues per

node. However, like the sorting-based algorithms, their algorithms may be too speci�cally

tailored to static permutations and synchronous networks to be practical.

The desire to have simple routing algorithms with constant sized queues per node has

led to the growing body of literature on hot potato routing [1, 5, 8, 9, 12, 22], where at each

step every node in the network must send all packets it received during the previous step. In

these algorithms, packets again typically take nonminimal paths. Newman and Schuster [22]

3



give an algorithm that routes any permutation in 7n + o(n) steps, but the algorithm uses

sorting. Bar-Noy et al. [1] provide a deterministic hot potato routing algorithm not based

on sorting that routes any permutation in n2

O(

p

log

2

n log

2

log

2

n)

steps. In the same paper, they

provide a simpler O(n

3=2

) algorithm.

Because the known O(n) time routing algorithms on the mesh may not be practical, there

is still considerable interest in �nding practical ones. Notice that the O(n) time bounds

mentioned earlier [10, 15, 16, 18, 22, 24] each violate either the assumption of bounded

queues, or both the assumptions of minimal paths and using only preferred directions. In

addition to our lower bounds, we present the �rst minimal adaptive routing algorithm that

achieves O(n) time with bounded queues. Our algorithm does exploit the full destination

addresses (and, like the others, it does so in a complicated and possibly impractical way).

Thus, it is impossible to eliminate the assumption of destination-exchangeability from our

lower bound.

The remainder of the paper is organized as follows. Section 2 describes the model and

de�nes terms necessary for the argument. Section 3 provides the construction of the permu-

tation that achieves the lower bound. Section 4 proves the lower bound. Section 5 extends

the argument to other routing problems. Section 6 describes the O(n) time minimal adaptive

algorithm. Section 7 gives conclusions and open problems.

2. The Model

Consider an n�nmesh network. The network can be viewed as a directed graph G = (V;E)

such that if the edge (u; v) is in E, then the edge (v; u) is also in E. The edge (u; v) is an

outlink of the node u, and the edge (v; u) is an inlink of u.

Each node has a central queue that can hold up to k packets. In one step, each node

decides deterministically which packets to attempt to transmit along its outlinks, decides

which of the incoming packets to accept, and then transmits those packets that were accepted

by its neighbors. When a packet reaches its destination, it is considered delivered and

removed from the network. This is a multi-port model, in the terminology of Borodin et al.

[4]. For consistency with the existing literature, we use the word \queue" to denote a set of

waiting packets. The packets do not have to be served in a �rst-in �rst-out (FIFO) fashion.

The outqueue policy of a node is the method by which a node decides which packets,

of all the packets in the queue, to attempt to send out the node's outlinks. No more than

one packet can be scheduled to each outlink. Examples of outqueue policies are FIFO or

farthest-�rst [16, page 159].

The inqueue policy of a node determines which packets, of all the packets that attempt

to enter a node, will be accepted. The inqueue policy must guarantee that the queue does

not over
ow (i.e., accept more packets than it is capable of holding).

A packet is transmitted exactly when the outqueue policy of its queue selects it and the

4



inqueue policy of the target node accepts it.

Also de�ned for each node is a state, which each of the policies can use to make its

decision. The state is allowed to change at the end of the step as a function of the current

state and the packets in the node. An example of the use of state is the round-robin inqueue

policy, where a node accepts packets from each neighboring node in turn when there is

competition for available space in its queue.

The state of a packet consists of information that can be modi�ed by a node when the

packet is in the node. An example of this is the arrival time of a packet at the current node.

This information is transmitted along with the packet.

For the lower bound that follows, we restrict ourselves to deterministic routing algorithms

for the mesh that use minimal (shortest-distance) paths. In addition, the only part of a

packet's destination address that routing decisions may use is the packet's pro�table outlinks

(i.e., those outlinks from the current node that move the packet closer to its destination).

We impose no further restrictions on routing decisions.

We make this precise as follows:

� The outqueue policy of a node can be a function only of the states, source addresses,

and pro�table outlinks of the packets in the node; and the state of the node.

� The inqueue policy of a node can be a function only of the states, source addresses,

and pro�table outlinks of the packets in the node and the packets scheduled to enter

the node (where pro�table outlinks of scheduled packets are measured as pro�table

from the node from which they are coming); and the state of the node.

� The state of a node at the beginning of step t+1 can be a function only of its state at

the beginning of step t; and the states at the beginning of step t, source addresses, and

pro�table outlinks of the packets in the node at the end of step t. The initial state of

a node can be a function only of the pro�table outlinks of the packet that originates

there.

� The state of a packet at the beginning of step t+1 can be a function only of the state

at the beginning of step t of the node it occupies at the end of step t; and the states

at the beginning of step t, source addresses, and pro�table outlinks of the packets that

occupy the same node at the end of step t. The initial state of a packet can be a

function only of the initial state of its node, and its own source address and pro�table

outlinks.

Call an algorithm that �ts this description a destination-exchangeable routing algorithm.

Note that the restriction to pro�table outlinks is similar to the de�nition of a nonpredic-

tive algorithm, given by Ranade [25], Leighton [16, page 556], and Maggs and Sitaraman

[20]. One example of a destination-exchangeable algorithm is the dimension order algo-

rithm with FIFO queues and round-robin inqueue policy. An adaptive example might be

5



cn

cn

cn

6

cn

-

cn-1+i

6

cn-1+i

-

6

N

i

-column

-

E

i

-row

= i-box

= 1-box

Figure 1: The n� n mesh.

similar, except that each packet moves in one pro�table direction until it is blocked by con-

gestion, and then moves in its other pro�table direction, continuing this alternation until it

reaches its destination. Other minimal adaptive algorithms that could be implemented with

a destination-exchangeable algorithm include those of Chien and Kim [6] and Cypher and

Gravano [7]. An example of a nonminimal destination-exchangeable algorithm is the O(n

3=2

)

hot potato algorithm of Bar-Noy et al. [1].

De�nitions

Number the columns of the mesh 1 to n from west to east and the rows 1 to n from south

to north. Let c be a constant, to be determined later, so that cn = �(n=k) is an integer.

An N

i

-packet is a packet that starts in the cn� cn submesh located in the southwest corner

of the mesh and is destined for the (cn� 1 + i)-th column (call this column the N

i

-column)

north of the (cn� 1+ i)-th row. An E

i

-packet is a packet that starts in the cn� cn submesh

located in the southwest corner and is destined for the (cn� 1 + i)-th row (call this row the

E

i

-row) east of the (cn� 1 + i)-th column. (See Figure 1.)

The i-box is the set of nodes west of and including the N

i

-column and south of and

including the E

i

-row. De�ne the 0-box to be the set of nodes west of the N

1

-column and

south of the E

1

-row.

A packet is in the i-box if it is in a node of the i-box. A packet is outside the i-box if it

is not in the i-box.

An exchange of two packets x and x

0

is a switching of their destination addresses. The

remaining packet information (state and source address) remains unchanged.

A packet is scheduled to enter a node v during some step if the outqueue policy of its

current node chooses it to advance into node v.

6



3. The Construction

For any given destination-exchangeable routing algorithm, we will construct a permutation

that forces the algorithm to take 
(n

2

=k

2

) steps to deliver all of its packets. The idea behind

the construction is that there are 
(n

2

=k

2

) packets in the cn�cn submesh destined for nodes

outside the submesh, but only a constant number will depart the 1-box during each of the

�rst �(n) steps, a constant number will depart the 2-box during each of the next �(n) steps,

etc., up to the l-box, where l = �(n=k

2

). We now present the construction.

1. Let p = b(k + 1)(cn+ c

2

n) + dnc, where c and d are constants to be determined later,

and cn and dn are integers. For each 1 � i � blc, where l = c

2

n

2

=(2p), place p N

i

-

packets and p E

i

-packets in the 1-box such that only N

1

-packets are in the N

1

-column

at or south of the E

1

-row, only E

1

-packets are in the E

1

-row west of the N

1

-column,

and there is no more than one packet per node. (Note that there must be N

1

- and E

1

-

packets in the 0-box as well.) Assign unique row destinations in the N

i

-column outside

the i-box for N

i

-packets, and unique column destinations in the E

i

-row outside the

i-box for E

i

-packets. It is easy to see that such an arrangement is possible, provided

b(k + 1)(cn + c

2

n) + dnc � (1� c)n� l. (See Section 4.3.)

2. If desired, place additional packets in any way that forms a partial permutation. (At

the extremes, no additional packets could be placed, or enough packets could be added

to form a full permutation.)

3. Run the routing algorithm for blcdn steps, performing the following exchanges (in any

order) as necessary. (Lemmas 3 and 4 will show that the packets to be exchanged are

always available.)

� EX1. For i � 1, j > i, if an E

j

-packet is scheduled by the outqueue policy of

a node to enter the E

i

-row west of the N

i

-column during steps 1 to idn, then

exchange that packet with an E

i

-packet in the (i� 1)-box that is not scheduled

to enter the E

i

-row.

� EX2. For i � 1, j > i, if an N

j

-packet is scheduled by the outqueue policy of

a node to enter the N

i

-column south of the E

i

-row during steps 1 to idn, then

exchange that packet with an N

i

-packet in the (i� 1)-box that is not scheduled

to enter the N

i

-column.

� EX3. For i � 1, j � i, if an E

j

-packet is scheduled by the outqueue policy of

a node to enter the N

i

-column south of the E

i

-row during steps 1 to idn, then

exchange that packet with an N

i

-packet in the (i� 1)-box that is not scheduled

to enter the N

i

-column.

� EX4. For i � 1, j � i, if an N

j

-packet is scheduled by the outqueue policy of

a node to enter the E

i

-row west of the N

i

-column during steps 1 to idn, then

exchange that packet with an E

i

-packet in the (i� 1)-box that is not scheduled

to enter the E

i

-row.

7



The t-th step of the construction consists of the following sequence of activities for

each node:

(a) The outqueue policy chooses packets to schedule along its outlinks.

(b) Exchanges are made, if necessary.

(c) The inqueue policy decides which packets to accept.

(d) Packets are transmitted.

(e) The state of the node and the states of packets in the node are updated.

The �rst step corresponds to t = 1. The phrase \immediately after step 0" will mean

at the beginning of the construction.

4. The constructed permutation of the routing algorithm is the set of packets (de�ned by

their source and destination addresses after all exchanges) at the end of blcdn steps of

the construction given above, including, of course, the packets that were delivered in

those steps.

4. The Lower Bound

We now show that any destination-exchangeable routing algorithm takes 
(n

2

=k

2

) steps to

deliver all the packets in its constructed permutation. We begin by proving certain facts

about the construction itself and then prove that when the routing algorithm is run on the

constructed permutation, these facts also hold.

4.1. Properties of the Construction

In the construction, for all 1 � i � blc, the following lemmas hold:

Lemma 1: During step t, where 1 � t � (i � 1)dn, no N

j

-packets or E

j

-packets, for

j � i, leave the i-box.

Lemma 2: During step t, where (i � 1)dn < t � idn, at most one N

i

-packet and one

E

i

-packet leave the i-box per step.

Lemma 3: During step t, where 1 � t � idn, there is always an N

i

-packet eligible for

EX2 and EX3, i.e., in the (i� 1)-box and not scheduled to enter the N

i

-column.

Lemma 4: During step t, where 1 � t � idn, there is always an E

i

-packet eligible for

EX1 and EX4, i.e., in the (i� 1)-box and not scheduled to enter the E

i

-row.

8



6

N

i

-column

-

E

i

-row

N

�i

;

E

�i

N

<i

; E

�i

E

<i

;

N

�i

Figure 2: The i-box up to step idn.

Lemma 5: For j � i > 1, no N

j

-packet is outside the (i�2)-box immediately after step

t, where 0 � t � (i� 1)dn.

Lemma 6: For j � i > 1, no E

j

-packet is outside the (i�2)-box immediately after step

t, where 0 � t � (i� 1)dn.

Lemma 7: No N

i

-packet is at or north of the E

i

-row and also west of the N

i

-column

immediately after step t, where 0 � t � idn.

Lemma 8: No E

i

-packet is at or east of the N

i

-column and also south of the E

i

-row

immediately after step t, where 0 � t � idn.

Figure 2 illustrates the invariant of the construction. N

<i

; E

�i

indicates that the node

only contains N

j

-packets, where j < i, or E

j

-packets, where j � i (and similarly for E

<i

; N

�i

and N

�i

; E

�i

).

Note that, because the paths are minimal and no exchanges take an N

i

-packet outside

the i-box, no N

i

-packet can ever be east of the N

i

-column in the construction. Similarly, no

E

i

-packet can ever be north of the E

i

-row.

Proof: We will prove all of the lemmas simultaneously by induction on t.

Basis : t = 0. Lemmas 1 through 4 are vacuously true, since they do not apply when

t = 0. Lemmas 5 through 8 are veri�ed by inspection of the initial arrangement of the

packets.

Induction : Assume Lemmas 5 through 8 are true for all steps at or before t� 1 (where

t� 1 < blcdn). We will prove all the lemmas true for any i at step t.

Lemma 1 follows from Lemmas 5 and 6 for step t� 1. No N

j

-packet leaves the i-box as

a result of an exchange, part (b), of step t. Suppose such a packet existed. Then there is an

9



N

m

-packet, for some m > j, or an E

m

-packet, for some m � j, that is scheduled to enter

the N

j

-column (i.e., it is in the N

j�1

-column and hence outside the (i� 2)-box immediately

after step t� 1), contradicting Lemmas 5 or 6.

Since no N

j

-packet has left the (i� 2)-box by the end of step t� 1 by Lemma 5, then no

such packet can leave the i-box during the transmission, part (d), of step t.

A similar argument holds for E

j

-packets.

Lemma 2 follows from Lemmas 7 and 8 for step t� 1. No N

i

-packet leaves the i-box in

part (b) of step t because the exchange rules never take an N

i

-packet outside the i-box. The

only N

i

-packet that can leave the i-box during part (d) of step t is the one at the N

i

-column

and E

i

-row, since all other nodes on the boundary of the i-box that could eject an N

i

-packet

out of the i-box during part (d) of step t do not have an N

i

-packet immediately after step

t� 1 (Lemma 7). A similar argument holds for E

i

-packets using Lemma 8.

Lemma 3 follows from Lemma 7 for step t�1, and Lemmas 1 and 2 for step t. The number

of N

i

-packets that begin the construction is b(k + 1)(cn+ c

2

n) + dnc. From Lemmas 1 and

2 for step t, we know that no more than dn � 1 N

i

-packets have left the i-box before step

t. By Lemma 7, the only N

i

-packets that are in the i-box but outside the (i � 1)-box

are in the N

i

-column, and there are at most k(cn � 1 + i) queue positions for them. Any

other N

i

-packets ineligible for exchange must be scheduled to enter the N

i

column. Suppose

there are x packets that need to be exchanged with N

i

-packets during step t; in particular,

these x packets must also be scheduled to enter the N

i

-column. Then there can be at most

cn�1+ i�x N

i

-packets scheduled to enter the N

i

-column. Putting these terms together, we

�nd that the number of N

i

-packets that are in the (i�1)-box and not scheduled to enter the

N

i

-column is at least b(k + 1)(cn + c

2

n) + dnc�(dn�1)�k(cn�1+i)�(cn�1+i�x) � x,

since i � l � c

2

n for our choices of c and d (see Section 4.3). Thus, all x exchanges can be

performed.

Lemma 4 follows from Lemma 8 for step t�1, Lemmas 1 and 2 for step t, and the number

of E

i

-packets that begin the construction, analogous to the proof of Lemma 3.

Lemma 5 follows from Lemmas 5 and 6 for step t� 1 and Lemmas 3 and 4 at step t.

No N

j

-packet can be outside the (i�2)-box immediately after part (b) of step t. Suppose

such a packet existed. Then there is an N

m

-packet, for some m > j, or E

m

-packet, for

some m � j, that is scheduled to enter the N

j

-column (i.e., it was outside the (i � 2)-box

immediately after step t� 1), contradicting Lemmas 5 or 6.

If an N

j

-packet is scheduled to enter the N

i�1

-column during part (d) of step t, then

EX2 and Lemma 3 ensure that we can perform an exchange, leaving the N

j

-packet in the

(i � 2)-box. If an N

j

-packet is scheduled to enter the E

i�1

-row during part (d) of step t,

then EX4 and Lemma 4 ensure that we can perform an exchange, leaving the N

j

-packet in

the (i� 2)-box.

Lemma 6 follows from Lemmas 5 and 6 for step t � 1 and Lemmas 3 and 4 at step t,

analogous to the proof of Lemma 5, except that EX1 and EX3 are the relevant exchange

10



rules.

Lemma 7 follows from Lemma 7 at step t � 1 and Lemma 4 at step t. The proof is

similar to that of Lemma 5, except we observe that an exchange can never take an N

i

-packet

outside the (i�1)-box, and EX4 prevents an N

i

-packet from entering the E

i

-row west of the

N

i

-column.

Lemma 8 follows from Lemma 8 at step t�1 and Lemma 3 at step t. The proof is similar

to that of Lemma 7, except that EX3 is the relevant exchange rule. 2

Corollary 9: Immediately after step blcdn of the construction, there is still an undeliv-

ered packet in the network.

Proof: Choose i = j = blc in Lemmas 1 and 2. Then at least b(k + 1)(cn+ c

2

n)c N

i

-

packets and b(k + 1)(cn + c

2

n)c E

i

-packets remain in the i-box, and hence are undelivered,

at time blcdn. 2

4.2. Properties of the Constructed Permutation

We must now show that the analogue of Corollary 9 holds when routing the constructed

permutation, where, of course, no exchanges are performed.

The con�guration of a node is the description of the packets in the node (their states,

sources, and destinations) and the state of the node.

The con�guration of a network is the collective con�gurations of all of its nodes.

The transition function �(S; t) of a routing algorithm maps a con�guration S of a net-

work and a number of steps t into a con�guration of the network, the con�guration that

results after executing t steps of the routing algorithm (with no exchanges) starting from

con�guration S. Since the routing algorithms we are considering are deterministic, this func-

tion is well-de�ned. Also, de�ne �(S; 0) = S for any con�guration S. Note that, for any

con�guration S, �(S; i+ j) = �(�(S; i); j).

We now show that when certain pairs of packets are exchanged, the routing algorithm

behaves essentially in the same way.

Lemma 10: Let S be the con�guration of a network. For any 1 � i � blc, let x and x

0

be two packets in the (i�1)-box in S and whose destinations are at or east of the N

i

-column

and at or north of the E

i

-row. Let S

x;x

0

be S with x and x

0

exchanged. Then �(S

x;x

0

; 1) is

�(S; 1) with x and x

0

exchanged.

Proof: Note that both packets can move north or east pro�tably while they are in the

(i� 1)-box. Recall that an exchange of x and x

0

interchanges the destination addresses only,

11



and does not alter any other packet information. Because of this, the routing decisions the

algorithm makes cannot distinguish between S and S

x;x

0

. The outqueue policy and inqueue

policy depend only on the state of the node, and the states, source addresses, and pro�table

outlinks of packets. The state of nodes in the next step is a function only of its previous

state, and the states, source addresses, and pro�table outlinks of packets in the node. The

state of packets is also a function only of quantities that do not change when an exchange is

performed.

Since the decisions made by the routing algorithm are the same whether x and x

0

are

exchanged or not, then �(S

x;x

0

; 1) is �(S; 1) with x and x

0

exchanged. 2

Lemma 11: Let S be the con�guration of a network. Let X be a sequence of pairs of

packets such that both packets in each pair are in the (i� 1)-box in S, for some i, and have

destinations at or east of the N

i

-column and at or north of the E

i

-row. (The value of i can

be di�erent for each pair.) Let S

X

be S with each pair in X exchanged. Then �(S

X

; 1) is

�(S; 1) with each pair in X exchanged.

Proof: The proof is by induction on the size of X using Lemma 10. 2

Note that (S

X

)

X

= S and (S

X

)

Y

= S

<X;Y >

for any con�guration S and sequences of

pairs of packets X and Y , where < X;Y > denotes the concatenation of sequences X and

Y .

We now show that the routing algorithm, when run using the constructed permutation,

behaves essentially like the construction.

Lemma 12: Let S

t

be the con�guration of the network immediately after step t in the

construction. Let S

0

be the con�guration of the network with the constructed permutation

immediately after step 0. Then for t = blcdn, �(S

0

; t) = S

t

.

Proof: For 1 � i � blcdn, let X

i

be the sequence of pairs of packets that are ex-

changed during step i of the construction. We prove a stronger statement: �(S

0

; t) is S

t

with

< X

t+1

; :::;X

blcdn

> exchanged, for all 0 � t � blcdn.

The proof is by induction on t. Figure 3 illustrates the induction step.

Basis : t = 0. �(S

0

; 0) = S

0

is S

0

with all of the pairs of packets in < X

1

;X

2

; : : : ;X

blcdn

>

exchanged (by the de�nition of S

0

).

Induction : Assume the statement is true for t� 1 < blcdn, so that �(S

0

; t � 1) is S

t�1

with < X

t

; : : : ;X

blcdn

> exchanged. De�ne S

�

t�1

to be S

t�1

with each pair of X

t

exchanged.

Therefore, �(S

0

; t� 1) is S

�

t�1

with < X

t+1

; : : : ;X

blcdn

> exchanged.

All of the exchanges in < X

t+1

; : : : ;X

blcdn

> are of the type in the preconditions of

Lemma 11, because for any pair of packets exchanged during any step of the construction,

12



construction

S

S

�

constructed

permutation

S

0

S

t�1

S

�

t�1

�(S

0

; t� 1)

�(S

�

t�1

; 1)

�(S

0

; t)

?

X

t

, defn of S

�

?

< X

t+1

; : : : ;X

blcdn

>

�

�

�

�

S

S

S

Sw

< X

t

; : : : ;X

blcdn

>

ind. hyp.

-

�

-

�

?

< X

t+1

; : : : ;X

blcdn

>,

Lemma 11

= S

t

(defn of S

t

)

Figure 3: S

t

, S

�

t

, and �(S

0

; t) in Lemma 12.

each packet of the pair is in the (i�1)-box for some i and destined for nodes northeast of the

(i� 1)-box. Then by Lemma 11, �(S

0

; t) is �(S

�

t�1

; 1) with < X

t+1

; : : : ;X

blcdn

> exchanged.

But �(S

�

t�1

; 1) = S

t

, since S

t

is the routing algorithm run for one step on S

t�1

with X

t

exchanged. Therefore, �(S

0

; t) is S

t

with < X

t+1

; : : : ;X

blcdn

> exchanged, which proves the

induction step. 2

Since S

blcdn

still has an undelivered packet in the network (Corollary 9), we have:

Theorem 13: The con�guration �(S

0

; blcdn) contains an undelivered packet. That is, it

takes at least blcdn steps for any deterministic, destination-exchangeable, minimal adaptive

routing algorithm to deliver all of the packets in its constructed permutation.

4.3. Choosing the Constants c and d

All that is left to complete the analysis is to �nd constants c and d satisfying the following

constraints:

1. There are enough distinct rows (columns) for the destinations of all N

i

-packets (re-

spectively, E

i

-packets),

2. cn and dn are integers, and

3. l � c

2

n (needed in the proof of Lemmas 3 and 4).

The �rst constraint is

j

(k + 1)(cn + c

2

n) + dn

k

� (1 � c)n� l:

13



Rewritten, this becomes

j

(k + 1)(cn + c

2

n) + dn

k

+

c

2

n

2

2 b(k + 1)(cn+ c

2

n) + dnc

� (1� c)n:

This is satis�ed, provided that

(k + 2)c+ (k + 1)c

2

+ d +

 

c

2

2((k + 1)(c+ c

2

) + d)

!

� 1: (1)

Choosing c = 1=(2 � (k + 2)) and d = 2=5 satis�es Inequality (1) for k � 1. Taking

derivatives of the left hand side of Inequality (1) with respect to c and d shows that it is

monotonically increasing in c and d, and so choosing any c � 1=(2 � (k+2)) and any d � 2=5

satis�es Inequality (1).

To satisfy the second constraint, choose the largest c � 1=(2 � (k + 2)) such that cn is an

integer, and do likewise for d � 2=5. Then c � 1=(2 � (k + 2))� 1=n and d � 2=5� 1=n. For

n � 24 �(k+2)

2

(which we will need in the proof of Theorem 14) and k � 1, c � 2=(5 �(k+2))

and d � 1=3.

The third constraint is veri�ed for these new values of c and d (and again for

n � 24 � (k + 2)

2

) as follows:

l =

c

2

n

2

2 � b(k + 1)(cn+ c

2

n) + dnc

�

c

2

n

2

2 � (k + 1)cn+ 2dn

(cn, dn integers)

�

c

2

n

4�(k+1)

5�(k+2)

+

2

3

< c

2

n:

We can now calculate the lower bound of Theorem 13 in terms of n and k by substituting

our choices of c and d.

Theorem 14: For any deterministic, destination-exchangeable, minimal adaptive rout-

ing algorithm on the n�n mesh with queues of size k � 1, it takes 
(n

2

=k

2

) steps to deliver

all of the packets in its constructed permutation.

14



Proof:

Case 1: n � 24 � (k + 2)

2

. By Theorem 13, the number of steps is at least

blcdn �

$

c

2

n

2 � ((k + 1)(c + c

2

) + d)

%

dn

�

6

6

6

4

2n

25(k + 2)

2

((k + 1)(

2

5(k+2)

+

4

25(k+2)

2

) +

2

5

)

7

7

7

5

�

1

3

n

=

$

n

(k + 1)(5(k + 2) + 2) + 5(k + 2)

2

%

�

1

3

n

�

$

n

12(k + 2)

2

%

�

1

3

n

�

 

n

12(k + 2)

2

� 1

!

�

1

3

n

�

 

n

12(k + 2)

2

�

n

24(k + 2)

2

!

�

1

3

n (n � 24(k + 2)

2

)

= 
(n

2

=k

2

)

Case 2: n < 24 � (k + 2)

2

. The diameter bound immediately yields a 2n� 2 = 
(n

2

=k

2

)

bound. 2

5. Extensions of the Lower Bound

We now brie
y mention some extensions to the argument that apply to other models and

routing problems.

Other Queue Types: Suppose a node, instead of containing a single central queue, consists

of four incoming queues, one associated with each inlink, such that when a packet enters a

node, it is placed in the appropriate incoming queue. We can also consider outgoing queues,

where a packet in an outgoing queue means that it is waiting to be sent along the node's

appropriate outlink.

A node using a central queue of size 4k can simulate a node with four incoming queues

each of size k. The key to the simulation is to use the state of the node to record in which

queue each packet is located. The simulation also can be done for outgoing queues.

After recalculating constants c and d in the analysis, we can conclude that the lower bound

applies asymptotically to networks whose nodes' queues consists of incoming or outgoing

queues.

15



Nonminimal extensions: Consider the class of destination-exchangeable algorithms where

every packet is guaranteed never to move more than � nodes beyond the rectangle consisting

of those nodes in any of the shortest paths from the packet's source to its destination. The

techniques of this paper can be used to obtain lower bounds for such nonminimal algorithms.

Instead of choosing p = (k+1)(cn+c

2

n)+dn, we choose p = (�+1) �((k+1)(cn+c

2

n)+dn),

since, for example, we must have enough N

i

-packets to occupy not only the N

i

-column south

of the E

i

-row, but also the � columns to its east south of the E

i

-row. This a�ects the invariant,

the number of packets that escape those �+1 columns per step, and the constraint we must

maintain when choosing the constants c and d. This yields a bound of 
(n

2

=(� + 1)

3

k

2

).

Since the O(n

3=2

) time hot potato algorithm of Bar-Noy et al. [1] is destination-

exchangeable, the restriction in Theorem 14 of minimal routing cannot be eliminated en-

tirely.

The Torus: The bound of Section 4.3 also holds asymptotically for the torus. The con-

struction is simply applied to a contiguous (n=2)� (n=2) submesh of the torus, also yielding

a lower bound of 
(n

2

=k

2

) steps.

h-h Routing Problems: In h-h routing problems, each node is allowed to send up to h

packets and receive up to h packets. The construction is modi�ed to have h packets in each

of the c

2

n

2

nodes of the 1-box. As before, we de�ne p = b(k + 1)(cn+ c

2

n) + dnc, but we

de�ne l = hc

2

n

2

=(2p). We again have three constraints similar to those of Section 4.3 to

satisfy. The �rst constraint is

j

(k + 1)(cn+ c

2

n) + dn

k

� h ((1 � c)n� l) :

This constraint is satis�ed for c � h=(3 � (k+1+h)) and d � 5h=9, if (k+1)(c+c

2

)+d �

(h=2)+(1=n). Using techniques similar to those of Section 4.3, we choose c � h=(4�(k+1+h))

and d � 77h=144 that satisfy all the constraints.

From this choice of c and d, we get

blcdn �

$

h

2

n

26 � (k + 1 + h)

2

%

�

77

144

hn:

We conclude that blcdn = 
(h

3

n

2

=(k + h)

2

).

Note that this bound also applies to dynamic problems where no more than h packets

originate from or are destined to a single node and packets are injected deterministically

into the network at potentially di�erent times, as long as the time before a packet is injected

does not depend on its full destination address (although it can depend on its pro�table

directions). In fact, if h > k this dynamic setting would be necessary to accommodate the

h packets in the k queue locations of their source node.

Dimension Order Routing: The arguments presented here also apply to dimension order

routing. Because of the regularity in the paths, one can prove an 
(n

2

=k) bound for routing

a worst case permutation in a destination-exchangeable dimension order router as follows.

16



cn

(1� c)n

sources

cn

(1� c)n

dest.

cn

n

sources

� cn

(1� c)n

dest.

Figure 4: The construction for destination-exchangeable dimension order algorithms (left)

and farthest-�rst algorithms (right).

The construction is similar to that of Section 3, except that we consider the westernmost

(1�c)n nodes in each of the cn southernmost rows of the mesh. Each of these nodes will send

a packet to some node in the northernmost (1 � c)n nodes of the cn easternmost columns

(see Figure 4). De�ne the N

i

-column to be the ((1 � c)n � 1 + i)-th column of the mesh,

and the i-box to be the set of nodes west of and including the N

i

-column and south of and

including row cn. We de�ne p = (k + 1)cn + dn and l = (1 � c)cn

2

=p. The construction

proceeds as before, but there is only one exchange rule: for i � 1, j > i, if an N

j

-packet is

scheduled by the outqueue policy of a node to enter the N

i

-column during steps 1 to idn,

then exchange that packet with an N

i

-packet in the (i�1)-box that is not scheduled to enter

the N

i

-column.

Following an analysis similar to that of Section 4.3, we can �nd constants 2=(5 �(k+2)) �

c � 1=(2 � (k + 2)) and 2=5 � d � 1=2. We conclude that blcdn � b3n=(8 � (k + 2))c (2n=5),

giving a bound of 
(n

2

=k).

For h-h routing with destination-exchangeable dimension order routers, the analysis

shows that blcdn � b4hn=(15 � (k + 1 + h))c (2hn=5), giving a bound of 
(h

2

n

2

=(k + h)).

The lower bound also holds for dimension order routing with a farthest-�rst outqueue

policy, where the next packet to be advanced in a dimension is the one that has the farthest

to go in that dimension. In this case the lower bound holds even though this algorithm does

make use of the entire destination address, and hence is not destination-exchangeable.

The construction is similar to the one above, except that we de�ne p = (2k + 1)cn+ dn

and l = cn

2

=p. Also, de�ne the N

i

-column to be the (n+ 1� i)-th column and the i-box to

be the nodes west of and including the N

i

-column and south of and including row cn. Each

of the nodes in the southernmost cn rows will send one packet (see Figure 4).

The initial arrangement of packets is one in which no N

i

-packet, for i � 2, is in the

N

i

-column and for which no N

j

-packet is further east in its row than any N

i

-packet in that

row for j > i.

17



The only exchange rule for the construction is as follows. For i � 1, j > i, if an N

j

-

packet is scheduled by the outqueue policy of a node to enter the N

j

-column during steps 1

to idn, then exchange that packet with an N

j�1

-packet in the (j + 1)-box not scheduled to

enter the N

j

-column. Furthermore, the N

j�1

-packet chosen for the exchange is one that is

westernmost in its row.

It is not hard to see that packets are always available for the exchange, that for j > i, no

N

j

-packet is further east in its row than any N

i

-packet in that row, and that the construction

behaves in the same way as the algorithm does when run on the constructed permutation.

As in the previous analyses, we can �nd constants 1=(5 � (k + 1)) � c � 1=(4 � (k + 1))

and 2=5 � d � 1=2. We conclude that blcdn � b2n=(9 � (k + 1))c (2n=5), giving a bound of


(n

2

=k).

We prove that the bound for destination-exchangeable dimension order routers is tight

in Theorem 15.

Theorem 15: There is a destination-exchangeable version of the dimension order rout-

ing algorithm that routes any permutation on the n� n mesh in time O((n

2

=k) + n), where

k is the size of the queue.

Proof: Assume that each node has four incoming queues (labelled North, South, East,

and West), each of size k. The outqueue policy of each node is that packets trying to go

straight have priority, resolving ties using FIFO. The inqueue policy is that a packet is always

admitted if there is space.

More precisely, the inqueue policy of North and South queues is always to accept an

incoming packet. To see why such a queue has room to accept a packet, note the following.

Packets moving straight along a column have priority over turning packets. It is easy to

prove by induction on the distance from the North (South) edge of the mesh that any North

(respectively, South) queue will eject a packet in each step that it contains at least one

packet, and so it can always accept one.

The inqueue policy of East and West queues is to accept an incoming packet if there are

fewer than k packets in the queue at the beginning of the step and to refuse if there are

exactly k packets in it at the beginning of the step.

For any �xed row i, de�ne a turning interval to begin when an East or West queue at

some column j in row i contains k packets, all of which want to turn into column j, and

to end when the last of these k packets turns. There are at most n=k turning intervals for

row i, so it su�ces to show that the time from the beginning of one turning interval to the

beginning of the next is O(n). The turning interval itself can last at most n steps: because

every North or South queue in column j with at least one packet transmits a packet every

step, the n packets destined for column j can delay the k turning packets for at most n steps.

Once the turning interval ends, there can be at most 3n steps until either every packet is

in its destination column or another turning interval begins. Suppose that 3n steps after the

18



end of a turning interval, another turning interval has not begun, i.e., that there is never an

East or West queue in some column j that contains k packets, all of which want to turn into

column j. Then it is easy to prove by induction that after 2n steps, every packet is either

in its column or crossing a link per step in its row. Since a packet travels at most distance

n in a row, any packet not in its destination column will reach it within n more steps.

Once all packets are in North or South queues in their destination columns, it takes only

2n steps before all are delivered. 2

6. An O(n)-Time, O(1)-Space Minimal Adaptive Algo-

rithm

We now present a deterministic, minimal adaptive routing algorithm for the n � n mesh

that routes permutations in O(n) time and uses constant size queues in each node. It uses

the distance each packet has to travel in the vertical and horizontal dimensions to make

routing decisions and is thus not destination-exchangeable. These same bounds were known

for routing algorithms based on sorting [15, 18, 22, 24], but those algorithms do not use

minimal routes.

The algorithm consists of an alternation between vertical phases, where packets move

closer to their destinations in the vertical dimension, and horizontal phases, where packets

move closer to their destinations in the horizontal dimension. As packets get closer to their

destinations, the independent submeshes that can be handled in parallel get smaller and

more numerous.

6.1. The Algorithm

Without loss of generality, we assume that we are routing just packets that need to move

either northeast or directly north to get to their destination. The entire algorithm consists

of sequential applications of this algorithm, corresponding to the four kinds of packets (NE,

NW, SE, SW).

Throughout the algorithm, we will assume the existence of a set of three tilings of the

n � n mesh, each with tiles of size 3h � 3h, such that any two nodes within distance h of

each other vertically and horizontally are both within some tile of at least one of the tilings.

Lemma 19 shows that such tilings exist. We will assume for simplicity that n is a power of

3.

for j = 0; 1; 2; : : :

� (Base Case.) If

1

3

j

n < 27, then use the dimension order algorithm with the farthest-�rst

protocol on the entire n� n mesh and then exit the algorithm.

19



1

3

j

n

1

3

j

n

1

q

q

q

i-3

i-2

i-1

i

q

q

q

27

6

?

d

6

March

6

Sort and Smooth

-

Horizontal Balancing

Figure 5: The Vertical Phase of the algorithm.

� Otherwise, consider the three tilings, where each tile is of size

1

3

j

n �

1

3

j

n. For tiles on

the edge of the mesh that may not be

1

3

j

n�

1

3

j

n, extend the tile to a \virtual tile" of

size

1

3

j

n�

1

3

j

n, where no packet is moved outside the actual mesh.

For a given tiling, the actions below are performed on each of the tiles in the tiling

independently and in parallel. A packet only participates in an action on a given tile

if its current location and destination are both within that tile. Perform the following

Vertical Phase for each of the three tilings in succession, followed by the Horizontal

Phase for each of the three tilings in succession. In the special case of j = 0, there is

only one tiling consisting of one n� n tile.

� Vertical Phase

1. Divide each tile of the tiling into 27 horizontal strips of height d =

1

27�3

j

n. De�ne

an active packet to be one whose destination is in strip i and whose location at the

beginning of this Vertical Phase is in one of strips 1; : : : ; i � 3 (i.e., it is at least

three strips away from its destination; in particular, packets whose destinations

are in strips 1, 2, or 3 are not active). See Figure 5. For each of the following

steps, every node knows how long it will take (see Lemmas 29, 30, and 31) and

can delay that long before starting the next step.

2. March. An active packet whose destination is in strip i moves to strip i� 3 via

only column edges. Each node in strip i� 3 transmits packets whose destinations

are in strip i as far north within the strip as possible. When a node in strip i� 3

contains q = 408 active packets destined for strip i, it refuses to receive any more

such packets.

3. Sort and Smooth. This step is performed in two sequential substeps, one for

packets whose destinations are in strip i, where i is even, and one for packets

whose destinations are in strip i, where i is odd.

Move active packets from strip i � 3 to strip i � 2, using only column edges, in

decreasing order according to the horizontal distance they need to go. When each

20



4 2 3 6

2 2 3 5

8 5 3 6 1

6 7 1 1 2

strip i-3

column x

-

sort and

smooth

1 2 4 6

2 3 5 6

1 2 3 5 7

1 2 3 6 8

strip i-2

column x

Figure 6: Sort and Smooth (d = 4). Each packet is represented by the horizontal distance

to its destination.

node in the i � 2 strip (in the column we are considering) has the same number

of packets, a new \layer" of packets is added (see Figure 6). This is implemented

as follows. If a node in strip i� 3 is the t-th from the southernmost node of the

strip, then on steps t and after, the node will transmit north the active packet

that has the farthest east to go. Each node in strip i � 2 can count how many

packets it has received to determine whether to hold an incoming packet or send

it north: the t-th from the northernmost node of the strip holds every t-th packet

it receives.

4. Horizontal Balancing. Each node performs the following operation, called the

2-rule: if the node has more than two active packets, then it transmits east the

active packet that has the farthest east to go (ties broken arbitrarily).

� Horizontal Phase

Similar to steps 1 through 4 of the Vertical Phase. (Replace \height" by \width",

\north" by \east", etc.)

We will now prove the correctness of the algorithm, place a bound on the queue size,

and give the running time of the entire algorithm for permutation routing problems. All of

the facts for the Vertical Phase proved in the following subsections easily translate to the

corresponding facts for the Horizontal Phase.

6.2. Correctness

We now show that the routing algorithm presented in Section 6.1 is minimal adaptive, and

that it delivers all the packets in a permutation. We begin by showing that Horizontal

Balancing does not cause any packet to \overshoot" its destination column.

21



For any column c, de�ne a (�c)-packet to be an active packet whose destination column

is at or west of column c. De�ne a (>c)-packet to be any other active packet (i.e., one whose

destination is east of column c).

Lemma 16: For any column c, any row r, and any s � 1, immediately after Sort and

Smooth, there are at most 2s (� c)-packets in the �rst s nodes of r that are west of and

including column c.

Proof: Suppose there were at least 2s + 1 (� c)-packets in the �rst s nodes west of

and including column c at the end of Sort and Smooth. Let x

1

; x

2

; : : : ; x

s

be the respective

numbers of (�c)-packets in those nodes.

Then there are at least ((x

1

� 1) + (x

2

� 1) + : : : + (x

s

� 1)) � d (� c)-packets in the

�rst s columns of strip i� 2 west of and including column c, each destined for nodes in the

corresponding rectangle in strip i. This is because in order for a node � to have x (� c)-

packets at the end of Sort and Smooth, there must be at least x � 1 (� c)-packets in each

node of �'s column within its strip. (See Figure 6.)

But x

1

+x

2

+ : : :+x

s

� 2s+1. Thus, there are at least (2s+1�s) �d = (s+1) �d packets

destined for sd nodes, contradicting the fact that this is a permutation routing problem. 2

Consider any particular row r and destination column c. Suppose at the beginning of

some step t, where the �rst step of Horizontal Balancing corresponds to t = 1, that for all

s � 1 there are no more than 2s (� c)-packets in the �rst s nodes west of and including

column c. Call this Condition C.

Lemma 17: For all t � 0, no (� c)-packet is transmitted east by the node in column c

during step t of Horizontal Balancing, and Condition C holds at the beginning of step t+1.

Proof: The proof is by induction on t.

Basis : t = 0. This follows immediately from Lemma 16.

Induction : Assume the statement is true for t � 1 � 0 (in particular, Condition C

holds at the beginning of step t). We will prove the statement for t. During step t, no

(� c)-packet is transmitted east by the node � in column c, because if there were, then by

the 2-rule � would have had at least three (�c)-packets at the beginning of step t, violating

Condition C for s = 1 at step t. (Recall that the 2-rule prevents any node from transmitting

a (�c)-packet in preference to a (>c)-packet.)

Now suppose that Condition C does not hold for some s

0

at the beginning of step t+ 1.

Then the �rst s

0

nodes west of and including � contained 2s

0

(�c)-packets at the beginning

of step t and received a (�c)-packet from the (s

0

+1)-st node during step t. But this means

that the (s

0

+ 1)-st node had at least three (� c)-packets at the beginning of step t. Thus,

there were at least 2s

0

+ 3 (� c)-packets in the �rst s

0

+ 1 nodes west of and including �,

violating Condition C for s = s

0

+ 1 at step t.

22



Since we chose r and c arbitrarily, we have proved Lemma 17 statement for all r and c,

and hence for all packets. 2

Lemma 18: Suppose that, at the beginning of the Vertical Phase, every packet is within

27d rows of its destination row. Then at the end of the Vertical Phase, every active packet is

at least d+ 1 and at most 3d� 1 rows away from its destination row. Every inactive packet

is at most 3d � 1 rows away from its destination row.

Proof: Any active packet destined for the i-th strip will end the phase in the strip i� 2.

Thus, every active packet is at least d+1 and at most 3d� 1 rows away from its destination

row. Any inactive packet is within three strips (i.e., at most 3d � 1 rows) of its destination

row. 2

The following tiling lemma is folklore:

Lemma 19: There exist three tilings of the n� n mesh with tiles that are 9d� 9d such

that any two nodes within distance 3d in both the vertical and horizontal dimensions are

contained in some tile of at least one of the tilings.

Proof: De�ne the three tilings as follows. The north (and west) boundaries of the tiles

in the �rst tiling are nodes in row (respectively, column) i, where i � 1 (mod 9d). The tiles

of the second tiling are displaced 3d rows and 3d columns from the tiles in the �rst tiling.

The tiles in the third tiling are displaced 3d rows and 3d columns from the tiles in the second

tiling.

It is easy to see that any two nodes within 3d rows and 3d columns of each other must

be contained in the same tile in one of the tilings. 2

Theorem 20: No packet makes a move that places it farther from its destination, and

all packets eventually are delivered. That is, the algorithm above is minimal adaptive.

Proof: During March and Sort and Smooth, packets move only towards their destina-

tion vertically. Lemma 17 ensures that a packet does not move away from its destination

horizontally. Along with the analogous lemma for the Horizontal Phase, this shows that no

packet makes a move that places it farther from its destination.

Using induction on j and Lemmas 18 and 19 (and the horizontal analogue of Lemma 18),

we see that every packet is no more than 3 �

1

27�3

j

n rows and 3 �

1

27�3

j

n columns away from its

destination after the j-th iteration. When

1

3

j

n < 27, then the dimension order algorithm is

used. Thus, every packet is eventually delivered. 2

23



6.3. Queue Size

We now show that during the algorithm, no more than a constant number of packets ever

occupy a node at the same time. We do this by examining the queue size during and at the

end of each step in a Vertical Phase. In what follows, let q = 17 � (27 � 3) = 408.

Lemma 21: Suppose no node begins the March with more than 17 packets. No more

than q + 1 active packets ever occupy a node at the same time during the March. Also, at

the end of the March, no node contains more than q active packets.

Proof: Consider any node � in strip i�3. Let t be the step after which �'s north neighbor

refuses to accept more packets destined for strip i (or t = 0, if � is the northernmost node

in strip i� 3). Until time t, � has no more than 17 active packets, since it sends one north

at each step.

After time t, whenever � has a packet destined for a strip north of strip i, it transmits one

such packet. It may accumulate an additional q packets that end the march at �. Therefore,

� never has more than q + 1 packets at any time. 2

Lemma 22: During Sort and Smooth, no more than 2q + 1 active packets ever occupy

a node at the same time. At the end of Sort and Smooth, no node contains more than q

active packets.

Proof: Consider any strip i.

Each node in strip i� 3 receives at most one packet before it starts transmitting packets

northward. Since a node in strip i � 3 always transmits once it starts transmitting (and

has at least one packet destined for strip i), then its queue will never hold more than q + 1

active packets destined for strip i. If i is odd, it may contain an additional q active packets

destined for strip i� 1 that completed their Sort and Smooth in the even substep.

A node in strip i � 2 will never contain more than q active packets destined for strip i.

If i is even, it may contain an additional q active packets destined for strip i + 1 that will

move in the odd substep.

At the end of Sort and Smooth, each node in strip i � 2 will contain no more than q

active packets destined for strip i and no other active packets. 2

Lemma 23: If a node contains no more than r > 2 active packets at the beginning of

Horizontal Balancing, then the node contains no more than r active packets during Horizontal

Balancing. Also, if a node contains no more than two active packets at the beginning of

Horizontal Balancing, then the node never contains more than three active packets during

Horizontal Balancing.

24



Proof: Because of the 2-rule, any node that has r > 2 active packets transmits one

active packet to the east until it has two active packets. (It might later receive a packet,

but then the 2-rule is in e�ect again.) Since the node is always transmitting when it has

three or more active packets and can only receive at most one packet per step, then the

number of packets in the node can never increase when it has three or more active packets.

In particular, the node can never have more than r active packets.

A node that begins with two or fewer packets can receive packets until it has three

packets, at which point it will start transmitting. As above, it can never hold more than

three active packets. 2

Lemma 24: No more than two active packets end Horizontal Balancing in the same

node.

Proof: The 2-rule ensures this. 2

In what follows, a Vertical Phase is divided into three subphases, one for each of the

three tilings. Horizontal subphases are de�ned analogously.

Lemma 25: If a packet is active in some vertical subphase at iteration j of the algorithm,

then it will be active in some horizontal subphase at iteration j or in some vertical subphase

at iteration j + 1.

Proof: Let d be the height of a strip in iteration j. Since the size of a strip in iteration

j + 1 is d=3, then a packet at least d + 1 rows away from its destination row at the end of

the current iteration will be at least three strips away (vertically) at the beginning of the

next iteration. Thus, an active packet of the j-th iteration will move in one of the three

vertical subphases in the (j + 1)-st iteration if it was not active in the horizontal subphases

of iteration j. (It could move vertically during Vertical Balancing of a horizontal subphase.)

The fact that the packet is at least d+1 and at most 3d�1 rows away from its destination

row guarantees (by Lemma 19) that it will be an active packet in some tile of size 9d � 9d

in one of the tilings in the (j+1)-st iteration, if it did not move in an intervening horizontal

subphase. The d + 1 and 3d � 1 distance bounds are guaranteed by Lemma 18. 2

Corollary 26: Once a packet becomes active in some subphase, it can occupy space

without moving in at most seven subphases between subphases in which it is active.

Proof: Follows from Lemma 25 (and the corresponding horizontal lemma) and observing

the sequence of subphases in the algorithm. See Figure 7. 2

Corollary 27: At the end of any vertical subphase (or horizontal subphase), no more

than 17 packets occupy any node.

25



V1 V2 V3 H1 H2 H3 V1 V2 V3

Figure 7: Subphases of the algorithm. A packet can remain inactive for at most seven

subphases.

Proof: From Lemma 24, at most two active packets from any subphase (vertical or

horizontal) can occupy a node at the end of that subphase. From Corollary 26, only eight

subphases' worth of active packets can occupy a node, plus the one packet that began in the

node. Thus, at most 17 packets end any subphase in the same node. 2

Lemma 28: No more than 2q+18 = 834 packets ever occupy a node at the same time.

Proof: The lemma follows from Lemmas 21, 22, 23, 24, and Corollary 27 by induction

on the subphase number. Up to 2q + 1 active packets and 17 inactive packets can occupy a

node at the same time.

For the dimension order part of the algorithm (the base case), consider any node �. By

Lemma 18, no packet is farther than two rows and two columns from its destination at the

beginning of this part of the algorithm. Thus, the only northeast bound packets that can

enter � are those whose destinations are within two rows north or two columns east of �.

There are nine such destinations and hence nine such packets because this is a permutation

routing problem. This gives a bound of nine on the queue size during the dimension order

part of the algorithm. 2

6.4. Time Analysis

We now present the running time analysis of the algorithm by calculating the running time

of each step of the Vertical Phase.

Lemma 29: The March takes no more than qd� 1 steps.

Proof: Assume for the sake of time analysis that during the March, whenever a node

contains two or more packets that need to move northward, it prefers to send the one that

was received from the south on the previous step. Otherwise, it makes an arbitrary choice.

Note that because of this priority scheme in the March, once a packet starts moving, it

continues to move uninterrupted until it reaches the node in which it will end the March.

By Corollary 27, at most 17 packets occupy a node at the beginning of the March.

Suppose an active packet p is delayed by t steps. Since each delaying packet had to occupy

a node at or south of p's node in the same column, then there are at least (t� 16)=17 nodes

south of it. The distance p travels in the March, then, is at most d(27�3)�1�((t�16)=17).

26



The total number of steps before p reaches the node in which it ends the March is then

at most t+ d(27� 3)� 1� ((t� 16)=17) =

16

17

t�

1

17

+ d(27� 3). This quantity is maximized

when t is maximized. Since an active packet's destination is at least three strips away from

its node at the beginning of the March, then t can be at most 17 � d(27 � 3) � 1 = qd� 1.

Thus, the total number of steps before p reaches the node in which it ends the March is at

most

16

17

(qd� 1) �

1

17

+

1

17

qd = qd� 1. 2

Lemma 30: Sort and Smooth takes no more than 2 � ((d � 1) + qd) steps.

Proof: Consider the even substep of Sort and Smooth. The analysis for the odd substep

is identical.

Let P be the number of active packets in a column of strip i� 3 destined for strip i, and

let P = sd + r, where s and r are integers and 0 � r < d.

It will take d � 1 steps before the �rst packet moves from strip i � 3 to i � 2. The

northernmost node of strip i� 3 will then send a packet northward each step until there are

no more packets to send, which will take sd+ r steps. Finally, the last packet to enter strip

i� 2 will move, uninterrupted, an additional d� r nodes, if r � 1. If r = 0, then the packet

will not have to move.

Thus, the even substep takes (d � 1) + (sd + r) + (d � r) steps if r � 1 and (d � 1) +

(sd + r) steps if r = 0. If P < qd, then sd < qd, and so the substep takes no more than

(d� 1)+ (sd+ r)+ (d� r) � (d� 1)+ (s+1)d � (d� 1)+ qd steps. If P = qd, then sd = qd

and r = 0, and so the substep takes no more than (d� 1) + qd steps. 2

Lemma 31: Horizontal Balancing takes no more than 3h � 4 steps on an h � h tile.

Proof: Any node with at least four packets at the end of step t of Horizontal Balancing

had at least four packets at the beginning of each of steps 1; : : : ; t and therefore transmitted

in steps 1; : : : ; t. This is because if the node had three packets at some time step t

0

< t, then

it received a packet without sending one, violating the 2-rule.

Let M

t

be the maximum, over all nodes in a single row r, of the number of packets in

the node at the end of step t. There are at most 2h active packets in row r by Lemma 17.

Thus, for all time steps t for which M

t

� 4, t +M

t

� 2h, since the node with M

t

packets

also transmitted t other packets in earlier steps. Thus, M

2h�3

� 3.

Let t

�

be the �rst step for which M

t

�

� 3. Then at the end of step t

�

+ i, the leftmost i

nodes of row r each have no more than two packets, for i = 1; : : : ; h� 1. This is proved by

induction on i.

Basis : i = 1. The leftmost node will have at most two packets after one step, since it

obeys the 2-rule, it started step t

�

with no more than three packets, and it did not receive

any packets.

27



Induction : Assume the statement is true for i = m� 1. Then the leftmost m� 1 nodes

each have at most two packets. Thus, the m-th node from the left will not receive a packet

and will have at most two packets at the end of step t

�

+m, since it obeys the 2-rule, and

it had no more than three packets at the beginning of step t

�

+m.

This ends the proof by induction.

Thus, after t

�

+ h � 1 steps, the leftmost h � 1 nodes have no more than two packets

each. Also, we know that the rightmost node never has more than two packets (Lemma 17,

where c is the rightmost node). Therefore, after at most (2h� 3) + (h� 1) = 3h � 4 steps,

all nodes have no more than two packets. 2

Lemma 32: The dimension order part of the algorithm takes no more than 14 steps.

Proof: Consider a packet p and the set of packets that can delay p in the dimension

order part of the algorithm. We know that each packet is within two rows and two columns

of its destination (by Lemma 18, where d = 1). There are at most 10 destination nodes

other than p's destination node that could have a northeast bound packet � destined for it

such that � takes a path that interferes (i.e., shares an outlink) with p's path. Thus, p can

be delayed by at most 10 steps. Since p's destination is at most four nodes away from where

it started the dimension order part of the algorithm, then p will arrive at its destination in

at most 14 steps. 2

Lemma 33: The entire algorithm (including handling the four di�erent types of packets)

takes no more than 4 � 243n steps.

Proof: Let J be the number of iterations in the algorithm.

From Lemmas 29, 30, 31, and 32, the time to route just NE packets can be expressed by

the following summation. (The factor of 6 is for the three tilings of each of the Vertical and

Horizontal Phases. There is a factor of only 2 when j = 0.) The value d

j

is the value of d

during the j-th iteration of the algorithm.

T (n) � 2 � ((qd

0

� 1) + 2 � ((d

0

� 1) + qd

0

) + (3n � 4)) +

J

X

j=1

�

6 �

�

(qd

j

� 1) + 2 � ((d

j

� 1) + qd

j

) + (3 �

1

3

j

n � 4)

��

+ 14

= 2 � (3qd

0

+ 2d

0

� 7 + 3n) + 6 �

J

X

j=1

�

3qd

j

+ 2d

j

� 7 + 3 �

1

3

j

n

�

+ 14

< 2 �

�

1307

27

n

�

+ 6 �

J

X

j=1

�

1307

27

1

3

j

n

�

28



<

2614

27

n +

2614

9

n �

1

X

j=1

�

1

3

j

�

The value of the last expression is less than 243n. Since we have four di�erent kinds of

packets, we must multiply the bound by four, obtaining the upper bound on the running

time of the entire algorithm. 2

We now have shown that there is a minimal adaptive algorithm that runs in O(n) time

and uses O(1) size queues in each node:

Theorem 34: There exists a deterministic, minimal adaptive routing algorithm that

routes any permutation in 972n steps and uses space for at most 834 packets in any node.

Proof: The theorem follows from Lemmas 20, 28, and 33. 2

We can improve the time bound by observing that at the beginning of the j-th iteration,

for j � 1, active packets are within 9 strips (that is,

1

3�3

j

n rows) of their destinations. We can

now restate Lemmas 29 and 30 with q = 17 � (9 � 3) = 102, reducing the time for iterations

j � 1 by a factor of almost four. The new time bound is 564n.

Note also that the queue size for iterations j � 1 is never more than 2q + 18 = 222.

(Lemmas 21, 22, and 28 would need to be restated with the new value of q.)

7. Conclusions and Open Problems

The main conclusion of this paper is that if one wants to route all permutations in o(n

2

=k

2

)

time on the n� n mesh with queues of size at most k, then one must either: (1) incorporate

the destination addresses (rather than just pro�table outlinks) of packets in routing decisions,

(2) use a routing algorithm that allows packets to take paths other than their minimal ones,

or (3) incorporate randomness in routing decisions.

Some open problems include:

� Is there a matching O(n

2

=k

2

) bound for destination-exchangeable, minimal adaptive

algorithms on the mesh?

� Is there a practical routing algorithm that routes arbitrary permutations in O(n) time?

By \practical", we mean that the constant in the O(n) time bound is small, the queue

size is bounded by a small constant, the queueing discipline is simple and fast, and the

algorithm extends to the asynchronous and dynamic settings.

29



Acknowledgement

We are grateful to Allan Borodin, Greg Plaxton, Larry Ruzzo, Larry Snyder, and Torsten

Suel for helpful discussions.

References

[1] A. Bar-Noy, P. Raghavan, B. Schieber, and H. Tamaki. Fast de
ection routing for pack-

ets and worms. In Proceedings of the Twelfth Annual ACM Symposium on Principles

of Distributed Computing, pages 75{86, 1993.

[2] K. E. Batcher. Design of a massively parallel processor. IEEE Transactions on Com-

puters, 29(9):836{840, September 1980.

[3] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of

computation. Journal of Computer and System Sciences, 30:130{145, 1985.

[4] A. Borodin, P. Raghavan, B. Schieber, and E. Upfal. How much can hardware help

routing? In Proceedings of the Twenty Fifth Annual ACM Symposium on Theory of

Computing, pages 573{582, May 1993.

[5] J. T. Brassil and R. L. Cruz. Bounds on maximum delay in networks with de
ection

routing. In 29th Annual Allerton Conference on Communication, Control, and Com-

puting, pages 571{580, 1991.

[6] A. Chien and J. H. Kim. Planar-adaptive routing: Low-cost adaptive networks for

multiprocessors. In Proceedings of the 19th International Symposium on Computer Ar-

chitecture, pages 268{277, 1992.

[7] R. Cypher and L. Gravano. Adaptive, deadlock-free packet routing in torus networks

with minimal storage. In 1992 International Conference on Parallel Processing, pages

204{211, 1992.

[8] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In Proceedings 33rd

Annual Symposium on Foundations of Computer Science, pages 553{562, Pittsburgh,

PA, October 1992.

[9] B. Hajek. Bounds for evacuation time for de
ection routing. Distributed Computing,

5:1{6, 1991.

[10] T. Han and D. Stanat. \Move and smooth" routing algorithms on mesh-connected com-

puters. In 28th Annual Allerton Conference on Communication, Control, and Comput-

ing, pages 236{245, 1990.

30



[11] Intel. A Touchstone DELTA system description. Technical report, Intel, Portland, OR,

1991.

[12] C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on processor arrays. In

Proceedings of the 1993 ACM Symposium on Parallel Algorithms and Architectures,

pages 273{282, June 1993.

[13] C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivious routing in

the hypercube. In Proceedings of the 1990 ACM Symposium on Parallel Algorithms and

Architectures, pages 31{36, June 1990.

[14] D. Krizanc. Oblivious routing with limited bu�er capacity. Journal of Computer and

System Sciences, 43:317{327, 1991.

[15] M. Kunde. Routing and sorting on mesh-connected arrays. In 3rd Aegean Workshop on

Computing (AWOC), volume 319 of Lecture Notes in Computer Science, pages 423{433.

Springer-Verlag, 1988.

[16] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann, 1992.

[17] T. Leighton. Average case analysis of greedy routing algorithms on arrays. In Pro-

ceedings of the 1990 ACM Symposium on Parallel Algorithms and Architectures, pages

2{10, July 1990.

[18] T. Leighton, F. Makedon, and I. Tollis. A 2n � 2 step algorithm for routing in an

n� n array with constant size queues. In Proceedings of the 1989 ACM Symposium on

Parallel Algorithms and Architectures, pages 328{335, July 1989.

[19] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The

DASH prototype: Implementation and performance. In Proc. 19th Annual Symposium

on Computer Architecture, pages 92{103, June 1992.

[20] B. Maggs and R. Sitaraman. Simple algorithms for routing on butter
y networks with

bounded queues. In Proceedings of the Twenty Fourth Annual ACM Symposium on

Theory of Computing, pages 150{161, May 1992.

[21] MP-1 family data-parallel computers. Technical report, MasPar Computer Corporation,

749 North Mary Ave., Sunnyvale, CA., 1987.

[22] I. Newman and A. Schuster. Hot-potato algorithms for permutation routing. Technical

Report PCL Report #9201, CS Department, Technion, November 1992.

[23] M. Noakes and W. Dally. System design of the J-Machine. In Proceedings of the 6th

MIT Conference on Advanced Research in VLSI, pages 179{194, 1990.

31



[24] S. Rajasekaran and R. Overholt. Constant queue routing on a mesh. Journal of Parallel

and Distributed Computing, 15(2):160{166, June 1992.

[25] A. Ranade. Equivalence of message scheduling algorithms for parallel communication.

Technical Report YALEU/DCS/TR-511, Department of Computer Science, Yale Uni-

versity, New Haven, CT, 1987.

[26] C. Sietz, N. Boden, J. Seizovic, and W. Su. The design of the Caltech Mosaic C

multicomputer. In Proceedings of the Symposium on Integrated Systems, pages 1{22,

1993.

32


