
Mediators:

Easing the Design and Evolution of Integrated Systems

Kevin J. Sullivan

Technical Report 94-08-01

Department of Computer Science and Engineering

University of Washington

c

 Copyright 1994

Kevin J. Sullivan

Mediators: Easing the Design and Evolution of Integrated Systems

by

Kevin J. Sullivan

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

1994

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

Doctoral Dissertation

In presenting this dissertation in partial ful�llment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation

is allowable only for scholarly purposes, consistent with \fair use" as prescribed in the

U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be

referred to University Micro�lms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI

48106, to whom the author has granted \the right to reproduce and sell (a) copies of

the manuscript in microform and/or (b) printed copies of the manuscript made from

microform."

Signature

Date

University of Washington

Abstract

Mediators: Easing the Design and Evolution of Integrated Systems

by Kevin J. Sullivan

Chairperson of the Supervisory Committee: Professor David Notkin

Department of Computer Science

and Engineering

People bene�t from tightly integrated systems that can be designed, realized and

evolved a�ordably. Unfortunately, common software design methods do not easily ac-

commodate requirements for tightly integrated systems. Indeed, when used to meet such

requirements, common methods tend to yield unnecessarily complex structures that com-

plicate design and realization and that inhibit subsequent evolution. After substantiating

this claim, I present the mediator method as a solution. This method combines behavioral

entity-relationship (ER) modeling for design with a mediator approach to implementa-

tion. The mediator method is better than common methods for designing, realizing, and

evolving many integrated systems. I support this claim both by rational argument from

simplifying models and by carefully re
ecting on software development experiences in

which the method was used. One of these e�orts led to the design of Prism, a system

used to plan radiation treatments for cancer patients, now in clinical use at the Univer-

sity of Washington Cancer Center. I present Prism as a case study on the use of the

mediator design method. The mediator method represents a contribution of signi�cant

value because it allows ordinary software developers to design, realize, and evolve more

e�ective integrated systems more a�ordably|with common programming languages and

without costly or restrictive new mechanisms.

Table of Contents

List of Figures : vii

Chapter 1: Introduction : 1

1.1 Integration : 2

1.2 Software Design Methods : 4

1.2.1 Basic Building Blocks : 4

1.2.2 Putting Blocks Together : 5

1.3 Common Design Methods : 5

1.3.1 Encapsulation : 5

1.3.2 Hardwiring : 7

1.3.3 Implicit Invocation : 8

1.3.4 Broadcast Message Servers : 9

1.4 The Mediator Method : 11

1.4.1 Applying the Method : 11

1.4.2 Properties of the Method : 14

1.5 Evaluating Design Methods : 15

Chapter 2: Integration and Evolution : 16

2.1 A Motivating Example : 17

2.2 An Evolutionary Scenario : 18

2.2.1 An Initial Family of Behaviors : 19

2.2.2 Adding an Asymmetric Behavioral Relationship : : : : : : : : : : : 20

2.2.3 Adding a Symmetric Behavioral Relationship : : : : : : : : : : : : 20

2.2.4 Changing a Behavioral Relationship : : : : : : : : : : : : : : : : : 21

2.2.5 Removing a Constituent Behavior : : : : : : : : : : : : : : : : : : 22

2.2.6 Non-Conservative Integration : 22

2.3 The Scenario as a Benchmark : 23

Chapter 3: Modeling Software Structure : 24

3.1 Representation in Context : 25

3.1.1 Modules : 25

3.1.2 Representation versus Context : 25

3.1.3 The Submodules Relation : 26

3.1.4 References and the Touches Relation : : : : : : : : : : : : : : : : : 27

3.1.5 The A�ects Relation : 29

3.1.6 References versus A�ects : 30

3.1.7 The Visibility Relation : 31

3.1.8 The Integrated Relation : 31

3.1.9 Re�nement of Integrated Relations : : : : : : : : : : : : : : : : : : 32

3.2 Realization : 33

3.2.1 Background : 34

3.2.2 Speci�cation. : 34

3.2.3 Implementation. : 35

3.2.4 Realization Mapping : 35

3.3 Evolution : 38

Chapter 4: Common Design Methods : 43

4.1 Introduction : 44

4.2 Integration By Clients : 45

4.3 Encapsulation : 47

ii

4.4 Hardwiring : 49

4.5 Implicit Invocation : 51

4.6 Message Server : 53

4.7 Synopsis : 56

Chapter 5: The Mediator Method : 57

5.1 Behavioral Entity-Relationship Modeling : : : : : : : : : : : : : : : : : : : 58

5.1.1 The Empirical Claim : 58

5.1.2 The Analytic Claim : 59

5.2 Requirements for a New Design Method : : : : : : : : : : : : : : : : : : : 59

5.2.1 Operate in Same Design Space : 60

5.2.2 Relieve Clients of the Integration Burden : : : : : : : : : : : : : : 60

5.2.3 Use Existing Representations Without Change : : : : : : : : : : : 60

5.2.4 Represent Behavioral Relationships as Separate Modules : : : : : : 60

5.3 Realizing Behavioral Relationships as Mediators : : : : : : : : : : : : : : 62

5.3.1 The Basic \Design Move" : 62

5.3.2 Structural Statics and Dynamics : : : : : : : : : : : : : : : : : : : 64

5.3.3 The Prototypical Trigger Mediator : : : : : : : : : : : : : : : : : : 65

5.4 The Abstract Behavioral Type : 66

5.4.1 Shortcomings of the Abstract Data Type : : : : : : : : : : : : : : 66

5.4.2 Making Events Dual to Operations : : : : : : : : : : : : : : : : : : 67

5.5 Implementing Behavioral ER Models Using ABTs : : : : : : : : : : : : : 68

5.5.1 Designing and Representing Behaviors as ABTs : : : : : : : : : : : 68

5.5.2 Designing and Representing Behavioral Relationships as ABTs : : 68

5.5.3 Organizing the Evolution of Integrated Systems : : : : : : : : : : : 71

5.6 Conclusion : 73

Chapter 6: Validation : 74

6.1 Rational : 75

iii

6.2 Empirical : 75

6.2.1 Parallel Programming Environment : : : : : : : : : : : : : : : : : 76

6.2.2 Computer-Aided Geometric Design System : : : : : : : : : : : : : 77

6.2.3 Semantics-Preserving Program Restructuring Tool : : : : : : : : : 79

6.2.4 Radiation Treatment Planning System : : : : : : : : : : : : : : : : 80

6.2.5 Large Address-Space Operating Systems : : : : : : : : : : : : : : : 81

6.2.6 Multi-Scale Geographic Information Browser : : : : : : : : : : : : 82

6.3 Conclusion : 83

Chapter 7: Prism: A Case Study : 85

7.1 Introduction : 85

7.2 Radiation Treatment Planning : 86

7.3 Prior Art : 88

7.4 Requirements for a New Environment : 89

7.4.1 Image Studies : 90

7.4.2 Master Control: The Patient Panel : : : : : : : : : : : : : : : : : : 90

7.4.3 Tool Invocation: The Plan Panel : : : : : : : : : : : : : : : : : : : 92

7.4.4 Physical Modeling: The Easel Panel : : : : : : : : : : : : : : : : : 92

7.4.5 Visualization: Views and View Panels : : : : : : : : : : : : : : : : 94

7.4.6 Integration: Easels and Views : 95

7.4.7 Integration: Views with Views : 95

7.4.8 Physical Modeling: The Beam Panel : : : : : : : : : : : : : : : : : 96

7.4.9 Integration: Beam Panels with Beams and Views : : : : : : : : : : 97

7.5 Analysis, Speci�cation, Implementation : : : : : : : : : : : : : : : : : : : 97

7.5.1 The Dialbox Widget : 98

7.5.2 Multiple Selection List : 104

7.5.3 Selectors : 106

7.5.4 Locators : 111

7.5.5 Graphics : 114

iv

7.5.6 Beam Panel : 115

7.5.7 Wrap-Up : 117

7.6 Development E�ort : 117

Chapter 8: Evaluation : 119

8.1 Scaling Up : 119

8.2 Limitations of Implicit Invocation : 121

8.3 Concurrency, Distribution, Asynchrony, Etc. : : : : : : : : : : : : : : : : : 122

8.4 Non-Conservative Integration : 123

8.5 The Modeling Framework : 124

8.6 Subtype Polymorphism : 125

8.7 Reasoning in the Presence of Implicit Extension : : : : : : : : : : : : : : : 126

8.8 Information Hiding : 127

8.9 Alternatives to Abstract Behavioral Types : : : : : : : : : : : : : : : : : : 128

8.10 Anticipating Event Interfaces : 130

8.11 Does the Mediator Method Ease Design? : : : : : : : : : : : : : : : : : : 130

Chapter 9: Connections to Related Work : 132

9.1 Behavioral Entity Relationship Modeling : : : : : : : : : : : : : : : : : : : 132

9.1.1 Entity-Relationship Data Modeling : : : : : : : : : : : : : : : : : : 133

9.1.2 The Object-Relationship Model : 134

9.1.3 Contracts. : 135

9.1.4 Constraint Programming : 136

9.2 Mediators : 138

9.2.1 AP5. : 138

9.2.2 APPL/A : 139

9.2.3 Chiron : 140

9.2.4 Views for Tools : 141

9.3 Implicit Invocation : 142

v

9.4 Structure and Evolution : 143

Chapter 10: Conclusion : 145

vi

List of Figures

1.1 Concrete software artifacts represent abstract behaviors. : : : : : : : : : : 2

1.2 Behavior and software integration. : 3

1.3 The encapsulation approach to behavioral integration. : : : : : : : : : : : 6

1.4 The hardwiring approach to behavioral integration. : : : : : : : : : : : : : 7

1.5 The implicit invocation approach to behavioral integration. : : : : : : : : 9

1.6 The broadcast message server approach to behavioral integration. : : : : : 10

1.7 Schematic of a mediator-based realization of the programming environment. 12

1.8 Mediator/ABT implementation of the integrated programming environ-

ment. : 13

2.1 Graphical representation of a simple evolutionary scenario. : : : : : : : : 19

3.1 B1� B2 in its context of use. : 26

3.2 A representation with a non-trivial submodules relation. : : : : : : : : : : 27

3.3 The reference relation over modules. : 28

3.4 The touches and a�ects relationships for B1
 B3: : : : : : : : : : : : : : 30

3.5 The a�ects

+

and integrated relations for B1
 B3: : : : : : : : : : : : : : 33

3.6 Realizing a multi-representation system implementing B1� B2: : : : : : : 37

3.7 Model of a multi-representation system implementing B1� B2: : : : : : : 39

3.8 Evolution morphism with respect to the references relation. : : : : : : : : 40

3.9 Systems are integrated to represent integrated behaviors. : : : : : : : : : 42

vii

4.1 An evolutionary family with clients responsible for integration. : : : : : : 46

4.2 Model of an evolutionary family designed using the encapsulation method. 48

4.3 Model of an evolutionary family using the hardwiring design method. : : 50

4.4 Model of an evolutionary family designed using implicit invocation. : : : : 52

4.5 Model of an evolutionary family with broadcast message server designs. : 54

5.1 The mediator method organizes the evolution of implementations. : : : : 61

5.2 The mediator method analyzed as a set of design decisions. : : : : : : : : 63

5.3 The direct realization mapping between a behavioral ER model and a

mediator implementation of the model. : 65

5.4 Outline of an abstract behavioral type for the switch behavior. : : : : : : 69

5.5 A mediator implementing the behavioral relationship �. : : : : : : : : : : 70

5.6 A mediator-based implementation of the system B1� B2. : : : : : : : : : 70

5.7 A mediator-based implementation of B3
 B1� B2. : : : : : : : : : : : : 71

5.8 A mediator implementing the behavioral relationship �. : : : : : : : : : : 72

7.1 A Prism screen. : 87

7.2 A transverse slice. : 91

7.3 A second Prism screen. : 93

7.4 The architecture of the dial box \integrated environment." : : : : : : : : 99

7.5 Mediator-based design of the dialbox widget. : : : : : : : : : : : : : : : : 100

7.6 Common Lisp/CLOS implementation of event objects in Prism. : : : : : : 102

7.7 Key features of the implementation of the dial ABT. : : : : : : : : : : : : 103

7.8 Key features of the implementation of the dial/text line mediator. : : : : 103

7.9 Simpli�ed model of a multiple selection list. : : : : : : : : : : : : : : : : : 105

7.10 Simpli�ed model of the Prism selector subsystem. : : : : : : : : : : : : : : 107

7.11 The Prism locators subsystem. : 112

7.12 The Prism graphics subsystem. : 114

viii

Acknowledgements

I have many people to thank and acknowledge. My advisor David Notkin was gener-

ous beyond any reasonable expectation with time, advice, ideas, support, and patience.

I thank Ira Kalet and the Department of Radiation Oncology for allowing me to design

Prism, the department's new radiation treatment planning integrated environment, as

a way to test my research results. The other members of my dissertation reading com-

mittee, Craig Chambers and Alan Borning, provided valuable feedback, guidance, and

support. I thank Steve Hanks and Eve Riskin for being on my supervisory committee.

Among current and former graduate student colleagues, Bill Griswold, Tom McCabe,

John Maloney, Kingsum Chow, Mike Van Hilst, and Gail Murphy were especially helpful

with ideas and editing. Responsibility for remaining errors and omissions rests entirely

with me. The Department of Computer Science and Engineering has been wonderful:

faculty, sta�, students, and visitors. I also wish to acknowledge support I received under

a fellowship provided by GTE.

Finally, I thank my family and friends. My parents Bill and Marilyn Sullivan have

encouraged me for many years. Molly Knox and Parker MacCready were especially

good friends while I was in graduate school. A very warm thanks go to my companion

Anne Knox, who supported me with kindness and generousity through my �nal year of

dissertation writing.

ix

Chapter 1

Introduction

Software designers often have to integrate the behaviors of separate software components.

The problem I address in this dissertation is that common software design methods un-

necessarily complicate the design, realization, and evolution of such integrated software

systems. With common methods, integration generally requires changes to the compo-

nents to be integrated or to their clients|changes yielding unnecessarily complex soft-

ware structures. As evolving integration requirements continue to be met, unnecessarily

structural complexity accumulates, driving up the cost of change. Eventually|often

quickly|the cost becomes prohibitive of further integration or evolution [Lehman 80].

This dissertation makes two contributions to the software engineering �eld. The �rst

is a new design method|the mediator method|that overcomes the problems with com-

mon methods without costly new mechanisms. The mediator method views both behav-

iors and the behavioral relationships needed to integrate them as �rst-class abstractions;

and it implements both as �rst-class, imperatively programmed components|instances

of what I call abstract behavioral types. The second contribution is an analysis of software

design methods that helps to explain how these methods a�ect the ease of designing,

realizing and evolving integrated systems. The analysis characterizes the design spaces

in which the methods operate, key design choices that they promote, and certain static

and dynamic structural properties that result from the use of these methods.

2

Behavior

Software

represents

Figure 1.1: Concrete software artifacts represent abstract behaviors.

1.1 Integration

Software represents behavior, much as numerals represent numbers|as diagramed in

Figure 1.1. The client of a software system ultimately bene�ts from its abstract behavior.

How that behavior is realized by the software representation is not directly relevant to

the client. Yet the software engineering properties of the representation a�ect the value

obtained by the client by a�ecting the cost of the software. This dissertation addresses

the impact of integration on these properties, and hence on cost and, ultimately, value.

By integration I mean a combination of separate parts into a whole in which the parts

remain distinguishable. Both behaviors and software artifacts are subject to integration.

Behavioral integration combines simpler behaviors into a more complex behavior in which

the simpler ones remain distinguishable. Software integration similarly combines simpler

software representations into a more complex representation.

To make the idea of behavioral integration concrete, consider the integration of two

behaviors familiar to most programmers. An editor behavior supports the creation and

editing of source code. A compiler behavior supports the translation of source code into

object code. Instead of two separate behaviors, a programmer may want one behavior

in which the two are integrated: an integrated programming environment with the prop-

erty that whenever the editor saves a source code �le, the compiler runs to update the

corresponding object code. The behaviors are distinguishable but they work together.

(See the top part of Figure 1.2.)

3

+

Editor

Editor

Editor

Compiler

Compiler

Compiler

Editor + Compiler

Figure 1.2: Behavior and software integration.

The top part of this �gure depicts the integration of two behaviors, denoted by the clouds.

The behavioral relationship � indicates that when the editor saves a source �le the

compiler updates the corresponding object code. The bottom part of the �gure depicts

the integration of software artifacts representing the behaviors, denoted by rectangles.

The result is an integrated software artifact representing the integrated behavior.

To make the idea of software integration concrete, consider how one would implement

this integrated behavior if one already had representations of the separate behaviors. If,

for example, one has source codes for the editor and compiler, then integrating these soft-

ware artifacts is an obvious possibility. One could produce source code for the integrated

behavior by integrating the sources for the separate behaviors. Indeed, this approach is

often the only economical way to represent integrated behaviors. (See Figure 1.2.)

Although behavioral integration is independent of software integration in theory

(since behaviors are independent of particular representations), behavioral integration

and software integration are tightly intertwined in practice. In particular, software de-

signers often represent integrated behaviors as integrated software systems in which

components representing the constituent behaviors are integrated to produce a repre-

sentation of the overall, integrated behavior. This dissertation addresses the connection

between behavioral and software integration.

4

1.2 Software Design Methods

One of the primary goals of this work is to characterize how the software engineer's choice

of design method a�ects the di�culty of designing, realizing, and evolving integrated

behaviors and integrated software artifacts to represent them. By a design method I mean

an approach to decomposing behaviors into or composing them from simpler behaviors;

a way of representing behaviors as software artifacts; and a way of integrating software

artifacts in order to integrate the behaviors that they represent.

1.2.1 Basic Building Blocks

All of the design methods that I consider in this work take objects, broadly speaking,

as basic behavioral and representational building blocks. By an object I mean either an

instance of an abstract type or a software representation of such an instance.

The design methods di�er from each other in two important dimensions: the kind

of abstract type used to design and represent behaviors; and the way in which given

representations are integrated to integrate their respective behaviors.

One kind of abstract type that is widely used to characterize and represent behaviors

is the abstract data type (ADT). An ADT de�nes a class of objects in terms of the

state spaces of the objects, possible initial states of objects, and operations that can be

applied to observe or change the state of objects [Liskov and Zilles 75, Meyer 88].

I will argue that there is a second kind of abstract type: one that augments the ADT

with the means for one object to implicitly extend certain behaviors of others. A mecha-

nism that supports implicit extension is implicit invocation, or event noti�cation [Garlan

and Notkin 91]. Using such a mechanism, an object m extends the behavior of an ob-

ject n by registering an operation to be invoked by an event announced by n. When

n announces the event, the operation is invoked implicitly. In addition to operations,

objects of this kind are characterized by events that make some behaviors \audible" as

event announcements that other objects can listen for and to which they can respond.

5

1.2.2 Putting Blocks Together

Another way design methods di�er from each other is in the way they integrate given

software artifacts. In one approach, based on hierarchical composition of ADTs [Liskov

and Zilles 75], one represents an integrated behavior as an object that encapsulates

and manages objects representing the behaviors to be integrated. A second approach

integrates \peer" objects by having them communicate through implicit or explicit in-

vocation. One represents an integrated behavior as a network of objects that represent

the constituent behaviors and that communicate with each other as needed.

1.3 Common Design Methods

The �rst method I consider uses hierarchical composition to achieve integration. The

other three methods structure systems as networks of communicating objects. This

section describes these common design methods and discusses how they complicate the

design, realization, and evolution of integrated systems.

1.3.1 Encapsulation

The encapsulation method takes the ADT as its basic building block and takes a hi-

erarchical encapsulation approach to integration. It represents integrated behaviors as

instances of what I will call \encapsulating wrapper" types. The behaviors of instances of

given types are integrated by incorporating them as hidden components of a new \wrap-

per" type. To make the behaviors of these now hidden instances accessible, the wrapper

promotes the operations of the encapsulated objects: it exports operations mimicking

those of the encapsulated objects.

1

The promoted operations mimic the encapsulated

operations by invoking them. The promoted operations may also extend those oper-

ations, to ensure proper integration, by invoking the operations of other encapsulated

objects.

1

I use the term promotion in the same way as it is used to describe similar structures in speci�cations

written in Z [Spivey 89].

6

Compiler

.

Save(File f) Compile (File f)

Compile (File f)

Editor

System

EditorSave(File f)

Figure 1.3: The encapsulation approach to behavioral integration.

The wrapper object System encapsulates editor and compiler objects, shaded to indicate

they cannot be accessed directly by clients. Arrows indicate invocations. Encapsulation

forces clients to use the wrapper, ensuring integration.

To make this clear, suppose one has ADT representations of compiler and editor

behaviors, and one wants a system in which the editor and compiler work together|as

described earlier. The encapsulation method is often used in such situations. Figure 1.3

illustrates. One de�nes a new type that aggregates and encapsulates editor and debugger

type instances. Aggregation incorporates the given behaviors as parts of a larger one.

Encapsulation prevents direct access to the editor or compiler. This is needed because

direct access could leave the behaviors not properly integrated: the editor could be

made to save a source �le without the compiler being run. To compensate for hiding the

editor and compiler, the wrapper promotes their encapsulated operations. Thus, if the

editor has an operation Editor.Save, the wrapper, System, exports System.EditorSave.

The implementation of this operation calls Editor.Save (making the editor behavior

accessible as a constituent part of the integrated behavior); then, before returning, it calls

Compiler.Compile to regenerate the corresponding object code, satisfying the integration

requirement.

7

Compiler

.

Save(File f) Compile (File f)

Editor

Figure 1.4: The hardwiring approach to behavioral integration.

The dot in the editor object and the arrow from it depict a reference from the editor to

the compiler object, which is used by the editor to call the compiler.

This approach has the advantage of not requiring changes to the given artifacts. In-

stances of the editor and compiler types are used without change. Unfortunately, their

clients have to change. One can no longer use the editor save operation directly, but

must use the wrapper instead. This method also has the disadvantage of producing

monolithic types. The wrapper ends up representing both the editor and compiler be-

haviors and the behavioral relationship that integrate them. When more behaviors and

relationships are required, this approach leads to large wrappers whose complex interface

and implementation structures complicate integration and evolution. The encapsulation

design method thus scales poorly as integration requirements evolve.

1.3.2 Hardwiring

The hardwiring method uses explicit invocation as a communication mechanism to inte-

grate the behaviors of ADT-based objects. This is a very common method. To integrate

objects, one changes the objects to make them call each other.

2

For example, if given

editor and compiler objects and an integration requirement as above, many program-

mers would change the editor save operation by inserting a call to the compiler's compile

operation. Figure 1.4 illustrates.

2

Object-oriented languages allow these changes to be isolated in subclass or subtype de�nitions. The

inability of subtyping and subtype polymorphism to overcome problems with common design methods

is discussed in Chapter 8.

8

A bene�t of this approach is that clients of the given objects do not necessarily have

to change when objects are integrated. There is no encapsulation, nor do the object

interfaces necessarily change. The key changes are in the implementations of existing

operations, from which clients are generally insulated by information hiding mechanisms.

Yet, this method su�ers from serious problems. The �rst is that the objects whose

behaviors are to be integrated themselves have to change. Second, these changes com-

plicate the objects, and speci�cally create reference dependencies between them. The

objects must invoke each other and therefore must reference each other (or at least inter-

mediate objects). Moreover, as integration requirements evolve, each object may have to

manage interactions with more and more other objects. Third, this method encourages

neither separate conception nor representation of behavioral relationships. Instead, the

code and data needed to implement required relationships are distributed among the

objects to be integrated. This makes it hard not only to �nd the representations of re-

lationships but to update them when behavioral relationships change. The code for one

relationship may be commingled in the code of several objects, along with code for other

relationships in which the same object participates. The complexity of objects grows

in proportion to the richness of the integration of their behaviors. Changes to existing

relationships or the addition of new ones requires handling of ever more complex objects.

The cost of change mounts quickly as integration requirements evolve.

1.3.3 Implicit Invocation

The implicit invocation design method is similar to hardwiring, but provides the de-

signer with a di�erent way to structure dependencies between communicating objects.

In addition to explicitly invoking each other, objects can register to be invoked by each

other's events. Instead of the editor calling the compiler, the compiler can register with

the editor to be noti�ed when the editor announces a �le-saved event. The compiler

object depends on the editor object, even though it is the behavior of the editor that

a�ects the compiler. See Figure 1.5.

9

Compiler

.

Save(File f) Compile (File f)

Editor

Figure 1.5: The implicit invocation approach to behavioral integration.

Implicit invocation is an old idea. Many systems support specialized event mecha-

nisms, including Smalltalk-80 [Goldberg and Robson 83], LOOPS [Ste�k, Bobrow, and

Kahn 86], APPL/A [Sutton, Heimbigner, and Osterweil 90], and many others. Despite

this long history, a precise characterization of implicit invocation and its bene�ts has

only recently emerged [Garlan and Notkin 91, Sullivan and Notkin 92]. The basic ad-

vantage of implicit invocation is that it provides engineers with the
exibly to choose

the orientations of reference dependences between components that invoke each other.

Despite this added
exibility, the problems with the implicit invocation method are

basically the same as with hardwiring|with some dependencies reversed. Achieving

integration compromises the independence of the given objects. It is no more appropriate

for the compiler to reference the editor than the other way around. As integration

requirements evolve, the level of unnecessary complexity mounts. Although details di�er,

the static and dynamic structural properties are about the same as with hardwiring.

1.3.4 Broadcast Message Servers

The broadcast message server (BMS) method, pioneered by Reiss [Reiss 90], special-

izes the implicit invocation method by using a distinguished broadcast message server

component to coordinate communication among other components. Each component

informs the BMS of the operations it supports; sends messages to the BMS to invoke

operations of other components; sends messages to the BMS to announce its own events;

10

Compiler

.

Save(File f) Compile (File f)

Editor

Broadcast Message Server

. . .

Editor.Save(File f) −−> Compiler.Compile(File f)

Figure 1.6: The broadcast message server approach to behavioral integration.

The BMS records registrations of operations with events. The compiler registered a

\trigger" as depicted, causing BMS to implicitly invoke Compiler.Compile(f) when the

editor explicitly invokes the BMS to announce that it saved the source code �le f .

and registers with the BMS to be noti�ed of events announced by other components.

A BMS supports designs similar to blackboard systems, in which multiple clients are

noti�ed of changes made to central information repositories. Figure 1.6 illustrates.

A bene�t of this approach is that the added level of indirection between components

decouples component interfaces from implementations, providing for a kind of polymor-

phism that enables \plug compatibility" of tools. One compiler or con�guration manager

can be replaced by another so long as the message protocols are compatible.

Unfortunately this method has problems similar to those of hardwiring and implicit

invocation. Integration requirements are met by changing existing components to make

them communicate with each other; and these changes compromise the simplicity and

independence of the components. Although the components do not have to reference

each other directly, they come to depend on each other's interfaces and protocols. Nor

is there an impetus to represent behavioral relationships abstractly. This problem is

addressed in Forest [Garlan and Ilias 90], but not in great generality.

11

There are other problems, too. The BMS is a monolithic component, representing the

global union of the interfaces of all system components. This may have serious results.

It may be hard to de�ne a system with two instances of the same kind of component

because the two interfaces would con
ict within the shared BMS. Another problem is

that the events and operations that objects support may not be declared, making it hard

to understand the abstractions that objects support [Meyers 91].

1.4 The Mediator Method

This dissertation presents a new design method that largely overcomes the problems with

common design methods to ease the design, realization, and evolution of integrated sys-

tems. The basic idea is to view both behaviors and behavioral relationships as �rst-class

abstractions and to represent both using �rst-class objects. It is especially important to

consider and to represent behavioral relationships as objects separate from the objects

whose behaviors they relate, separate from clients of those objects, and separate from

other objects representing other behaviors and relationships in the same system. An

integrated behavior is represented as a set of independent behaviors integrated in a net-

work of externalized behavioral relationships. Recalling Chen's entity-relationship data

modeling [Chen 76], I call these networks behavioral entity-relationship (ER) models.

3

1.4.1 Applying the Method

The top part of Figure 1.7 depicts a behavioral ER model of the behavior of the in-

tegrated programming environment. Having produced this model, the second step of

the mediator method produces an implementation whose structure follows that of the

behavioral ER model. The bottom part of Figure 1.7 illustrates this idea. Each behavior

and behavioral relationship in the model is realized by a corresponding, �rst-class imple-

mentation object. The behavioral ER model as a whole is realized by the corresponding

collection of implementation objects.

3

I discuss the connection of behavioral ER models to ER data models in Chapter 9.

12

MediatorEditor

Editor

Compiler

Compiler
when editor saves, recompileConcept and

Specification

reference dependence

Imperative
Implementation

reference dependence

realizes realizes realizesRealization
Mapping

Figure 1.7: Schematic of a mediator-based realization of the programming environment.

The top part of the �gure presents a behavioral ER model of the behavior of the in-

tegrated environment, decomposing it into two behaviors (editor and compiler) and a

behavioral relationship that de�nes how the behaviors work together. The bottom part

of the �gure depicts the structure of a mediator-based implementation of the behavioral

ER model.

Not only is the static structure of such an implementation similar to that of a be-

havioral ER model, but also its dynamic structure: its pattern of structural change as

evolution|or even execution|occurs. Just as behaviors in behavioral ER models are

integrated by adding relationships, integrating the behaviors of given implementation

objects is done by adding objects that represent the relationships needed for integration.

These behavioral relationship objects are what I call mediators. They are distinguished

by their purpose|to integrate the behaviors of otherwise independent objects|and by

a stylized used of implicit and explicit invocation mechanisms (which I discuss below).

One insight of this work is that objects based on ADTs communicating by explicit

invocation alone do not support this approach. One cannot obtain the desired integration

and the desired independence at the same time. Nor does subtype polymorphism provide

much relief, as discussed in Chapter 8.

Instead, the objects on which I base mediator implementations are instances of what

I will call abstract behavioral types (ABTs). In contrast to an abstract data type, which

characterizes a class of objects primarily in terms of the operations that can be applied,

13

. . .

.

MediatorEditor Compiler

. . .

. . .

explicit
invocation
(procedure call)

reference to callreference to register

implicit
invocation
(broadcast event notification)

invocation by
client

event
announcement

Save(File)

Saved(File)

Compile (File)UponSave(File)

Figure 1.8: Mediator/ABT implementation of the integrated programming environment.

The editor is now conceived as an object with an operation for saving �les and an

event, a broadcast announcement of which indicates the saving of the indicated �le. The

compiler is similar, but without an event in this case. The mediator responds the editor

event by calling the compiler. This externalizes and modularizes the required behavioral

relationship.

an abstract behavioral type characterizes a class of objects both by the applicable oper-

ations, and by the events announced by the objects to make selected, abstract behaviors

\audible" so that other objects can listen for and respond to them.

Figure 1.8 illustrates how such objects are used in a mediator implementation of

the behavioral ER model for the programming environment. The editor behavior is

realized by an Editor ABT with an operation to save a �le and an event Saved that is

announced whenever the save operation succeeds. The behavioral relationship is realized

by the mediator. Having registered its UponSave operation with this event, it is invoked

whenever the event is announced. When so invoked, the operation explicitly invokes

the compiler to regenerate the object code. The key is that the independent behaviors

are realized by independent objects and that the behavioral relationship is realized by a

separate mediator external to the object whose behaviors are integrated.

14

1.4.2 Properties of the Method

In general, the fact that mediators are �rst-class objects allows one to realize complex

behavioral relationships as mediators. The heart of the mediator method lies in realizing

complex behaviors and relationships as abstract, modular, imperatively programmed

components. In contrast with common design methods, this method overcomes the

problems of integration and evolution because it promotes software modularizations that

anticipate evolving integration requirements, in analogy with Parnas's information hiding

design method, which focused on anticipating the evolution of data representations and

algorithms [Parnas 72].

To see better how this method eases evolution consider two evolutionary changes.

The �rst is a change in the way that the editor and compiler work together, so that the

compiler regenerates object code when the editor saves a �le only if the system load is

low [Garlan and Ilias 90]. To handle this change in the speci�cation requires changing

only the behavioral relationship. We do not have to change the editor or compiler or

their clients. The corresponding implementation change is a localized update of the

mediator object.

Second, suppose that we want to integrate a new tool, a con�guration manager, so

that when the editor saves a source code �le a copy of the source code is checked in to

a repository. We model this change by adding a con�guration manager behavior and

another behavioral relationship to integrate this tool with the editor. In the implemen-

tation, we similarly add an independent con�guration manager object and a mediator

to integrate it with the editor.

In summary, behavioral ER models provide a framework that helps the software en-

gineer to think clearly about behavioral integration and to express these thoughts clearly

in e�cient, imperative computer programs. Because behavioral ER models orchestrate

a graceful evolution of integration requirements, and because mediator implementations

preserve the static and dynamic structures of behavioral ER models, such implementa-

tions are themselves robust with respect to integration and evolution. This method does

15

not depend on special-purpose, costly, unfamiliar mechanisms, nor on speci�c languages.

Whereas the negative contribution of this work shows that common design methods in-

herently complicate design, integration, and evolution, the positive contribution|the

mediator method|solves these problem for a wide range of systems.

1.5 Evaluating Design Methods

Validating the claims made in this work requires a careful evaluation of design methods.

I take a two-pronged approach. First, I argue intellectually that common methods com-

plicate design, integration and evolution and that the mediator method should perform

better. Second, to substantiate the claim that the mediator method is better, I report

on experiences using it.

Chapters 2 through 5 present the intellectual case as a rigorous evaluation of design

methods with respect to ease of integration and evolution. Chapter 2 de�nes an evo-

lutionary scenario that characterizes behavioral integration and evolution. Chapter 3

presents a framework for modeling design methods and the structures they produce.

Chapter 4 uses the framework to explain why common methods handle evolving re-

quirements poorly. Chapter 5 uses the framework and scenario to present the mediator

method and to explain how it overcomes this problem.

The question remains as to whether the mediator method solves these problems in the

real world|whether problems were overlooked. Chapters 6 and 7 address this concern

by discussing systems built using mediators. After brie
y summarizing the intellectual

arguments, Chapter 6 discusses prototype and production systems in which mediators

were systematically employed. Chapter 7 expands on one, the Prism radiation treatment

planning system, presenting it as a case study [Sullivan, Kalet and Notkin 93].

Finally, Chapter 8 evaluates this work: whether the problem is important, whether

the data support the conclusions, the validity and limitations of the methods used, and

so forth. Chapter 9 discusses connections to related work. Chapter 10 summarizes the

dissertation and outlines directions for future work.

Chapter 2

Integration and Evolution

Discovering how software design methods a�ect the ease of designing, realizing and

evolving integrated systems requires a careful characterization of integrated behaviors;

the ways in which integrated behaviors evolve; the design methods to be studied; prop-

erties of software structure that are a�ected by design methods and that are relevant

to ease of design, integration, and evolution; and the relation of these structures to the

di�culty of these tasks. This chapter addresses the �rst two of these concerns, integrated

behaviors and their evolution.

I characterize behavioral integration and evolution using an evolutionary scenario

as a prototypical example. The scenario comprises three simple, initially independent

behaviors subjected to ongoing changes in integration requirements. Behaviors are inte-

grated; the relationships that de�ne how the behaviors work together are changed; and

behaviors and relationships are removed.

By abstracting from application-speci�c complexity while preserving the essential

aspects of integration and evolution, the scenario characterizes key aspects of evolving

integration requirements in the real world. The scenario thus provides a benchmark for

evaluating how well design methods handle evolving integration requirements. I use the

scenario this way in Chapters 4 and 5. The scenario also circumscribes the scope of this

work by characterizing the kinds of behaviors, integration and evolution that I consider.

17

2.1 A Motivating Example

The evolutionary scenario begins with three simple switch behaviors, each used by a

corresponding client. The scenario then imposes a sequence of integration requirements

that call for the switches to work together, in di�erent ways at di�erent times, as they

are used by their clients.

Even though this scenario involves only the coordination of binary digits (switches),

it still captures key aspects of integration and evolution. To give a sense for how the sce-

nario relates to realistic systems, I present an example adapted from the literature [Rum-

baugh et al. 91, pp. 99{100]. The switch-based scenario directly models this example,

but without the trappings of the speci�c application domain.

Imagine a shop in which automotive subsystems are designed and integrated. One

system is a transmission. It can be engaged or disengaged. The second is a door locking

device. When activated it locks all four car doors. The third system is an ignition

interlock. When on (and when integrated with the ignition) it prevents the ignition from

starting; when the interlock is o�, the ignition is enabled to start the car. The ignition

is yet another system that can be turned on and o�. These are the separate behaviors.

The transmission and door-locking system are the �rst to be integrated. When

the transmission becomes engaged, the door-locking system is to be activated to lock

the doors. The doors can be freely locked or unlocked thereafter without a�ecting

the transmission. Next, the transmission is integrated with the ignition interlock: the

interlock is to be o� (so the ignition can start the car) if and only if the transmission is

disengaged. Subsequently, we are asked to add an interlock override, as a special kind of

safety feature. If the override is turned on, the ignition is allowed to start the car even

with the transmission engaged. This enables moving the car for short distances using

the battery to power the starter motor. Unfortunately, to cut unexpectedly high costs,

management decides to cut the automatic door locking feature; so, that system has to

be removed from the car. These are the evolving integration requirements.

18

2.2 An Evolutionary Scenario

To reason generally about integration and evolution on the basis of an evolutionary

scenario demands a precisely de�ned scenario (its structure, behaviors, and integration

requirements); that the scenario abstract from irrelevant details; and a clear connection

of the special cases in the scenario to the general case in practice. The rest of this chapter

handles these tasks.

An evolutionary scenario de�nes a partially ordered family (a directed, acyclic graph)

of behaviors for which software representations are to be built. See Figure 2.1. The

nodes represent requirements for behaviors to be realized; the edges represent steps in

the evolution of these requirements. A particular edge indicates that the behavior at

the source node is modi�ed, giving the behavior at the destination node; or that the

behavior at the source is incorporated as a constituent into the integrated behavior at

the destination. In the scenario presented below, a node on which one edge is incident

represents a behavior di�ering from the one at the origin in one of two ways: either by

a change in the way that constituent behaviors are integrated, or by the removal of a

constituent behavior. Incidence of two edges on a node indicates that the behaviors at

the source nodes are integrated with each other in the behavior at the destination.

The scenario presented below starts by de�ning three separate behaviors. The

switches B1; B2; and B3 are toggled by respective clients. (See Figure 2.1.) The next

step in the evolutionary sequence integrates B1 and B2 in a behavioral relationship �

that de�nes how the switches work together when either one is toggled. The details

are presented below. Next, B3 is integrated with B1 (which is now part of the system

B1�B2) in the behavioral relationship
. Next, the relationships
, which de�nes how

B1 and B3 work together, is slightly changed, yielding a new relationship

0

: Finally,

B2 is removed from the system, along with the relationship � integrating B2 with B1.

Note that this scenario models the static and evolutionary structure of the automotive

example, above|except for the ignition, which is addressed at the end of this section.

19

B1

B2 B3

+ B2x B1 B3x B1 B3

B1 + B2 x B1 + B2B3

’’

Figure 2.1: Graphical representation of a simple evolutionary scenario.

Each labeled box represents a required behavior. The directed graph represents the

steps in the evolution of the requirements. Initially, three behaviors B1;B2 and B3 are

required. Then B1 and B2 are integrated in the behavioral relationship �: Next B3 is

integrated in the behavioral relationship
 with B1 (now a constituent of B1�B2:) The

next step changes the way that B1 and B3 work together by changing
 to

0

. Finally,

the behavior B2 and the relationship � are removed from the system. Clients are not

depicted in this �gure.

2.2.1 An Initial Family of Behaviors

The three central behaviors in the scenario are switches, B1, B2, and B3: To be precise

about their behaviors, I model each as an instance of an abstract type called Switch. The

state space of an instance has two values, On and O� . The initial state is O� . Three

operations can be applied to instances. IsOn is always applicable. It returns true for an

instance that is in the On state, and false for one that is O� : TurnOn is applicable only

if the switch is O� . It turns the switch On: TurnO� is symmetrical.

Each switch has a client, respectively C 1; C 2; and C 3: Each client occasionally

checks the state of its switch using IsOn, then toggles the switch using TurnOn or

TurnO� as appropriate. I assume that clients apply these operation pairs in a way that

is atomic.

1

I introduce clients because in practice the impact of integration on clients can

be large. To characterize how design methods accommodate the evolution of integration

requirements, it is necessary to characterize how clients are a�ected by integration. An

editor user may be a�ected when the editor is integrated with a compiler. The clients

in this scenario abstractly represent such client concerns.

1

One may even view this situation as a single client using distinct switches: C1 = C2 = C3.

20

2.2.2 Adding an Asymmetric Behavioral Relationship

The �rst integration step in the scenario calls for the integration of B1 and B2 in the

behavioral relationship �. I de�ne this relationship � as requiring B2 to be turned on

whenever B1 is turned on. This relationship imposes an \edge triggering" behavior on

the system. Whenever B1 makes a transition from O� to On (owing to the invocation

of B1:TurnOn), B2 must also be On before B1:TurnOn completes. B2 can then toggle

independently of B1, and B1 can be turned o� without a�ecting B2; but as soon as B1

is turned on again, so must B2.

This relationship characterizes the class of behavioral relationships that require asym-

metric propagation of behavioral e�ects between subsystems. In practice, many integra-

tion requirements call for such asymmetric propagation. In the automobile, engaging

the transmission requires the doors to be locked|but not vice versa. In the program-

ming environment, saving the source code causes object code to be updated. In the

Smalltalk-80 MVC [Krasner and Pope 88], changing a model updates its views.

2.2.3 Adding a Symmetric Behavioral Relationship

Another common class of integration requirements call for behavioral relationships in-

volving symmetric or multi-directional propagation of e�ects|often to maintain an in-

variant over several objects. In the automotive case, the ignition interlock can be o�

if and only if the transmission is disengaged; so if either is toggled, the other must be

toggled, too. In a graphical user interface text window, the position and size of the text

and the position and size of the scroll bar thumb are kept consistent as either is changed.

This class of behavioral relationships is abstracted in the second step of the evolution-

ary scenario, where B3 is integrated with B1 in the new behavioral relationship
: This

relationship requires B1 and B3 to operate in tandem: whenever either one is turned on

or o�, the other must be turned on or o� before the initiating operation completes.

Note that B3 is being integrated here with B1 which is already integrated with B2:

In addition to characterizing relationships that require symmetric or multi-directional

21

propagation of e�ects, this example also characterizes systems in which behaviors par-

ticipate in multiple behavioral relationships. B1 works with B2 and with B3 in di�erent

relationships. To illustrate how this system operates, suppose C 3 turns on B3. The

relationship
 requires that B1; which was o�, be turned on. That in turn requires B2

to be turned on if it is not already on|owing to the presence of �. Analogously, in the

automobile, if the transmission is engaged the doors are locked and the interlock is set.

Finally, the scenario as de�ned so far characterizes integration in the evolutionary

dimension. The set of relationships in which the given switch behaviors participates has

changed twice so far, and the set of relationships in which the behavior B1 participates

has also changed twice. Because changes in the sets of relationships in which behaviors

are integrated are fundamental, software design methods should accommodate this kind

of change without undue e�ort.

2.2.4 Changing a Behavioral Relationship

Not only do sets of behavioral relationships tend to change over time, but individual

behavioral relationships change, too. The next step of the scenario abstracts evolution

of this kind. To illustrate, consider changing the behavioral relationship
 to

0

, a new

relationship with two states, eager and lazy. When in eager mode,

0

behaves like
:

B1 and B3 toggle in tandem. When in lazy mode, however, B1 and B3 are permitted

to toggle independently, as if they were not integrated. When the relationship

0

itself

is toggled from lazy to eager state, it reestablishes consistency of B1 and B3 if necessary

by turning B3 on or o�. Thereafter, it makes the two switches toggle in tandem.

This part of the scenario illustrates one characteristic way in which behavioral re-

lationships change: in the tightness with which consistency constraints are maintained.

The addition of a safety override in the automotive system is similar: when the override

is engaged, the linkage between the transmission and the ignition interlock is relaxed.

Another way in which a behavioral relationship might change is in the way in which

an underspeci�ed constraint is resolved|e.g., how changes to \views" are re
ected as

22

changes are made to models from which views are derived. Changes in behavioral re-

lationships of many kinds occur often in integrated systems. Software design methods

should therefore accommodate such changes without signi�cant, unnecessary complexity.

2.2.5 Removing a Constituent Behavior

Yet another common kind of change to integrated behaviors is the removal of a con-

stituent behavior. In the automotive example, the lock subsystem was removed because

it was too expensive. Removal of an imperfect or old tool from a programming environ-

ment (perhaps to replace it with a new tool) involves the same basic operation. Deletion

of a graphical view at runtime is also similar, although it is a matter of a change during

execution, not evolution.

2

This kind of change is abstracted in the �nal step of the evo-

lutionary scenario, in which B2 is removed from the system, along with the relationship

� that integrates it with B1. A software design method should not make it unnecessarily

hard to accommodate this kind of change.

2.2.6 Non-Conservative Integration

I conclude this section by observing that all the behavioral relationships above are of

a particular, restricted kind. All of the relationships extend given behaviors to make

them work together, but the behaviors themselves are left undiminished. Each behavior

remains present in its entirety within the integrated behavior. Behaviors are conserved

through integration. Switch clients continue to treat the switches as switches even though

the switches work together. The user of an editor integrated with a compiler uses it as

an editor. I call behavioral relationships of this sort conservative.

A di�erent kind of relationship occurs in the automotive system. When the ignition

interlock is on, the ignition switch cannot be turned on. The behavior of the ignition

switch is not conserved when it is integrated with the behavior of the ignition inter-

lock switch. Rather, this relationship restricts the behavior of the ignition switch. The

2

Indeed, the distinction between changes during execution and evolution blurs. The basic principles

that I discuss in this work apply to both evolution and execution dynamics.

23

behavior of the ignition switch is not conserved. I call behavioral relationships of this

kind non-conservative. This work focuses on behavioral integration in conservative re-

lationships. I defer the discussion of non-conservative integration to Chapter 8, which

evaluates this work.

2.3 The Scenario as a Benchmark

The evolutionary scenario presented above characterizes several important kinds of inte-

gration requirements and evolutionary change. The scenario will also serve as a bench-

mark for evaluating design methods|i.e., to help assess how well they accommodate

evolving integration requirements. Common design methods make it is easy to design

artifacts representing the separate behaviors, B1, B2, and B3: The question is how well

do they do in allowing one to adapt the artifacts as the integration requirements change.

After discussing software structure in the next chapter, Chapter 4 characterizes com-

mon design methods and evaluates each one by assessing how well it handles this scenario.

Each method is used to create artifacts for individual switches, and then to integrate

these artifacts to create artifacts for the integrated behaviors. This process yields an

evolutionary family of artifacts, one for each behavior in the scenario. The nodes of

the scenario give behavioral speci�cations to be realized as imperative programs by each

given design method. I then assess each method by evaluating the structure of the

resulting evolutionary family of speci�cation/implementation pairs.

Chapter 3

Modeling Software Structure

To help characterize design methods and their impact on the structures of integrated

software systems, this chapter presents a framework for modeling important software

structures in a language independent way. To model the structure of a real software

system, one selects a model built using this framework the structure of which re
ects

that of the system. To avoid mathematical \hair," I do not de�ne the framework formally.

Most of the English de�nitions can be formalized, if desired. In some places, I am content

just to sketch a formal framework.

The framework is designed to model three dimensions of software structure. The

�rst is the modular structure of a representation, e.g., speci�cation or implementation,

in a context in which it used by clients. The second is the structure of the mapping

between two representations, where one realizes the other (an implementation may re-

alize a speci�cation). The framework models software as being multi-representational.

The third dimension models the structure of the mapping between versions of a multi-

representational system, where one version is a direct evolutionary descendent of the

other. For example, one might model the mapping from a text editor before its integra-

tion into a programming environment to the editor after integration.

25

3.1 Representation in Context

The �rst dimension of software structure to be modeled is the modular structure of an

individual representation in a context in which modules of the representation are used

by clients. I therefore de�ne the type representation in context as a modeling construct.

An instance rc of this type can be taken to model a real-world representation in context.

The attributes of this type provide a basis for modeling attributes of real software

representations. The attributes are de�ned in terms of entities called modules and ref-

erences, in terms of relations over modules and references, and in terms of axioms that

govern con�gurations of these elements. The con�gurations model structures such as re-

cursive module decomposition; ownership of references by modules; naming of modules

by references; visibility of modules; direct links between modules where the behavior of

one directly a�ects the behavior of the other; indirect behavioral links; and the presence

of complex behavioral relationships (such as �) between the behaviors of modules.

3.1.1 Modules

Modularity is a key property of software representations because it is essential for humans

to manage complexity [Dijkstra 65, Dijkstra 72]. Even if the clients of a representation

view it as a monolithic module, it will almost invariably be implemented internally as

a structured set of modular parts. To support modeling of modular structure I de�ne

the module as a basic type in the modeling framework; and I de�ne a representation in

context rc as having a set of modules rc.modules as an attribute.

3.1.2 Representation versus Context

It is important to consider how satisfaction of integration requirements a�ects clients.

To ignore such an impact is to ignore what can be a signi�cant cost. Thus, I model

the separation of a representation in context into representation and context. I partition

rc.modules into two disjoint, exhaustive subsets: rc.contextModules and rc.systemModules.

The latter set contains one module to model each (real-world) module in the represen-

26

B1C1 C2+ B2

Figure 3.1: B1� B2 in its context of use.

This representation in context contains �ve modules. Shaded squares represent modules

considered part of the system; unshaded circles represent clients in the context of use.

tation being modeled. The former set contains one module to model each client of the

representation. Modeling clients as modules|even though they may be people, ma-

chines, etc.|eases the modeling task by permitting one to model associations between

clients and representations in the same way as associations between modules of the rep-

resentation itself. Disjointness and exhaustiveness of the subsets model the boundary

between what is considered the system and its context.

To see how the framework as presented so far can be used to model systems, consider

the model of the speci�cation for the system B1 � B2 (from Chapter 2) illustrated in

Figure 3.1. Recall that B1 and B2 specify switches toggled by clients C 1 and C 2, and

� speci�es a behavioral relationship requiring B2 to be turned on when B1 is turned on.

This system is modeled as a representation in context rc with rc.clientModules=f C 1;C2 g

and rc.systemModules=f B1;B2;� g. The set rc.modules is the union of these sets by

de�nition. � is modeled as a module because it is a distinct part of the speci�cation.

Another way to model behavioral relationships is provided below.

3.1.3 The Submodules Relation

Of course, systems are not generally organized as \
at" sets of modules. A key structure

in which modules participate is recursive decomposition: one module may be a child or

parent of another. I extend the framework to model this structure by de�ning the partial

relation rc.subModules: rc.modules $ rc.modules, to be an attribute of a representation

in context rc. A pair (M ;N) in this relation models a structure in which a real module

modeled by M is a child of a real module modeled by N : I take rc.parentModule as the

27

C1 B2 C2B1
+

Figure 3.2: A representation with a non-trivial submodules relation.

B1 and B2 are encapsulated submodules of the module �.

relational inverse of rc.subModules. Making rc.parentModule a partial function models

that decomposition is hierarchical (a module has at most one parent).

It is sometimes necessary to discuss a module and all of its submodules as a unit.

I do this by de�ning
atten : rc:modules $ � rc:modules as a relation that takes a

module M to the modules in the set f M g[rc:subModules

+

(M); where rc:subModules

+

is the transitive closure of rc:subModules. To ensure that a submodule of a system or

client module is itself a system or client module, I require that rc.systemModules and

rc.clientModules be closed under rc.subModules.

Figure 3.2 illustrates these concepts with a model of a possible implementation of the

behavior B1� B2: The nesting of the modules B1 and B2 inside � models the nesting

of child modules B1 and B2 in a parent �; with � responsible for coordinating the

behaviors of B1 and B2. Thus, rc:parentModule = f (B1;�); (B2;�) g; parentModule

is a partial function;
atten(�) = f �;B1;B2 g; and rc.systemModules (containing

B1;B2; and �) is closed under subModules.

3.1.4 References and the Touches Relation

Another feature of modular representations is the presence of references between mod-

ules. The familiar software engineering idea of coupling of modules [Stevens, Myers, and

Constantine 74] is based on the idea of references between modules. To support modeling

of the reference structures of systems I extend the framework in several steps.

First, I de�ne reference as a type of modeling entity. An instance of this type

is intended to model an actual reference (e.g., a name or address) embedded in one

28

C1 + B2 C2B1

Figure 3.3: The reference relation over modules.

The arrows in this �gure represent elements of the references relation. The boxes at the

tails of the arrows represent modules containing references to the modules at the heads.

module that may denote some other module. Second, to a representation in context,

rc, I associate a set of references rc.references. This set models all references appearing

in all modules in rc.Modules Third, to model that any given reference is owned by one

module and that the reference may denote another module, I de�ne two functions. The

total function rc.referenceOwner: rc.references ! rc.modules associates every reference

with an owning module. The partial relation dereference: rc.references � rc.modules

associates a reference with the module it names, if there is one. (An unbound reference

does not denote any module.)

Finally, as a shorthand for modeling that one module names another by way of

a reference, I de�ne the partial relation rc:touches : rc:modules $ rc:modules as an

attribute of rc, with the requirement (or axiom) that for any two modules M and N

in rc.modules, the pair (M ;N) is in rc.touches if and only if there is a reference R in

rc.references such that rc.referenceOwner(R,M) and rc.dereference(R,N). In other words,

M touches N if and only if M has a reference R that refers to N . In this case I will also

say that M references N .

To illustrate, Figure 3.3 depicts a model of the speci�cation B1�B2. The clients are

modeled as referencing the switches. This is justi�ed because the client speci�cations

refer to the switch speci�cations: they state that the clients check and toggle the switches

(see Chapter 2). The switch de�nitions do not reference each other, the clients, or �.

Finally, � references B1 and B2 because the speci�cation of � refers to the speci�cations

of B1 and B2.

29

3.1.5 The A�ects Relation

The next structure that I model is that of direct behavioral connections between modules.

The execution behavior of a module M can directly a�ect that of another module N in

several ways. M could write values to N or call procedures of N ; or N could read values

from M or register its operations to be invoked by events of M , for example. In this

work, I address synchronous connections, where a behavior occurring in execution of one

module synchronously invokes a execution in the another.

In the imperative implementation frameworks I consider, such behavioral connections

result from procedure calls or event noti�cations. To model these semantic connections, I

de�ne the relation rc.a�ects: rc.modules $ rc.modules. Modeling indirect connections|

where behavior propagates through chains of modules|is done in terms of the transitive

closure of rc:a�ects, denoted by rc:a�ects

+

. Although the a�ects relation for a software

representation is generally not computable from the representation, it is nevertheless a

useful tool for modeling how behavior does or should propagate through systems.

Note that behavioral connections modeled by elements of a�ects are not the same

as behavioral relationships such as
 as discussed above. Behavioral relationships inte-

grate behaviors; the a�ects relation relate modules. A connection between behavioral

relationships and a�ects does occurs when some behaviors to be integrated are them-

selves represented as modules. The modules will have to a�ect each other directly or

indirectly in order to work together. This connection is discussed in more detail below.

Figure 3.4 illustrates a model of the a�ects and touches relations in a possible im-

plementation of the system B1
B3 (in which toggling either switch toggles the other.)

Clients are modeled as a�ecting switches because clients turn the switches on and o�.

The switches a�ect the clients because clients read switch states to decide which way to

toggle them. Switches a�ect the relationship module
 because the activity of a switch

module may require the � module to act to maintain consistency. The relationship

module a�ects the switches because consistency maintenance involves toggling them.

30

B3C3 B1 C1x

Figure 3.4: The touches and a�ects relationships for B1
 B3:

The solid arrows represent elements of the touches relation; dashed arrows, elements of

a�ects .

3.1.6 References versus A�ects

What is the connection between the a�ects relation and the touches relation? In practice,

modules a�ect each other in the ways described above|e.g., by calling or registering with

each other's operations and events. These particular connections require that modules

reference each other. For one module to a�ect another by calling it, the �rst must

reference (i.e., touch) the second. For a module N to be a�ected by another M by

being registered with M , N must reference M . This gives the connection we seek: if

module M a�ects N ; then M touches N or N touches M . In other words, a�ects �

(touches [touches

�1

).

This relation is important in this work. It characterizes the syntactic structures

needed to obtain a given semantic structure. It also provides a basis for distinguishing

an important design subspace|that of classical object-oriented (OO) methods. The key

property of these methods is that objects interact by only explicitly invoking each other.

Classical OO methods \constrain away" implicit invocation as a way to obtain a�ects

relations, and so require touches relation wherever a�ects relations are required. This

restricted subspace is modeled by strengthening the axiom given above to state that

a�ects � references:

Choosing classical object-orientation as an implementation framework seriously con-

strains the reference structures of behaviorally integrated system. Under such con-

straints, encapsulation and hardwiring are entirely reasonable design methods. This

restriction unduly constrains the software designer.

31

3.1.7 The Visibility Relation

The next structure to be modeled is visibility. Visibility de�nes what references are

permitted, as opposed to those that actually occur. I model visibility as a relation

rc.visibility: rc.modules $ rc.modules along with an axiom that relates visibility to the

touches relation: if M does not have visibility to N , then M cannot touch N . More

concisely, touches � visibility :

Combining this axiom with the earlier one gives a�ects

+

� (visibility[visibility

�1

)

+

:

The contrapositive then says if modules (M ;N) are not in (visibility [visibility

�1

)

+

;

then (M ;N) is not in a�ects

+

: By restricting references, visibility thus indirectly re-

stricts a�ects . Indeed, a primary use for control of visibility is to help avoid unwanted

behavioral connections. In the encapsulation design method (discussed in Chapter 1 and

next chapter), visibility of external modules to modules encapsulated by an integrating

wrapper is denied. Combining this with the classsical object-oriented restriction to ex-

plicit invocation ensures that external modules do not a�ect the encapsulated modules

directly (which would bypass integration code in the wrapper module).

3.1.8 The Integrated Relation

This section has presented in a bottom-up manner a framework for modeling represen-

tations. This subsection presents the �nal element of this part of the framework: a

relation over modules called integrated ; for modeling requirements for the integration of

the behaviors of modules, such as those given by the � behavioral relationship.

I de�ne rc:integrated : rc:modules $ rc:modules as an attribute of a representation in

context rc; the elements of which are intended to model requirements for the integration

of the behaviors of a pair of modules.

1

If the independent switch behaviors B1 and B2

are modeled as modules b1 and b2; then the behavioral relationship � could be modeled

as an element (b1; b2) of the integrated relation, in contrast to the modeling of this

relationship as a module, as was done earlier in this chapter.

1

Chapter 8 discusses the arti�ci<al restriction of integrated to a binary relation.

32

The integrated relation provides an abstract way to model representations organized

as behavioral ER models: i.e., as sets of behaviors (the modules) connected in a network

of behavioral relationships (the elements of the integrated relation). Thus the framework

provides abstract concepts useful for thinking about and expressing the structures of

speci�cations of integrated systems given in the form of behavioral ER models.

3.1.9 Re�nement of Integrated Relations

By de�ning axioms that relate the integrated relation to \lower-level" relations already

de�ned (e.g., a�ects

+

) I provide a framework for characterizing and exploring the lower-

level structures that are compatible with a given behavioral ER model, i.e. to investigate

designs consistent with requirements for integration of the behaviors of given modules.

In this work, I consider it necessary for the behavioral integration of two modules that

causing one module to engage in some behavior causes the other one to engage in some

behavior, too. I thus incorporate the integrated relation into the framework by de�ning

an axiom that captures this idea. The integration of modules M and N means that any

module that a�ectsM (directly or indirectly) also a�ects N (directly or indirectly). The

requirement that a compiler update object code whenever an editor saves a source code

�le illustrates the idea: if any client causes the editor behavior, then a compiler behavior

is also implied.

One way to meet such a requirement is to require editor clients to run the compiler

whenever they use the editor to save a source �le. Alternately, one could have the editor

\trigger" recompilation by the compiler without any e�ort by the editor client beyond

using the editor. In both cases, the editor client directly or indirectly a�ects the compiler,

satisfying the requirement for integration.

I model this choice with the axiom that, for a representation in context rc and

modules M and N , (M ;N) being in rc:integrated implies that, for at least one of M or

N (say M), for every module C in rc:modules such that (C ;M) is in r :a�ects

+

(C ;N)

is also in r :a�ects

+

: Figure 3.5 illustrates.

33

B3

C3

B1 B3

C3

B1

Figure 3.5: The a�ects

+

and integrated relations for B1
 B3:

In this �gure, the dashed arrows represent elements of a�ects

+

; the transitive closure

of the a�ects relation. The solid arrows represent elements of integrated : This �gure

illustrate the implications for the a�ects

+

relation of the integrated relation. B3 and B1

being in the integrated relation implies either that the client C 3 integrates B1 and B3

by a�ecting both of them directly or indirectly (left); or that the integration of B1 and

B3 is realized by the switch modules directly or indirectly a�ecting each other.

A consequence of this axiom is that integrated � (a�ects[a�ects

�1

)

+

: Combining this

with previous results gives integrated � (a�ects[a�ects

�1

)

+

� (touches[touches

�1

)

+

�

(visibility[visibility

�1

)

+

: That is, integration requires a�ects requires references requires

visibility; but many design choices are possible for any given integration requirement.

3.2 Realization

In practice, software systems are multi-representational. A system comprises several rep-

resentations of a desired behavior, each one suited to a particular purpose. A speci�cation

may support human reasoning and communication by being written in an expressive no-

tation and by avoiding commitments to implementation decisions. An implementation

that realizes the speci�cation may embody commitments to implementation decisions

and may be cast in a less expressive but more easily executed notation. In structuring

complex software systems, engineers must consider multiple representations|both indi-

vidually and collectively|including structural correspondences between them induced

by the need for one to realize another. This section extends the modeling framework to

model systems consisting of multiple, related representations.

34

3.2.1 Background

The idea of software as multi-representational and the existence of correspondences be-

tween the structures of adjacent representations have long been recognized. Boehm [Boehm

88, p.251] implicitly traces the idea to Bennington's stagewise process model [Benning-

ton 56], an early view of software development as a sequence of transformations from

higher to lower level representations. Lehman [Lehman 81, p. 474] �nds the same idea

in the transformational model of Zurcher and Randell [Zurcher and Randell 68]. The

idea appears again in the waterfall model [Royce 70]. The invariant across all these

process models (and many others) is the view of software as multi-representational, with

correspondences between representations. Lehman makes the idea of structural corre-

spondence explicit in discussing formal transformational development processes:

Each step : : : transforms the structure and notation of the input model from

a form suitable for conveying understanding about the previous step of the

process into a framework in which, for the current step, the design decisions

and model re�nements may be made and precisely, retrievably and under-

standably expressed. If the source and object models of this transformation

are both formally described and if a veri�ed mechanical transformation is

used, the precise correspondence between the representations may be guar-

anteed [Lehman 81, pp. 483{484].

Even in the absence of formal transformations, the existence and importance of the struc-

tures of correspondences between representations is widely accepted. Jackson [Jackson

75] emphasizes that a close correspondence between problem and solution structure is key

to reducing the di�culty of evolution; Meyer [Meyer 88], DeChampeaux [de Champeaux,

Lea and Faure 93], and many others echo similar concerns.

3.2.2 Speci�cation.

To begin, I take behavioral ER models as high-level representations. These representa-

tions are abstract in the sense that they are not intended to specify the low-level structure

35

of an implementation, but only to record what behaviors and behavioral relationships

are to be realized. To emphasize their abstractness, I model behavioral ER models only

in terms of the high-level aspects of the framework. I model constituent behaviors as

modules; and behavioral relationships, as elements of the integrated relation. Behavioral

ER models, in this view, do not specify the a�ects

+

; a�ects; or references structures

required of an implementation.

3.2.3 Implementation.

A low-level representation, such as a C++ program that realizes a behavioral ER model,

binds decisions about low-level structures. The program embodies choices about the

a�ects

+

relation (whether clients realize integration requirements or whether they are

relieved of this burden); how a�ects

+

relations are realized as chains of a�ects rela-

tions (e.g., whether intermediate modules are interposed); and how a�ects relations are

implemented in terms of touches (whether implicit or explicit invocation is used).

3.2.4 Realization Mapping

I model that a software system comprises multiple representations with a new modeling

type, system. A system s has several attributes. One is a representation in context

s :speci�cation; another is a representation in context, s :implementation: The third at-

tribute of the system s is s :realization, a mapping from elements of the implementation

to elements of the speci�cation. I assume that s :speci�cation speci�es modules and

integrated relations but leaves lower-level structures (such as the a�ects

+

relation) un-

speci�ed; that s :implementation speci�es modules, a�ects

+

, and the other lower-level

structures; and that the realization mapping links the higher and lower level structures

of the two representations. The rest of this section elaborates on the realization mapping.

The realization mapping is determined by a sequence of design decisions, some of

which may be forced by the use of a particular implementation framework or design

method. The �rst design decision comes in crossing the gap from the speci�cation

36

(which models a behavioral ER model) to the implementation (e.g., a C++ program).

Each behavior in the behavioral ER model is modeled by a speci�cation module. I

assume that each such module is realized in a corresponding implementation module.

The relationships in the behavioral ER model are modeled as elements of the integrated

relation of the speci�cation. The question then is how are these integrated relations

realized in the implementation.

Consider an example. Suppose M and N are speci�cation modules and that (M ;N)

is in the relation s :speci�cation:integrated , and furthermore that m and n are imple-

mentation modules that realize M and N respectively|i.e., (m;M) and (n;N) are in

s :realization. I require|as an axiom governing the system s|that m and n partic-

ipate in the s :implementation:a�ects

+

relation in a way consistent with participation

in s :implementation:integrated . Since m and n realize M and N , and M and N are

integrated, we require that m and n be integrated.

Under the axioms of Section 3.1.9 (see Figure 3.5) there are two possible designs.

Either every client c that a�ects

+

m also a�ects

+

n; or, alternatively, m a�ects

+

n.

This choice allows the designer to make clients responsible for integration, or to de�ne

some other integrating structure between the modules themselves. The designer's choice

between these alternatives determines a part of the mapping i2a

+

, which associates the

selected a�ects

+

relations with the given integrated relation. The top part of Figure 3.6

illustrates this ideas.

The next lower part of the �gure takes us a step lower in the abstraction hierarchy:

the a�ects

+

relation is realized in terms of the a�ects relation. That is, the actual chains

of a�ects relations yielding the speci�ed elements of the transitive closure are bound.

Again, this design decision induces a correspondence between structures: each a�ects

link speci�ed to satisfy a given a�ects

+

link is associated to that link. I call this the

a

+

2a relation. The a

+

2a mapping is not always so direct: an a�ects

+

relation could

be realized by a chain of a�ects relations passing indirectly through several modules. In

that case, each such module also associates to the given element of the a�ects

+

relation.

37

C1 B1
+

B2 C2

Implementation

i

c1 b1 b2 c2

i i

Specification

Modules &
Integrated
Relations

c1 b1 b2 c2
aa aModules &

Affects
Relations

c1 b1 b2 c2
a+Modules &

Affects+
Relations

Realization of
Affects+ in terms
of Affects

d d d

a+ a+

Realization of
Integrated in
terms of Affects+

Realization of
Affects in terms
of Reference
Instances and
Elements of the
OwnedBy and
Dereference
Relations: i.e.,
in terms of the
Touches
Relations

Modules &
touches
Relations t t t

Figure 3.6: Realizing a multi-representation system implementing B1� B2:

This �gure \explodes" a model of a system to show its speci�cation, implementation,

and the design decisions that lead to the realization mapping between the two. The spec-

i�cation (behavioral ER model) is modeled in the top box. The i annotations indicate

elements of the integrated relation. The next three boxes show the lower-level structures

resulting from design decisions made by the implementor. The a

+

annotations indicate

elements of the a�ects

+

relation; a annotations, elements of a�ects ; the ts, elements of

touches ; dots, references; containment of dots in boxes, the ownedBt relation; and ds,

elements of the dereference relation. The mappings between these relations are depicted

by dashed arrows. The overall realization mapping from implementation to speci�cation

is the composition of these individual relations.

38

The �nal part of the �gure models the realization of a�ects relations in terms of

touches relations, each of which requires a reference, an element of the ownedBy relation

(placing the reference in the referencing module), and a tuple in the dereference relation

causing the reference to refer to the referenced module. The key constraint on the

designer at this level is the need to choose implicit or explicit invocation|i.e., one of

two orientations of touches to realize the given a�ects relation. (See Section 3.1.6.) I call

the association induced by this decision a2t , since it reduces a�ects relations to touches

relations. In an implementation framework based on classical object-orientation, the

choice is often �xed: a�ects implies touches .

The relation mapping s :realization between the speci�cation and implementation is

now essentially the composition of these mappings. Figure 3.7 illustrates this for the

system above. An interesting point is that the choice of explicit invocation from b1 leads

to a realization mapping in which b1 realizes the integrated relation �: (This is the hard-

wiring design method, discussed in Chapter 1 and in the next chapter.) An alternative

choice of implicit invocation (as in the implicit invocation design method) would have

put the reference in b2 and the realization arrow from b2 to � rather than from b1: This

illustrates how design methods a�ect not only the structures of implementations but also

those of the mappings that link implementations to the speci�cations that they realize.

3.3 Evolution

A di�erent kind of structural correspondence arises between versions of a system: evo-

lution mappings. Evolution mappings relate di�erent versions of multi-representational

systems to each other. As outlined above, each such system contains several repre-

sentations connected by realization mappings. Evolution mappings have corresponding

structures. In particular, an evolution mapping associates corresponding parts of systems

before and after a change: the speci�cation before a change to the speci�cation after;

the implementation before to the implementation after; and similarly for the realization

mapping.

39

C1 B1
+

B2 C2

Implementation

i

c1 b1 b2 c2

i i

Specification

Modules &
Integrated
Relations

d d d

r r r

Modules &
Reference
Relations

Realization of
Integrated in
terms of Reference
Instances and
Elements of the
OwnedBy and
Dereference
Relations

Figure 3.7: Model of a multi-representation system implementing B1� B2:

This �gure depicts a model of a system comprising a multiple representations (depicted

in the boxes) along with realization mappings that connect them together (depicted by

dashed arrows between the boxes).

I focus on the constituent mappings from one representation to another, e.g., from the

implementation before integration to the one after. The idea of such mappings is evident

in the de�nition of the evolutionary scenario in Chapter 2. Edges in the evolutionary

scenario graph basically denote evolution mappings between adjacent behavioral ER

models.

Because representations themselves have structures (modules, references, various re-

lations) evolution mappings between representations also have �ner, internal structures.

This section sketches a model of this aspect of the overall evolution mapping. Figure 3.8

depicts a simple example detailing the correspondence between the structures of a possi-

ble implementation of the behavior B1�B2 before and after the integration of the two

switches by the � relationship. The horizontal arrows in the �gure denote elements of

the touches relation. The upward arrows depict the structure of the evolution mapping

between the two representations.

In this case, the structure of the implementation before the integration step is directly

embedded into the structure of the implementation after. Indeed, because it is often

cheaper to modify representations when changes are required than to reimplement them,

40

C1 B2 C2B1

C1 + B2 C2B1

Figure 3.8: Evolution morphism with respect to the references relation.

This �gure depicts evolution involving integration of B1 and B2 by the addition of � in

the descendant representation.

we expect strong correspondences of this sort to arise frequently. Parts of the original

implementation are used without change in the new version. Other cases may require

parts to be added, changed, or deleted.

I extend the modeling framework to model evolution mappings between represen-

tations as evolution morphisms. An evolution morphism (E ;R) de�nes an evolution

relation E that maps modules of one representation (the ancestor) to the modules of

another (the descendent), and an association R between corresponding relations within

the two representations. For example, R associates the touches relation before evolution

with the touches relations after.

This model provides a basis for comparing modular structures before and after a

given change. One might ask whether a module after an integration step is the same

as the module before? This requires a de�nition of same. For the purposes of this

work, I consider two modules to be the same if they hold the same references. This

de�nition focus attention on the referential independence of modules. Another question

is how corresponding relations over modules relate to each other before and after some

change. Morphisms are useful constructs for capturing such concerns. In particular, if the

mapping from modules before a change to those after is bijective, then one asks whether

41

the morphism is an isomorphism. Isomorphism is the analog of same for relations in this

framework.

When integration of two representations is the change being considered, one may

seek not isomorphism but embedding|or isomorphism with respect to a part of the

integrated system. Making these ideas precise is important; but it is beyond the scope

of this work. I will not be any more rigorous at this point.

Rather, I extend the modeling framework to model evolutionary families of multi-

representational systems as evolution graphs having systems at the vertices and evolution

mappings on the edges. Figure 3.9 illustrates this idea. This construct delineates the �nal

view of software structure presented in this work. Structure extends in three dimensions:

through evolutionary changes between systems, through realization within systems, and

within representations of systems.

This model provides the basis on which I evaluate designs and design methods in

the following chapters. In particular, for each of a range of design methods, I take

the evolutionary scenario from Chapter 2 as de�ning a family of speci�cation. For

each member, I apply a given design method to produce an implementation and the

corresponding realization mapping. I model these triples as systems; and I model the

family of systems as an evolution graph. I then evaluate how well the design method

did with respect to evolving integration requirements by evaluating the structure of this

three dimensional model.

42

B2

B1 + B2B1, B2

B1

D1

D2

D3 D4

Figure 3.9: Systems are integrated to represent integrated behaviors.

The shaded rectangles represent systems. Within the systems are depicted behavioral

ER models for part of the evolutionary scenario from Chapter 2. Ovals represent imple-

mentations that realize the speci�cations. The dashed, upward arrows denote realization

mappings. Heavy horizontal arrows between systems denote evolution mappings between

systems. Lighter arrows between components of systems represent those parts of evolu-

tion mappings that associate corresponding elements of systems. In the behavior B1;B2

both switches are present in the system but they do not work together. As the speci�-

cation evolves and the switches are integrated, corresponding implementations may also

be integrated to realize the integrated behaviors.

Chapter 4

Common Design Methods

This chapter models and evaluates �ve general software design methods that are used in

building integrated systems. The �rst method I discuss provides a baseline by making

clients responsible for integration. The real focus in this work is on the other four

methods, which are widely used to design systems that relieve clients of the integration

burden.

I view a design method as being characterized by a design space and by constraints

imposed on the design decisions available to designers within the space. A design method

is intended to help lead designers away from poor designs, toward good ones. A method

that does this well is good; one that leads designers away from good designs is bad.

The methods studied in this work operate either in the design space modeled by

the framework presented in Chapter 3 or in the classical object-oriented design space

modeled by the framework without implicit invocation. This chapter characterizes each

design method by identifying the space in which it operates and the design choices it

institutionalizes. Speci�cally, di�erent methods are characterized by di�erent choices of

a�ects

+

; a�ects and touches for each given integrated relation. These choices signi�cantly

in
uence the static and dynamic structures of the resulting systems, and signi�cantly

a�ect the ease of realizing and changing such systems.

44

4.1 Introduction

Design methods employ certain design spaces and \institutionalize" certain design choices

within those spaces. If a method constrains away a \good" part of the space, users of the

method are methodically led away from good designs; so the method is poorer than one

that does not constrain away the subspace. It would be quite bad if all common design

methods constrained away a good part of the design space. Then, unnecessarily poor

designs would be the norm. This and the next chapter argue that this is largely the case:

the common methods that I address all unnecessarily complicate design, realization and

evolution of integrated systems by constraining away mediator-based designs.

To support this claim, I identify and evaluate common design methods. As described

at the end of Chapter 3, I evaluate each method in three steps. First, I apply a method

to design a family of systems meeting the requirements of the evolutionary scenario of

Chapter 2. Then I model each family in terms of the framework from Chapter 3. Finally,

I evaluate these models in relation to accepted software engineering criteria, such as

independence and separation of concerns. Using a simple, abstract evolutionary scenario

as the basis for this exploration clari�es how the methods systematically complicates

software engineering tasks.

The rest of this chapter addresses �ve common methods. The �rst is integration

by clients. The remaining four methods relieve clients of the integration burden. A

key feature of the �rst two of these methods|encapsulation and hardwiring|is that

they use design spaces that \constrain away" designs that use implicit invocation. The

second two methods|the implicit invocation and the broadcast message server (BMS)

methods|allow implicit invocation.

This chapter characterizes these methods and shows how they complicate design. The

next chapter shows that the complications are unnecessary by exhibiting a method|the

mediator method|that uses the same design space but leads to designs that are signif-

icantly better with respect to ease of design, integration and evolution. The mediator

method reveals an important but neglected subspace of integrated system designs.

45

4.2 Integration By Clients

One way to meet requirements for the integration of given software systems is to place

responsibility for integration on the clients of the systems. In the system of switches

B3
B1�B2, one could require that when client C 1 turns on switch B1 it also turn on

B2 and B3: This pattern arises often in practice. In a poorly integrated programming

environment, for example, the programmer may have to run the compiler manually after

saving changes to a source �le.

An advantage of this method is that it permits the behaviors of given software systems

to be integrated without changes to those systems. If C 1; C 2; and C 3 coordinate the

activities of B1;B2 and B3; the switches do not have to be changed. In a programming

environment, neither the editor or compiler have to be changed if the user coordinates

their activities.

Unfortunately, this method reduces the value of systems to users. In may even impose

unacceptable burdens on them [Taylor 88, Habermann and Notkin 86]. Manually coor-

dinating tools in a programming environment is tedious and error-prone, and distracts

users from building software. Manually updating graphical views as computerized models

change and manually translating and transferring data between tools in computer-aided

design (CAD) systems may also unduly burden users. When the scope and complexity

of systems grow, manual integration becomes untenable.

Figure 4.1 shows how this method and its static and dynamic structural consequences

can be seen using the modeling framework. The �gure shows three steps in the evolution

of the system B3
B1�B2: Before integration, the clients of the switch implementations

(lower half) need only reference their respective switches. The �rst integration step

requires client c1 to realize the requirement for the integration of b1 and b2 by a�ecting

b2: That in turn is achieved by having the (now changed) client c1

0

explicitly invoke

b2:TurnOn, which leads to c1

0

referencing b2. After the second integration step, the

client (now c1

00

) realizes both behavioral relationships, coordinating (and referencing)

b2 and b3 in addition to b1: This method scales poorly from the client's point of view.

46

b1 b2

B1 B2

C2

c1 c2

C1

b1 b2

B1 B2

C2

c2

C1

b2

B2

C2

c2

b1

B1

C1C3

B3

b3

c1’ c3’ c1’’

x+ +

Figure 4.1: An evolutionary family with clients responsible for integration.

The panels, from left to right, model three points in a system's evolution. The top parts

model speci�cations from the scenario of Chapter 2 before the �rst integration step, after

the �rst, and after the second. The bottom parts of the �gure model implementations.

The black dots denote references. The arrows coming from them represent elements of

the touches relation. The other light arrows (from clients to switches in this case) depict

elements of a�ects (and thus also a�ects

+

. The dashed arrows from the implementation

modules to speci�cation elements indicate divergences of the realize relation from a direct

correspondence. One such arrow indicates a divergence in the system at the second step:

the client c1

0

realizes something other than C 1, namely �. Prime marks (') denote

changes to modules made between versions.

47

4.3 Encapsulation

In contrast to the client-centered design method of the previous section, the methods

discussed in the rest of the chapter relieve clients from the burden of integration.

This section addresses the encapsulation method, which largely relieves clients of

this burden while retaining a key bene�t of the client-centered method: the ability to

integrate existing implementations without change. Unfortunately, as discussed below,

this method does not solve the problem of clients having to change, and it leads to design

structures that unnecessarily complicate integration and evolution.

The encapsulation design method has its roots in the theory of hierarchical composi-

tion of abstract data types [Liskov and Zilles 75]. The strategy is to implement integrated

systems using given systems as hidden implementation components. One integrates the

behaviors of given modules by interposing wrapper modules between modules and their

clients. Responsibility for integration is then placed with the wrapper module. The

clients of the modules that were integrated are a�ected in that they can no longer access

the modules directly, but must use interfaces provided by wrapper modules.

A wrapper makes the behaviors of the modules it encapsulates accessible to clients

that require those behaviors through its own wrapper interface. The implementation of

this interface exposes the required behaviors and also ensures the integration of those

behaviors. To integrate the editor and compiler, one would de�ne a wrapper that en-

capsulates them, exports operations providing access to editing and compiling functions,

and de�nes the exported operations as taking any additional actions needed to ensure

proper integration. When a client calls the wrapper to save a source �le, the wrapper

�rst calls the save operation of the encapsulated editor, but then calls the encapsulated

compiler to regenerate the object code. The behaviors of the encapsulated components

are extended as needed for integration by the operations of the wrapper module.

Figure 4.2 assesses the performance of this design method in the face of evolving

integration requirements by using part of the evolutionary scenario as a benchmark. The

�rst integration step results in the switch implementations b1 and b2 being integrated

48

B1 B2

C2C1

B2

C2

B1

C1C3

B3

b3

c1’ c3’ c1’’

x+ +

c2’ c2’’

b1 b2

b1 b2

Figure 4.2: Model of an evolutionary family designed using the encapsulation method.

The interpretation of the elements of this �gure is as in Figure 4.1. The nesting of boxes

depicts hierarchical encapsulation of modules: inner ones are parts of enclosing ones,

and not visible to modules further out in the nesting structure.

49

by a new wrapper, which c1 and c2 have been changed to use. The second step is

accomplished by introducing a second wrapper|one that integrates the third switch

with the wrapper that integrates the �rst two switches. The clients c1; c2; and c3 have

been changed to use the new wrapper. Now, consider what happens when c1

00

asks the

second wrapper to turn on b1 : the second wrapper asks the �rst wrapper to turn on b1;

which turns on both b1 and b2; then the second wrapper turns on b3: The integration

requirements are thus satis�ed.

This approach has at least three serious problems. First, each integration step re-

quires clients to be changed to use a new wrapper module. Second, the resulting systems

have monolithic structures. This is re
ected in the realization mapping, which shows

how a single wrapper module realizes every aspect of each speci�cation. An engineer who

wants to �nd aspects of the implementation that realize a given part of the speci�cation

is led to the outermost wrapper in which all parts of the speci�cation are realized. In

the reverse direction, a given part of the implementation corresponds to several, concep-

tually separate parts of the speci�cation. Thus the outer wrapper in this case contains

code related to both
 and � (the call to the inner wrapper).

Third, this method has the property that the system structure after a sequence of

integration steps depends on the arbitrary order in which the steps were taken, not only

on the conceptual structure of the requirements. If we had integrated B3 with B1 before

integrating B1 with B2; we would have a di�erent nesting with di�erent evolutionary

properties. The structure here, for example eases removal of
 but not �: The alternative

structure is the opposite in this regard. The key software engineering property of ease

of evolution should not depend on arbitrary assembly order. The encapsulation design

method does not handle evolving integration requirements very gracefully.

4.4 Hardwiring

In contrast to the basis of the encapsulation method in hierarchical composition of ab-

stract data type interfaces, the hardwiring design method is rooted in classical object-

50

b2

B2

C2

c2

B1

C1C3

B3
x +

b1’’

c3

b3’
b2

B1 B2

C2

c2

C1

+

c1

b1’

c1

Figure 4.3: Model of an evolutionary family using the hardwiring design method.

The �rst panel shows the structure of the system after the �rst integration step. The

second panel shows the system after the second integration step.

based and object-oriented programming, a style in which systems are not organized as

encapsulating trees of abstract data type instances, but rather as networks of exposed

objects that invoke each other by explicit procedure call. Explicit invocations tie the

implementations of the objects into behaviorally integrated systems. To integrate the

editor and the compiler source codes using this method, one changes the editor source

code by embedding a reference to the compiler and a call to its compile operation. The

resulting, intertwined pair of source codes is the source code for the new, integrated

behavior.

Figure 4.3 illustrates this approach in a model of part of the evolutionary family

from Chapter 2. In the implementation of the system version on the right (lower part

of the �gure), when c3 calls b3

0

to turn b3

0

on, b3

0

calls b1

00

to turn it on. So, at this

evolutionary stage b3

0

has a reference to b1

00

. Then b1

00

calls b2 to turn it on, satisfying

the speci�ed integration requirements.

51

Some additional complexity, not depicted in the �gure, will be needed to prevent an

in�nite cycle of calls between b3

0

and b1

00

: In particular, some state is needed to keep track

of whether a change has already been propagated. For example, when b1

00

is turned on

it might �rst query b3

0

to determine if that switch needs to be turned on before actually

trying to turn it on. The client and encapsulation approaches avoided this complexity by

not creating a�ects

+

relations between switch objects; in those methods the sequencing

of calls was factored out of the objects themselves, into the client or wrapper modules.

A key advantage of the hardwiring approach is that clients of modules to be integrated

need not necessarily change. This is illustrated by the lack of changes to c1; c2 or c3 in

the �gure. Requirements for integration of the behaviors of given modules are realized

in terms of the implementations of those modules, not in terms of their interfaces, as in

the encapsulation approach. Thus, the clients, which depend only on interfaces, did not

have to change.

Unfortunately, this design method has several serious problems with respect to evolv-

ing integration requirements. First, it merely transfers the need for change from the

clients of the modules (as in the earlier methods) to the modules themselves. Second,

the changes to these modules compromise their simplicity and independence. Hardwiring

compromises simplicity by placing responsibility for integration within the modules to

be integrated. This is shown (see Figure 4.3) in the realization mapping: b1

00

realizes

not only the switch behavior B1; but also both behavioral relationships. The situation

is made even worse because the symmetric relationship
 is realized in several imple-

mentation modules (b3

0

and b1

00

). Hardwiring compromises independence by requiring

that the modules to be integrated a�ect, hence call, and thus reference each other.

4.5 Implicit Invocation

The implicit invocation design method is similar in spirit to hardwiring, but it operates

in a design space that admits implicit invocation as a communication mechanism. To

integrate the editor and the compiler, one would change the compiler source code to

52

B2

C2

c2

B1

C1C3

B3
x +

c3

b3’

B1 B2

C2

c2

C1

+

c1

b1 b1’b2’ b2’

c1

Figure 4.4: Model of an evolutionary family designed using implicit invocation.

monitor the editor for events that signal that it has saved a source code �le. When

noti�ed of such an event, the compiler responds by recompiling the source code.

Many implicit invocation mechanisms have been built; and several important real

design methods are based on implicit invocation. These methods include the Model-

View-Controller method, supported by Smalltalk-80, which is often used for integrating

graphical user interfaces with underlying object-oriented models. The diversity of im-

plicit invocation mechanisms and the importance and widespread use of design methods

based on them suggest there is something fundamental in implicit invocation.

This work provides one interpretation: implicit invocation is a dual to explicit in-

vocation. Implicit invocation enables the implementation of an a�ects relation from M

to a module N with a touches relation from N to M . A design space that supports

both implicit and explicit invocation gives the designer a choice in the orientation of

the touches relation needed for a given a�ects connection. That is the fundamental

capability provided by of implicit invocation.

53

Unfortunately, the implicit invocation method does not avoid unnecessary complex-

ity in the design, realization or evolution of integrated systems. Figure 4.4 illustrates.

The �rst panel models a system of switches after integration step. The integration re-

quirement implies an a�ects relation from b1 to b2: This need is met by changing b2 to

b2

0

|into a module that registers with (hence references) b1. Now, b2

0

will be noti�ed

when b1 is turned on. When so noti�ed, b2

0

turns itself on. This satis�es the require-

ment of �: But this design is not clearly better than the hardwiring design. In general,

the components to be integrated have to be changed, and in ways that compromise their

simplicity and independence; nor are the behavioral relationships expressed in a form

that allows them to be identi�ed or changed, added, or removed as units.

4.6 Message Server

The broadcast message server (BMS) method was pioneered by Reiss in the FIELD

project [Reiss 90]. Contributions of the project include the BMS mechanism, an associ-

ated design method, and a family of Unix-based [Ritchie and Thompson 78] integrated

programming environments designed using this method. The FIELD method is now

commercially supported, e.g., by Hewlett-Packard's Softbench [Cagan 90].

Fundamentally, the BMS method specializes the implicit invocation method by re-

quiring communications between integrated modules to pass through a special compo-

nent, the BMS. This relives the modules to be integrated (e.g., Unix tools) from having

to invoke or reference each other directly. Indeed, visibility of tools to each other is

denied by the mechanisms of the Unix operating systems on which the tools execute.

Figure 4.5 depicts a model of an evolutionary family of switch systems designed using

this method. Each switch in the implementation references the BMS in order to a�ect

it or to be a�ected by it. Switch b1

0

references the BMS to explicitly invoke the BMS

to indicate that b1

0

has been turned on. Switch b2

0

references the BMS to register to

be implicitly invoked when the BMS receives such messages from b1

0

. When so noti�ed,

b2

0

turns itself on.

54

B2

C2

c2

B1

C1C3

B3
x +

c3

b3’

B1 B2

C2

c2

C1

+

c1

b2’ b2’

BMS’ BMS’’

b1’ b1’’

c1

Figure 4.5: Model of an evolutionary family with broadcast message server designs.

55

An advantage of the BMS design method is that it relieves the modules to be in-

tegrated from having to reference each other. It accomplishes this through indirection:

all communication passes through BMS. In practice, this is important for supporting

substitutability of tools in integrated environments. Given an environment in which an

editor and a compiler are integrated, it enables easy replacement of the either one as

long as the expected editor and compiler protocols are upheld by the replacement tool.

Unfortunately, this method does not resolve the problems with the general implicit

invocation style. The most obvious problem is that given modules have to be changed to

be integrated. Changes to the switch implementations are already indicated (by prime

marks) in the �rst version presented in the �gure, re
ecting that the switches had to be

changed from their original states (not depicted) to be integrated. Similarly, editors and

compilers have to be changed in practice to be integrated using the BMS method. The

switch b1

0

has to be changed a second time for the second integration step, to make it

respond to noti�cations regarding activities of b3:

These changes also compromise the independence and simplicity of modules to be

integrated. In terms of independence, modules come to depend on each other's interfaces

and protocols (although not on identities). In terms of simplicity, components are com-

plicated by the need to call or respond to noti�cations from each other, and in practice to

manage other data and control related to integration. A compiler, for example, might be

required to register with the BMS to be noti�ed of events from an editor, and to respond

to those noti�cations with \knowledge" that they come from an editor. Finally, as in

the hardwiring and implicit invocation methods, the structures of the implementation

and realization mapping both are skewed by the spreading of the realizations of behav-

ioral relationships over the modules to be integrated. Behavioral relationships are not

represented as units. Despite its popularity, the BMS approach creates costly structural

complexities.

56

4.7 Synopsis

A wide range of common design methods, characterized in an abstract way in this chap-

ter, complicate the design, realization and evolution of tightly integrated systems. These

methods institutionalize design choices that lead to often inappropriate realizations of

integration requirements. Newly imposed integration requirements are generally realized

by changing the implementation modules that realize the behaviors to be integrated, or

by changing the clients of these modules. These changes are not only costly in the

present, but they compromise the simplicity and independence of the modules, raising

the cost of future handling of the modules. On the other hand, behavioral relation-

ships are not realized as separate modules, but as code and data sometimes spread over

multiple implementation modules, or intermingled with code for other relationships in

encapsulating wrapper modules. This complicates subsequent changes in behavioral rela-

tionships. In brief, common design methods signi�cantly and unnecessarily raise the cost

of realizing and evolving integrated systems|even the rate at which costs increase. The

practical a�ect is that tightly integrated systems that are broad in scope and amenable

to evolution tend not to be built; and clients are often left with the costly, uninteresting,

and error-prone task of integrating behaviors themselves.

Chapter 5

The Mediator Method

This chapter presents the mediator design method. In comparison with common design

methods, the mediator method eases integration and evolution while retaining key ben-

e�ts of common methods. The foundation for the mediator method|behavioral ER

models with their evolutionary properties|was laid in Chapters 2 and 3. We therefore

already have a framework for thinking clearly about and designing integrated behaviors.

This framework also provides a basis for structuring implementations that gracefully

accommodate evolution of integration requirements.

The mediator method provides a way to implement behavioral ER models as object-

based, imperative programs having static and dynamic structural properties that paral-

lel those of behavioral ER models. The mediator method operates in the same design

space as common design methods, and can be applied using many common program-

ming languages and platforms, without complex, unfamiliar, or semantically restrictive

mechanisms. The one possibly unfamiliar construct that is central to the method is the

abstract behavioral type; but it just generalizes the ADT. The mediator method di�ers

from common methods not in mechanisms, but in basing the design, implementation,

and evolution of integrated systems on behavioral ER models.

58

5.1 Behavioral Entity-Relationship Modeling

Why base the architectures of integrated systems on behavioral ER models? One reason

is that behavioral ER models usefully organize both the static and dynamic structures of

integrated systems. The second reason is that behavioral ER modeling provides a frame-

work that helps people think clearly about integrated behaviors|to analyze, conceive,

and synthesize complex behaviors from simpler, independent behavioral constituents.

This second claim, about ease of design, is empirical, in contrast to the �rst claim, about

structure, which is analytic.

5.1.1 The Empirical Claim

I believe the empirical claim|that behavioral ER modeling eases design|for several

reasons. One is experience. Behavioral ER modeling has helped me to think more

clearly about integrated behaviors, and it has also helped others whom I know who have

used it enough to become facile with it. (Chapters 6 and 7 describe the results of these

experiences and discuss their validity as evidence supporting the empirical claim.) While

I do not have scienti�c evidence, I can o�er the following explanation for why I believe

behavioral ER modeling eases design|conception in the mind.

Behavioral ER modeling helps by elevating behavioral relationships to the level of

�rst-class semantic constructs, even very complex ones; and that provides a basis for

the e�ective decomposition of complex behaviors into simpler (but still possibly quite

complex), independent behaviors linked by rich behavioral relationships.

Endowing behavioral relationships with \semantic capacities" commensurate with

those of the entities to be integrated provides a framework for thinking about complex

integration semantics in separate, cognitive chunks. The enlarged capacity also pro-

vides enough \room" in relationships to relieve the behaviors to be integrated and their

clients from managing integration. Making behavioral relationships �rst-class constructs

promotes an e�ective separation of integration concerns.

59

5.1.2 The Analytic Claim

The rest of this chapter addresses the technical reasons for using behavioral ER modeling

to architect integrated systems. The main advantage of behavioral ER modeling is that

it organizes both the static and dynamic structures of integrated software systems in a

useful way. The structures are those of graphs. At any given point in time, a behavioral

ER model resolves a complex behavior into separate behaviors (vertices) integrated in a

network of behavioral relationships (edges). A behavioral ER model organizes structural

change based on operations natural for graphs.

That is, behavioral ER models evolve as graphs evolve. This dissertation focuses

on the addition, deletion, and modi�cation of behaviors and behavioral relationships

as the operations by which behavioral ER models evolve. Integrating a new behavior

is reduced to adding the behavior (a vertex) and relationships (edges) to integrate the

behavior with others present in the system. Changing how behaviors are integrated is

reduced to changing behavioral relationships separately from the behaviors themselves.

Behavioral ER models provide a basis for representing integrated systems in a way

that is robust with respect to integration and evolution, as exempli�ed in the evolutionary

scenario. Previous chapters show that common methods do not structure implementa-

tions this way. The rest of this chapter shows how the mediator method does. The end

of this chapter and the next two show how the approach can be pro�tably used to design

and implementing real-world systems.

5.2 Requirements for a New Design Method

This section asks what properties we want in an implementation method. The key

requirement is to preserve the static and dynamic structural properties of behavioral

ER models through realization of these models as imperative implementations. Then we

obtain implementations that are robust with respect to evolving integration requirements

in the same way as behavioral ER models.

60

5.2.1 Operate in Same Design Space

First, we have a strong preference for a design method that operates in the same design

space as common design methods. We have invested heavily in these methods. Evo-

lutionary enhancement is thus to be preferred to costly methodological revolution. If

a satisfying design method can be found that operates in the same basic design space

as commons methods, then, in the absence of other overriding concerns, that method

should be used.

5.2.2 Relieve Clients of the Integration Burden

Next, we require that the new design method relieve clients of the burden of integration.

This is often required in practice, since responsibility for integration unduly burdens

clients. The requirement that object code be regenerated when source code is changed

in a programming environment should not require users of the editor to run the com-

piler whenever they save a source �le. By integrated system I mean a system in which

integration is automatic. We want a method to build integrated systems.

5.2.3 Use Existing Representations Without Change

Another requirement is that the method should permit integration of the behaviors of

given components without changes to those components. The alternative|that the com-

ponents be modi�ed|increases the immediate cost of integration and, by compromising

structure, further increases the cost of future changes. Thus, so far, we want to be able

to be able to integrate the behaviors of given components without changing either the

components or their clients.

5.2.4 Represent Behavioral Relationships as Separate Modules

Since the way that behaviors are integrated changes independently of the behaviors

themselves, we want to localize the implementations of behavioral relationships. We

want to implement them as separate objects. When we put these requirements together,

61

B1 B2

b1 b2

B1 B2

b1 b2

+

+

BehaviorBehavior

Object Object

Integrate by Adding Relationship

Integrate by Adding Mediator Object

Figure 5.1: The mediator method organizes the evolution of implementations.

This �gure illustrates one step, from left to right, in the evolutionary scenario. At the

speci�cation level (top half) B1 and B2 are integrated by the addition of the relationship

�. At the implementation level, this change is realized exactly by the addition of a

corresponding module|a mediator.

we �nd that we want to be able to compose and decompose software implementations

as behaviors are composed and decomposed in behavioral ER models. Since integrating

behaviors in a behavioral ER model requires exactly the addition of behavioral relation-

ships, so should it be possible to integrate the behaviors of given software representations

just by adding objects representing the desired behavioral relationships.

Figure 5.1 illustrates this idea for a simple case. It presents two versions of the

system B1�B2, before and after the integration of the switches. The key feature of the

example is that the behavioral relationship � is realized by a separate implementation

object. The next integration step, implementing the system B3
 B1 � B2 (which is

not shown in the �gure) would be handled in the same way, namely by adding another

switch module, and another module for the relationship
. This modular separation of

integration concerns eases design, realization, and evolution of the integrated system.

62

5.3 Realizing Behavioral Relationships as Mediators

This section presents a method for realizing behavioral ER models that satis�es the

preceding requirements. Consider the evolution of the preceding system from B1;B2

(where the switches are not integrated) into the system B1 � B2 (where the switches

interact). This prototypical example of evolution by integration is handled by adding

the behavioral relationship � to the behavioral ER model. The issue addressed below is

how this change is accommodated at the imperative implementation level.

Suppose that we already have objects b1 and b2 implementing behaviors B1 and

B2. How do we evolve these objects into an implementation of B1 � B2: The rest of

this section combines the requirements given above with the axioms of the modeling

framework to derive a method that produces implementations in which such changes are

realized by the addition of mediator objects to implementations, as required.

5.3.1 The Basic \Design Move"

Figure 5.2 presents the \kernel" of the mediator method by diagraming the sequence of

design decisions leading from the behavioral ER model B1 � B2 to a mediator-based

implementation that realizes this integrated the behavior.

We start by using the framework to model B1 and B2 as modules and � as an element

of the integrated relation (incident on the modules B1 and B2). One requirement on the

design method we seek is that it relieve clients of the burden of integration. This is done

by drawing the a�ects

+

relation needed for integration between b1 and b2. We need a

chain of a�ects relations (invocations) from b1 to b2:

A second requirement (imposed by the de�nition of transitive closure) is that the

a�ects

+

relation be realized by a chain of a�ects from b1 to b2. Combining this with the

requirement that the design method relieve the objects to be integrated from the burden

of integration leads to the conclusion that the chain must start with an implicit invocation

from b1 (otherwise a reference to the invoked module would have to be added to b1).

Similarly, the invocation chain must end with an explicit invocation of b2 (since implicit

63

Implementation

c1 b1 b2 c2
Modules &
Reference
Relations m

C1 B1
+

B2 C2
ii i

Specification

Modules &
Integrated
Relations

c1 b1 b2 c2
a+Modules &

Affects+
Relations

Realization of
Integrated in
terms of Affects

Realization of
Affects+ in terms
of Affects

a+ a+

c1 b1 b2 c2
r rModules &

Reference
Relations

m rr

c1 b2 c2
aModules &

Affects
Relations

b1 m
a aa

d

dd d

Realization of
Affects in terms
of References

Realization of
References
in terms of
Reference
entities, the
Dereference
Relation, and
the OwnedBy
Relation

Figure 5.2: The mediator method analyzed as a set of design decisions.

64

invocation would require addition to b2 of a reference to some announcing module). We

are thus driven to add a new module to the implementation with the chain of a�ects

passing through it. We add one such module that is implicitly invoked by b1 and that

explicitly invokes b2: It thus references both b1 and b2: This is the mediator module

that realizes the behavioral relationship �:

5.3.2 Structural Statics and Dynamics

A key static structural feature of this implementation is that neither switch object has to

reference any another module or manage information related to integration. Integration

is achieved without compromising the independence or simplicity of the switch objects.

Rather, the required references and other code and data are held by the mediatorm. See

the bottom panel in Figure 5.2. In other words, this design separates and modularizes

integration concerns in the implementation in a manner that parallels the separation of

the behavioral relationship in the behavioral ER model.

This separation of the relationship in the implementation corresponds to a direct re-

alization mapping between the implementation and the behavioral ER model. Following

the chains of arrows representing realization relations upward in Figure 5.2 shows that

the mediator m realizes the relationship � as a unit. The composition of the arrows|

i.e., the realization mapping|is shown in Figure 5.3. The mediator method produces

multi-representational systems having this kind of \continuity" in their static structures.

This mediator method yields implementations whose dynamic structures also parallel

those of the corresponding behavioral ER models. In this case, the switch and client

objects of the unintegrated system are used directly and without change in the integrated

system, and the addition of � to the speci�cation is paralleled by the addition of the

mediator m to the implementation.

65

C1 B1
+

B2 C2
ii i

Specification

Implementation

c1 b1 b2 c2m
r rr rModules &

Reference
Relations

Modules &
Integrated
Relations

The Overall
Realization
Mapping

Figure 5.3: The direct realization mapping between a behavioral ER model and a medi-

ator implementation of the model.

5.3.3 The Prototypical Trigger Mediator

This example illustrates both a prototypical trigger behavioral relationship, when B1

is turned on, turn on B2; and a trigger mediator that implements this relationship as

a separate, external object. To make the properties of this design concrete, it helps to

compare it with designs produced using common methods. Using hardwiring, a client

calls b1; and b1 calls b2 to turn it on. In the implicit invocation style, b2 references

b1 to be implicitly invoked by it. In a message server design, b1 explicitly invokes the

BMS, and b2 references the BMS to be implicitly invoked by it. An encapsulation design

requires clients to call a wrapper component w that explicitly invokes b1 then b2.

In the mediator design, by contrast, the mediator is implicitly invoked by b1, and

the mediator responds by explicitly invoking b2: Fundamentally the mediator method

combines the indirection a�orded by a separate mediator object with the careful use

of implicit and explicit invocation to preserve the independence of the objects being

integrated. There is more to mediators than indirection. The mediator method is the

only one of the methods discussed to realize the behavioral relationship as a separate

module, to preserve the independence of b1 and b2, and to relieve their clients of the

burden of integration.

66

5.4 The Abstract Behavioral Type

This section addresses the claim that the ADT combined with the exclusive use of explicit

invocation for communication is an unduly restrictive basic building block for construct-

ing integrated systems. (I will refer to this basic building block as the ADT for short.

This section presents the abstract behavioral type (ABT) as an enriched basic building

block that does support the mediator method in designing real-world integrated systems.

5.4.1 Shortcomings of the Abstract Data Type

The problem with the ADT is that it essentially abstracts behaviors solely in terms

of operations applicable to type instances; and in practice this seems to lead to explicit

procedure call as the primary means of linking ADT-based objects. Explicit invocation is

the primary or only supported mechanism for communication among ADT-based objects

in many programming languages and systems. In particular, the ADT does not make

dynamic behaviors that objects undergo \audible" to external observer objects, even if

some of those behaviors are abstractly meaningful; nor does it provide any means for

external objects to respond to the dynamic behaviors of other objects.

Given the restriction imposed by a lack of support for implicit extension of behav-

ior, hardwiring and encapsulation methods are sensible approaches to integration. The

problems with these methods (discussed above) suggests there is something wrong with

or missing from the concept of the ADT. The missing ingredient is implicit extension|

the audibility in the external environment of abstractly meaningful behaviors in which

objects engage, and the ability for other objects to respond to such behaviors.

Of course, supporting implicit invocation is not enough by itself to ease the design

of integrated systems. Common methods that support implicit invocation tend to yield

hardwired structures. In the Smalltalk-80 MVC method, for example, view objects

explicitly invoke and register with models. The ADT idea haunts integrated system

designers, discouraging use alternate architectural styles even when they are at hand.

67

5.4.2 Making Events Dual to Operations

Despite its shortcomings, the ADT provides a rich framework for conceiving and rep-

resenting complex behaviors. We we would be loath to give up its advantages. I thus

present what I call the abstract behavioral type (ABT) as a better basic building block:

one that repairs the shortcomings of the ADT rather than abandoning the ADT in favor

of a more radical alternative.

The ABT extends the ADT by placing events (audible behaviors) at the same level

of abstraction as operations. ADT operations are �rst-class; and so in the ABT, events

are also �rst-class. An ABT interface de�nes both operations and events. Since ADT

operations have names, signatures, and semantics, so do ABT events. Thus, an ABT

characterizes a class of objects in terms of both the applicable operations and the audible

events; and in addition to explicitly invoking each operations, ABTs permit operations

to be implicitly invoked by other objects' event announcements.

In contrast to the ADT, the ABT encourages the designer to think and to express

thoughts in terms of objects characterized not only by applicable operations but also by

audible (but abstract) behaviors. Thus, a switch object can not only be turned on and

o�, but other objects can observe and respond to a switch's going on and o�. The ABT

raises implicit invocation as found in FIELD and Smalltalk-80 from the status of low-level

imperative communication mechanism to that of high-level abstraction mechanism.

While this extended basic building block provides the designer with a more
exible

material from which to compose complex systems, by itself, it does not overcome the

problems with common design approaches. It provides a rich abstraction mechanism for

implementations, but it does not encourage the designer to analyze complex behaviors

in terms of simpler behaviors and behavioral relationships. The full bene�ts of ABTs are

realized when one thinks about integrated systems in terms of behavioral ER models,

and when one then uses ABTs to realize behavioral ER models in implementations with

corresponding static and dynamic structures. This combination of ideas is at the heart

of this work.

68

5.5 Implementing Behavioral ER Models Using ABTs

The key property of the ABT, in contrast to the ADT (with respect to this work) is

that the ABT supports conception and expression of both behaviors and behavioral re-

lationships as objects. Thus, behavioral ER models can be implemented directly, with

one ABT instance realizing each behavior and one ABT instance realizing each behav-

ioral relationship in the model. Not only does the static structure of the implementation

follow that of the model, but the dynamic structure does, as well. As behaviors and

relationships are added to, deleted from, and changed in the behavioral ER model, the

corresponding addition, deletion and modi�cation of ABTs su�ces to keep the imple-

mentation consistent. This section illustrates this key idea.

5.5.1 Designing and Representing Behaviors as ABTs

Figure 5.4 de�nes a Switch ABT in a notation resembling C++ [Stroustrup 86]. An

instance of this type has the expected operations; but it also has two events whose

announcements signal transitions between the on and o� states (caused by the execu-

tion of the TurnOn() and TurnO� () operations). Both the operations and events are

given names, parameters, and return values. The semantics are simple. The TurnOn()

operation, applicable when the switch is o�, turns the switch on and \announces" the

WentOn() event. WentOn() is announced if and only if the switch state toggles from

o� to on. The TurnO� () operation and WentO� event are symmetrical. This behavior

is implemented in an imperative style by implementing the TurnOn() operation as in

Figure 5.4 (similarly for TurnO� ()).

5.5.2 Designing and Representing Behavioral Relationships as ABTs

Having conceived of and implemented the switch behaviors as ABTs with the three

operations and two audible behaviors, we now devise a completely separate mediator

ABT to implement the behavioral relationship �: See Figure 5.5. This ABT is called

Oplus . The Initialize() operation of the ABT places the given switch objects into the

69

class Switch {

state:

bool SwitchState;

operations:

void TurnOn() { State = ON; Announce WentOn(); }

void TurnOff() { State = OFF; Announce WentOff(); }

bool IsOn() { return SwitchState; }

events:

void WentOn();

void WentOff()

}

Figure 5.4: Outline of an abstract behavioral type for the switch behavior.

This code declares a class of switch objects having a state, either on or o�; operations to

toggle and observe the state; and events indicating when the state goes on or o�. The

implementation of TurnOn is presented. It changes the switch state then announces the

WentOn event. Announce is a keyword for announcing the designated event (thereby

implicitly invoking operations registered with the event).

relationship by setting variables S1 and S2 to reference the objects, and by registering

UponS1WentOn() to be invoked implicitly by the announcement of the WentOn() event

of b1 (referenced by S1). Thereafter, announcement of this event implicitly invokes

UponS1WentOn(); which implements the relationship by calling b2 (referenced by S2)

to turn b2 on.

This method integrates the behaviors of the objects without imposing on either the

objects themselves or their clients. Consider the program fragment in Figure 5.6. The

behaviors of b1 and b2 are integrated by the mediator op: When any client turns on b1

(in this case the main program itself) the mediator turns on b2:

In comparison to a hardwired design, this example moves the invocation of b2 by b1

out of b1 and into a mediator, thereby \externalizing" the explicit invocation. Despite

th simplicity of this example, its strength is that it provides a template, a structuring

paradigm, that can be used to organize representations of much more complex behaviors.

70

CLASS Oplus {

STATE:

Switch* S1;

Switch* S2;

OPERATIONS:

void UponS1WentOn() {S2->TurnOn(); }

void Initialize(Switch* b1, Switch* b2) {

S1 = b1; S2 = b2;

REGISTER(UponS1WentOn,S1->WentOn);

}

}

Figure 5.5: A mediator implementing the behavioral relationship �.

void main() {

Switch b1;

Switch b2;

Oplus op(b1,b2);

b1->TurnOn();

}

Figure 5.6: A mediator-based implementation of the system B1� B2.

This C++-like program implements the integrated behavior B1 � B2 by integrating

representations of the individual behaviors. Speci�cally, the presence of op; which repre-

sents the behavioral relationship �; is su�cient to integration the independent switches

b1 and b2.

71

void main() {

Switch b1;

Switch b2;

Oplus op(b1,b2);

b1->TurnOn();

Switch b3;

Otimes ot(b3,b1);

b3->TurnOff();

}

Figure 5.7: A mediator-based implementation of B3
 B1� B2.

This C++-like program is a follow-on version to the implementation of B1� B2: This

representation di�ers precisely by the addition of new \modules" corresponding to the

new behavior and behavioral relationship.

5.5.3 Organizing the Evolution of Integrated Systems

In addition to organizing the static structure of the integrated system implementation,

the method also organizes its dynamic structure|the way the structure changes through

execution and evolution. Consider the step taking the system B1�B2 to B3
B1�B2:

(Recall that
 requires switches B1 and B3 to operate in tandem.) The behavioral ER

model evolves by addition of a vertex for B3 and an edge for
: The implementation

evolves by the corresponding addition of a third switch object and a second mediator

object. The third switch is a new instance of the existing Switch ABT. The mediator is

an instance of a new mediator ABT Otimes : See Figure 5.7.

Figure 5.8 outlines the Otimes mediator. Like Oplus , this mediator references the

objects whose behaviors it integrates. It has an additional bit, busy , that it uses to avoid

circular updates, as explained below. Otimes de�nes four operations (whose names all

start with Upon) that it registers to be implicitly invoked by the events of the switch

objects. The mediator de�nes an initialization operation that makes the switch objects

consistent when they enter the relationship. It does this by changing the state of the S3

switch, if necessary, to ensure that the required invariant holds to start. The initializa-

72

class Otimes {

State:

Switch* S1;

Switch* S3;

bool busy;

Operations:

void UponS1WentOn() {

if (busy == FALSE)

{

busy = TRUE;

S3->TurnOn();

busy = FALSE;

}

}

void UponS1TurnOff();

void UponS3TurnOn();

void UponS3TurnOff();

void Initialize(Switch* b1, Switch* b3) {

S1 = b1; S3 = b3;

if (S1->IsOn() != S3->IsOn()) {

if (S3->IsOn())

S3->TurnOff();

else

S3->TurnOn();

}

Register(UponS1WentOn,S1->WentOn);

Register(UponS1WentOff,S1->WentOff);

Register(UponS3WentOn,S3->WentOn);

Register(UponS3WentOff,S3->WentOff);

}

}

Figure 5.8: A mediator implementing the behavioral relationship �.

The Initialize operation places the given switch ABT instances into the desired behavioral

relationship. The state variables S1 and S3 are made to reference the given switches,

and UponS1WentOn() to be registered to be implicitly invoked by S1

0

s WentOn() event.

Thereafter, announcement of S1� > WentOn() implicitly invokes UponS1WentOn();

which turns on S3.

73

tion operation also performs the registrations and other such activities to establish the

relationship. Once this is done, the mediator then automatically manages the behavioral

relationship.

To see how this implementation works, suppose that b1 is o� and that is gets turned it

on. This causes b1 to announce itsWentOn event. Since both mediators have operations

registered with that event, each is invoked, in some unspeci�ed sequential order. (Event

announcements are broadcast.) The � mediator turns on b2; while the
 mediator turns

on b3. The latter action then causes b3 to announce itsWentOn event, which re-invokes

the
 mediator. However, the mediator operations are guarded in a way that prevents

circular actions from being taken. The �rst invocation of the Otimes mediator sets the

busy
ag, so when the second event is received from b3, the event is dismissed. Control

returns to b3, then back to Otimes , and �nally to b1; from which the initiating operation

returns with the whole system in a globally consistent state.

Now consider further evolution: the change of
 to

0

: (Recall that when in eager

mode

0

requires B1 and B3 to act in tandem.) The behavioral ER model changes by

modi�cation of the
 edge. To make the implementation consistent requires changes

only to the corresponding Otimes mediator module. We add an eager/lazy component

to the mediator's state; we add operations to its interface to permit clients to toggle this

state; and we add code to the operations implicitly invoked by B1 and B3 to consider

this state. When it is lazy, the operations just return without taking any action.

5.6 Conclusion

The mediator-based implementation of the behavioral ER model for B3
B1�B2 pro-

vides an archetypal example of the mediator method. It illustrates how both triggers and

state invariants can be thought about and implemented in this manner. The following

two chapters show the extent to which the simple ideas presented in this chapter can be

pro�tably used in the design of much more complex systems.

Chapter 6

Validation

Validating claims for software design methods is di�cult. This work presents a new

method and claims that it is better than common methods. How can such a claim be

validated? Not only is hard to compare design methods on intrinsic, technical grounds;

but the practical value of any new method depends on the context of practice into which

it is introduced. The state of the people who might use the method is a key factor in

the success of the method|independently of its intrinsic, technical merits. Thus, in

addition to demonstrating technical merits, one should show that a proposed method

can actually be introduced into situation of practice and then be used in a consistently

pro�table way.

I therefore take a two-pronged approach to validating the claim that the mediator

design method is better than common design methods with respect to ease of design,

realization, and evolution of integrated systems. The �rst prong is rational. It validates

the mediator method by arguing for its intrinsic, technical properties, as revealed by

intellectual reasoning from simplifying models and examples. The second prong is ex-

periential. It validates the mediator method through thoughtful re
ection on a range of

experiences in which the method was used in practice|by myself and others. Although

these experiences do not \prove" anything, collectively they provide convincing evidence

for both the novelty and value added by the mediator method.

75

6.1 Rational

The whole preceding part of this dissertation presents the intellectual arguments for the

claims that common design methods complicate integration and evolution and that the

mediator design method overcomes this problem. The foundations on which the argu-

ments are based|namely the evolutionary scenario, the structure modeling framework,

and the characterizations of design methods and their evolutionary behaviors|have been

de�ned and presented rigorously enough to be carefully checked. Do predictions about

common design methods match experience? Do the framework and evolutionary scenario

model reality well enough to be useful for the intended purposes?

Two primary accomplishments help to validate the modeling framework and the

evolutionary scenario as modeling constructs. First, they enabled useful characterization

of common methods and the demonstration that these methods unnecessarily complicate

integration and evolution. Second, the framework and scenario supported derivation of

a new design method that overcomes the problems with common methods.

The preceding chapters have shown that common software design methods unneces-

sarily and signi�cantly complicate integration and evolution. Common methods impose

unnecessarily large lower bounds on the complexity of the static and dynamic structures

of integrated systems|from the simplest ones, as exempli�ed by the evolutionary sce-

nario, on up. The preceding chapters have also de�ned a new design method intended

to avoid these complications; and they framed a hypothesis about that method: that

it provides signi�cant help in practice. The preceding chapters, however, have not pre-

sented evidence based on real world experience to substantiate this claim. That is the

task of the following section.

6.2 Empirical

Relying on the intellectual arguments alone as a basis for investing in new software

design methods is dangerous, and|given the potential costs and liabilities involved|

76

even foolish. The complexities of developing real integrated systems are great enough

that it is easy for abstract theories to overlook or underestimate technical and human

matters that are critical in practice.

As in any design discipline it is critical to show that a new method really works in

its intended context of practice. Does the mediator method really ease the lower bound

on complexity when applied to real integrated systems? Does it really help people to be

better designers by giving them a way to think more clearly about the behaviors and

implementations of integrated systems? The answers to these question require that the

abstract ideas be tested in practical application to the design of real integrated systems.

The proof is in the pudding, as the saying goes.

The \pudding," to date, comprises a set of integrated systems designed and im-

plemented using the mediator method. Some of these were built by me; others by

colleagues. The systems include a prototype parallel programming environment, a pro-

totype computer-aided geometric design environment; a semantics-preserving program

restructuring tool, a production-quality computer-aided radiation treatment planning

system, a prototype computer-aided design system running under a single large address-

space operating system, and a commercial, multi-scale geographical information browser.

The following subsections provide brief overviews of these systems. For each one, I

discuss the ways in which the experiences of building the systems helped validate the

claims made for, and to illuminate aspects of, the mediator approach. The next chapter

presents some of these arguments in greater depth, in the context of a detailed case

study of the mediator method, as it was used in designing the Prism radiation treatment

planning system.

6.2.1 Parallel Programming Environment

The �rst system in which I applied the mediator method was a prototype environment

for programming large-scale, nonshared-memory parallel computers [Snyder 89]. At the

highest level, a program in this environment is structured as a sequential composition of

77

phases. Each phase is structured as a graph that represents a parallel program to be run

on a network of computing nodes. Each vertex in the graph speci�es a sequential program

to run on a single processor. Edges represent communication channels. Concretely, these

three-tiered programs are represented as collections of objects in the C++ programming

language.

The environment supports four interactive tools for manipulating programs. The

phase and graph tools are graphical depict programs as
ow-charts and interconnection

graphs, and allow the user to build and modify programs in a direct manipulation,

graphical style. The process tool, which is used to write the sequential programs, is

text-based. The fourth tool provides a top-level user interface that allows instances of

the other tools to be created and deleted dynamically.

The phase, graph, and process tools are related to their respective parts of a program

(represented as a set of objects) by mediators that keep the depictions and the program

consistent. Furthermore, the three levels of the program are related to each other by

mediators. If the name of a sequential process is changed, all graphs having processors

that execute that process are updated accordingly. Those updates are then propagated

to the interfaces of all active graph tools by other mediators.

This structure allowed separate designers independently to develop the parts of the

data base and the tools that operate on them. Once the tools and their respective

parts of the data bases had been developed and tested, we integrated them by adding

mediators to keep related representations consistent.

6.2.2 Computer-Aided Geometric Design System

Tom McCabe developed a prototype \kernel" for a computer-aided geometric design

(CAGD) system [McCabe 91], supporting interactive, multi-view editing of a mesh. A

mesh is a discrete representation of a surface|technically a two-manifold|embedded in

an n-dimensional Euclidean space. A mesh is similar to a graph, but it has topology:

edges are ordered around vertices. A mesh M is represented as a vertex set VS and an

78

edge set ES plus an object M that integrates VS and ES : Vertices in VS have property

lists that store information such as vertex geometry and labels. ES stores a topological

algebra|a set of edges plus several ordering relations over this set. Speci�cally, ES

implements a variant of the quad-edge data structure [Guibas and Stol� 85]. The clean,

somewhat complex algebraic structure of this representations made it useful for exploring

the consistency-maintenance capabilities of mediators.

McCabe's system supports viewing of a mesh with n-dimensional geometry (n > 2)

as a set of 2-D views presenting orthographic projections. Views are integrated with the

mesh in relationships that ensures that as a mesh changes, views are updated, and that

as elements are moved in views, the mesh is updated. Although views are not inherently

tied to meshes, in this system, as a vertex is moved, the views animate the motion from

their own perspectives, owing to the presence of various mediators of several kinds. One

kind of mediator projects n-dimensional meshes into two dimensional meshes. Another

integrates 2-D meshes with views based on the InterViews toolkit [Linton, Vlissides, and

Calder 89]. A third kind of mediator keeps \dots" on the screen consistent with mesh

vertices as either changes.

This system has several structural properties that help to validate the claims made

for the mediator method. One property is that topological and geometrical information

is separated in both conception and implementation. This decomposition simpli�es the

task of designing more tools. A tool to manage topology would operate on ES alone.

Another could specify geometry, e.g., layout, operating on VS alone. A third could

compute smooth surface representations (requiring topology and geometry) using M :

Another useful structure is the isolation of the relationships between the 2-D vertices

that are displayed and the corresponding n-D vertices in meshes. Because mapping from

n to two dimensions discards information, the reverse mapping from two to n is ambigu-

ous. The question is how to change the n-D vertices when the 2-D vertices are changed.

McCabe solved this by de�ning the mediators to \�ll in" the missing information. The

mediators map 2-D movements to n-D movements that are parallel in orientation to the

79

2-D viewing plane. Mediators provide a place to encapsulate designer-de�ned policies for

resolving ambiguity in such \back mappings." This approach increases
exibility over

systems that constrain designers by �xing a policy for handling ambiguity.

6.2.3 Semantics-Preserving Program Restructuring Tool

Griswold used the mediator method to design in several systems. The �rst was a tool

to ease software enhancement by supporting meaning-preserving restructuring of pro-

grams [Griswold 91]. The tool helps the software engineer by decomposing enhancement

into two phases. The claim is that prior restructuring decreases the cost of subsequent

semantic enhancement more than enough to o�set the up-front restructuring cost.

One transformation changes the order of formal parameters in a procedure declara-

tion. When the tool applies this operation, the tool preserves meaning by swapping the

actual parameters at all call sites, unless that change would not restore the meaning|

e.g., if evaluating the parameters has side e�ects whose order would be changed. In the

latter case, the tool aborts the operation, leaving the program unchanged.

The heart of this system is an integrated pair of program representations. An abstract

syntax tree (AST) represents the syntactic program structures. A program dependence

graph (PDG) represents static semantic information. The representations are integrated

by a mediator that keeps them consistent and that makes the relations between them

available for use by the higher levels of the tool. Thus, the tool maps from a procedure

declaration node in the AST to a corresponding PDG node, from which call sites can be

found by traversing the PDG.

One point relevant from the perspective of this dissertation is that the mediator

method helped Griswold �nd his design|with the semantically complex relationships

between representations external to both of them and to the higher-level aspects of the

tool. The mediator method also allowedGriswold to reuse a substantial, existing software

component: over 10,000 lines of Common Lisp/CLOS [Bobrow et al. 88] comprising the

PDG, which was built by Jim Larus as part of his Curare system [Larus 89].

80

Localizing the relationship between the AST and the PDG in the mediator was

also useful in providing a place for the code and data that implemented a somewhat

complex approach to propagating changes from the AST to the PDG. The mediator

caches noti�cations from the AST and computes and propagates changes to the PDG

only upon demand from the higher levels of the tool. This illustrates the implementation

of slippage in maintaining the consistency of representations (as in the relationship �

0

described in Chapter 2). Because the mediator is a �rst-class object, it is easy to have it

maintain an \inconsistency bu�er." While the AST and PDG are inconsistent at some

points in time, the system as a whole is consistent in that mediator has stored and can

thus resolve the AST/PDG inconsistencies.

6.2.4 Radiation Treatment Planning System

In the e�orts discussed above, either I or close colleagues controlled the requirements for

the systems to be built, leaving some doubt as to whether the requirements for which

the mediator method is appropriate are limited to those carefully crafted for a mediator

implementation. My experiences with Prism and with the geographical information

system discussed below allay this doubt. Prism in particular [Sullivan, Kalet and Notkin

93] is a thoroughly documented, substantial example of a system for which requirements

were �xed prior to initiation of contact with the mediator method.

In this case, Ira Kalet|a researcher in the University of Washington Radiation On-

cology Department and an accomplished designer of radiation treatment planning sys-

tems [Kalet and Jacky 82, Jacky and Kalet 86, Jacky and Kalet 87b]|had written

requirements for a third-generation, integrated treatment planning system. This system

was to be more
exible and tightly integrated than any such system previously built.

Kalet saw that common design methods would lead to an artifact far too complex and

costly to be built on the limited budged available. So, when he heard about the mediator

method, he decided to try it. I began to work with Kalet about once a week over a period

of about a year analyzing the requirements by crafting behavioral ER models, designing

81

infrastructure (e.g., graphical user interface widgets, an implicit invocation mechanism,

and basic ABTs and mediators [Kalet 92]), and advising on details of implementation.

My contribution was the architecture of Prism. I was not always involved in detailed

design or implementation. So, in addition to providing a fair test of the mediator method,

Prism also provided experience transferring the mediator method to another experienced

designer and his colleagues. Both the system and transfer were successful. The next

chapter presents Prism as an in-depth case study, so I will not discuss it further here.

6.2.5 Large Address-Space Operating Systems

Chase et al. exploited the mediator approach in the context of a single, large, shared

address-space operating system, Opal [Chase et al. 94]. In this system, address trans-

lation and memory protection are decoupled. One promise of this kind of system is to

e�ciently support computer-aided design of such complex artifacts as passenger jets.

Chase et al. observed that by tightly coupling address spaces and memory protec-

tion, common operating systems impose unnecessarily costly tradeo�s among protection,

integration, e�ciency. Protecting tools running them in separate processes increases the

cost of integration (in both code complexity and runtime e�ciency) by requiring cross-

address space invocations, for example.

The arrival of inexpensive 64-bit microprocessors opens opportunities for operating

system structures that ease this problem. One key advance is that 64-bit virtual address

spaces are large enough to accommodate many tools operating on large data sets{for

example, CAD systems working on complex artifacts such as passenger jets.

The idea is to run all the CAD tools to be integrated in the same address space but in

di�erent, and possible overlapping, protection domains. Being in the same address space

makes it possible for tools to reference each others' data directly, which lowers program

complexity and possibly runtime overhead. A tool running in one domain that has read

access to another domain can get data from tools in that domain without requiring

expensive protection checking.

82

To demonstrate the potential for this approach, Chase et al. built a prototype en-

vironment with two tools are integrated by a mediator. When changes are made to a

\CAD database," the mediator, which runs in its own protection domain, is invoked.

The mediator, in turn, updates a \derived database" tool running in a third protection

domain. To avoid the need for the CAD tool to know about the mediator, the implicit

invocation system underlying this prototype gives the protection domains in which the

\CAD database" tool runs write access to the mediator, allowing the tool to implicitly

invoke the mediator using a local procedure call. The mediator has read access to the

CAD tool. It can fetch data needed to recompute the \derived" data, again using a local

procedure call. The mediator cannot corrupt the CAD tool, however, because it does

not have write permission. Nor does the mediator have access to the domain in which

the derived tool runs, so it uses an expensive protected procedure call to communicate

with it. However, this solution is better than any of those available on more traditional

operating platforms.

How does the experience of Chase et al. help validate the work in this thesis? There

are two basic answers. First, it documents a case in which designers other than the

creators of the mediator method successfully used the method to decompose an integrated

system into a system in which two separate tools are tightly integrated. Second, it

provides an example of how the approach can be employed in operating systems contexts

di�erent from the rest of the experiences reported here|where all \tools" run in a single,

Unix process. Further e�orts in this direction would be useful.

6.2.6 Multi-Scale Geographic Information Browser

C. Brett Bennett, an experienced commercial software developer in Seattle, used the

mediator method to architect a multi-scale geographic data browser for the real estate

industry.

1

The system supports several tools for exploring the properties for sale in

large, metropolitan areas. The system presents the user with an overview street map,

1

Personal communication with C. Brett Bennett.

83

and allows zooming and panning to explore the displayed region. At di�erent scales,

di�erent kinds of information are presented. Only large roads appear in wide angle views,

for example, while small streets and property icons appear when the user zooms in. As

the mouse passes over icons, corresponding street addresses, other textual information,

and images are displayed.

Bennett claims that the mediator method led to a signi�cantly better architecture

than he would have obtained without it. He values the decomposition of his system into

simple, independent, reusable parts, and the highly
exible structure of the resulting

program. He also believes he has devised a set of generic behavioral and mediator

objects that will enable him to e�ciently assemble a range of follow-on products.

On the cost side, Bennett claims that the mediator method requires greater care in

de�ning the semantics of components|especially the creation and deletion of mediators

at runtime. He found that lack of care at the design stage led to di�cult debugging

problems laterd|problems harder to �x than those that arise in traditional designs.

6.3 Conclusion

Each of these development e�orts was successful. Behavioral ER modeling was used

to design mediator-based implementations that met the requirements given for tightly

integrated behaviors. Moreover, each of the systems had the desired, bene�cial static

and dynamic structural properties|a clean decomposition and a
exible structure.

In terms of static structure, each system comprises separate behavioral objects, used

directly by clients, and integrated by separate mediator objects. In execution dynamics,

dynamically generated behavioral objects are integrated by dynamically instantiating

mediators. Finally, although the data is sparse, the systems built this way appear to

have the expected evolution dynamics as well. For example, at least one major tool

that was not originally speci�ed for the Prism system, was built and integrated in the

expected way. The tool was built as an independent entity. Mediators were then de�ned

to integrate its behavior with the behaviors of the rest of Prism.

84

Despite the anecdotal character of these reports|the lack of precise hypotheses, pre-

cisely de�ned measurements, experimental designs, carefully collected quantitative data,

or statistical hypothesis testing|despite these shortcomings, the reported experiences

with the mediator method lend signi�cant credibility to the claim that this method does

ease development of serious (albeit not immensely complex) integrated systems. More-

over, the design, realization, and evolution tasks are eased in the ways predicted by the

reasoning presented above. The mediator method is no \silver bullet [Brooks 86]," but

it provides signi�cant value by helping software designers to think more clearly about

integrated behaviors and to avoid unnecessary complexity in the design and evolution of

software systems that realize those behaviors.

Chapter 7

Prism: A Case Study

This chapter presents a case study describing how behavioral ER modeling and media-

tors were used in designing and implementing Prism, an integrated system for planning

radiation treatments for cancer patients in clinical use at the University of Washington

Cancer Center [Sullivan, Kalet and Notkin 93, Kalet et al. 91, Kalet et al. 92]. The

purpose of this chapter is to substantiate the claim that the mediator method can sub-

stantially ease the design and realization of integrated systems. Prism has not been in

use for long enough to provide a basis for strong claims about ease of evolution.

7.1 Introduction

Prism was developed in an interdisciplinary collaboration between software engineering

researchers (David Notkin and myself) and radiation oncology researchers (Ira Kalet

and his colleagues). Each group had its own goals. Kalet had speci�ed requirements

for a radiation treatment planning (RTP) system that would be richer and more tightly

integrated than any previously built; and he needed to realize this system on a modest

budget. Sullivan (with Notkin) sought experience to help validate the claim that be-

havioral ER modeling and mediators do ease the design, realization, and evolution of

integrated systems.

86

Both goals were substantially met (although, as noted above, data on the evolution

of the system is still sparse). The mediator method provided Kalet with leverage he

needed to e�ectively design and implement a system more ambitious than could have

been a�ordably built using common design methods. His success supports the claims

of this work. Prism implements Kalet's original speci�cation, with minor changes made

during detailed design. The tools support diverse planning tasks, including modeling

of patient cases (anatomy, images, treatment plans), computation of target volumes,

calculation of radiation dose distributions, visualization, and database management. The

tools work together in �ne-grained, dynamic interactions. Kalet attributes the success

of the e�ort to the conceptual and structural bene�ts of behavioral ER modeling and

mediator design.

To give a sense of what a dosimetrist might sees when using Prism, Figure 7.1 presents

a screen dump. This view of the workstation during system use pictures a set of panels

displayed at one point during a session. Several visualization panels display the anatomy

of a patient in various cross sections, with two radiation beams passing through (the

diverging pairs of lines). A tool panel for changing the parameters of one of the beams

is also displayed (the panel with the dials). When the user moves the dials, the beam

parameters are changed. When this happens, the graphical views are updated. This

�gure is discussed in more detail below. The next section addresses background issues:

the radiation treatment planning domain, and the state of the art before Prism.

7.2 Radiation Treatment Planning

An RTP system is a set of software tools used by a dosimetrist to design radiation

treatments for cancer patients. Dosimetrists are experts in designing radiation doses. A

treatment is intended to deliver a prescribed dose of radiation to target regions containing

cancerous tissues without overdosing surrounding tissues. A treatment plan basically de-

�nes a three-dimensional con�guration of radiation beams (and other sources) in relation

to a patient's anatomy crafted to deliver the prescribed dose.

87

Figure 7.1: A Prism screen.

Designing e�ective treatments can be hard. The space of treatment plan con�gura-

tions is huge. Di�erent people are di�erently shaped. People move during and between

treatment phases. Tumor types and locations vary. Treatment machinery di�ers among

installations. Challenging cases require careful orientation of radiation sources relative

to patient anatomy, visualization of the resulting con�gurations, computation of the

radiation �elds generated, and adjustment of plans based on this feedback. Designing

plans manually or using poorly integrated tools is unnecessarily laborious and costly.

By providing computerized tools that automate treatment design tasks, a RTP sys-

tem not only increases the e�ciency with which treatment plans can be designed, but can

actually lead dosimetrists to �nd treatment plans that they would otherwise miss [Rosen-

man et al. 89]. Tools in such an environment may support management of radiographic

images; modeling of equipment, patients, treatments plans; computation of the radia-

tion dosages delivered by treatments; visualization of anatomies, plans, machines, and

dosages; management of patient and hospital data; and so on.

88

The goal of Prism is not only to provide tools to support these tasks individually, but

to provide an environment in which all the tools work together to give the dosimetrist a

powerful, exploratory planning device. Di�erent views should work together to indicate

and permit manipulation of their relative spatial orientations. When models change,

computed views should be updated and dose distributions invalidated. The system must

be broad in the scope of tasks it supports, tightly integrated, and
exibly con�gurable|

both at runtime and over the longer, evolutionary term.

7.3 Prior Art

Many RTP systems have been built, including several at the University of Washing-

ton [Kalet and Jacky 82, Goitein et al. 83, Jacky and Kalet 86, Jacky and Kalet 87b,

Fraass et al. 87, Kutcher 88, Rosenman et al. 89]. The problem is that these e�orts did

not achieve the critical combination of breadth of scope, tight integration, and
exibility.

This is not surprising in light of the observation of Taylor et al.:

: : : a well-integrated environment is easiest to achieve if the environment

is limited in scope and static in its contents and organization. Conversely,

broad and dynamic environments are typically loosely coupled and poorly

integrated. Unfortunately, poorly integrated environments impose excessive

burdens upon users, and small static environments are quickly outgrown [Tay-

lor 88, p. 2].

Taylor's observation has clearly been borne out in the radiation treatment planning

domain. First, in many systems, di�erent tasks are handled by stand-alone, \Unix-

like" tools that run as separate processes and are loosely integrated through shared �les.

Kalet's �rst system [Kalet and Jacky 82] integrated anatomy modeling, beam speci�-

cation, dose computation, and visualization tools this way. To modify an anatomical

model, the dosimetrist terminates the dose display, runs then terminates the anatomy

modeling tool, runs the dose computation program, then restarts the dose display.

89

Second, many systems provide rigid user interfaces. In Kalet's second system [Jacky

and Kalet 86, Jacky and Kalet 87b], the user traverses a broad, deep, �xed menu tree

to change plans, update models, tailor visualizations, use the patient database, etc. The

visualization tools are in
exible, too. The system displays a �xed set of graphical views

in a �xed layout on the screen. These limitations make it hard quickly simulate plans.

Third, to the extent that existing systems are tightly integrated, their architectures

are often so in
exible as to severely complicate evolution. For example, despite the

object-oriented architecture of Kalet's second system [Jacky and Kalet 86, Jacky and

Kalet 87b], tight integration of prototype AI-based planning tools [Kalet 92c, Paluszynski

89a] is prohibitively expensive. This architectural in
exibility makes it hard to exploit

the results of research by making it hard to integrate new tools, and ultimately inhibits

<research on software support for radiation treatment planning.

7.4 Requirements for a New Environment

In this context, Prism serves two purposes. First, it supports treatment planning in clin-

ical practice. Second, it provides a platform for research on uses of software technologies

in treatment planning.

In the second role, Prism is something like a framework [Johnson 92]. It provides a

basic environment can be extended with additional tools. A tool that computes radiation

target volumes based on mathematical models of tumor shape and type and patient

movement|a tool not foreseen in the original speci�cation|was recently integrated.

Integrating this tool was easy, owing to the use of a mediator-based architecture. The

tool examines a patient model and computes and updates a target volume object directly.

All other Prism tools respond as appropriate.

Both roles|production environment and research platform|demand a combination

of tight integration and architectural
exibility. Tight integration is needed for e�cient

treatment planning. A
exible architecture is also important to support planning. The

dosimetrist should be able to invoke tools and con�gure the environment at runtime,

90

as needed to e�ciently plan treatments. The system must support instantiation and

integration of tools during a planning session. Architectural
exibility is also needed to

accommodate the integration of new tools over the system lifetime|as research concepts

are tested and then adopted or rejected.

The strength of Prism is that is combines architectural
exibility|in both execu-

tion and evolution|with tight integration during execution. The simple but powerful

anatomy modeling tools can stay on the screen with dose display tools. When the

anatomy is updated, the dose distribution tool is computes and display the new dose

distribution. To help users understand three-dimensional treatment plans, Prism allows

any number of views of a given plan; any given view can either be displayed or not; and

each view display hints to help the user correlate its relative position with those of other

views. It is hard to give a sense for how dynamic Prism is in the written medium. For

those wanting a more dynamic experience, the Prism source code is freely available.

1

7.4.1 Image Studies

Patient models in Prism are derived from image studies. An image study is a sequences of

two-dimensional radiographic images|usually computed tomography or magnetic res-

onance. Figure 7.2 presents one slice in an image study. We build three-dimensional

models of anatomy and tumors by tracing contours of organs, tumors, and targets over

adjacent slices. All contours tagged as belonging to a given entity de�ne the geometric

model of that entity. These models, augmented with information such as density, cell

type, and radiation tolerance, are the basis for planning in Prism.

7.4.2 Master Control: The Patient Panel

Prism tools are presented in panels. The patient panel is the \master control" for Prism.

It is presented to the user when Prism is started. See the upper left of Figure 7.1. This

tool is used to select a patient case from the Prism database or to open new one. Once a

1

For information on obtaining Prism, contact Kalet by electronic mail (ira@radonc.washington.edu).

91

Figure 7.2: A transverse slice.

This �gure illustrates the Cartesian patient coordinate system, and shows a transverse

slice through the patient. Images in image studies are oriented in this way.

92

case is opened, associated images can be loaded; administrative data can be edited (e.g.,

name, hospital ID number); and modeling and planning tasks can be undertaken.

Modeling and other planning tasks are supported in part by the menus (the multiple

selection lists that Kalet calls them selectors) at the bottom of the panel. Each selector

elements pertaining to one aspect of the patient case: organs, tumors, targets, points

(which are labels a�xed to anatomical points of interest), and treatment plans. Selectors

allow these elements to be added, deleted, and selected for editing. Pushing the add

button above a selector adds a new element to the associated collection in the patient

case model. Selecting an item with the middle button deletes the element. Selecting an

element with the left button invokes a tool to display and edit the selected object.

7.4.3 Tool Invocation: The Plan Panel

Selecting a plan, for example, instantiates and displays a plan panel to display and edit

the designated plan, de�ned as part of the patient case. The highlighting of \PLAN-439"

in the selector above the easel in Figure 7.3 indicates that the plan has been selected and

that there is a plan panel for editing it active on the display. The panel is in the lower

left of the �gure (mostly obscured below the patient panel and beam panel with the three

dials). All Prism tools are invoked this way. This point-and-click invocation provides

users with the ability to
exibly and dynamically tailor their planning environment.

7.4.4 Physical Modeling: The Easel Panel

The large panel in the lower left of Figure 7.3 is an easel panel , invoked to edit a target

volume. The easel has several parts. The left side is for editing attributes such as the

color in which contours are displayed and the Z coordinate of the current slice. Across

the top is the �lmstrip. Each frame presents a slice of the model. The image for the

slice is in the background. Contours for organs, tumors, and targets are overlaid. The

�lmstrip provides a scrollable menu for selecting slices for editing. The area in the middle

is the canvas, on which geometric editing occurs.

93

Figure 7.3: A second Prism screen.

To edit a slice, the user scrolls through the �lmstrip to �nd the desired slice then

clicks on the desired frame. The third frame is selected here (indicated by highlighting,

which is hard to see in this window dump). The image and contours for the selected

frame are then displayed on the canvas. All contours de�ned for any organ, tumor,

or target for that slice are displayed but only the one for the entity being edited can

be changed|in this case, the target volume, whose contour is outlined with squares to

support editing. The user can add, delete, and move these squares to change the target

volume contour. The Clear button below the �lmstrip deletes the entire contour. In

addition to a Manual drawing mode, the easel supports automatic contouring using a

procedure that follows edges on the background image. The easel editing operations

actually change a copy of the contour de�ned in the patient model. If the user presses

the Accept button, the edited contour is then inserted into the patient model, replacing

the old one.

94

7.4.5 Visualization: Views and View Panels

To support visualization of patient cases (anatomy, tumors, targets, beams, and so forth),

Prism allows the user to de�ne any number of views of a given plan|orthographic

or perspective. Orthographic views come in three kinds, called transverse, coronal,

and sagittal, perpendicular to the Z ;Y ; and X axes of the patient coordinate system,

respectively. (See lower right of Figure 7.1.) Prism supports perspective views taken

from the origins of given radiation beams. (See lower right of Figure 7.3.)

Each plan panel includes a selector that lists views de�ned for the plan. When

adding a view, the user is queried for the kind of view. Views are persistent, in the

sense that they are de�ned and listed in the selector even when not displayed. Selecting

a view from the selector causes the view to be displayed. In particular, selecting a

view invokes a view panel, which displays the view and allows its parameters to be set.

The parameters include the position of viewing plane along the view axis, whether a

background radiographic image displayed, the contrast setting for that image, and so

on. Each view also displays locators to help the user correlate the orientation of the view

with the orientations of other de�ned views. (Locators are discussed further, below.)

Figure 7.1 presents �ve orthographic views panels. The large one in the upper right

is a transverse view. It presents the same slice as in the easel in Figure 7.3, but also

displays two radiation beams|as pairs of diverging lines. One beam enters from the

upper left; the other, from upper right. The target volume is in the intersection of the

beams. The target is imperfectly targeted: the beams hit other organs, including the

kidneys (white ovals) and spinal cord (white, irregular shape). This information and the

ability to see and change it easily are critical to the treatment plan designer.

The two smaller panels, below, display transverse slices above and below the one

in the large panels. The smaller panel in the lower right presents a sagittal view. The

squares depict intersections of contours (parallel to the transverse views) with the sagittal

viewing plane. The smaller panel to the left displays a coronal view. The overlapping

parallelograms depict intersections of the beams with viewing planes.

95

Finally, the lower right panel in Figure 7.3 presents a perspective, beam's-eye view,

from the perspective of the beam that enters from the upper left in the transverse view,

above. This view depicts the sequence of transverse slices through the patient seen from

the side. The outer contours represent skin; inner ones, others elements, e.g., organs.

7.4.6 Integration: Easels and Views

Modeling and viewing tools are tightly integrated with each other as they are instanti-

ated. When the user presses Accept on an easel, new data is inserted into the model.

This causes all graphics to be updated to re
ect the changes. Frames in easel �lm-strips

are updated. All a�ected views are redrawn. If a dose distribution is displayed the data

is invalidated and erased from all views in which it appears. In general, changes made

to the model cause changes throughout the environment to maintain consistency.

7.4.7 Integration: Views with Views

Visualizing three-dimensional con�gurations from a set of two-dimensional views is hard.

Visual hints that indicate how views relate to each other can help. Prism provides hints

in the form of locators. A locator is a line appearing in one orthographic view depicting

the intersection of the viewing plane of that view with that of some other orthographic

view. Locators show how views are oriented relative to each other, which helps the

dosimetrist to fuse views into a three-dimensional understanding.

Consider the sagittal view in the lower right of Figure 7.1, for example|a view

depicting a slice that divides the patient into left and right parts. The vertical locator

in the transverse view corresponds to the viewing plan of this sagittal view. Thus, the

sagittal view is down the middle of the patient. Symmetrically, the horizontal locators

in the sagittal view show the relative positions of the three transverse views. Horizontal

locators in the transverse views depict the intersection of the coronal view (lower left).

The vertical line in the sagittal view shows the intersection of the coronal view; and the

horizontal locator in the coronal view depicts the intersection of the sagittal view.

96

Views are thus integrated with each other through locators. Since the viewing planes

of views can be changed, and since locators can be dragged, a problem is to keep locators

and views consistent with each other. The position of a viewing plane can be updated

using the Pos text line on a view panel. If a viewing plane is changed, the locators for

that view in other views must update. Symmetrically, if a locator is dragged in one view,

the viewing plane of the corresponding view changes. Thus, not only do locators provide

hints about relative orientations, but they also let user change the parameters of other

views. The user can thus \animate" a viewing plane passing through the patient in one

dimension by dragging a corresponding locator in another view. This tight integration

signi�cantly eases visualization and exploration of complex models|in particular, three-

dimensional radiation �elds.

7.4.8 Physical Modeling: The Beam Panel

To review, one edits a plan by selecting it using the plan selector on the patient panel, r

instantiating a plan panel. For this discussion, the key features of the plan panel are the

selectors for radiation beams and views. To add a beam, one uses the add button above

the beam selector. To edit a beam, one selects the item for the beam, instantiating a

beam panel. On the plan panel on the far left of Figure 7.1, the \left lateral" beam is

selected. This instantiated the beam panel|with the dials|in the lower left.

The left side of the beam panel presents widgets for editing the kind of treatment

machine producing the beam (Clinac 4 in this case), the color in which the beam is

displayed in views, etc. Across the top are dials used to adjust the beam orientation

relative to the patient. One dial models the position of the gantry that supports the beam

apparatus, which rotates on an axis parallel to the
oor. Another models the angular

position of the collimator, an adjustable masking device through which the beam passes

on its way to the patient. The bottom part of the panel displays sliders for adjusting

such parameters as the latitude, longitude, and height of the couch on which the patient

lies and the shape of the collimator aperture.

97

7.4.9 Integration: Beam Panels with Beams and Views

Beam panels are integrated with views in that changes to a beam are re
ected in views

that display the beam. As the gantry dial is moved, for instance, the lines depicting the

beam in the transverse views rotate, and the depiction of the patient in the beam's-eye

view (from the perspective of the origin of the beam) rotates in three dimensional space.

Changes in beam parameters can also invalidate computed dose distributions, causing

views to erase depictions of the out-of-date values.

An interesting aspect of the beam panel is its integration with the beam object that

it displays. If a user changes the machine attribute of a beam (\Clinac 4"), for example,

this may imply a change in the kind of collimator used to shape the beam. Di�erent

machines have di�erent collimation systems. This, in turn, may require a change in the

collimator part of the beam panel: di�erent systems have di�erent parameters, and so

require di�erent interfaces. With a Clinac 4, two sliders are required, since there are

two \jaws" that can be manipulated. Other devices have more degrees of freedom, and

so need an interface with more sliders. With a \multi-leaf collimator," a slider-based

interface is not su�cient; a contour editor for specifying the desired beam cross-section

is used. When the user changes the machine attribute, the user interface presented by

the beam panel may change to allow editing of a beam shaped by a di�erent kind of

collimator.

7.5 Analysis, Speci�cation, Implementation

The architecture of Prism system was conceived, designed, and implemented using be-

havioral ER modeling and mediators. The rest of this chapter focuses on the use of

this method in Prism. This section starts with a simple example to lay a foundation for

more complex aspects of the design. After discussing implementation details using this

example, I show how the tenets of the approach were used to understand and satisfy the

more complex requirements discussed in the preceding section.

98

7.5.1 The Dialbox Widget

The �rst example is of a graphical interface widget called a dialbox. The dials in the

beam panel (see Figure 7.1) are instances of this kind of \tool"|a tool that can itself be

seen as a tiny integrated system. A dialbox is an integrated system in the sense that it

integrates two behaviors that can stand alone: a dial and a text line. They are made to

work together in the dialbox so that the text and the dial angle remain consistent other

as either one is changed|whether by the user or by some other tool.

The behavioral entities of a dialbox are thus a dial and a text line. The angle of

the dial can be changed by \dragging" the dial with the mouse. The text in the text

line can be changed by typing a new value in the window. Both components also have

programmatic interfaces for getting and setting their values. As the dial turns, the text

line updates repeatedly until the dial's motion stops. When the user types a new value

to the text line and presses Enter, the dial snaps to the given angle.

It may be desirable to treat a dialbox not as a system of parts but as a single object.

A dialbox is often instantiated, used, and destroyed as a unit, for example. To support

the view of the widget as an integral unit, we specify it as an object that has its own

operations to get and set an underlying value, the angle displayed in di�erent ways by

the dial and text line components.

Behavioral ER Model

When given requirements for a \complex" behavior, such as the dialbox, one begins by

asking how it can be decomposed into a system of independent behaviors integrated

in a network of separate behavioral relationships. We have no mechanical procedure

for �nding good decompositions. Rather, we are guided by concerns for independence

and integration. What pieces can we use, develop, understand independently; and how

should we design them to promote these properties? Given a breakdown into parts, is

there a simple behavioral relationship that integrates the parts? What visible structure

do we want the clients of the system see?

99

TextLine DialTD

DialBox

Figure 7.4: The architecture of the dial box \integrated environment."

The rectangles represent independent entities; the diamond represents the behavioral

relationship that integrates them. The dark arrows denote the dependence of the rela-

tionship on the entities. The light arrows suggest the entities are visible: used directly

by clients.

Reasonable answers for the dialbox are fairly obvious. The system is easily decom-

posed into a system of two behavioral entities linked by one behavioral relationship, as

illustrated in Figure 7.4. The entities are the dial and a text line. The relationship is

simple: if the value stored by one of these objects changes, the value of the other must

be updated to re
ect the change. This breaks the system into two entities that we can

implement, test, and use independently, plus a relationship that is easy to comprehend

and implement as a separate unit in its own right.

Mediator Implementation

At the implementation level the task is to represent the entities and relationships as

ABT instances while preserving the independence of the constituent behaviors and the

separation of integration concerns exhibited in the behavioral ER model. Figure 7.5

presents the essential features of the design of the Prism dialbox widget. The text

line and dial are designed and implemented as independent ABTs. The behavioral

relationship is designed and implemented as a mediator ABT. The mediator responds

to the behavior of each entity (indicated by its event announcements) by updating the

other to maintain the speci�ed constraint on the respective values.

In more detail, the dial and text line are designed as ABTs with operations to Get

and Set their values and with events announced when these values change. The events

are NewInfo and NewAngle for the text line and dial ABTs, respectively. The mediator

100

DialBox

TextLine

Get():string

Set(x:string)

NewInfo(x:string)

Info:string

Dial

NewAngle(x:float)

Angle:float

Get():float

Set(x:float)

Mediator

UponNewAngle(x:float)

t: TextLine; d: Dial

Set(x:float); Get():float

UponNewInfo(x:string)

Figure 7.5: Mediator-based design of the dialbox widget.

The heavy arrows emanating from the black dots denote references between objects. The

dial and text line are independent; the mediator depends on both. The dashed arrows

represent registrations of the operations at the tails of the arrows with the events at the

heads. The solid arrows denote explicit invocations of the operations at the heads by

the operations at the tails.

references both the dial and text line to register for these events and to call the operations.

It registers its UponNewInfo(x) operation with the text line NewInfo(x) event. When

this event is announced, the operation is invoked. The operation computes a new angle

a for the dial by converting the updated text (an event parameter) to an angle, and then

by calling Dial.Set(a) to update the dial with the new angle.

The behavior is symmetrical for changes to the dial. Thus a circularity could result:

one update could cause another, and another, etc. There are several ways to break such

circularities. One way is for the mediator to maintain a bit that indicates whether an

update is already in progress. When invoked, the mediator checks the bit. If not set, the

mediator sets it and performs the update. If already set, the mediator just returns. The

fact that mediators are objects permits them to maintain such state. Another way to

break the circularity would be to de�ne the text line and dial objects as not announcing

their events if a new value to be stored is the same as the old.

101

Low-Level Details

It is straightforward to implement ABTs in common programming languages. The main

problem is representing events. This is not hard [Notkin et al. 93]. It is quite easy

in object-oriented languages, which already support objects with states and operations.

We represent events in interfaces as instance variables holding event objects. An event

object maintains a list of operations to be implicitly invoked, and the objects to which

they are to be applied, when the event is announced [Sullivan and Notkin 92].

Events. The implementation environment for Prism is provided by Common Lisp [Steele

90] and CLOS [Bobrow et al. 88]. Our �rst task was to support objects having events

as well as operations in their interfaces. We used event object-valued instance variables

for this. An event object is an instance of an event class.

Such a class de�nes operations to Register and Unregister operations (and the ob-

jects to which they should be applied), and another to Announce a given event. The

mechanism is simple. Source code is presented in Figure 7.6. An event object main-

tains an association list that records object/operation pairs. Upon creation, the list is

empty. The operations, implemented as macros, are simple. Add-notify registers an

object (party) and an operation to be applied to the party. Registration removes any

operation already present for the party, then stores the new operation. Remove-notify

removes any registration for a party. Finally, Announce iterates over the list, applying

the operation part of each entry to the associated party. The parameters object and

args are passed to the invoked operations. Object identi�es the object announcing the

event. Args encodes other parameters for the event. Thus, when a text line announces

NewInfo(x) by calling the announce operation of this event object, object is a reference

to the text line and args is the new text string x .

Entities. Implementing the dial and text line object speci�ed in Figure 7.5 is now easy.

Since the entities are similar, we just discuss one. The dial stores a numerical represen-

tation of an angle, de�nes operations to get and set this value, and makes changes visible

102

(deftype event () 'list)

(defun make-event () nil)

(defmacro add-notify (party event operation)

`(setf ,event

(adjoin (list ,party ,operation)

(remove ,party ,event :test #'eq :key #'car))))

(defmacro remove-notify (party event)

`(setf ,event (remove ,party ,event :test #'eq :key #'car)))

(defun announce (object event &rest args)

(dolist (entry event) ; event is an a-list

(apply (second entry) (first entry) object args)))

Figure 7.6: Common Lisp/CLOS implementation of event objects in Prism.

by announcing an angle-changed event. The problem is in representing and announcing

the event. Figure 7.7 presents the dial class declaration and shows how we guarantee

that the event is announced when setf is used to update the angle attribute using CLOS

wrapper methods. The class includes a slot holding an event object. The wrapper, which

is automatically executed whenever setf is called, announces the event. In addition, the

wrapper updates the dial graphic. (I do not discuss graphics any further.)

Mediators. Implementing the mediator is easy. (Figure 7.8.) In this case, the media-

tor is the dialbox object itself. The system as a whole is represented by the mediator that

integrates the parts|see the defclass statement in the �gure. The setf statement in the

class initialization routine make-dialbox creates these objects and assigns them to their

slots in the dialbox object. This routine also registers the mediator operations with the

dial and text line events. The �rst operation, upon-angle-changed, handles changes to

the dial; the second, upon-info-changed, handled updates to the text. In the registration

statements (e.g., ev:add-notify) the variable db refers to the dialbox (party to be noti-

�ed). The next expressions reference the event objects in the dial and text line objects.

The NewAngle event is represented by an event object in the dial's angle-changed slot,

which is found through the the-dial slot of the dialbox db. The parameters preceded by

hash signs (#) are the operations to be invoked when the events are announced.

103

(defclass dial (frame) ; define a dial ABT

((angle :type single-float ; angle attribute

:accessor angle

:initarg :angle)

(angle-changed :type ev:event ; angle-changed event

:accessor angle-changed

:initform (ev:make-event))))

(defmethod (setf angle) :around (new-angle (d dial))

(dial-erase-pointer d) ; erase old dial graphic

(call-next-method) ; invoke inner wrappers

(dial-draw-pointer d) ; draw new graphic

(ev:announce d (value-changed d) new-angle) ; announce value-changed

new-angle) ; setf must return value

Figure 7.7: Key features of the implementation of the dial ABT.

(defclass dialbox (frame) ; the dialbox/mediator class

((the-dial :type dial :accessor the-dial) ; references a dial

(the-text :type textline :accessor the-text) ; and a text line,

(angle-changed :type ev:event ; and exports an event,

:accessor angle-changed

:initform (ev:make-event))

(busy :accessor busy :initform nil))) ; and avoids circularities

(defun make-dialbox (radius &rest other-initargs)

(let* ((db (apply #'make-instance 'dialbox)))

(setf (the-dial db)

(apply #'make-dial radius :parent (window db))

(the-text db)

(apply #'make-textline ds th :info " 0.0" :parent (window db))

(ev:add-notify db (angle-changed (the-dial db)) #upon-angle-changed)

(ev:add-notify db (new-info (the-text db)) #'upon-new-info)

db)))

(defun upon-angle-changed (db ann val)

(unless (busy db) ; avoid circularity

(setf (busy db) t) ; " "

(setf (info (the-text db)) ; convert angle to

(format nil "~5,1F" (mod val 360.0))) ; string; update text

(ev:announce db (angle-changed db) val) ; announce dialbox event

(setf (busy db) nil))) ; avoided circularity

Figure 7.8: Key features of the implementation of the dial/text line mediator.

104

These mediator's \update" operations are similar so we just present one. Upon-

angle-changed updates the text line when the dial changes. The parameters passed to

this operation identify the noti�ed party (dialbox), the event announcer (dial), and the

new angle. The mediator operation uses a busy bit to prevent circularity, as discussed

above. Between setting and clearing busy , the operation updates the value of the text

line and announces the angle-changed event of the dialbox (to support clients that treat

the dialbox as a unit).

Consider what happens when a client changes the dial angle using the setf operation.

The wrapper method is invoked by Common Lisp before setf executes. First, the dial

graphic is erased. The actual setting of the angle value occurs within call-next-method.

The graphic is redrawn. Finally, the angle-changed event is announced. This invokes

the mediator's upon-angle-changed operation. This routine checks the busy bit, �nds

no update in progress, converts the new angle to a string and sets the value of the

text line. This causes the text line's new-info event to be announced, which invokes the

mediator's upon-info-changed operation. This operation checks the busy bit and, �nding

an update in progress, returns. Control returns to the text line (its event announcement

returns). The text line update completes. Control returns to the mediator. The mediator

announces its angle-changed event. Finally, the mediator clears the busy bit and returns.

The setf operation on the dial object completes with the whole dialbox is left in a

consistent state.

7.5.2 Multiple Selection List

With the implementation details at the lowest level of Prism described, I now turn to

more complex subsystems, starting with the multiple selection lists used within selectors.

(A selector includes a multiple selector list as a component.) I will call these multiple

selection lists menus . A menu displays a list of items. Items can be added and deleted,

selected and deselected. When selected, an item is highlighted; when deselected, it is

unhighlighted.

105

Items: Set[Button]

Multiple Selection List

M Selected:Set[Button]

Figure 7.9: Simpli�ed model of a multiple selection list.

A multiple selection list is viewed as a pair of sets of buttons. A button is an item

displayed by a menu that can be selected or deselected. The set of buttons called Items

contains all buttons displayed by the menu. The set, Selected, contains exactly the subset

of selected buttons. The behavioral relationship M will ensure that this constraint is

maintained as buttons are selected and deselected, inserted and deleted.

Behavioral ER Model

We designed the menu based on knowledge of how we wanted to use menus in selectors.

Within a selector a menu participates in two relationships. The �rst is a one-to-one

correspondence between items in the menu and a set of objects (e.g., the organs of a

patient). The second relationship is a one-to-one correspondence between selected menu

items and active tools (e.g., panels to edit selected organs). If an organ is added to the

patient, an item must appear in the list; and if an item representing an organ is selected, a

tool must be instantiated for editing that organ. This implements the behavior speci�ed

in the Prism requirements.

Our analysis of the menu, as a component of the larger selector subsystem, resulted in

the model illustrated in Figure 7.9. We view a menu as maintaining two sets of buttons.

The sets are entities into which one can insert buttons and from which one can delete

buttons (more precisely, references to buttons). The buttons, in turn, can be selected

or deselected. In standard usage, a client inserts unselected buttons into the Items set,

then selects and unselects buttons, and then �nally deletes them from the Items set.

Integration of these sets and the buttons they contain is achieved by the relationship

M in Figure 7.9. This relationship imposes the constraint that the selected set is the

subset of Items containing exactly those buttons that are selected. Thus, if a button

in Items becomes selected|because a user invokes its Select operation|then it must

106

then be inserted into the Selected set. Although our implementation does not have this

structure, this analysis illuminated the logical structure of a menu, signi�cantly easing

the design, implementation, and integration of the menu component.

Implementation

In implementing the menu, we merged the two sets and the behavioral relationship into

a single menu object. The menu object thus supports operations to insert, delete, select,

and deselect buttons, and events indicating these activities. The select and deselect

operations are the equivalents of insertion into and deletion from the selected subset.

We designed the buttons themselves as ABTs with operations for selection and dese-

lection, and events indicating these activities. Selection causes a button to be displayed

highlighted; deselection, unhighlighted. The key to integrating buttons with menus is

that when a button is inserted into the menu, the menu registers to be noti�ed of the

button's selection and deselection events. When the menu is noti�ed of a button being

selected, the menu then announces its own selected event. This event mimics the one

that would have been announced for insertion of the button into the selected subset had

the menu been implemented as a pair of sets. (The same thing happens for deselection.)

When a button is deleted from the menu, the menu cancels its registrations with the

button object.

7.5.3 Selectors

Selectors are used throughout Prism to display the contents of sets that make up patient

models (e.g., the organs of a patient), to allow elements to be added to and deleted from

these sets, and to allow these elements to be selected for editing. In the face of additions

to and deletions from these sets, it is critical to keep the user interface consistent. If an

organ is added, a new item should appear in the organ menu. If the name of an organ is

changed, the name displayed by the corresponding button should updated accordingly;

and if the button name is changed, the organ should be updated, symmetrically.

107

Organ

ME

EaselButton

Set[Easel]MenuSet[Organ] SM

OB

Selector

Figure 7.10: Simpli�ed model of the Prism selector subsystem.

A selector in Prism consists of a menu integrated with a set of objects (e.g., organs)

to be listed in the menu and a set of tools (e.g., easels), one for each object that is

designated by the selection of an item in the menu. The relationship SM maintains a

bijection between set of objects and items in the menu. The relationship ME maintains

a bijection between selected items in the menu and tools in the tool set. The relationship

OB maintains a correspondence between the name of an organ and the name displayed

by the corresponding menu item.

Prism eases integration of new tools by making sets, objects, buttons, and so on,

directly accessible to tools that need to manipulate the information they represent. Any

tool can operate directly on a model, e.g., by adding, changing, and deleting organs,

beams, plans, buttons, etc. In the face of such accesses, all aspects of the environ-

ment must be kept consistent. I now discuss how we met this requirement, focusing for

concreteness on the case of selectors.

Behavioral ER Model

Figure 7.10 presents a behavioral ER model of the organ selector. All other selectors i

Prism are exactly analogous. In fact, all of them are instances of the same basic selector

class, parameterized at run time to handle sets of di�erent types of objects to be selected

(organs, plans, etc) and panels to edit these objects (easels, plan panels, etc.)

The main entities in the behavioral ER model are a set of organs, a set of easels, and a

menu. To each set is associated zero or more elements; the number changes dynamically

108

as elements are added and deleted. The two key behavioral relationships, SM and ME,

maintain one-to-one correspondences, as discussed above. If an organ is added to the

organ set, SM requires a corresponding item (button) to be added to the menu. If

an item is selected, ME requires addition of a new easel to the easel set. Conversely,

if an easel is closed (and thus, in Prism, deleted) by the user, ME requires that the

corresponding button be deselected.

The relationship ME depends on the relationship SM, because ME is responsible for

creating easels for editing organs selected by the designation of menu buttons, but an

easel must be connected to the organ associated with the selected button. The association

between organs and buttons is maintained by SM. Thus, when a button is selected, ME

then queries SM to �nd out to which organ the new easel should be attached.

The bottom half of Figure 7.10 depicts the individual elements of the sets (organs,

buttons, easel panels) and the behavioral relationships between them. OB requires and

preserves equality of associated organ and button names; if either changes, the other is

updated. The arrow from the easel to the organ denotes a dependence of the easel on

the organ. We basically merged the relationship between the display part of the easel

and the organ displayed into the easel. The reason is that easels are never used in the

absence of organs (or generally a volume to be edited). Since the relationship depends

on both the easel display and the organ, this merging of integration concerns leaves the

easel dependent on the organ.

Implementation

To save space, I discuss only key features of the selector implementation. First, we rep-

resent instances of the OB relationship as mediator objects. These objects are modeled

on the dialbox presented earlier: they propagate values bidirectionally between objects.

The relationships SM and ME are similar to each other, so I will only discuss the im-

plementation of SM . I start the discussion with a simple but important part of Prism:

the organ set. (Other Prism sets|e.g., panels, tumors, plans|are analogous.)

109

Sets. We implement the organ set as a set ABT. The set ABT has two operations,

one to insert an element, one to delete one. Each operation takes a reference to the

element as a parameter. The ABT also de�nes events inserted(x) and deleted(x), where

parameter x is a reference to the object inserted or deleted. If a client calls the operation

insert(x), the inserted event is announced if and only if x is actually added to the set,

which happens if and only if x was not already in the set (and conversely for deletion).

Representing multi-valued attributes as set ABTs (e.g., the organs in a patient) is

one of the cornerstones of the Prism design. Set ABTs provide an explicit runtime

representation of dynamic entry and exit of elements into and from associations. Rather

than having to maintain consistency in the face of creation and deletion of objects, we

do so in the face of insertions into and deletions from sets. This is easy because set

ABTs announce events that can be observed by mediators.

Designing a mediator to represent SM is straightforward. Again, the dialbox provides

a template. First, the SM mediator holds references the organ set and the menu. Second,

it de�nes four private operations, one to handle each relevant activity, namely, insertion

and deletion of organs and buttons. When the mediator is created, it receives references

to the set and menu and registers its operations with their events. At runtime, the

mediator employs the \busy bit" idiom to avoid circular updates, as in the dialbox.

Relations. In addition, the mediator maintains a relation as part of its state. It uses

the relation to record correspondences between individual organs and buttons. Each

association is stored as a pair of references, one to the organ, one to the button. This

relation is used both by the mediator itself, and by clients. In particular, the ME

mediator queries this relation to �nd out to which organ to attach an easel when a menu

item is selected. The relation is implemented as a relation ABT, with operations to add,

deleted, and look up associations, and with events announcing additions and deletions.

To see how the SM mediator works, consider what happens when an organ is deleted.

The mediator, having registered to be noti�ed of events signaling deletion of organs, is

invoked. It responds by checking its busy bit, which it �nds clear (no update in progress).

110

It maps the organ just deleted through the relation that the mediator itself maintains

to �nd the corresponding button in the menu. It deletes the correspondence from the

relation, then calls the menu to delete the button. This invokes the mediator recursively;

but now the mediator �nds its busy bit set, so it just returns to the menu. Then the

menu, having deleted the button, returns to the mediator. The mediator then returns

to the organ set. Finally the deletion operation on the organ set completes with the set,

the mediator's relation, and the menu all consistent.

Submediators. There is one additional complication. When an organ and a button

are associated, we want their names to stay consistent. To implement this, the SM

mediator uses an idiom we call deploying submediators. A key advantage to the method

of implementing behavioral relationships as ABT-based mediator objects is that these

mediators can be created and can register with other objects dynamically. This is the

basis for integrating tools as they are instantiated in Prism.

The idea is that in addition to maintaining a relation between two sets, a mediator

also maintains a set of mediators of a di�erent kind responsible for integrating related

elements of the sets. Here, SM creates an instance of an OB mediator to integrate each

associated organ and button pair. So, when SM adds an association to its relation, it

also creates an OB instance, providing it with references to the organ and button objects.

The OB mediator registers dynamically with the events of those objects and keeps them

consistent thereafter. When the SM mediator deletes the association between the organ

and the button, it also deletes the corresponding OB mediator. Before being destroyed,

the OB mediator unregisters from the events of the organ and button objects.

The ability to integrate entities without change by interposing mediators eases in-

tegration as well as evolution over the life time of a system. Deploying submediators

for each entry in a relation is a run-time example of the leverage gained by separating

behavioral relationships, and is a key idiom used extensively in the Prism system. We

discuss more sophisticated usages of this idiom in the next subsection.

111

7.5.4 Locators

The idea of deploying submediators in correspondence with the elements in a relation

provided the basis for solutions to several, more di�cult design problems. In this sub-

section, I discuss how we handled locators. Recall (see Section 7.4.7) that each ortho-

graphic view displays one locator for every other orthographic view that intersects the

given view. Thus, whenever a new view is created, a locator has to be added to each

view intersected by the new view, and locators have to be added to the new view for

each of these intersecting views.

Furthermore, the position of each locator in the view in which it is displayed has to

be kept consistent with the position of viewing plane of the other view that it represents.

If the Z position of a transverse view is changed, the locators for that view in all coronal

and sagittal views have to be updated. Similarly, if the user drags a locator in one of those

views, the Z position of the transverse view must be updated. This supports a kind of

crude animation: as a locator is dragged, the view it represents appears to pass through

the patient model along the viewing axis. As it does this, it renders successive slices of

the patient anatomy, beam locations, iso-dose contours depicting dose distributions, etc.

Behavioral ER Model

Abstractly, these requirements are similar to the earlier problem: several sets have to be

kept consistent as elements are added and deleted, and corresponding elements have to

work together while they are related. The key idea for the locators subsystem was that

we had a set of views and that we needed to maintain a relation encoding intersections

between views in that set. Rather than a one-to-one correspondence between sets, we

needed a behavioral relationship that maintains the intersects relation as the set of views

changes, or as individual views change.

Suppose two views A and B intersect|perhaps A is transverse and B is coronal.

Then the intersects relation contains the tuples (A;B) and (B ;A); since each view inter-

sects the other. Corresponding to these tuples are two locators L

(A;B)

and L

(B;A)

: The

112

Set[Views] Set[Locator]

View LocatorVL

VSLS

Figure 7.11: The Prism locators subsystem.

The locators subsystem contains a set of views and a set of locators. The set of views

holds zero or more view instances; similarly for the locator set. The sets are integrated

by a behavioral relationship VSLS (for view-set/locator-set). VSLS keeps the locator

set consistent as views are added and deleted. It also inserts locators into and deletes

them from the views that are to display them. Finally, it also deploys VL submediators

to keeps locators consistent with the views they depict.

�rst is displayed in A to represent the intersection of B with A: The second appears in B

for the intersection with A: The locator system basically consists of a set of views and a

set of locators, with locators in one-to-one correspondence with tuples in the symmetric

intersects relation. As views are added and deleted, the relationship VSLS maintains

the intersects relation and updates the locator set accordingly.

VSLS has two additional tasks. First, when it adds a locator to or deletes it from

the locator set, it also displays the locator in or removes it from the corresponding

view. Thus, the mediator maintains the one-to-n relationship from views to locators, as

presented in the �gure. Second, each locator has to remain consistent with the view it

represents. To ensure this, VSLS deploys submediators, one instance of VL to integrate

each locator L

A;B

displayed in a view A with the view B that the locator represents.

A key bene�t of this architecture is that it enabled conception and implementation

of this machinery independently of other relationships in which the views and the set of

views participate (as suggested by dashed lines and diamonds in Figure 7.11). I already

discussed some of the other relationships: the set of views is related to a menu; the name

of each view is related to the name of a button; etc. Accessibility of the views and sets

permits the behaviors of these entities to participate in multiple behavioral relationships.

113

Implementation

The implementation follows from the behavioral ER model. The set of views is imple-

mented as a set ABT. The views are de�ned as independent objects. We changed the

representation of the locator set in the design to reduce the number of classes and objects.

Speci�cally, we eliminated the set of locators in favor of each view having its own set

of locators|those that it displays. Locators are thus distributed about the system. We

realized VSLS as a mediator that registers with and responds to insertion and deletion

events of the view set.

When a view is added, the mediator updates the intersects relation, which it itself

maintains, by comparing the new view against each view in the view set. Only views on

di�erent axes intersect, and views on di�erent axes have di�erent Prism class names|

transverse, coronal, sagittal|so intersection is computed by comparing these names. If

the names di�er, the views intersect. For each intersection, the mediator creates both a

locator and a submediator. It adds the locator to the set of locators in the view in which

the locator is to be displayed; and it instantiates the submediator giving it references

to this view and to the view the locator depicts. The submediator registers with that

view and with the locator and thereafter maintains consistency between them. When

a view is deleted, the mediator reverses this procedure. When locators are moved or

views change, the submediators maintain consistency independently of the machinery

that deployed them.

The behavioral ER modeling method not only e�ectively separated concerns in con-

cept, but also in implementation. The machinery for handling the relationship between

the view and locator sets is entirely separate from the machinery for the relationship

between the same view set and selectors, for example. The mediator method preserved

the most important properties of the behavioral ER models in the implementation: in-

dependence of entities and separation of integration concerns.

114

Set[Views]

Set[Organ]

Set[Tumor]

Set[Target]

Set[Beam]

OSVS

Figure 7.12: The Prism graphics subsystem.

The graphics rendering subsystem is analogous to the selector and locator subsystems.

The behavior relationship OSVS requires that each element in each of the object sets

on the left be rendered by a graphic in each of the views in the view set on the right.

Although omitted in this �gure, corresponding elements are related by submediators, as

in the earlier subsystems.

7.5.5 Graphics

Having solved the selectors and locators problems in a collaboration with Kalet, Kalet

then independently applied the idea of deploying submediators to the subsystem responsi-

ble for keeping graphical renderings consistent with the treatment plans they depict. The

requirement was to incrementally update all renderings|e.g., in views, easels, frames in

�lmstrips, etc.|when the subject changes: any set of organs, tumors, target volumes,

etc. or any element of any of these sets. In Figure 7.3, if the easel is used to change the

shape of the target volume (outlined with small squares) then at least three renderings

are updated: the frame in the easel �lm strip for the slice being edited , the transverse

view in the upper right, and the beam's-eye view in the lower right. Updates are incre-

mental in that only graphics for speci�c elements are changed, added, or deleted|e.g.,

the contour graphic representing the particular slice of the target volume. Incremen-

tal consistency maintenance is important for acceptable runtime performance, given the

capabilities of computer hardware currently on the market.

Figure 7.12 presents Kalets's behavioral ER model for this subsystem. The solution

is analogous to those for selectors and locators. In this case the mediator maintains a

cross-product relation: each element in each subject set (organs, tumors, etc.) must be

depicted in each view in the view set. The cross product is between the union of the

subject sets and elements depicted in the views in the view set.

115

The mediator creates a graphic for each object/view pair, which it inserts into the

view, and it deploys a submediator between the object and the graphic to maintain

consistency in the face of changes. In the case of contoured volumes|organs, target

volumes, etc.|there is a submediator for each contour. When the user changes the

target volume contour in the easel (Figure 7.3), multiple submediators are invoked to

update the corresponding graphics in the various renderings. If, on the other hand, a

view is added to the view set, the main mediator creates m graphics and deploys m

submediators|one for each object displayed in the new view.

The design and implementation of this model is straightforward based on the ear-

lier examples. This structure paid o� when Kalet discovered that the initial design for

graphics rendering was unworkable. The problem was in using X windows [Schei
er and

Gettys 86] to render multi-layered pictures with wireframe, contoured objects rendered

over background, bitmapped images. The mediator-based architecture made it easy to

�x the problem because all graphics code was localized in the submediators: each was

responsible for rendering its object in its view. Kalet was able to replace the graphics

pipeline without touching the OSVS mediator, or the object sets, or the objects, or the

view sets, or the views. Moreover, these changes were made independently of relation-

ships between the view set and selector panel, between the object sets and the selectors,

between the locators and views, etc. The mediator architecture separated these concerns.

7.5.6 Beam Panel

Finally, we examine the problem of adjusting the user interface presented by beam panel

to accommodate changes in the kind of beam being handled. Consider the beam panel in

Figure 7.1. The key aspects of the panel are the button on the left that displays the kind

of treatment machine to generate the beams (Clinac 4), and the part of the panel used

to adjust the collimator that shapes the beam (the bottom two sliders on the panel).

If the user presses the machine button, a menu of machine types pops up. If one is

selected, the machine type attribute of the underlying beam is updated. The problem

116

is that di�erent kinds of machines have di�erent collimation systems, and di�erent col-

limator types have di�erent numbers of parameters that can be adjusted, so changing

the machine type may require a di�erent \sub-panel" for adjusting collimator settings.

The sub-panel for the Clinac-4 requires two sliders. Another kind of machine needs four

sliders. Another requires an entirely di�erent interface to shape the beam aperture|one

that uses a contour editor, as in the easel.

To Use Inheritance?

One question we asked when designing this part of the system was whether to use

inheritance to model di�erent kinds of beams and beam panels. We �rst tried de�ning

an abstract beam class with subclasses specialized by kind of collimator then by other

parameters (such as particle type). The resulting structure seemed arbitrary. Why

specialize �rst by collimator type then by particle type? We tried other orders, too.

We had two problems with the inheritance approach. First, every ordering seemed

arti�cial. This is because the specialization dimensions are independent. Beam types

occupy a matrix, not a hierarchy. Particle type and collimation system are independent;

neither is subordinate to the other. Second, changing a beam's machine attribute could

have required dynamically changing the class of the beam being edited and also dynamic

replacement of beam panels. New subclasses would have to be created when machine

types changed. Although CLOS does support dynamic type conversion, we found that

mechanism to be too complex in contrast with the simplicity of the ideas.

Behavioral ER Model

Instead, we de�ned a single beam class with attributes to indicate specializations of

particle type, collimation system, etc. We then used inheritance to model di�erent kinds

of collimators. To change the collimator type of a beam, we assign an instance of a

di�erent collimator subtype to its collimator attribute. We modeled the beam panel in

the same way, with a collimator sub-panel as an attribute.

117

This made it easy to maintain the correspondence between the collimator type of

beam and the collimator interface part of the beam panel. When the machine type

changes, the collimator object in the beam is easily replaced. When the type of collimator

assigned to a beam changes, the beam announces an event. A mediator linking the beam

and the panel responds by replacing both the collimator sub-panel and the \submediator"

responsible for integrating the sub-panel with the new collimator object. This is just a

simple adaptation of concepts presented for the subsystems discussed above.

7.5.7 Wrap-Up

I conclude this section with the observation that the Prism architecture and our approach

to crafting it di�ered from common methods in two ways. First, we developed a new way

of thinking about systems, emphasizing both independence of entities and the separate,

explicit representation of the behavioral relationships needed to integrate them. Second,

we use event mechanisms in a stylized way to map behavioral ER models to structurally

similar designs and implementations. We applied this approach throughout Prism, at

all levels of \granularity," and in solving a range of design problems of several di�erent

kinds.

7.6 Development E�ort

As of November of 1993, Prism was implemented in about 18,000 lines of Common

Lisp [Steele 90] and CLOS [Bobrow et al. 88] and 4,500 lines of Pascal with 11,000 lines

of L

a

T

E

X documentation.

2

The Lisp code handles modeling, visualization, and database

management. The Pascal, adapted from an earlier system, computes dose distributions.

Of the Lisp, about 4200 lines handle user interface widgets, sets, relations, and events.

Prism classes take 2700 lines; �le handling, 1000; panels, 5200; views and other graphical

renderings, 3100; mediators, 1300 (except for mediators that link panels to objects, which

2

As of August, 1994, the code size has increased to about 35,000 lines, owing mostly to the integration

of an AI-based tool for computing target volumes.

118

are counted with panels); and other code, about 500 lines. The code density is about

30 characters per line, with blank lines and concise documentation text included. In

comparison, Kalet's �rst system has 47,000 Pascal lines. Kalet's second system, which

is still in use as Prism is phased in, has 41,000 lines of Pascal, 5000 of which are for dose

distributions. Comparing with another system, the basic functions taking 18,000 lines

in Prism take about 60,000 lines of C [Kernighan and Ritchie] and C++ [Stroustrup 86]

in GRATIS [Rosenman et al. 89], of which about 14,000 are for interface widgets. Those

functions taking 4,500 lines of Pascal in Prism, take about 12,000 lines of C

3

Prism performs adequately on high-end workstations. Kalet uses HP9000 series 700

workstations for development and production. The costliest operations by far are ren-

dering with background images. Background image display can be turned o� in a given

panel for faster response. Updates to interface widgets|e.g., menus, buttons|are fast.

Event registration, unregistration, and announcement are performed many times, but the

cost in memory and CPU is negligible in comparison with other functions. The size and

number of images in some real cases has exhausted physical memory (128 megabytes)

leading to thrashing behavior that degrades performance noticeably.

We built Prism on a modest budget in both money and person-hours, with a small

project team. The e�ort lasted from January 1990 to present. Ten people were involved

at di�erent times. The total e�ort as of November, 1993 was about 4.5 person years.

Of this, requirements speci�cation (done before collaboration on design began) took 24

person months. Design and implementation, the focus of the collaboration, took 20

person months. The electron beam dose calculation code took 11 person months.

Prism is portable. It runs without source code modi�cation using Allegro Common

Lisp (CL) and Lucid CL on Sun Sparcstations (2 and 10). It runs using Allegro CL on

DECstation 5000, IBM RS6000, Silicon Graphics Indigo, and HP9000 series 700 work-

stations. The Prism Pascal code is ISO level 0 compliant and runs without modi�cation

on all of the above systems.

3

Personal communication between Ira Kalet and Gregg Tracton of the Department of Radiation

Oncology at the University of North Carolina.

Chapter 8

Evaluation

This chapter evaluates how well I have done in this dissertation in solving an important

software engineering research problem. I do this by exploring the boundaries of the

problem I addressed and the solution I presented. I also raise challenges to this work

and either refute them or admit to actual shortcomings.

8.1 Scaling Up

A key concern about any software design method is whether it retains its utility as the

scale of problems to which it is applied increases. It is fair to be skeptical about the

utility for large systems of methods not yet proven on large projects. Since I cannot

justify claims of pro�tability of the mediator method for large systems on the ground of

experience, does not the mediator method therefore fail to pass the key test of scalability?

There are several ways to answer this.

First, I have demonstrated scalability of the method to serious but not immensely

complex, systems, including commercial products and software that is used in clinical

practice in hospitals. These experiences, although not set up as scienti�c experiments,

nevertheless provide valuable anecdotal information validating the claim of pro�tability

of the mediator method for real, useful software systems.

120

Second, there are no obvious reasons that the mediator method cannot be used for

larger systems. I do not believe that behavioral ER models with hundreds or thousands

of nodes will be manageable, but rather am encouraged by the fact that behavioral

ER modeling is applicable at various scales. Decompositions appropriate for \human

consumption" are necessary at every scale. A key property of mediators is that they be

recursively structured to integrate behaviors at di�erent scales, from simple switches to

more complex types to substantial user-level applications.

Third, success in providing value does not demand demonstrations that behavioral

ER modeling and mediator design are pro�table when applied to systems that are large

in an absolute sense, but only that the approach is better than other available methods.

I have argued extensively that common methods necessarily scale poorly as demands for

integration increase, and that the mediator method overcomes the problems for a many

kinds of integration requirements. Moreover, because the mediator method is upwardly

compatible with common methods, it is at least as good as they are in other dimensions.

Therefore, since little or nothing is lost and something of value is gained the mediator

approach is better.

Finally, a dissertation presents the results of a small research project. It is not

reasonable to demand nor possible for a single researcher to ful�ll demands for large-

scale demonstrations (e.g., use on a project involving tens of people over many years).

Nor are such demonstrations necessary for valuable progress. I cannot express this idea

better than Tony Hoare did a decade ago in discussing formal methods, when he said,

Most of the books and articles on programming methods are of necessity

illustrated only by small examples. Indeed, many of the programming meth-

ods advocated by the authors have never yet been applied to large programs.

This is not a defect of their research; it is a necessity. All advances in en-

gineering are tested �rst on small-scale models, in wave tanks, or in wind

tunnels. Without models, the research would be prohibitively expensive, and

progress would be correspondingly slow [Hoare 84, p. 282].

121

8.2 Limitations of Implicit Invocation

A behavioral ER model represents a complex behavior as a composition of simpler be-

haviors in a system of relationships. Each relationship must be satis�ed after completion

of an operation on a constituent behavior. Behavioral ER models thus compose systems

by logical conjunction. Each constituent behavior must satisfy not only its own speci�-

cation, but also those imposed by each relationship in which the behavior participates.

Mediator based implementations, by contrast, are imperative constructs. Their foun-

dation is broadcast-based implicit invocation, which construct implements sequential in-

vocation (in some unspeci�ed order) of operations registered by mediators representing

behavioral relationships. It is well known that logical conjunction cannot always be im-

plemented directly by sequential composition [Hoare 87]. Yet, that is what the mediator

method does. Events invoke multiple mediators to implement the conjunction of the

behavioral relationships that the mediators implement individually.

The reason that this method works in the examples above is that in all of those cases,

the behavioral relationships are independent of each other. In this case, conjunction is

implementable by sequential composition|in any order. Satisfying each relationship

individually is enough to restore the consistency of the whole system.

The mediator method cannot be applied directly when the relationships to be satis�ed

depend on each other. If satisfaction of one depends on the satisfaction of another, then

mediators implementing the relationships have to be invoked in a particular order to

implement logical conjunction. If relationships are mutually dependent there may be no

sequential composition corresponding mediators that implements the conjunction.

Do these \shortcomings" undermine the mediator method? The answer is no. First,

in many systems independent relationships seems to be the norm. Multiple views can be

updated independently, as long as all are consistent at some point, for example. Second,

even when relationships are dependent mediators can be de�ned to maintain systems of

relationships. Third, enriching the implicit invocation mechanism to support the partial

ordering of noti�cations is another possibility.

122

8.3 Concurrency, Distribution, Asynchrony, Etc.

It is old-fashioned for software engineering research not to address the daunting problems

posed by requirements for concurrency, distribution, temporality, and so on. These are

indeed areas in which solutions are needed to ease the \software crisis." How, then, can

one positively evaluate this work, which neglects these topics? Although this concern is

legitimate, I do not believe this shortcoming undermines this work.

One reason is that sequential behaviors are critical in practice. This dissertation

shows that common design methods cannot handle this easy case very well. A contri-

bution to the engineering of sequential systems can have an enormous impact on actual

software engineering practice. That is the objective of this work.

Second, solving problems involved in designing sequential systems may ease the design

of behaviorally more complex (e.g., concurrent) systems. The unnecessary complexity

injected by common design methods into sequential parts of such systems can only

exacerbate problems created by concurrency and other such factors. However, I admit

that as of now I cannot reliably estimate the impact that the mediator method can have

on reducing the cost of behaviorally more complex systems.

Third, it may be pro�tably to apply the principles underlying this work, primarily the

separation of integration concerns, in designing concurrent, distributed, and other such

systems. Mediators may be useful to manage synchronization relationships, for example.

However, results remain to be demonstrated. I discuss this brie
y in Chapter 10.

Fourth, in some cases mediators can be used directly in concurrent, distributed sys-

tems. Field is distributed and concurrent, and it uses implicit and explicit invocation,

but is basically without rich mechanisms for controlling concurrent access to data. Me-

diator modularizations of Field-like environments are quite plausible. There may also be

valuable solutions that combine the optimistic style of Field with more rigorous concur-

rency control where needed. Nested transactions [Moss 87] in particular may be valuable

in this regard.

123

8.4 Non-Conservative Integration

The behavioral relationships discussed so far in this work have a common property: they

conserve the behaviors they relate. An editor integrated in a behavioral relationship

with a compiler can still be used as an editor by its users. In the system of switches,

the individual switches can still be turned on and o�. The behaviors are extended by

behavioral relationships but not restricted.

Another important class of behavioral relationships are non-conservative relation-

ships. These relationships inhibit or restrict the behaviors they relate. The automotive

example (see Section 2.1) provides an example of a non-conservative behavioral rela-

tionship: between the ignition interlock switch and the ignition switch. Engaging the

transmission turns on the ignition interlock, and that prevents the ignition from being

turned on; so, the car cannot be turned on with the transmission engaged.

The abstract evolutionary scenario can easily be extended to model this kind of

relationship. Suppose the ignition were modeled as a switch S4. Recall that the ignition

interlock is modeled by B3. The new behavioral relationship R that integrates B3 and

B4 strengthens the condition required for B4 to be turned on. Not only must B4 be o�

(by the fact that B4 is a switch), but R implicitly adds the requirement that B3 (the

interlock) also be o�.

Whereas this dissertation mostly addresses relationships that extend the postcondi-

tions that specify individual behaviors, non-conservative relationships extend the precon-

ditions. This issue raises two questions. Can non-conservative relationships be captured

in the modeling framework? Can these relationships be implemented as mediators?

The integrated relations are appropriate for modeling non-conservative relationships.

One could model R (above) as an element of this relation. However, a�ects is not

appropriate for modeling the realization of such relationships. The a�ects relationmodels

behavioral cause and e�ect. We say B1 a�ects B2 because turning on B1 implies that

B2 is also turned on. Extending the modeling framework to model behavioral inhibition

is plausible, but beyond the scope of this work.

124

As to whether non-conservative relationships can be represent by mediators, the

answer appears is yes, at least for simple cases. Operations announce events before they

execute their main functions. These events provide the opportunity for mediators to

intervene to prevent operations from carrying out their functions. Mediators registered

to be invoked by these events could check whether it is alright for the operations to

occur, and raise exceptions to abort operation if not. A mediator implementing R, when

noti�ed of an attempt to turn on the ignition, could check the interlock and raise an

exception if the interlock is on, for example. I have not yet tried to validate the usefulness

of this approach in practice.

8.5 The Modeling Framework

The validity of the modeling framework itself is a serious concern. There are important

aspects of integrated systems that it does not capture well. My main claim for the

framework is that it isolates a set of issues and models them well enough to explain

problems with common design methods and to suggest a solution. Nevertheless, it is

useful to clarify limitations of the framework.

One shortcoming is in the axiom stating that for one module to directly a�ect another

requires one of the modules to reference the other. In actuality, some implementation

frameworks allow third party registration, in which a \third party" object C registers an

operation O of object M with event E of object N : M subsequently a�ects N without

M or N referencing the other|violating a framework axiom.

That the framework does not model this possibility is not fatal. First, the framework

axioms could be relaxed to model this situation. Second, third party registration appears

not to be common in practice. None of the methods I discuss use it aggressively, nor does

it alone solve the problems with common design methods. Nor is it needed to implement

mediators. This observation suggests that it may be useful to provide designers with

restricted frameworks that preclude the use of third party registration.

Another problem with the framework is that it models behavioral relationships as

125

binary (integrated) relations. Yet, not all behavioral relationships are binary, in prac-

tice. Behavioral relationships of higher arities are in fact quite common. This is not

a big problem. Although it may be possible to extend the framework to model n-ary

relationships, it is not clear that doing so would provide value. I de�ned the framework

�rst to show how common design methods handle even simple (binary) cases poorly; and

second to provide a basis for searching for a solution to this problem. The framework

suggested mediators as an abstract solution. The actual mediator construct, being based

on �rst-class objects, accommodates n-ary relationships quite easily. With this practical

solution in hand, it is not clear that we need to go back to �x the abstract framework.

8.6 Subtype Polymorphism

Another objection to this work is that it ignores a central aspect of object-oriented de-

sign methods: subtype polymorphism. Polymorphism provides the ability to substitute

instances of behaviorally extended types where instances of restricted supertype are in-

dicated. In particular, one could place the behavioral extensions needed to integrate

objects of one type with other objects in the de�nition of a subtype of the given type.

Neither the supertype nor clients expecting supertype instances would have to be aware

of the subtype. Doesn't this solve the problems with common design methods based on

ADTs, without the e�ort of behavioral ER modeling and mediator design?

Subtype polymorphism does not solve the problem. First, subtyping does not lead

to externalized, cohesive representations of behavioral relationships. Second, subtyp-

ing co-locates representations of behavioral relationships with the representations of the

behaviors to be integrated. Third, the subtype approach may require distributing the

representations of complex behavioral relationships over multiple subtypes. Fourth, a

new subtype may be needed for each subset of behavioral relationships in which a given

behavior may participate. This leads to a combinatorial proliferation of subtypes. Fifth,

in practice most subtypes are de�ned statically, so using subtypes to integrate objects

dynamically (during execution or evolution) is untenable. Sixth, most subtype concepts

126

do not accommodate what I have called non-conservative integration; rather, subtypes

conserve the behaviors of their supertypes. This is understandable given that substi-

tutability of instances is a key objective; but, in practice, designers need to think about

non-conservative integration, as well.

Subtyping just does not seem to be the right way to think about integration. A

switch B1 that works with a switch B2 is not clearly best viewed as a di�erent kind

of switch, but simply as a switch that happens to be integrated with other switches in

a system. Nor does multiple inheritance really help. Although a subtype that inherits

twice from a Switch class does provide a centralized location for the code to integrate two

switch instances in one relationship, this structure does not accommodate particpation

of objects in changing sets of relationships. Even in the simple case of two switches,

the operations of one or both switches will have to be renamed so as not to con
ict in

the subtype. Indeed, multiple inheritance closely resembles the encapsulation method

with respect to the criteria employed in this work. It does not avoid the unneccessary

complexity of integration and evolution characteristic of common design approaches.

8.7 Reasoning in the Presence of Implicit Extension

Common software engineering wisdom requires avoidance of side e�ects. Lehman states

\There should be no side e�ects, no incidental consequences of the execution of any code

sequence [Lehman 80, p. 420]." Yet, side e�ects are key to the mediator method. Calling

an operation executes its code, but also codes registered by arbitrary mediator objects.

Indeed, it is impossible to specify the runtime e�ects of an ABT-based operation in the

absence of knowledge of the context in which the object is embedded, since meanings

can be implicitly extended arbitrarily. Implicit extension compromises denotationality|

a serious matter. Does it disqualify the mediator method as valuable for software design?

The answer is no, at least for a broad class of systems. The advantages of being able

to integrate components often outweigh the problems caused by having the meanings of

components dependent on context. Moreover, any method that uses implicit extension

127

(e.g., MVC, Field) has the same basic property; so, in principle, mediators are no worse

than many other methods in this regard. In practice, the aggressive use of implicit

invocation in mediator-based designs may exacerbate the problem, however, by increasing

the di�culty of debugging, for example. (See also the comments in Section 6.2.6.)

The issue of denotationality does raise interesting research questions. Although the

meaning of a component may not be determined locally, it is determined in any given

context by combining the local speci�cation with extensions implicitly conjoined by

other components. Techniques to help reason about meanings of objects in context may

help. Transitively conjoining to the speci�cation of a behavior in a behavioral ER model

all predicates conjoined by behavioral relationships incident on that behavior yields a

speci�cation of the global meaning of the component in context. The analogous approach

for imperative implementations is harder.

8.8 Information Hiding

Another possible objection to this work is that behavioral ER models and ABTs com-

promise information hiding: behavioral ER models by exposing the internal structures of

compositions; ABTs by the dynamic activities of objects through event announcements.

Does revealing the structure of a system as a set of behaviors in a network of re-

lationships violate information hiding? The answer in many cases is no. Structure is

revealed. Systems are not presented as black boxes. But the structure that is exposed

does not necessarily reveal inessential design decisions. Many behaviors in the world are

abstractly organized as systems structured as sets of individually visible, behaviorally in-

tegrated parts. Think of a car. It is not a black box but an assembly of directly accessed

parts: the radio, the transmission, the ignition switch, and so forth. Behavioral ER

modeling provide an appropriate means for abstractly modeling integrated structures.

Does implicit invocation violate information hiding by exposing transitions objects

undergo? Information is certainly revealed, but the suppression of inessential design

decisions is not compromised. The visible behaviors in which objects engage are, in

128

the ABT view, essential properties of objects. They are not implementation details.

ABTs simply support a di�erent class of abstractions than ADTs. Whereas ADTs mod-

els machines with actuators, ABTs model machines with both actuators and indicators

(events). ABTs do not reveal the \internal wiring" implementing their abstract inter-

faces.

8.9 Alternatives to Abstract Behavioral Types

I chose ABTs for implementing behavioral ER models because they provide a general

building block patterned on the familiar ADT and powerful enough to support medi-

ator design. The key feature of the ABT is that it makes events dual to operations.

Events names and signatures are declared, and events have precise semantics. Hoare

suggests what designers need are abstractions that support clear thinking about prob-

lems and solutions, and providing a basis for notations supporting clear expression of

such thoughts [Hoare 68]. I believe ABTs satisfy this requirement.

However, one might ask why adopt the ABT given many existing frameworks that

support implicit invocation: Smalltalk-80, Field, etc? Indeed, the use of the mediator

approach does not strictly require ABTs. One could implement behavioral relationships

as separate tools using the Field or Smalltalk-80 implicit invocation mechanisms. What

I �nd is that ABTs helps designers structure their thoughts by focusing attention on au-

dible behaviors as a key, abstract property of objects. To develop a sense for advantages

and shortcomings of ABTs, I now discuss them in the context of related constructs.

Smalltalk-80 Change Noti�cation. Smalltalk-80 does not declare events; nor do

objects register operations with events. Rather, objects register themselves as depen-

dents of other objects. This e�ectively registers �xed operations de�ned in the Object

base class with events also de�ned there. (The details are a bit more subtle, as discussed

elsewhere [Sullivan and Notkin 92].) One specializes the events by passing application-

speci�c values as event parameters, usually indicating that some \aspect" of an object

129

changed. One specializes registered operations by rede�ning them in subclasses of Object.

This approach seems to encourage designers to think in terms of traditional ADT-

like objects that depend directly on each other in certain, standard ways. The \update"

dependence of views on models is the archetypal design idiom promoted by this kind of

framework. In contrast, ABTs support a more symmetrical abstraction. Every object

potentially announces and responds to explicitly declared events.

Events in the Global Scope. Another possibility is to organize events as belonging

not to individual objects but to a \global scope," in the way that operations do not belong

to individual objects in the Generalized Object Model [Bellcore 92]. Some frameworks,

such as Field, do just this. The message server manages a single, large space of events;

and tools really register for these global events.

There are several reasons to prefer ABTs. Perhaps the most important is that a

global event approach is a more radical departure from common design methods. The

cost of making the transition to ABTs is already substantial, even for some experienced

designers, as discussed below. Since a shift to global operations and events it is not

necessary to solve the problems that I have identi�ed, the case for that more extreme

departure from familiar patters is not warranted.

I do not mean to suggest that there are not other problems that justify such a

departure; but those problems are not addressed by this work. If, however, it becomes

clear that global events, external to any particular objects, are indicated for a particular

design, the ABTs can still be used to advantage. It is easy to simulate global events

using ABTs. One need only de�ne an ABT having a single event in its interface, and

instantiate an object of that type in the global scope. This does require that objects be

able to announce events other than those in their own interfaces, which has not been

necessary for the designs discussed earlier.

130

8.10 Anticipating Event Interfaces

A common challenge to the ABTs is that it requires designers to anticipate the events

needed in an object's interface|and, implicitly, that this is unreasonably hard. It is true

that the only behavioral relationships that can be represented by mediators are those

expressible in terms of events and operations declared in the interfaces of the objects to

be integrated. It is true that if an event or operation needed by a mediator is missing,

then the desired relationship cannot be represented by a mediator without interface

changes.

This is not a problem that can be solved, nor is it unique to the mediator method

or to ABTs. Object interfaces generally have to be rich enough to support clients. If

they are not, they have to change|or implementations can be changed, circumventing

interfaces altogether. The mediator method drives designers to make required interfaces

explicit. If a needed event or operation is missing, it has to be added. In practice, based

on the experiences reported in this work, such changes are not frequent nor costly; nor

does adding events to an interface compromise the independence of objects.

A related problem, encountered only once (by C. Brett Bennett) is that event inter-

faces grow quite large if many di�erent behaviors have to be made audible; and in this

case it may not be desirable to implement each one as an event object (as discussed in

Chapter 7). In the case where this problem arose, Bennett basically fell back on the

Smalltalk-80 style, by de�ning one \physical" event parameterized in various ways to

represent di�erent but related \logical" events. However, this is truly but an implemen-

tation detail. The approach to designing objects with arbitrary, designer-speci�ed event

interfaces was strictly followed.

8.11 Does the Mediator Method Ease Design?

A hard question to answer is whether the mediator method makes people better software

designers. In my experience, it does, although this does not happen without e�ort. It

131

is hard for people to make the \paradigm shift" to the new design method. It was hard

for me, in retrospect; and it appears to be hard for most everyone. Once the shift is

made, though, leverage is obtained, as it becomes easier to design useful decompositions

of complex systems. At some point, the designer sees that integration and independence

are reconciled|that one can design parts locally yet have them work globally.

To make the shift, one has to get a feel for behavioral ER modeling, for the models

that can be implemented directly using ABTs, and for the care that has to be taken

in precisely de�ning the semantics of mediators, and for the kinds of transformations

that takes models that cannot be directly implemented using ABTs to ones that can.

Systems of mutually dependent relationships, in particular, have to be recognized as not

directly implementable by sets of corresponding mediators. One has to know that such a

system can be replaced by single, more complex relationship that handles the system as

a whole. The more complex relationship can then be implemented as a mediator|albeit

a more complex one. Once one has acquired pro�ciency with these ideas (which in my

experience seems to take the e�ort of building one or two complete systems), the bene�ts

surpass the costs and the positive value of the mediator method becomes apparent.

Chapter 9

Connections to Related Work

Ezra Pound has said, \You can't judge any chemical's action merely by putting it with

more of itself. To know it, you have got to know its limits, both what it is and what

it is not. What substances are harder or softer, what more resilient, what more com-

pact [Pound 37]." In this spirit, this chapter characterizes the work presented in this

document by placing it in the context of other related e�orts.

9.1 Behavioral Entity Relationship Modeling

In this section, I consider work related to behavioral ER modeling, in particular, em-

phasizing the conception, speci�cation, implementation, and evolution of relationships

separately from the entities related. The idea of relationships as constructs distinct from

related entities is centuries old, of course. It is a central idea to modern mathematics.

And, more to the point, it has been exploited in software design for many years. This

section relates behavioral ER modeling to other software engineering e�orts in which the

separation of relationship concerns �gures prominently.

133

9.1.1 Entity-Relationship Data Modeling

Separating the representations of relationships from those of the entities to be related

in software engineering dates at least to Chen's entity relationship (ER) data model-

ing method [Chen 76]. Before Chen, data modelers tended to represent relationships

in terms of attributes (�elds) of the entities (relations) to be related. To represent the

employment of an employee by a company, an employee record would contain a �eld

holding the identi�er of the record for the corresponding company in the company re-

lation. This is analogous to what I have called hardwiring. Chen's approach was to

represent the relationship as a separate relation. Thus, entity relations model entities,

such as employees or companies, while relationship relations model relationships, such

as the employment of employees by companies.

The hardwiring of relationships into entities caused the same sorts of problems for

data models that it causes for behavioral models: clarity is reduced as the simplicity

and independence of the entity relations is compromised, and evolution is unnecessarily

complicated by the need for entities to change when relationships are added to, deleted

from, or changed in a data model. Chen's separation of relationships helped solve these

problems and provided the software engineer with a better way to think about not only

data models but application domains themselves.

The separate representation of behavioral relationships in behavioral ER models is

clearly based on the same basic idea as ER data modeling. The value added by behavioral

ER modeling is not in the general idea but in the richer kinds of behaviors that are

represented in this way. Data modeling cannot capture the rich behaviors needed to

implement complex, integrated systems, such as Prism. Data modeling can express

some behavior, but not enough. Cardinality constraints on relationships, for example|

e.g., every employee has one boss|do imply some behavior: e.g., adding an employee

requires adding an association mapping the employee to a corresponding boss [Kilov and

Ross 94]. However, simple constraints of this kind are not rich enough to e�ectively

model the systems described in this work.

134

9.1.2 The Object-Relationship Model

Rumbaugh [Rumbaugh 87] is largely responsible for introducing the relationship as �rst-

class concept to the object-oriented community. He argued that representing relation-

ships in terms of pointers in the objects to be related reduces clarity and complicates

software evolution. This notion is the object-oriented analog of Chen's idea.

To solve the problem, Rumbaugh proposed that relationships be represented sep-

arately, using constructs distinct from the classes used to represent objects. He also

proposed to given relationships behaviors by allowing their de�nitions to specify that

operations should \propagate through them." For example, a part-of relationship, as-

sociating the wheels of cars with the car, might be annotated to propagate the deletion

operation: then deleting the car would also delete its wheels. This idea was incorporated

into a popular object-oriented modeling and design method [Rumbaugh et al. 91].

Behavioral ER modeling, although similar in spirit, di�ers both in its emphasis on

de�ning relationships with rich behaviors and in its approach to implementing behavioral

relationships as mediators. The di�erence in behaviors can be seen by comparing the

association between a car and its wheels to the bijection mediator that incrementally

maintains a relation that encodes a one-to-one mapping between two sets. Allowing re-

lationships to have complex behaviors eases the design of complex systems. Behavioral

relationships are a more general-purpose modeling construct than Rumbaugh's associa-

tions.

The mediator method also employs a single basic building block, the ABT, in contrast

to the separate class and relationship constructs advocated by Rumbaugh. The addition

of events to interfaces enables use of this one construct to represent both behaviors and

relationships. This uniformity has at the important advantage that mediators can be

treated as objects by other objects. The dialbox mediator discussed in Chapter 7 is an

example. There is no fundamental need for a separate construct, and some important

advantages follow from using the single ABT construct.

135

9.1.3 Contracts.

Helm et al. make the idea of generalized behavioral relationships explicit in a paper

sketching a language for specifying such relationships [Helm, Holland, and Gangopadhyay

90]. The key construct in this language is the contract. A contract speci�es a relationship

by de�ning the roles of the relationship (e.g., employee and employer), the interfaces that

participating objects must support, preconditions on the objects for participation in the

relationship, a procedure for initializing the objects in a relationship, an invariant over

the states of the objects, and invocation obligations on the objects to maintain the

invariant. To promote the design of reusable relationships, contracts are generic with

respect to participating objects. A construct called a conformance declaration adds a

level of indirection to allows particular objects to participate in generic relationships.

These constructs de�nes how objects discharge the obligations imposed by contracts.

This work shares with behavioral ER modeling the basic view that behavioral re-

lationships should be treated as �rst-class constructs; but it di�ers in important ways.

First, the language is intended for speci�cation, not implementation, while ABTs pro-

vide a medium for implementing relationships in common programming languages. The

ISO Generalized Relationship Model [ISO/IEC JTC1/SC21/WG4 92, Kilov et al. 92]

is similar in this regard. Second, contracts often specify that objects invoke each other.

This biases implementations towards hardwired designs. Third, contracts emphasize re-

lationships over the objects they relate: \the speci�cation of a class becomes spread over

a number of contracts and conformance declarations, and is not localized to one class

de�nition [Helm, Holland, and Gangopadhyay 90, p.178]." Yet contracts are justi�ed by

the idea that in other languages, \behavioral compositions : : : are spread across many

class de�nitions [Helm, Holland, and Gangopadhyay 90, p.169]." The mediator method,

by contrast, emphasizes equally relationships and the objects they relate. Finally, the be-

havioral ER modeling method does not emphasize genericity of relationships, although

it does not preclude it. It is not hard to de�ne adapter objects to add the level of

indirection needed for generic mediators.

136

9.1.4 Constraint Programming

Constraint programming systems are also based on a separate representation of re-

lationships. Such systems include Penguims [Hudson and Mohamed 90], ThingLab

II [Freeman-Benson, Maloney, and Borning 90], Kaleidoscope [Freeman-Benson 90, Lopez,

Freeman-Benson & Borning 93] (which extends the ThingLab II mechanisms by adding

linguistic constructs for abstracting low-level constraints into compound constraint ob-

jects), and CLP(R) [Ja�ar et al. 92]. Using these systems, one organizes a program

as a set of variables and a set of constraints over those values that are to be solved, or

maintained as the variable values are changed.

A key technology behind these systems is a global representation of the constraints

and variables in a system. Such a representation provides the basis for automatic han-

dling of con
icts and for e�cient constraint satisfaction. This automation relieves de-

signers from having to handle such tasks manually. The declarative notations used in

some constraint systems also spare designers from having to translate speci�cations into

error-prone imperative code.

In exchange for these advantages, constraint programming systems often restrict the

set of problems that can be handled. Some system only solve systems of linear inequa-

tions [Ja�ar et al. 92]. Others loosen the semantic restrictions while retaining automa-

tion, but at the cost of having to give up declarative notations. ThingLab II [Freeman-

Benson, Maloney, and Borning 90] strikes an interesting compromise in this dimension.

It promotes design in terms of logical constraints and variables; and it implements con-

straints and variables as corresponding physical \constraint" and \variable" objects that

are imperatively progrmmed. To this extent, the mediator method is remarkably simi-

lar to ThingLab II. Neither approach relieves designers of the task of writing imperative

code, but both encourage e�ective entity relationship-based decompositions of that code.

The di�erence between the two approaches is that ThingLab II accepts certain se-

mantic and structural restrictions in return for the ability to provide certain bene�ts

automatically. The mediator method dispenses with such mechanisms, placing more

137

responsibility on the designer, but in return provides the designer with an unencum-

bered, fully general, implementation framework. The bene�ts to designers of complex,

integrated environments far outweigh the cost of not having the automated consistency

checking that ThingLab II provides. In all fairness, the developers of ThingLab II do

not promote it as a platform for complex, integrated environments, but as a system to

support graphical user interface development.

To understand this tradeo�, one must look inside ThingLab II. A ThingLab II \vari-

able" is an imperatively programmed object that stores a value of an arbitrary type. A

ThingLab II \constraint" is an imperatively programmed object that implements a log-

ical constraint. In particular, a \constraint" is an object exporting a set of procedures,

one for each constrained \variable." Each procedure satis�es the logical constraint by

setting the value of the \variable" to which it is associated, based on the values of the

other constrained \variables." The system tracks the \constraints" and \variables" in

a program. The system uses this information in several ways. First, given an indica-

tion that the user is going to change a particular variable, the system selects a set of

procedures|one from each \constraint" connected directly or indirectly to that variable.

These procedures are composed sequentially into a program whose execution resatis�es

of all the logical constraints after any change in the value of the designated variable.

The system also uses its representation of the global constraint graph to detect and
ag

prohibited structures in the imperative code|value cycles in particular.

This implementation structure imposes severe semantic and structural restrictions

that make this system inappropriate for implementing complex, integrated environments.

One problem is that \constraints" compute values in a functional manner, which makes

impractical incremental consistency maintenance in the face of small changes to struc-

tured objects, such as sets [Maloney 91]. Another problem is that the constraint satis-

faction procedures cannot update more than one constrained variable; but doing this is

critical for incremental constraint maintenance. The bijection mediator updates one set

and its own relation in the face of insertions on another set, for example.

138

9.2 Mediators

Just as separating relationships is an established software engineering concept, so is im-

plicit invocation; even the implicitly invoked mediator is not an unprecedented construct,

although it way not previously developed in the general way presented in this disserta-

tion. This section discusses the mediator method as presented in this work in relation

to previous e�orts in which mediator-like constructs have appeared.

9.2.1 AP5.

AP5 [Cohen 89] is a declarative, constraint-based programming environment based on

Common Lisp [Bobrow et al. 88]. AP5 extends Common Lisp with a transactional,

relational database supporting triggers (procedures invoked when speci�ed conditions

are satis�ed). A trigger is a pair t = (p;m); with a declaratively speci�ed predicate p,

and an arbitrary imperative action m: The predicate is expressed in a notation based

on �rst-order logic extended with relational operators and with temporal operators for

naming the state of the before and after commitment of a proposed transaction.

When a transaction is proposed, the system reevaluates all predicates in the context

of the transaction. The system invokes the action parts of triggers whose predicates are

satis�ed in that context, in which the future state of the database re
ects commitment

of the transaction. To maintain a constraint, one de�nes a trigger whose predicate

re
ects the condition that would re
ect a violation of the desired constraint. If proposed

transactions would violate the constraint, the action part is invoked. It can then either

modify and resubmit the transaction, abort it, or take some other appropriate action.

Strengths of AP5 include incremental satisfaction of predicates as transactions are

processed and support of atomic transactions. Incremental satisfaction is important for

e�ciency in a database with triggers. It is too costly to reevaluate all predicates on each

transaction. Transactional semantics are important for maintaining global consistency.

It should be possible to abort a change and all of its e�ects if consistency cannot be

maintained.

139

The comparison of AP5 and the mediator approach is interesting. First, the AP5

mechanism (and, implicitly, design method) revolves around a central, relational database.

In contrast, behavioral ER modeling does not depend on any centralized mechanism or

structure. In fact, it leads to systems with decentralized, network-like structures. Sec-

ond, AP5 uses powerful mechanisms for predicate matching and transactions. These

mechanisms have obvious bene�ts; but they also carry costs. Designers must acquire

and learn and commit to a new environment, design method, and language. By con-

trast, the cost for an everyday software designer to adopt the mediator method is much

lower. The method does not seriously constrain the choice of programming language

or environment, nor does it require sophisticated and possibly costly mechanisms. Ben-

nett's geographic information browser was written in Objective C and runs on DOS. The

mediator method provides more value to the average designer of modest systems.

However, the mediator's lack of support for transactions (owing primarily to the

lack of support in common languages) is a serious shortcoming for developers of large

or complex systems. It appears that mediators could exploit transactions if they were

implemented on a platform supporting objects and nested transactions [Moss 87]; but I

still have yet to verify the practical utility of this combination.

9.2.2 APPL/A

APPL/A [Sutton, Heimbigner, and Osterweil 90] is an Ada-based programming language

that supports software process programming. The extensions to Ada include relations

with programmable implementations, triggers that respond to operations on relations,

optionally enforceable predicates on relations, and statements with transaction-like ca-

pabilities. APPL/A handles concurrency by allowing the designer to specify the synchro-

nization of event announcement with the execution of the implicitly invoked methods.

APPL/A also allows components that receive multiple event noti�cations to prioritize

them. Noti�cations are queued at components, which then handle the events in priority

order.

140

Of particular interest in this work is the APPL/A implicit invocation mechanism. In

contrast to the ABT, which permits objects to export and announce designer-speci�ed

events, only relation objects, instances of a special APPL/A type constructor, can an-

nounce events. Moreover, the events that relations can announce are restricted to insert,

delete, update, and �nd|indicating invocation of these relation operations.

These restrictions imply that the programmer must either use explicit invocation

mechanisms to integrate objects that are not relations, or model the objects as relations.

If explicit invocation is used, the bene�ts of implicit invocation, such as easier evolution,

are lost. If all components are modeled as relations, then the programmer is prevented

from using more natural representations where appropriate.

APPL/A can be viewed as supporting a special case of the ABT. The mediator

method aggressively generalizes the special case, providing the designer with a more ver-

satile medium for conceiving and representing systems. The APPL/A system provides a

model for concurrency control lacking in the mediator approach. Marrying the strengths

of these e�orts is a promising research direction.

9.2.3 Chiron

Chiron-1 [Keller, Cameron, Taylor, and Troup 91] also exhibits what can be seen as a

special case of the mediator method. In Chiron-1, artist objects maintain consistency

between arbitrary objects and objects called abstract depictions, representations from

which a concrete, graphical displays of the underlying objects can readily be generated.

An artist updates an abstract depiction when the artist is implicitly invoked by an

event that indicates invocation of an operation on the underlying object. The system

announces these events automatically, relieving the designer from having to declare or

announce. In the reverse direction, part of the system called the abstract depiction

manager may invoke artists explicitly to change the underlying objects.

The \active data types" of Chiron-1 di�er from ABTs in that the designer of an ABT

explicitly declares and implements events and programs event announcements. Chiron-1

141

relieves the designer of this task, at the cost of restricting events announced to those that

indicate operation invocations. If that is the only kind of event desired, the Chiron-1

approach provides a greater value to the programmer than the ABT, since it provides

the same bene�t at a lower cost. (Chiron-1 handles concurrent updates properly.)

In my experience, other events are useful often enough that the
exibility provided

by ABTs is valuable, despite the cost to declare, implement, and announce them. A

simple example is a set ABT announces the insertion of an element to a set only if the

insertion operation actually changes the set, which is not necessarily on every invocation

of the insertion operation. Making events as general as operations really changes the

way designers can think about system components.

9.2.4 Views for Tools

Garlan de�ned yet another mediator-like construct: the compatibility map. In an inte-

grated environment, di�erent tools may be designed to operate on the same information

in di�erent ways. The problem of the consistency of di�erent views of common informa-

tion arises. Garlan handled the problem by representing views as ADTs and by merging

views that represent the same information [Garlan 87]. In merging, the separate inter-

faces of distinct ADTs are preserved, but multiple implementations are replaced with a

single implementation that supports both the views individually as well as consistency

among the views.

The system produces merged implementations automatically by selecting appropriate

compatibility maps. These mediator-like constructs are selected inductively based on

the system's knowledge of the basic types and relationships available. After merging,

di�erent interfaces on the shared information cab be used by di�erent tools. A compiler

may view data as a set interface, while another tool views it as a list, for example. In

Garlan's approach a system has a �xed set of compatibility maps and composition rules;

follow-on work loosened this restriction by providing a language for de�ning maps and

compositions [Habermann et al. 88].

142

An advantage of this approach is that it allows merged implementations to be opti-

mized, with potentially signi�cant savings in both time and space. Two views containing

identical elements may share a single instance of that element in a merged view. On the

other hand, the approach prevents types from being integrated simultaneously in several

relationships: a view interface can be bound to only one merged implementation. Nor is

merging desirable in all cases: protection or reuse concerns may suggest separate imple-

mentations, for example. Finally, in practice, generating merged implementations may

be costly, since the types and relationships needed for a broad range of environments are

not likely to be known by the system in advance.

The mediator approach dynamically integrates type instances, and so passes up the

opportunity for optimization of integrated representations. There is the theoretical pos-

sibility of runtime optimization, but that remains a hypothetical that may be addressed

in the future. On the other hand, the
exibility and low cost of mediation using ABTs

provides an approach that is available to programmers today, that has been shown to

have signi�cant value in several ambitious development e�orts, and that admits the net-

work structures of behavioral ER models, in contrast to the highly restrictive structures

of types statically integrated through compatibility mappings.

9.3 Implicit Invocation

The use of implicit invocation in software design has a long history. Many programming

languages, systems, and methods have included or been based on mechanisms of this

kind [Goldberg and Robson 83, Habermann and Notkin 86, Ste�k, Bobrow, and Kahn 86,

Krasner and Pope 88, Cohen 89, Reiss 90, Cagan 90, Sutton, Heimbigner, and Osterweil

90, Collins et al. 91, Gorlick 91, Harrison, Kavianpour, and Ossher 92] However, a

uni�ed view of the behavior, bene�ts, and design space for such mechanisms emerged

only recently [Garlan and Notkin 91, Sullivan and Notkin 92]. A detailed discussion of

this work is beyond the scope of this dissertation. I refer the interested reader to the

literature.

143

9.4 Structure and Evolution

Finally, this dissertation is based on a large body of work on the relationship between the

structure of software representations and key software engineering outcomes, including

ease of design and evolution. Dijkstra suggests that perhaps, \the only problems we

can really solve in a satisfactory manner are those that �nally admit a nicely factored

solution[Dijkstra 72, p.124]." The contribution of this work in this dimension is to

develop a nice way to factor the behaviors of integrated systems and their corresponding

software representations.

The important works of Belady and Lehman [Lehman and Belady 85] characterize

statistical invariants that appear to govern the development, evolution, value over time,

and ultimate ossi�cation of large software systems. In these terms, the contributions of

this work are, �rst, a characterization of how using common methods to design integrated

systems unnecessarily hastens the decay that robs systems of their value; and, second, a

new method that, when carefully applied, can signi�cantly delay the onset of decay and

thus increase and extend the value of integrated systems.

In contrast to the statistical|essentially thermodynamical|approach of Lehman

and Belady, David Parnas takes a more classical approach to characterizing relation-

ships between structure and evolution. Parnas's foundational work on information hid-

ing [Parnas 72] argues that not all modular decompositions of software representations

are equally good with respect to ease of evolution; but rather that evolution is eased by

decompositions in which modules hide design decisions that are subject to change|in

particular, choices about data representations and algorithms. Those modularizations

are best that anticipate likely changes. In this regard, the contribution of this work is

a way of modularizing systems, at both the conceptual and implementation levels, that

anticipates changes in intergation requirements: in particular, the addition, deletion,

and modi�cation of behaviors and behavioral relationships in integrated systems.

Parnas'sWork on extension and contraction is also relevant [Parnas 79]. Here, Parnas

argues that cyclical dependencies among modules complicates the design and evolution

144

of families of systems, the reason being that all modules must be present and work

properly for any one to do so. To make this idea more precise, Parnas models systems

in terms of modules related in a uses relation. He argues that, absent other concerns,

the designer should strive for a hierarchical uses relation. In this case, modules at lower

levels remain independent of those at higher levels, allowing one to more easily deliver

subsets and supersets of a system's functions.

The modeling of representational structure in terms of modules and relations in

this work clearly has a precedent in Parnas's paper on extension and contraction. The

mediator method can also be analyzed in terms of Parnas's uses relation. The key

to the mediator method is that modules that implement behaviors do not use (or call

or reference in any other way) modules outside of themselves, but that modules that

implement behavioral relationships inherently do use (and reference) the modules they

relate. The mediator method thus naturally leads to a hierarchical uses (and references)

structure. This property obviously cannot guarantee freedom from other problems (such

as multiple mediators using the same behavioral objects in con
icting ways), but it does

keep behavioral modules independent, in the sense of uses, from modules with which

they are behaviorally integrated.

Chapter 10

Conclusion

In this dissertation, I characterized common software design methods and showed how

they signi�cantly and unnecessarily complicate the design, realization, and evolution of

integrated systems. I presented the mediator method as a solution. This method com-

bines behavioral ER modeling as a design technique, with an approach to implementing

behavioral ER models in terms of ABTs. The mediator method yields substantial bene-

�ts at low cost to provide signi�cant value to practicing software engineers. I substanti-

ated this claim both by analytic reasoning and by careful re
ection on experiences with

the method, especially the design of the Prism radiation treatment planning system.

Despite the simpli�cations made by the models and the qualitative character of the

experiences, I believe I have adequately defended my thesis: the mediator method is

signi�cantly better than common software design methods for designing, realizing, and

evolving synchronous, sequential integrated systems. The mediator method not only

allows engineers to design more e�ectively, but|by providing broader, more tightly

integrated, more easily adapted behaviors than otherwise feasible|enables the delivery

of more e�ective systems to users. These systems then provide added value to their

bene�ciaries, e.g., by enabling better cancer treatment. That bene�ts society, which

then, in turn, supports works such as this one. This ideal, closed cycle provides for an

incremental, monotonic increase in gross value, which must be our ultimate goal.

146

The reality is that investments do not always pay o�, but the potential for gain

requires risk. Nor does one winning bet su�ce for all time. The value of any �xed

technology decreases over time. The problem is to win often and big enough to sustain

the loop of increasing value. Thus, the key question at the end of a winning e�ort is

what next? To conclude this dissertation, I therefore sketch future e�orts that appear

to stand a reasonable chance of adding value by extending the results of this work.

A formal semantics for behavioral ER modeling. The problem is to precisely

specify behaviors|and in a form that eases design, integration, evolution. We need

formal speci�cation languages that admit behavioral ER modeling as a design strat-

egy and architectural style. We therefore need a formal (e.g., denotational) semantics

for such languages. There are some serious research problems here. One is that im-

plicit extension, which is at the heart of behavioral ER modeling, appears to con
ict

with denotationality|since the behavior of an expression can be implicitly extended,

depending on the context in which it is embedded. One solution is to accept local

non-denotationality while providing automatic support for synthesizing denotational ex-

pressions giving the meanings of expressions in the context of behavioral ER models.

A formal semantics of abstract behavioral types. The problem is to precisely

specify the behavior of ABTs in a form that is minimally biased to a particular imple-

mentation. Heterogeneous algebras provide a basis for formalizing abstract data types.

Is there an analog for abstract behavioral types; or are ABTs really just a notational

device for denoting behaviors that can already be formalized as abstract data types?

If the latter, how are ABTs formalized, and what is the mapping to the heterogeneous

algebraic speci�cation of equivalent ADTs?

Language support for behavioral ER modeling and ABTs The primary problem

is to get people to think in terms of behavioral ER models and mediators. The secondary

problem is that the software languages we use signi�cantly in
uence the ways we think;

147

and that common languages do not encourage, and may even discourage or preclude,

thinking in terms of behavioral ER models and ABTs.

There is thus a need to investigate languages to support the interlocking activities of

thinking and expressing in terms of behavioral ER models and ABTs. We need formal

speci�cation languages and, perhaps implementation languages even more. Program-

ming language semantics is an important issue here: typing issues; scope rules; e�cient

compilation of e�cient code; event parameter passing and return; exceptions; transac-

tions; concurrency.

Empirical data on software evolution. The problem is to better understand the

problem of the evolution of integrated software systems. How do the behaviors tend to

evolve; how do the software representations respond; and how does the choice of software

representation limit the adaptability of behaviors in practical terms? We do not have a

great deal of empirical data on this topic. The solution is to study reality. I propose to

carefully track and re
ect upon the evolution of a real system built using the techniques

in this work: Prism. The speci�c question is how much of the evolution of the system

falls into categories identi�ed in this work: adding, deleting, and changing behaviors and

behavioral relationships; to what extent does the system architecture localize and ease

or distribute and complicate changes; in particular, what desired behavioral changes are

unexpectedly hard, and why?

Scaling up in complexity of behaviors. The primary problem is that many real-

world integrated systems are not synchronous, sequential, but rather involve many asyn-

chronous, concurrent threads of control. Computer-aided design environments support-

ing large design teams are obvious examples. Integration and evolution problems are

just as critical as in the systems addressed by this work, and are even harder to solve

owing to the combination of larger scale and the need to maintain consistency in the

face of concurrent accesses. I propose to decouple scale and concurrency, and to study

concurrency in particular. This dissertation provides a precedent: the solution that

148

worked for the small-scale switch example scaled up to work just as well for Prism. I

propose to add concurrency to the mix and to study techniques that extend the mediator

method as presented here to handle problems in this more complex behavioral domain

(and similarly for temporality and non-conservative integration).

Other work. There are many other research directions to take based on this work.

I conclude by brie
y mentioning a few: developing tools for behavioral ER modeling

and for the synthesis and analysis of mediator implementations; organizing develop-

ment teams around the behavioral ER model structure; and reverse engineering and

re-engineering based on the recovery or synthesis of behavioral ER models of the behav-

iors of existing software systems.

Bibliography

[Bellcore 92] Bell Communications Research, \The Framework: A Disciplined Approach

to Analysis," Science and Technology Series ST-OPT-002008, Issue 1, May, 1992.

[Bennington 56] H.D. Bennington, \Production of Large Computer Programs," Proceed-

ings of ONR Symposium on Advanced Programming Methods for Digital Computers,

June 1956, pp. 15{27. Also in Annals of the History of Computing, October, 1983, and

Proceedings of the 9th International Conference on Software Engineering, (Computer

Society Press), 1987.

[Birrell and Nelson 84] A.D. Birrell, B.J. Nelson, \Implementing Remote Procedure

Call," ACM Transactions on Computer Systems 2,1, pp. 39{59, February, 1984.

[Bobrow et al. 88] D.G. Bobrow et al. Common Lisp Object System Speci�cation X3JI3

Document 88-002R. ACM SIGPLAN Notices 23, September 1988.

[Boehm 88] Boehm, B.W. \A Spiral Model of Software Development and Enhancement,"

Computer, May, 1988, pp. 61{72, in P.W. Oman and T.G. Lewis, Eds., Milestones in

Software Evolution, (Los Alamitos: IEEE Computer Society Press), 1990, pp. 249{260.

[Brooks 86] F.P. Brooks Jr., \No Silver Bullet|Essence and Accidents of Software En-

gineering," it Information Processing 86, H.J. Kugler, Ed., (North Holland), 1986,

pp. 1069{1076, in Milestones in Software Evolution, P.W. Oman, Ed., (Los Alamitos:

IEEE Computer Society Press), 1990, pp. 293{300. Also appears in Computer, April

1987, pp. 10{19.

150

[Brooks ???] F.P. Brooks Jr., Academic Careers for Experimental Computer Scientists.

[Cagan 90] M.R. Cagan, \The HP SoftBench Environment: An Architecture for a New

Generation of Software Tools," Hewlett-Packard Journal, 41,3, pp. 36{47, June 1990.

[Cameron 89] Cameron, J.R., JSP and JSD : The Jackson Approach to Software Devel-

opment, (Washington : IEEE Computer Society Press), c. 1989.

[Chase et al. 94] J. Chase et al.,, On the Opal system, ACM Transactions on Computer

Systems, forthcoming in 1994.

[Chen 76] P.P. Chen, \The Entity-Relational Model|Toward a Uni�ed View of Data,"

ACM Transactions on Database Systems, 1,1, pp. 9{36, March, 1976.

[Cohen 89] D. Cohen, \Compiling Complex Transition Database Triggers," Proceedings

of the 1989 ACM SIGMOD, 1989, Portland, Oregon, pp. 225{34.

[Collins et al. 91] T. Collins, K. Ewert, C. Gerety, J. Gustafson, I. Thomas, \TICKLE:

Object-Oriented Description and Composition Services for Software Engineering Envi-

ronments," Proceedings of the 3rd European Software Engineering Conference, October

1991, Milan, Italy, pp. 408{423.

[de Champeaux, Lea and Faure 93] D. de Champeaux, D. Lea, P. Faure, Object-

Oriented System Development, (Reading, Mass: Addison-Wesley), 1993.

[DeMarco 79] T. DeMarco, Structured Analysis and System Speci�cation, (Englewood

Cli�s, NJ: Prentice-Hall), 1979.

[Dijkstra 65] E. Disjkstra, \Programming Considered as a Human Activity," Proceedings

of the 1965 IFIP Congress, (Amsterdam, The Netherlands: North-Holland), 1965, pp.

213{217, in E.N. Yourdon, Ed., Classics in Software Engineering, (New York: Yourdon

Press), 1979, pp. 3{9.

151

[Dijkstra 72] E. Disjkstra, \The Humble Programmer," ACM Turning Award Lecture,

ACM Annual Conference, Boston, August 14, 1972, in E.N. Yourdon, Ed., Classics in

Software Engineering, (New York: Yourdon Press), 1979, pp. 113{125.

[Fraass et al. 87] B. A. Fraass and D. L. McShan, \3-D Treatment Planning I. Overview

of a Clinical Planning System," in I. A. D. Bruinvis, P. H. van der Giessen, H. J.

van Kle�ens and F. W. Wittkamper, eds., Proceedings of the Ninth International

Conference on the Use of Computers in Radiation Therapy, (Amsterdam: North-

Holland), 1987, pp. 273{277.

[Freeman-Benson, Maloney, and Borning 90] B. Freeman-Benson, J. Maloney, A. Born-

ing, \An Incremental Constraint Solver," Communications of the ACM 33,1, pp. 54{

63, January, 1990.

[Freeman-Benson 90] B.N. Freeman-Benson, \Kaleidoscope: Mixing Objects, Con-

straints, and Imperative Programming," Proceedings of OOPSLA/ECOOP 90, 1990,

Ottawa, Canada, pp. 77{88.

[Garlan 87] D. Garlan. Views for Tools in Integrated Environments. Ph.D. Thesis,

Carnegie-Mellon University, 1987.

[Garlan and Ilias 90] D. Garlan and E. Ilias, \Low-cost, Adaptable Tool Integration Poli-

cies for Integrated Environments," Proceedings of SIGSOFT90: Fourth Symposium on

Software Development Environments, 1990, Irvine, California, pp. 1{10.

[Garlan and Notkin 91] D. Garlan, D. Notkin, Formalizing Design Spaces: Implicit In-

vocation Mechanisms. VDM '91, Formal Software Development Methods. Appears as

Springer-Verlag Lecture Notes in Computer Science #551 (November 1991).

[Goitein et al. 83] M. Goitein and others, \Multi-dimensional Treatment Planning: II.

Beam's Eye-view, Back Projection, and Projection Through CT Sections," Interna-

tional Journal of Radiation Oncology Biology and Physics 9, 1983, pp. 789{797.

152

[Goldberg and Robson 83] A. Goldberg and D. Robson, Smalltalk-80: The Language

and its Implementation, (Reading, Mass: Addison-Wesley), 1983.

[Griswold 91] W.G. Griswold Program Restructuring to Aid Software Maintenance,

Ph.D. Dissertation, Technical Report 91{08{04, Department of Computer Science and

Engineering, University of Washington, August, 1991.

[Gorlick 91] Gorlick, M. M. and Razouk, R. R., \Using Weaves for Software Construc-

tion and Analysis," Proceedings of the 13th International Conference on Software En-

gineering, Austin, Texas, May, 1991, pp. 23{34.

[Guibas and Stol� 85] L. Guibas and J. Stol�, \Primitives for the Manipulation of

Three-Dimensional Subdivisions," ACM Transactions on Graphics 4,2, pp. 74{123,

April, 1985.

[Habermann and Notkin 86] A. N. Habermann and D. Notkin, \Gandalf Software De-

velopment Environments," IEEE Transactions on Software Engineering SE-12,12, pp.

1117{1127, December 1986.

[Habermann et al. 88] A.N. Habermann, C. Krueger, B. Pierce, B. Staudt, and J. Wenn.

Programming with Views. Technical Report CMU-CS-87-177, Carnegie-Mellon Uni-

versity, January, 1988.

[Harrison, Kavianpour, and Ossher 92] W. Harrison, M. Kavianpour, and H. Ossher. In-

tegrating Coarse-Grained and Fine-Grained Tool Integration. IBM Research Division,

Research Report RC 17524 (#77482), January 8, 1992.

[Helm, Holland, and Gangopadhyay 90] R. Helm, I.M. Holland, D. Gangopadhyay,

\Contracts: Specifying Behavioral Compositions in Object-Oriented Systems," Pro-

ceedings of OOPSLA/ECOOP 90, 1990, pp. 169{180.

[Hoare 68] C.A.R. Hoare, \Record Handling," in F. Genuys, ed., Programming Lan-

guages, pp. 291{347, Academic Press, 1968.

153

[Hoare 84] C.A.R. Hoare, \Programming: Sorcery or Science," IEEE Software 1,2, April,

1983, pp. 5{16, in P.W. Oman and T.G. Lewis, Eds., (Los Alamitos: IEEE Computer

Society Press), 1990, pp. 273{283.

[Hoare 87] C.A.R. Hoare, \An Overview of Some Formal Methods for Program Design,"

IEEE Computer 20,9, 1987.

[Hudson and Mohamed 90] S.E. Hudson and S.P. Mohamed, \Interactive Speci�cation

of Flexible User Interface Displays," ACM Transactions on Information Systems 8,3,

pp. 269-288, 1990.

[ISO/IEC JTC1/SC21/WG4 92] ISO/IEC JTC1/SC21/WG4, \General Relationship

Model|Third Working Draft: ISO/IEC JTC1/SC21 N 7126," May, 1992.

[Jackson 75] M.A. Jackson, Principles of Program Design, (London: Academic Press),

1975.

[Jacky and Kalet 86] Jacky, J.P. and Kalet, I.J., \An Object-Oriented Approach to a

Large Scienti�c Application," OOPSLA '86 Object Oriented Programming Systems,

Languages and Applications Conference Proceedings, Meyrowitz, N., ed., 1986, pp.

368{376.

[Jacky and Kalet 87b] Jacky, J.P. and Kalet, I.J., \An Object-Oriented Programming

Discipline for Standard Pascal," Communications of the ACM 30,9, pp. 772{776,

September, 1987.

[Ja�ar et al. 92] Ja�ar, J., Michaylov, S., Stuckey, P., Yap, R. \The CLP(R) Language

and System," ACM Transactions on Programming Languages and Systems 14,3, July,

1992, pp. 339{395.

[Johnson 92] R.E. Johnson and V.F. Russo, \Reusing Object-Oriented Designs," Univer-

sity of Illinois at Urbana-Champaign, Technical Report UIUCDCS-R-91-1696, 1991.

154

[Keller, Cameron, Taylor, and Troup 91] R.K. Keller, M. Cameron, R.N. Taylor, and

D.B. Troup, \User Interface Development and Software Environments: The Chiron-1

System," Proceedings of the 13th International Conference on Software Engineering,

May, 1991, Austin, Texas, pp. 208{218.

[Kalet and Jacky 82] I. Kalet and J. Jacky, \A Research-Oriented Treatment Planning

Program System," Computer Programs in Biomedicine 14, pp. 85{98, 1982.

[Kalet et al. 91] I. Kalet, J. Jacky, S. Kromhout-Shiro, B. Lockyear, M. Niehaus, C.

Sweeney, and J. Unger, \The Prism Radiation Treatment Planning System," Technical

Report 91-10-03, Radiation Oncology Department, University of Washington, Seattle,

WA, October 31, 1991.

[Kalet et al. 92] I. Kalet, J. Unger, C. Sweeney, S. Kromhout-Shiro, J. Jacky, and M.

Niehaus, \Prism Graphical User Interface Speci�cation," Technical Report 92-02-02,

Radiation Oncology Department, University of Washington, Seattle, WA, March 18,

1992.

[Kalet 92] I. Kalet, \SLIK Programmer's Guide," Technical Report 92-02-01, Radiation

Oncology Department, University of Washington, Seattle, WA, March 17, 1992.

[Kalet 92c] I. Kalet, \Arti�cial Intelligence Applications in Radiation Therapy," in

Advances in Radiation Oncology Physics: Dosimetry, Treatment Planning, and

Brachytherapy, J.A. Purdy, ed., 1992, pp. 1058{1085.

[Kernighan and Ritchie] Kernighan and Ritchie, The C Programming Language.

[Kilov and Ross 94] Kilov, H. and Ross, J., Information Modeling: an Object-Oriented

Approach, (Englewood Cli�s, N.J.: Prentice Hall), 1994.

[Kilov et al. 92] H. Kilov, B. Moore, L. S. Redmann, \Proposed U.S. Comments on Gen-

eral Relationship Model|Third Working Draft," Accredited Standards Committee

X3|Information Processing Systems Document Number X3T5/92{296 X3T5.4/92{

1142, September 14, 1992.

155

[Krasner and Pope 88] G.E. Krasner and S.T. Pope, \A Cookbook for Using the Model-

View-Controller User Interface Paradigm in Smalltalk-80," Journal of Object Oriented

Programming 1,3, pp. 26{49, August/September 1988.

[Kutcher 88] G.J. Kutcher, R. Mohan, J.S. Laughlin, G. Barest, L. Brewster, C. Chue, C.

Berman, and Z. Fuks, \Three Dimensional Radiation Treatment Planning," Dosime-

try in Radiotherapy: Proceedings of an International Symposium on Dosimetry in

Radiotherapy 2, Vienna, September, 1988, pp. 39{63.

[Larus 89] J. R. Larus, Restructuring Symbolic Programs for COncurrent Execution on

Multiprocessors, Ph.D. dissertation, UC Berkeley Computer Science, May 1989. Also

appears as Technical Report No. UCB/CSD 89/502.

[Lehman 80] M.M. Lehman, \Programs, Life Cycles and Laws of Software Evolution,"

Proceedings of the IEEE Special Issue on Software Engineering 68, 9, September, 1980,

pp. 1060{1076, in M.M Lehman and L.A. Belady, Eds., Program Evolution: Processes

of Software Change, (London: Academic Press), 1985, pp. 393{449.

[Lehman 81] M.M. Lehman, \Programming Productivity|A Life Cycle Concept," Pro-

ceedings of CompCon 81, IEEE Cat. No. 81CH{1702{0, September, 1981, pp. 232{241,

in M.M Lehman and L.A. Belady, Eds., Program Evolution: Processes of Software

Change, (London: Academic Press), 1985, pp. 469{489.

[Lehman and Belady 85] M.M Lehman and L.A. Belady, Eds., Program Evolution: Pro-

cesses of Software Change, (London: Academic Press), 1985, pp. 355{373.

[Linton, Vlissides, and Calder 89] M.A. Linton, J.M Vlissides, and P.R. Calder, \Com-

posing User Interfaces with InterViews," Computer 22,2, pp. 8{22, February 1989.

[Liskov and Zilles 75] B.H. Liskov and S. N. Zilles, \Speci�cation Techniques for Data

Abstractions," IEEE Transactions of Software Engineering SE-1,1, March, 1975, pp.

7{19.

156

[Lopez, Freeman-Benson & Borning 93] Lopez, G., Freeman-Benson, B. and Borning,

A., \Kaleidoscope: A Constraint Imperative Programming Language," in Mayoh, B.

et al. (Eds.), Constraint Programming, NATO Advanced Institute Series, Series F:

Computer and System Sciences, Springer-Verlag, (1993). Also appears as Technical

Report 93{09{04, University of Washginton Department of Computer Science, Seattle,

Washgington, September, 1993.

[Maloney 91] J. Maloney, Using Constraints for User Interface Construction, Ph.D. Dis-

sertation, University of Washington Department of Computer Science and Engineering

Technical Report 91{08{12, August, 1991.

[McCabe 91] T. McCabe. Programming with Mediators: Developing a Graphical Mesh

Environment. Masters Thesis, University of Washington. 1991.

[Meyer 88] B. Meyer. Object-Oriented Software Construction, (Cambridge: Prentice-

Hall), 1988.

[Meyers 91] S. Meyers, \Di�culties in Integrating Multiview Development Systems,"

IEEE Software, pp. 49{57, January, 1991.

[Moss 87] J. Moss, \Nested Transactions: An Introduction," in Concurrency Control and

Reliability in Distributed Systems. B. Bhargava, ed., Van Nostrand Reinhold, 1987.

[Notkin et al. 93] D. Notkin, D. Garlan, W.G. Griswold, and K. Sullivan, \Adding Im-

plicit Invocation to Languages: Three Approaches," Proceedings of the JSSST Inter-

national Symposium on Object Technologies for Advanced Software (November 1993).

[Paluszynski 89a] W. Paluszy�nski, Designing Radiation Therapy for Cancer, an Ap-

proach to Knowledge-Based Optimization, Ph.D. Dissertation, University of Wash-

ington, 1990.

[Parnas 72] D. L. Parnas, \On the Criteria to Be Used in Decomposing Systems into

Modules," Communications of the ACM 5,12, pp. 1053{58, December 1972.

157

[Parnas 79] D. L. Parnas, \Designing Software for Ease of Extension and Contraction,"

IEEE Transactions on Software Engineering SE-5,2, pp. 128{138, March, 1979.

[Pound 37] Ezra Pound, The ABC of Reading, (New York : New Directions), 1960, c.

1934 (1987 printing).

[Reiss 90] S. P. Reiss, \Connecting Tools using Message Passing in the Field Environ-

ment," IEEE Software 7,4, pp. 57{66, July, 1990.

[Ritchie and Thompson 78] D.M. Ritchie, K. Thompson, \The Unix Time-sharing Sys-

tem," Bell System Technical Journal 57,6, part 2, pp. 1905{1930, July-August, 1987.

[Rosenman et al. 89] J. Rosenman, G.W. Sherouse, H. Fuchs, S. Pizer, A. Skinner, C.

Mosher, K. Novins, and J. Tepper, "Three-dimensional Display Techniques in Ra-

diation Therapy Treatment Planning", International Journal of Radiation Oncology,

Biology and Physics 16, 1989, pp. 263{269.

[Royce 70] W.W. Royce, \Managing the Development of Large Software Systems: Con-

cepts and Techniques," Proceedings of Wescon, August, 1970, also in Proceedings of

the 9th International Conference on Software Engineering, (Computer Society Press),

1987.

[Rumbaugh 87] J. Rumbaugh, \Relations as Semantic Constructs in an Object-Oriented

Language," Proceedings of OOPSLA, 1987, pp. 466{481.

[Rumbaugh et al. 91] J. Rumbaugh, . Blaha, W. Premerlani, F. Eddy, W. Lorenson,

Object-Oriented Modeling and Design, (Englewood Cli�s: Prentice Hall), 1991.

[Schei
er and Gettys 86] R.W. Schei
er and J. Gettys. \The X Window System," ACM

Transactions on Graphics, 5 ,2, pp. 79{109, 1986.

[Snyder 89] L. Snyder, \The XYZ Abstraction Levels of Poker-like Languages," Proceed-

ings of the Second Workshop on Parallel Compilers and Algorithms, 1989, Urbana,

Illinois.

158

[Spivey 89] J.M. Spivey, The Z Notation: A Reference Manual, (Prentiss Hall Interna-

tional), 1989.

[Steele 90] G. Steele, Jr. COMMON LISP, the Language, second edition, (Burlington,

MA: Digital Press), 1990.

[Ste�k, Bobrow, and Kahn 86] M.J. Ste�k, D.G. Bobrow, and K.M. Kahn, \Integrating

Access-Oriented Programming into a Multiparadigm Environment," IEEE Software,

pp. 10{18, January, 1986.

[Stevens, Myers, and Constantine 74] W. Stevens, G. Myers, and L. Constantine,

\Structured Design," IBM Systems Journal 13,2, pp. 115{39, May, 1974.

[Stroustrup 86] B. Stroustrup, The C++ Programming Language, (Addison-Wesley:

Reading, Massachusetts), 1986.

[Sullivan and Notkin 92] K. Sullivan and D. Notkin, \Reconciling Environment Inte-

gration and Software Evolution," ACM Transactions on Software Engineering and

Methodology 1, 3, July, 1992.

[Sullivan, Kalet and Notkin 93] K. Sullivan, I.J. Kalet, and D. Notkin, \Prism: A Case

Study in Behavioral Entity-Relationship Modeling," University of Washington De-

partment of Computer Science Technical Report 93-09-03, September, 1993.

[Sutton, Heimbigner, and Osterweil 90] S. Sutton, D. Heimbigner, and L. Osterweil,

\Language Constructs for Managing Change in Process-Centered Environments," Pro-

ceedings of SIGSOFT90: Fourth Symposium on Software Development Environments,

1990, Irvine, California, pp. 206{17.

[Taylor 88] R.N. Taylor, R.W. Selby, M. Young, F.C. Belz, L.A. Clarke, J.C. Wileden,

L. Osterweil, A.L. Wolf, \Foundations for the Arcadia Environment Architecture,"

Proceedings of ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-

tical Software Development Environments, P. Henderson, Ed., Boston, Massachusetts,

November 28{30, 1988, pp. 1{13.

159

[Yourdon 78] E. Yourdon and L. L. Constantine, Structured Design, (New York: Your-

don Press), 1978.

[Zurcher and Randell 68] F.W. Zurcher and B. Randell, \Iterative Multi-Level

Modeling|A Methodology for Computer System Design," IBM Res. Div. Rep. RC{

1938, Nov. 1967. Also Proc. IFIP Congr, 1968, Edinburgh, Aug. 1968, pp. 138{142

(Ch 1,3,19,20,21).

Vita

Kevin J. Sullivan

Birth: December, 29, 1960, Oxnard, CA 1442 Westwood Road

Citizenship: USA Charlottesville, Virginia, 22903 USA

(804) 295-7756

Fix phones

Department of Computer Science

Thornton Hall

University of Virginia

Charlottesville, Virginia, USA 22903

Tel. (804) 924-7605

Internet: sullivan@cs.virginia.edu

Education

University of Washington, September 1987 to August, 1994

Ph.D. Computer Science and Engineering (1994)

Dissertation: Mediators: Easing the Design and Evolution of Integrated Systems

Advisor: Professor David Notkin

M.S. Computer Science (1990)

Topic: Formal Speci�cation of Software Systems

Tufts University, USA, September 1979 to May, 1987

B.A. Mathematics and Computer Science, (1987)

Employment

September 1994{, Assistant Professor, Department of Computer Science,

University of Virginia, Charlottesville, Virginia, USA

January 1994{March 1994, Teaching Assistant, Department of Computer Science

161

and Engineering, Seattle, Washington, USA

April 1988{June 1993, Research Associate, Department of Computer Science and

Engineering, Seattle, Washington, USA

June 1990{September 1990, Visiting Faculty Associate, Tokyo Institute of Technology,

Tokyo, Japan

September 1987 to March 1988, Teaching Assistant Department of Mathematics,

University of Washington, Seattle, Washington, USA

1981{1987, Senior, Middle, Junior Systems Programmer, Tufts University Computer

Services, Medford, Massachusetts, USA

Honors and Achievements

GTE Graduate Fellowship (1989-1990)

General Electric Thomas Alva Edison Award (1979).

New Hampshire State Debating Champion (1979).

New Hampshire State Extemporaneous Speaking Champion (1978).

Publications

� Sullivan, K., Reconciling Software Integration and Evolution: Behavioral Entity-

Relationship Modeling and Design, Ph.D. Thesis, Department of Computer Science

and Engineering, University of Washington, Forthcoming.

� K.Sullivan, I.J. Kalet, and D. Notkin, \Prism: A Case Study in Behavioral Entity-

Relationships Modeling and Design," Submitted to the 16th International Confer-

ence on Software Engineering, Also available as University of Washington Depart-

ment of Computer Science and Engineering Technical Report 93-09-03 (September

1993).

� Notkin, D., Garlan, D., Griswold, W.G., and Sullivan, K., \Adding Implicit In-

vocation to Languages: Three Approaches," To appear, Proceedings of the JSSST

162

International Symposium on Object Technologies for Advanced Software (Novem-

ber 1993). (Will appear in a Springer-Verlag Lecture Notes in Computer Science

volume.)

� Sullivan, K. \Implicit Extension Enables Behavioral ER Modeling in Formal Spec-

i�cation," 1993, draft, by request.

� Sullivan, K.J. and Notkin, D., \Behavior Abstraction," University of Washing-

ton, Department of Computer Science and Engineering Technical Report 92-03-08,

March, 1992.

� Sullivan, K.J. and Notkin, D., \Reconciling Environment Integration and Software

Evolution,"ACMTransactions on Software Engineering and Methodology 1,3, July,

1992.

� K. Sullivan, \Abstract Behavioral Types for Behavioral ER Design," Workshop on

Object-Oriented Reasoning in Information Systems, Addendum to Proceedings of

OOPSLA92, September, 1992.

� Sullivan, K.J. and Notkin, D., \Behavioral Relationships in Object-Oriented Anal-

ysis," TR-91{09{03, University of Washington, Department of Computer Science

and Engineering, 1991.

� Sullivan, K.J. and Notkin, D., \Reconciling Environment Integration and Software

Evolution," TR-91{08{08, University of Washington, Department of Computer

Science and Engineering, 1991.

� Sullivan, K.J. and Notkin, D., \Reconciling Component Independence and Envi-

ronment Integration," Proceedings of SIGSOFT90: Fourth Symposium on Software

Development Environments, 1990, Irvine, CA.

� Sullivan, K.J., Salman, M., and Van Evera, S. \SIOP: A Computerized Nuclear

Exchange Model for Civilian Defense Analysts," in Eden, L. and Miller, S., eds.,

Nuclear Arguments, (Ithaca: Cornell University Press), 1989.

163

� Salman, M., Sullivan, K.J., and Van Evera, S. \Analysis or Propaganda: Measuring

American Strategic Nuclear Capability, 1969-1988," in Eden, L. and Miller, S., eds.,

Nuclear Arguments, (Ithaca: Cornell University Press), 1989.

Software Artifacts

� Prism: Co-Modeling and -design, with Ira Kalet, of a tightly integrated, object-

oriented, 3-D environment for interactive planning of cancer radiotherapy treat-

ments; UW Department of Radiation Oncology, 1992{1993; scheduled for clinical

usage in Fall, 1993. This system is discussed in a number of technical reports,

available upon request.

� SLIK, A Simple Lisp Interface Kit: Consultation on modeling and design of a

Common Lisp/CLOS-based user interface toolkit. This is described in Kalet, I.

and Kromhout-Schiro, \SLIK Programmer's Guide," Technical Report 93{05{01,

Radiation Oncology Department, University of Washington, May 21, 1993.

� Various Frameworks: A collection of C++ frameworks for constructing small inte-

grated environments. These include implicit invocation (event noti�cation), collec-

tions, n-dimensional a�ne geometry for graphics, and user interface widgets built

on the InterViews system; UW Department of Computer Science and Engineering,

(1988{1991).

� CurveToy: An interactive, graphical tool for exploring surface interpolation and

approximation schemes; UW Department of Computer Science and Engineering,

(1989).

� SIOP: A strategic nuclear exchange model for civilian defense analysts; Center

for Science and International A�airs, Kennedy School of Government, Harvard

University, (1989). Co-published with Nuclear Arguments, referenced above.

164

� Orca Prototype: An integrated programming environment for large-scale, non

shared-memory parallel machines; UW Department of Computer Science and En-

gineering, (1988).

� Various Systems Utilities: e.g., Unix-based user-level tape mount manager, user

access management systems; Tufts University, (1981{1987).

Invited Talks

� \Escape from the Abstract Data Type," CHIFOO, Object-Oriented Workshop,

Portland, Oregon (1993).

� \Abstract Behavior Types for Behavioral ER Design,"Workshop on Object-Oriented

Reasoning in Information Systems, OOPSLA, (1992).

� \Integrating Independent Software Components," Tektronix Research Labs, Beaver-

ton, Oregon (1990).

