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Abstract
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virtual machines for classical object-oriented lan- E
guages, nor those for existing constraint languages, are
suitable for implementing CIP languages, as each
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computation model. We have developed a new virtualj _ _ _
machine for CIP languages, the K-machine, an impera- [EN_Comeiter Setiings ]
tive machine with an incremental constraint solver and
a constraint-based, rather than value-based, data storg. U %enerate 68020 instructions U 4-byte ints
This virtual machine allows user-defined constraints to|| o fererate 68881 insiructions — [18-byte doubles
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which are the CIP analog to method definitions. Similar [ 6enerate class names & Rlign arrays of char
to methods, these constructors are able to referencg.
variables indirectly through many levels of pointers.
The K-machine maintains relations between objects in||:

5 5 the THINK C Options dialog. Click on any button ta find out more about that option. Use the pap-up
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the presence of state change to these indirectly refery [scargsetangs | [C-+ compatible] [ cancet | [ ok |
enced objects. The K-machine is capable of supportingl
a wide variety of CIP languages, including our most Figure 1. Example User Interfaces

recent: Kaleidoscope’93. 1. Introduction
Keywords Imperative programming languages are well under-

constraints, constraint imperative programming, incre§t00d’ used by a large number of programmers, and

mental constraint solving, virtual machines wgll sup.ported.by software tools. However, even
object-oriented imperative languages are often lower

level than one would like. Consider graphical user
interfaces such as those that initially motivated us, e.g.,
the MacDraw dashed-lines dialog box in Figure 1
(top), the Think C options window in Figure 1 (bot-
tom), and the thermometer in Figure 3. We observed
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Imperative Constraint Imperative
while mouse.button = down do always: temperature = mercury.height / scale; @
old « mercury.top; always: white_rectangle.top = thermometer.top; @
mercury.top — mouse.location.y; always: white_rectangle.bottom = mercury.top; ©))
temperature — mercury.height / scale; always: mercury.bottom = thermometer.bottom; ()
if old < mercury.top then always: color(white_rectangle,white); ®)
paint_rect( grey, mercury.top, old ); always: color(mercury,grey); ®)
display_number( temperature ); always: display_number( temperature ); @)
elseif old > mercury.top then while mouse.button = down assert
paint_rect( white, mercury.top, old ); mercury.top = mouse.location.y; ()]
display_number( temperature ); end while;
end if;
end while;

Figure 2. Imperative Code versus CIP Code

that some portions of these interfaces are most clearly

and conveniently described using constraints—auto- thermometer.t

matically maintained relations between variables— mercury.to mouse

while other portions are most clearly described using

standard imperative constructs such as assignments and

sequencing. However, no existing language used to mercury.bottom

program these interfaces directly supported both con- Figure 3. Thermometer

structs. Thus, although these user interfaces may lgenstraints. Some of the constraints specify relations
written in high-level imperative languages, the conthat must always hold, e.g., lines 1-7, while others
straint portions of the user interface are written at a lowpecify relations that should hold only while a given

level, by hand, and enforced by a code fragments disendition is true, e.g., line 8. Imperative constructs,
tributed throughout the program—a recipe for maintesuch as thevhile statement, are used to control pro-

nance headaches. To address this problem, vggam execution (in particular, when certain constraints
proposed, in [Freeman-Benson 91] and [Freeman-Beshould hold). The constraint imperative version on the
son & Borning 92], an integration of two disparate parfight is both higher-level and more maintainable than
adigms: a standard object-oriented imperative one, aride imperative version on the left.

a dgclgratwe (?onstra|nt one.. The result 'S_ “amed_CP'Drhe constraints used in constraint imperative languages
straint mperaﬂve programming (CIP). Wh”e_ the Orls_g"are declarative statements of relations among elements
nal 'mofuvatlon for CIP languages was mteractlveof the language’s computational domain, e.g., integers,
applications, CIP I.anguages are actually general'pu[)_'ooleans, strings, and other objects. These constraints
pose Ian.guage-s—ln fact, they are a superset of tradiy, o g by the language’s embedded constraint solver,
tional object-oriented languages. and their usefulness stems from the fact that they
Consider a slider widget that allows the user to drag themphasize the relation rather than the procedural steps
mercury of a thermometer up and down with the mouseecessary to maintain that relation. CIP languages are
(Figure 3), and two code fragments (Figure 2) forgeneral purpose programming languages; they imple-
achieving this effect. The version in Figure 2 (left) usesnent general purpose multi-directional constraints,
only standard imperative constructs. It requires the praather than a uni-directional, or dataflow, subset. For an
grammer to check whether values have changed, andoverview of constraints and constraint programing, see
so, to fill or erase the appropriate rectangle incremeffereeman-Benson et al. 90] or [Leler 87].

and then redisplay the temperature value. The three fundamental problems of CIP language

The constraint imperative version in Figure 2 (right)implementation that our K-machine is designed to
uses of a combination of imperative constructs andolve are as follows.
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i. The imperative and constraint paradigms conflict on
the issue of control of variable values: the impera-
tive paradigm gives the precise control of each vari-
able’s value to the programmer, while the constraint
paradigm gives the responsibility to the constraint
solver. In an imperative program, an assignment is
the only way to update the value of a variable, and
each assignment only updates one varfable a
constraint program there are no assignments, so
variable values are modified by adding and remov-
ing constraints, yet with each addition or removal
the constraint solver may change any number of
variable values so as to satisfy the remaining con-
straints. Thus any integration of the imperative and
constraint paradigms must include communication,
between the two. In the K-machine, this problem id"
handled by replacing the value-based store of an
imperative machine with a constraint-based store.
The imperative engine notifies the constraint solver
whenever a constraint is to be added or deleted, and
the constraint solver handles queries from the
imperative engine for the values of variables.

. A CIP language will obviously have a mechanism
for creating constraints over the built-in primitive
domains (integers, booleans, real numbers, etc.). An
object-oriented CIP language must also have a
mechanism for defining and creating constraints
over complex user-defined objects. For example, the
programmer who is coding the dialog box in
Figure 1 (top) should constrain lines, rectangles,
dash components, check boxes, etc. rather than the
integer and real number components of those

1. Ignoring the effect of aliasing. As an aside, we note that con-
straints provide a more general and disciplined mechanism than that
provided by aliasing.

objects. Thus, the programmer should write
left_of(dash[i],dash[i+1]) rather than violating object
encapsulation to write constraints of the form
dash[1].dialog_rectangle.bottom_right.x <
dash[2].dialog_rectangle.top_left.x, etc. Constraints
of this latter form are not object-oriented because
(a) they violate public-private encapsulation bound-
ary of instance variables, and (b) they prevent the
programmer from using a different implementation
of the same abstraction, e.g., a top/bottom/left/right
implementation of rectangles instead of a topLeft
point/bottomRight point implementation. (This
problem is also discussed in [Freeman-Benson &
Borning 92].)

If the part-whole structure of the objects were guar-
anteed not to change, then user-defined constraints
on user-defined objects could be implemented using
properly encapsulated methods that recursively
descend the structure and create primitive con-
straints on the leaves. For example, consider the
within constraint between two rectangles (A and B)
illustrated in Figure 4. One could implement this
using awithin method in clasBectangle which calls

the aboveRight and belowLeft methods in class
Point, which call the+ and- methods in claskte-

ger which, finally, create primitive constraints
between thex andy components of the points. No
special mechanisms, other than primitive con-
straints, are necessary.

However, the effect of using methods is that the
within(A,B) constraint is implicit rather than
explicit—there is no longer an explicit
representation of theithin constraint; instead, it is
represented implicitly by the primitive constraints
on the subparts of A and B. Thus, if a new object
were assigned to A, then the implicit constraint
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would become within(Armer vaie:B) rather than objects change identity. Most of the machinery in
within(Agyrrent vae:B)- 1IN other words, the new  the K-machine exists to provide exactly such a
rectangle stored in A would not be constrained to mechanism.

stay within B, much to the surprise of the
programmer who had expected théthin(A,B)
message to ensure that the A rectangle always
contained within the B rectangle.

In the remainder of this paper, we discuss implementa-
tion considerations common to all constraint impera-
%e programming languages, as well as our
implementation of Kaleidoscope'93 [Lopez et al. 93],
A real-life example of this situation is the dialog hereafter referred to as Kaleidoscope. The K-machine
box window in Figure 1 (bottom): the window canis a general CIP language virtual machine, and is not
show any one of four or five dialogs, depending onestricted to the particular choice of primitive domains,
the item selected from the menu in the upper lefigonstraint solvers, and inheritance model used in Kalei-
The object structure for this window is shown indoscope. This implementation demonstrates that the
Figure 5. In Figure 5(a), dialog box one is selectedonstraint and imperative paradigms can be integrated
and thedialog instance variable of thevindow  at the virtual machine level, and accessed via an inter-
object contains to theialogl object. The desired face similar to that for imperative virtual machines.
constraint,within(border,dialog), represented by the Section 2 presents an overview of the Kaleidoscope’93
dashed line has been implemented by creatinginguage and our current implementation. Section 3
primitive constraints (the gray lines) between the outlines the K-machine, a virtual machine for CIP lan-
andy variables of the component points. When thgyuages with an incremental constraint solver, and Sec-
user selects dialog box two in Figure 5(b), thetion 4 describes the constraint-based data store, which
dialog2 object is assigned to thdialog instance augments a conventional imperative data store with
variable and thus the part-whole structure of theonstraints linking values. Related work is discussed in
window is changed. Unfortunately, the desiredSection5, and conclusions and future work are pre-
constraint,within(border,dialog), again represented sented in Section 6.

by the dashed line, is no longer -correctly

implemented! In fact, the oldialogl object remains

visible rather than the selectatlalog2 object. 2. The Kaleidoscope’93 Language

Obviously using primitive constraints to implement
complex constraints implicitly is inadequate, and a
more powerful explicit constraint mechanism is
necessary.

Kaleidoscope’93 is similar to many other object-ori-
ented languages: it has classes, objects with mutable
state, methods, destructive assignment, and so forth.
An object’s state can be changed by sending messages
A general purpose CIP language must have g it The key difference between constraint imperative
mechanism for maintaining constraints on USerprogramming and imperative programming is the abil-
defined objects even when components of thosg g relate variables (such as slots/instance variables,
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locals, globals, etc.) by constraints. When a variablment statements are a particular kindoate con-

has one or more constraints on it, the constraint solvstraint, in which the value of the expression on the right
is allowed to alter the binding of the variable, or thehand side is determined at one instant, then at the next
state of the object bound to the variable, to satisfy thistant a one-wagnce constraint is applied between
constraints. this value and the expression on the left. This mecha-
nism integrates assignment with the constraint system,

Just as a method definition extends an imperative lan- d at th i I h standard . i
guage with user-defined messages, a constraint co d at the same time allows such standard assignments

structor definition extends a CIP language with userélSX :=x+5. (A ance: x = x+5 constraint would be unsat-

defined constraints. However, in contrast to methodés,f'able') The alternative of making assignment state-

constructors need to be re-evaluated when the coflc intoconventional load and store sequences
strained objects change, since constraints might n\gOUId be possible as well, but would complicate the

longer be satisfied as a result of these changes. TE%?Nantlcsthan_d WOUIC:_ still re;quwe t;ght tcommumcagonb
most flexible constraint model would allow constraints etween the imperative and constraint engines (Prob-

to be asserted and retracted at arbitrary points in timlee.m Histed In Section 1).

Although the K-machine is capable of supporting thig=inally, theduring construct specifies that a constraint

model, we felt its use at the language level could leashould remain in force during the execution of a block
to difficulties in predicting behavior, since any piece ofor loop. The following example asserts that the window
code could alter the active set of constraints. Insteagpsition and mouse position are the same while the
we adopt a structured design for Kaleidoscope’93, imouse button is down:

which the static program text determines when con-

. . . . assert mouse.position = window.position
straints are active. (We might relate this to the GOTO P P

during
statement/structured programming controversy of the while mouse.button = down do
1960’s: constructs that allow constraints to be asserted
and retracted at arbitrary times are analogous to GOTO end while;

statements, while the control structures in Kaleidoye have found it useful to extend the constraint para-
scope are analogous to structured control statementsaigm to allow bothrequired and preferential con-

The default constraint durationdsvays, which causes straints. The required constraints must hold for all
a constraint to remain active for the duration of the prosolutions, while the preferential constraints should be
gram. For example, if we would like the cursor to fol-satisfied if possible, but no error condition arises if they
low mouse movements, this can be achieved with ad€ Not. Aconstraint hierarchycan contain an arbitrary

always constraint: number of levels of preference (strengths). These hier-
- - archies are useful in determining a programmenes-
always: mouse.position = cursor.position; erences when a system of constraints is under-constrained

A once duration instructs the system to assert the corer over-constrained. Further information on constraint
straint, causing it to be enforced at that moment (ankierarchies can be found in [Borning et al. 92].

thus potentially affecting values), and then Immedl'Due to its object-oriented nature, constraints in Kalei-

ately retract it. For instance, when an application S‘tartdc’oscope are considerably different from constraints in

up, the initial position of the cursor might be the cente(r)ther language families. Since languages in the Con-

of the screen. However, that position should be uncons ot Logic Programming family do not provide a

stral?ed”theiﬁafter S0 tthat supsequent mouse movf%i:ility for objects with mutable state, there is no auto-
ments aflow the cursor to move: matic mechanism for re-satisfying a constraint as a
once: cursor.position = screen.center; result of a state change. (See references [Cohen 90],
In this example, the constraint is enforced between [COImerauer 90], [Jaffar & Lassez 87], [Van Henten-
ryck 89], [Van Hentenryck et al. 92], and [Wilson &

cursor.position andscreen.center, and is then retracted, _
Borning 93].) Other CIP languages do not allow con-

leaving the effects of constraint satisfaction. Assign
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straints between arbitrary objects, and restrict corcant in selecting the constructor, rather than the more
straints to instance variables. For instance, Siri, anoth&aditional single dispatching. Multi-methods are used
CIP language that is probably the closest relative tm a number of other object-oriented languages, for
Kaleidoscope’93, only resatisfies constraints betweeexample CLOS [Steele Jr. 90] and Cecil [Chambers
instance variables within the representation of a singl@2]. In Kaleidoscope, multi-methods are essential,
object [Horn 92a]. since for some constructor calls, the first argument

Most constraint languages restrict constraints to tho§1e?,Ight be unbound. For example, we might eély.2),

than can be expressed over built-in primitive domains\t';'Ith y andz bound tovectors andx to be determined

As mentioned earlier, limiting constraints to primitive ythe constraint solver, in which case theonstraint
domains would be overly restrictive in an object—ori—mlght be bound to the(Vector, Vector, Vector) con-
ented language, since user-defined domains (i.g.[rUCtor anck would become sector.

classes) are frequently used in object-oriented pro-

grams. One of Kaleidoscope’s novel features is thé.1 Implementation Overview

concept of aconstraint constructorwhich allows a The Kaleidoscope'93 implementation consists of a
constraint to be defined in terms of more primitive Con'compiler, a primitive constraint solver, and a special-
straints. Constructors allow definitions of user—defin-,zed virtual machine. the K-machine. All three are cur-

able constraints, similar to the way methods ar?ently implemented using the Common Lisp Object
implemented in terms of more primitive messagesystem. A Kaleidoscope program is a collection of
sends. Eventually, all user-defined constraints reduce s, procedure, and constraint constructor definitions,
primitive constraints, which are handled by the solverg,q 4 single initial procedure call. The compiler trans-
over these built-in primitive domains. lates Kaleidoscope programs into K-machine instruc-

The astute reader will notice that if the object structuréons, a.k.a. K-codes. The K-machine is derived from
is not allowed to change, then constraint constructo@n imperative virtual machine, and contains a code
are identical to normal procedures and methods thgtore, data store, stack, program counter, and various
create constraints. However, in realistic object-orientegeneral purpose registers. Figure 6 illustrates the com-
programs, such as the windows in Figure 1 (impleponents of the Kaleidoscope'93 language implementa-
mented as shown in Figure 5), the part-whole structuréon.

of some objects does change, and thus constraint cQfyr compiler performs some optimizations to reduce
structors are not just methods. The fundamental diffets, gjiminate expensive run-time constraint solving,
ence is that procedures or methods execute only assgch as inlining to avoid constraint satisfaction in cases
result of an explicit procedure call or message sengyhere an object’s class can be statically determined as
whereas constructors re-execute automatically as diimitive, as well as a few standard compiler optimiza-
result of state changes in their constrained objects aggdns such as constant folding, code motion, and dead-
variables. Constructor execution semantics are not a§q4e elimination. However, in contrast to imperative
straightforward as procedure execution, since the Iarl‘anguages, the chief bottleneck to CIP languages is
guage implementation needs to determine which coRsnsiraint solving, and so a major focus of our future
straints are affected by any change, which constrainis, i will be investigating additional optimizations to

need to be re-satisfied by constructor calls, and Whi%duce or eliminate run-time constraint solving
other variables need to change as a result. In OY&ection 6).

scheme for implementing CIP languages, the book-
keeping required for maintaining constructor execution
semantics is handled at the virtual machine level, si@3. The K-machine
nificantly simplifying code generation.
The K-machine interprets K-code instructions. These
Constructors are dynamically dispatched using multiygiryctions include typical imperative instructions,

method lookup, in which all the arguments are signifi-
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Figure 6. Kaleidoscope’93 Implementation

such asAdd, Load, andBranch, as well as the special- carry out these changes, executes code to resatisfy
ized instructions listed in Figure 7 and discussedhose constraints, finds further changed variables, and
below. The K-machine is derived from imperative vir-so forth.

tual machines and contains many of the same compQs e 1K machine level, constructors and procedures

nents. Itt differs frqm Etanddard |mp§rat|ve VMZ_'” that_llthave identical representations: a signature and a block
supports constraint-based operations on objects. %‘? K-codes. To ensure that constructors behave as rela-

value-basgd data stor.e of imperative maChmeS_hc‘ons, the Kaleidoscope language definition requires
ex'Fended Into a constramt-baseql data store by aHOW'QHat all side effects be restricted to the local variables of
objects to be connected by relations. the constructor. Viewed from the outside, all the con-
In the purest sense, a constraint-based data store is agtaictor is allowed to do is place other constraints on its
of constraints which, when taken together, determinarguments. If satisfied, these further constraints will
values for variables. (This is the approach used in thesult in the enforcement of the higher-level constraint
cc family of languages [Saraswat 93].) Variables in thigepresented by the constructor. Although constructors
case are as in mathematics, rather than naming changed procedures have identical representations, the K-
able storage locations. However, for efficiency reasonspachine handles their executions differently. Proce-
the K-machine data store does contain traditionalure calls are handled as in a traditional object-oriented
imperative variables, as well as the constraints thadanguage: theallProc K-code selects and invokes the
determine their values. The data store is represented @spropriate procedure using multi-method lookup.
a graph whose nodes represent variables and edges r€pnstraints, however, are handled dpnstraint tem-
resent both pointers and constraints (i.e., there are typdates A constraint template is, essentially, a continu-
types of edges: one type represents traditional pointeesisly repeating procedure call except that it calls a
from variables to objects, and the other type represenbnstraint constructor rather than a procedure. A tem-
constraints between variables). The constraint edggdate is created for each instance of a constraint and
are either constructed or primitive. Constructed conkeeps track of the variables being constrained and the
straint edges remember the child constraints that theyame of the constraint being applied. Foratways
have created. Primitive constraint edges can only beonstraint, a constraint template is simply asserted using
placed between variables (nodes) containing objectsddTemplate. For a once constraint, the template is
from the built-in domains (which are numbers, characasserted and immediately retracted usinghddirem-

ters, strings, and booleans in Kaleidoscope’93). Iplate, RemoveTemplate pair. Finally, for arassert/dur-
order to integrate constraints with objects, additionahg constraint, the template is added prior to, and
bookkeeping is required to maintain the constraints agmoved following, the block of code.

the ObJe_CtS ghange state.. Aftgr gach state change, F,Retemplate is executed once it is added, dynamically
system identifies constraints linking the changed vark o nd to a constraint constructor. and invoked. Logi-

able to other variables and objects, finds constructors E%Ily we can view templates as all being re-executed
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Operation Arguments Description

CallProc ProcedureName, Arguments Calla procedure

Return Return from a procedure or constructor

MinStrength Strength, Result Minimum of the current strength and Strength

LoadTemplate Var, Template Define a Var to refer to a constraint template

AddTemplate Var Add and Execute the constraint template

RemoveTemplate Var Remove all constraints for the constraint template

TrueBranch Condition, NewPC Branch to NewPC if Condition is True

FalseBranch Condition, NewPC Branch to NewPC if Condition if False

ClassBranch Varl, Var2, NewPC Branch to NewPC if Varl and Var2 are members| of
the same class

PrimitiveAssignment| Varl, Var2 Optimized assignment for case where classes|of
Varl and Var2 are primitive

Unbind Var Clears the variable

New Var, Class Var is initialized with an object of class Class

PrimitiveAction Number, Args Built-in unnamed operation

Figure 7. K-machine Instructions (K-codes)

following each state change, so as to maintain usefo support the incremental execution of constraints,
defined constraints. In fact, the Kaleidoscope’91 impleeach variable maintains two lists: tbpstream vari-
mentation did exactly that [Freeman-Benson 91]. Howables which were used to compute that variable’s cur-
ever, while this made constraint maintenancégent value, and theownstream templatewhich are all
straightforward, most of these constructor re-execuemplates whose choice of, or execution of, a construc-
tions were superfluous as, in the vast majority of casetr could possibly depend on that variable’s value.
they filled slots with exactly the same values as th&ssignments and computational primitives update the
slots had previously held. Further, although the Kaleiupstream variables list, and constraint constructors use
doscope’@1 primitive solvers were incremental, thdhis list to update the downstream templates list. For
continual re-execution of constructors and regeneratiogxample, after executing the trivial program:

of primitive constraints did not allow the implementa-  ,avs: A +E = F;

tion to exploit these incremental algorithms. A=B+C;D:=A*G;

The K-machine avoids this bottleneck by re-executing‘s upstream variables list is {B,C}, ariis upstream
constraint templates only when they might be affecteifariables list is {A,B,C,G}. As downstream templates
by a state change. This interacts with the changindpt is {+}, and D’s downstream templates list is {}.

object structure problem in two ways. Changing afnncremental constraint satisfaction is triggered by

object’s structure changes the components that needd8signment. When a variable is assigned to, all the con-
be constrained. Furthermore, changing an objectstraint constructors depending on that variable (i.e., in
structure might change which constructors are invokeghe second list) are re-executed. A constraint is re-exe-
to satisfy its constraints. Incrementally satisfying congyted by first removing the constraint edges placed on
straints requires additional bookkeeping in the Kyomponent objects by the constructor, and then execut-
machine, but the cost is small compared to the tremefyg the code for the selected constructor. This avoids
dous performance advantage of incremental constraifbying to re-execute constraints when a component

satisfaction over repeatedly solving all constraints. Fulchanges that is unaffected by the constructor.
ther, this design allows us to exploit the incremental ) ]
properties of our local propagation solver [FreemanTO illustrate the incremental execution of constructors,

Benson et al. 90], [Sannella 93]. See Section 4.1 fo(f‘OnSiOIer the Kaleidoscope program in Figure 8. The
more details. constructor+(Point, Point, Point) is chosen at line (1)
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since pl and p2 contain objects of clasBoint. The procedure start ()

Point object inp3 becomes the sum pi andp2. The+ var pl, p2, p3, p4: Point;

constructor is not re-executed after the assignments to pl:=2@2; p2:=10@10;

p4.x andp4.y at line (2) because these state changes have zzvfyi-;ggygii p:1 IO[())? =p3; Eg
no effect orpi, p2, andp3 themselves, but only on their p2 = pd: ' ’ 3)
components. The assignment p@ in (3) however, end procedure start;

requires that thel + p2 = p3 constraint be re-satisfied, start;

since the constraint no longer holds as a result of the  Figure 8. Incremental constraint re-satisfaction
assignment t@2. The appropriate constructor is chosen

(again, ther(Point, Point, Point) constructor) and executed. 4, Constraint-Based Data Store

An assignment := expr may change the identity of the |, e Smalitalk tradition, Kaleidoscope language and
object to which the variablerefers, which may neces- jmjlementation components are represented as objects,
sitate using different constructors to satisfy the COMncluding all user-defined objects, primitives such as
straints attached ta This automatic and incremental , ,mbers and booleans, and even system objects such
re-satisfaction of constraints after an assignment is the; siack frames. Kaleidoscope objects are stored in a
solution to the “changing object structure” problemeqngiraint graph consisting of nodes, objects, and con-
lllustrated in Figure 5 — thus this problem does NoLyaint edges. This uniform treatment simplifies the K-
occur in CIP languages implemented using the Kgachine implementation. If there are no constraint

machine. edges between objects, then the constraint store resem-
constructor +(a, b: Point) = (c: Point) bles a conventional imperative store. Thus, one can
ax+bx=cx;ay+by=cy; consider a constraint store as a generalization of an

end constructor +;

constructor =(p: Point, g: Paint)

P.X=0.X;
p.y=4q.y,
class: Stackframe end constructor =;
parent: nil
constraints: pl = p2
éllc;ts: 1 /
P class: Point class: Point
p2 //' ..........
slots =(Point,Point) slots
x|\ X |
y / y
/

class: Number class: Number

value: <:(Number,Nuf§nbeD value:
class: Number class: Number
Qélue; C:(Number,Numbe§ il'éilue:

Figure 9. Constraint Graph Representation of Objects
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imperative store where variable values may also bealues for objects within their domains. The primitive
determined by constraints in addition to identityconstraint solver we currently use in the Kaleido-
assignment. scope’93 implementation is CobaltBlue. CobaltBlue is

Figure 9 illustrates the representation of an equalit%n e)litensmn of Sky;BIue [Sanlrt].ellla 93]{ art]d cadn solve
constraint between two points. The large boxes ar |mu aneoui _ectwa_l ons, mtuulps Iou plu an rt1.on-
objects, the small labelled boxes which point to object"énlque constraints incrementally by local propagation.

, . - ._However, the K-machine design is general enough to
are variables, and heavy lines indicate constralnt'é| 9 9 9

(labelled by ovals with the selected constructor). Wheﬁccommodate other solvers.

the = constraint template is added, a constraint edge {SIP languages combine imperative constructs such as
placed betweepl andp2. Multi-method lookup rules object identity and class membership with declarative
are used to find a constructor with the same name awdnstraints. Naturally, these constructs can also be
arity as this constraint edge. ThéPoint, Point) con-  specified by constraints. One of the fundamental con-
structor executes and places two new constraint edgespts of object-oriented programming, object identity,
on the graph, one between thslots ofpl andp2 and can result in implicit relations, even when explicit iden-
one between thegslots ofpl andp2. Continuing in the tity constraints are supported. Furthermore, by allow-
same fashion, the constraints between theandy ing constraints on object identity, object structure, class
slots are satisfied by finding constructor@lumber,  membership, and object value, complex interactions,
Number). These constructors place primitive constrainsuch as circularities, can occur between any two differ-
edges on the constraint graph. User-defined constrairgat categories of constraints. To deal with these interac-
eventually bottom out at primitive constraints overtions, we developed the VICS (value/identity/class/
built-in domains. The primitive constraint solver usesstructure) framework, to factor out conflicts between
local propagation and Gaussian elimination to comebject value and object identity.

plete the computation. Identity constraints are used to treat object identity as a

The Kaleidoscope constraint store is implementedeclarative relation that is compatible with the Kalei-

entirely in Common Lisp. Garbage collection is han-doscope constraint model. The VICS Vapo-Ware solver
dled by Lisp’s garbage collection since the Kaleidodis used by the K-machine to categorize constraints (by
scope constraint store eliminates all references tealue and identity), and distribute them to the appropri-
objects that are inaccessible at the Kaleidoscope laate sub-solver. Similar to value constraints, identity
guage level. constraints are solved by local propagation, however
the satisfaction of these identity constraints determines
variable references instead of object values. Identity

_ _ ~ constraints and the VICS Vapo-Ware solver are dis-
Kaleidoscope'93 uses two different types of primitive,,ssed in [Lopez et al. 94].

constraint solvers, one for finding variable values in
particular domains (e.g., booleans, numbers, and
strings) and one for determining object identity andg. Related Work

structure. The former is the familiar notion of con-

straint solver from constraint programming languaged € special implementation needs of constraint imper-
which satisfies constraints over particular valuedlivé programming (class-based objects with inherit-

domains and the latter is used to solve for object ide@NCe,  multi-methods, — constraint  solving,  and
tity. dynamically bound constraints) led us to design a spe-

. _ ~cial-purpose virtual machine to implement Kaleido-
Most constraint languages solve constraints over d'ﬁers'cope. An alternative would have been to use one of the

ent value domains, such as booleans, numbers, cologgany existing virtual machines for imperative or con-
and strings. We term these constraintdue con- g qgint-based languages.

straints since the satisfaction of these constraints finds

4.1 Primitive Constraint Solvers
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It would be possible, though extremely awkward, tdive assignment. Not only would this be inconvenient

implement CIP languages with a virtual machine fronfor programmers, but the compiler used under this
a conventional object-oriented language with a valueapproach would be the host language compiler rather
based data store, e.g., the Smalltalk-80 VM [Goldberthan a specialized CIP compiler. Thus there would be
& Robson 83]. However, to do so, the Kaleidoscop&o possibility for compile-time analysis to pre-solve or

compiler would have to implement the entire con-optimize constraints and thus eliminate costly run-time
straint-solving semantics of the K-machine in the codeonstraint solving. Such analysis is essential for the
generator to ensure that the effect of a constraint-basedplementation of high-level languages, and thus we
data store was achieved. This would needlessly complelieve that a class library would be the wrong imple-

cate the code generator, and could actually reduce theentation techniqu%.

speed of the resulting program. Virtual machines foﬁ'he cc family of languages [Saraswat 93] generalize

conventional imperative programming languages aane CLP scheme to include such features as concur-

evgn less _SUIted to CIP Ian.guages because they SUppr%'}gcy, atomic tell, and blocking ask; if we used such a
neither objects nor constraints.

language instead of Kaleidoscope for constraint pro-
Similarly, it would be possible, though awkward, togramming we could represent objects as perpetual pro-
implement CIP languages using a virtual machine for eesses that consume an (unbounded) stream of
pure constraint language or constraint logic languagenessages. However, the logic programming transla-
For example, CLR{ ) is a constraint logic program+ions are too unconventional for the present project of
ming language whose implementation has a constraintodeling objects as mutable entities with state and
solving engine for constraints over the real numberglentity—here we have consciously chosen to be more
[Jaffar et al. 92b]. The CLAM [Jaffar et al. 92a] is theevolutionary, and thus our goal isdégtendthe impera-
abstract machine used in the CLP( ) interpreter, whictive framework with constraints rather than asking our
is based on the WAM, often used in Prolog implemenelients (Kaleidoscope programmers) to learn a new
tations [Warren 83], [Ait Kaci 90]. To implement a CIP paradigm.

language using the CLAMj on'e would have to trgnslat% previous work we presented language designs for
the CIP Ignguage semantlcs into one of.the ObJe_Ct'O_rkaleidoscope’QO ‘91, and '93 [Freeman-Benson 91]
_ented Ioglc_ brogramming schemes..(We n fact did th'ﬁ:reeman-Benson & Borning 92], and [Lopez et al.
Iln T Kalt:.ldos%c])pe .|rt1terpr(:ter written in Ctﬁ ) 93]. Further information on the incremental local prop-
mpiementing this - Interpreter was very - usetu Inagation algorithms used in this implementation can be

exploring language design issues. However, its perfog, i, [Freeman-Benson et al. 90] and [Sannella 93].

manceiwas much worse than that of our current Impl(?5ther constraint-based languages include Bertrand
mentation.) [Leler 87] and Siri [Horn 92b], [Horn 92a]. Both Ber-
Another implementation technique is to compile intarand and Siri are based on an Augmented Term
some host language and place embedded calls to tRewriting virtual machine, which is not powerful
constraint solver library when necessary. CIP lanenough to support all of the imperative features of
guages such as Kaleidoscope use constraints for &haleidoscope such as long-lived constraints between
computations, so that these embedded calls would ebitrary objects.

ubiquitous, resulting in a huge, bloated executable file.

This approach is ill-suited for CIP languages, but

would very likely be the most practical choice for

imperative languages with constraint-based libraries.

Still another approach would be to implement a con-

L . . . . 3. Note that by compile-time analysis we are only specifying that
straint imperative class library. Certain coding rUIe%he analysis be done by the compiler, but not when the compiler is

would be enforced on programmers, such as requiringn. Thus we are not excluding the option of dynamic compilation
them to notify the constraint solver after each destru@s is done in Smalitalk and Self.
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6. Conclusions and Future Work Council under grant OGP-0121431, by a Fellowship
from Apple Computer and a Graduate Research Assis-

Our virtual machine for CIP languages—the K-aniship from the University of Washington Graduate

machine—is powerful enough to support the uniqU&cnool for Gus Lopez, and by Academic Equipment
features of such languages efficiently. The K-machingy ants from Sun Microsystems.

replaces the value-based data store of a conventional

imperative machine with a constraint-based data StorBiinography

It incrementally maintains this data store, re-satisfying

constraints only when necessary. The constraint-basait-Kaci 90] Hassan Ait-Kaci. The WAM: A (real) tutorial.
data store utilizes constraint constructors and constraint Technical Report 5, DEC Paris Research Laboratory,
templates to enforce constraints over objects whose Fanis, January 1990.

part-whole structure changes dynamically. ConstrairiBorning et al. 92Alan Borning, Bjorn Freeman-Benson,
constructors are multi-method dispatched, and preserve 2nd Molly Wilson. Constraint hierarchieisp and

object encapsulation by not accessing any variables Symbolic Cornputatlor5(3):223—27.0, Se'?tember 199?'
outside the object being constrained [Chambers 92Craig Chambers. Object-oriented multi-
' methods in Cecil. IIProceedings of the 1992 European

The Kaleidoscope’'93 implementation described in this  Conference on Object-Oriented Programmimmpges
paper is in use, and we have written a small number of ~33-56, June 1992.

programs to exercise various CIP language featurefzohen 90Pacques Cohen. Constraint logic programming
We plan to continue work on the implementation, to  languagesCommunications of the AGN83(7):52-68,
write larger programs in the language, and to feed the July 1990.

results back into the language design and implementi=clmerauer 90Rlain - Colmerauer. An introduction to
tion. Another major effort will involve increasing the Erflog I1. Communications of the AGNages 69-90,
efficiency of the code produced by the Kaleidoscope uly 1990.

compiler, in particular to eliminate run-time constraintlF"¢eman-Benson & Boming 9Bjorn Freeman-Bensonand

satisfaction when possible. (Eliminating runtime con- Alan. Borning. The desigr_1 gnd implementaﬂon .Of
) , ) . Kaleidoscope’90, a constraint imperative programming

straint satisfaction not only eliminates the cost of solv- language. IProceedings of the IEEE Computer Society

ing the constraints, but it also eliminates the need for, International Conference on Computer Languages

and thus cost of, maintaining backpointers and other pages 174-180, April 1992.

constraint specific data structures.) Finally, we argrreeman-Benson 98jorn Freeman-Benson Constraint

designing a constraint-based type system suited for Imperative ProgrammingPhD thesis, University of

constraint imperative programming languages. Washington, Department of Computer Science and
Engineering, July 1991. Published as Department of

Computer Science and Engineering Technical Report
91-07-02.
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