
The PRESTO Application Suite

Radhika Thekkath and Susan J. Eggers

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

radhika@cs.washington.edu

Technical Report # 94-09-01

September 9, 1994

1 Introduction

This report describes a group of coarse- and medium-grain, explicitly-parallel applications that

have been made available via the World-Wide Web at

(http://www.cs.washington.edu/research/projects/parsw/Benchmarks/Presto/www/index.html).

These programs have been written using the PRESTO user-level threads library [4], by students at

the University of Washington and Rice University. PRESTO provides a C

++

-based environment for

writing object-oriented parallel programs for shared-memory multiprocessors. The library provides

basic classes useful for writing parallel programs, among them are thread manipulation routines

for concurrency and synchronization primitives. Details of this programming environment and

examples are in the PRESTO user's manual [5]. The PRESTO manual and sources can be

obtained via anonymous FTP (ftp://cs.washington.edu/pub/presto1.0.tar.Z).

The applications in this suite have been written for the Sequent Symmetry [10] and calls into

the PRESTO library port to the Sequent. PRESTO's thread manipulation calls, such as thread

creation, deletion, etc., are fairly standard, and are available in thread packages available on other

machines. These programs are therefore easily portable to other architectures by replacing the

PRESTO threads calls to those of another library.

The next section describes each application brie
y. The applications from Rice University were

developed as part of a class project, and made available here, thanks to Prof. John Bennett. Some

of these programs are short and do fairly obvious computations, like matrix multiply. Hence many

details are omitted, and explanation is provided only when appropriate.

2 The Applications

Table 1 lists the applications described in this report. The table also shows the number of lines of

source code, and a broad classi�cation of each program in the application domain.

Several research studies have used subsets of these applications [3, 11, 12], mainly in simu-

lation work. These publications provide a detailed analysis of the characteristics of some of the

applications.

1

Program Lines of Application

Name C++ Source Domain

Grav 1013 Scienti�c

Patch 2746 Graphics

Pdsa 3952 CAD

Vandermonde 319 Mathematics

Health 511 Simulation

FullConn 600 Simulation

�t 867 Mathematics

gauss 543 Mathematics

tp 648 Graph

knap 589 List Processing

life 504 Mathematics

merge 1087 List Processing

mst 1127 Graph

qsort 474 Sorting

shellsort 741 Sorting

sieve 430 Mathematics

sor 843 Mathematics

sparse 578 Matrix

string 711 List Processing

mult 510 Mathematics

factorial 1355 Mathematics

Table 1: The workload

2

2.1 Grav

Author: Ed Felten.

Grav is an implementation of the Barnes and Hut Clustering algorithm [2] for simulating the

gravitational intersection of a large number of stars over time.

The inputs to the program are: the number of stars, the name of the �le describing the stars

and the number of time steps to run the algorithm. Each star in the �le is described by a real

value for the mass, a vector (x, y and z values) for the position, an integer id, and a vector for

the velocity. The �les \stars.50" and \stars.100" provide sample input �les for 50 and 100 stars

respectively. Compiling and executing the C �le \generate.c" provides a way to produce bigger

input star systems.

Each time step of the algorithm comprises of 4 stages.

build: Build the node tree by adding particles to it.

collect: Add up the total mass in this region and calculate the center of mass.

calc: Calculate acceleration.

push: Update positions and velocity on all stars.

The number of processors and number of threads are constant declarations in \grav.c" and can

be easily changed. The limit on the maximum number of stars or particles (256) can be changed

by editing the �le \grav.h"

2.2 Patch

Author: Denise Draper.

Patch is a graphics application that performs the �rst phase of a generalized B-spline construc-

tion based on S-patches [9].

Given a mesh, the program constructs a collection of Bezier control points corresponding to

control mesh vertices. This is done by �rst calculating the position and tangent control data,

followed by the calculation of the Bezier coordinates. The algorithm employs symmetry by orienting

the calculations to each corner of the triangle.

The program takes as input the name of a �le that speci�es the mesh. The mesh is described

by a set of points and a description of the faces of the surface. The program is partitioned so that

a single thread works on 4 faces. This partitioning can be varied by editing the �le \foo
e.c" .

2.3 Pdsa

Author: unknown.

Pdsa does automatic placement of integrated circuit layouts using a simulated annealing algo-

rithm [13].

This is a special algorithm which permits the circuit to be a combination of macro blocks and

standard cells. It works in essentially three steps: �rst, standard cells are partitioned into
exible

virtual blocks using a minimum net-cut criteria; second, the macro blocks are then placed using a

simulated annealing optimization that uses routing area costs and net costs. And �nally, once the

3

relative positions of the macro blocks is known, the standard cell blocks are placed using a simple

annealing optimization.

The inputs to the application must specify the number of processors and the number of major

and minor threads. The minor threads are responsible for computing the cost functions, while the

major threads do the bulk of the remaining work. An example input �le \g2.yal" is provided with

the application.

2.4 Vandermonde

Author: Rich Nieves.

Vandermonde does matrix computations given two input arrays. The work is partitioned so

that each thread works on a �xed number of columns in the array. The total work proceeds in two

phases with a barrier synchronization of all threads between phases. This two-phase computation

is repeated 1000 times by default. The user can override this value at program run time. The

user must also specify the input arrays and the number of threads that must be spawned to do the

required work. Several input data �les are available with varying array sizes.

2.5 Health

Author: David Wagner.

Health and FullConn (described next) are applications that use the Synapse runtime environ-

ment [14]. Synapse is a customized PRESTO environment for conservative parallel simulation.

Like PRESTO, it is also implemented in C++, and provides several classes to facilitate writing

parallel simulations. It provides virtual time semantics, three deadlock handling mechanisms, and

options for performance tuning. The Synapse source �les are available, and are used to build the

Synapse library.

Health is an application that simulates the Columbian health care delivery system presented

by Lomov, Cleary, Unger, and West [8]. They simulated it using the optimistic approach, and

conjectured that a conservative simulation would be di�cult. The Health problem may be described

as follows, the Columbian government provides health care in a multi-tiered fashion of services and

referrals. Each level in the system is capable of providing some services, while it must refer other

problems to the next higher level. Each village generates a stream of patients to its local health

center. Each center has one or more health care providers (HCPs). Each patient arriving at the

center, is either served immediately, or waits in a queue until a HCP is available. Each patient's

problem is diagnosed, and either the service is provided locally, or the patient is referred to the

parent health care center.

The simulation assumes that the health care system is organized as a full, four-way branching

tree of some height. The number of HCPs at a center depends on its height in the hierarchy. The

inputs to the application must specify the maximum level of the tree structures and the time limit

for the simulation. Each village generates patients according to a Poisson process with arrival rate

0.3 patients per time unit. The probability that a patient will be treated at a health care center is

0.9, with the exception that all patients are treatable at the root.

2.6 FullConn

Author: David Wagner. (Modi�ed by Reid Brown).

4

FullConn is the second Synapse application provided. Its goal is to achieve a conservative

parallel simulation of a multiprocessor system. Such a system consists of a set of processor nodes,

which communicate with one another at seemingly random intervals, when the executing parallel

program needs to access shared data on another processor.

Hence, this application simulates a fully-connected mesh network of processor nodes. Events in

the parallel simulation are �xed-size messages which are kept circulating randomly among the nodes.

These messages correspond in the original system to messages that fetch and send shared data

between processors. The number of arrivals per processor per time step is speci�ed as input, and

each processor maintains input and output FCFS queues. Each node has a service time requirement

for the processing of messages; this is the time that a processor would spend computing before it

is ready to process the receive or send the next message.

The inputs to the program are: the number of initial arrivals at a node and the stopcount,

which is the duration of time after which the messages stop circulating.

2.7 FFT

Author: Rice University.

The application �t does Fast Fourier Transform computations. In the �rst phase, it generates

sample points of the array X[] according to the size N speci�ed as input. It then evaluates the 'W'

term of the FFT algorithm once, holding the data in the W[] array. The data from X[] is then

swapped to the R[] array in preparation for the iterative parallel FFT algorithm.

The size of the array X[] can be speci�ed as an input parameter, and must be a power of 2; the

default is 1024.

2.8 gauss

Author: Rice University.

Gauss does gaussian elimination using the pivot algorithm. The input to the program must

specify the dimension of the input matrix, as well the parallel partitioning scheme. The three

partitioning possibilities are: each thread works on a separate column, each thread works on a

group of consecutive columns, or each thread works on a group of columns, where each column in

a group is separated by a �xed distance (interleaved).

2.9 tp

Author: Rice University.

The tp program solves the traveling salesman problem. This program takes a set of cities and

their coordinates as input, and �nds the shortest path that goes through all the cities.

2.10 knap

Author: Rice University.

The knap program solves the integer knapsack problem. It takes two integer inputs, the �rst

provides the vector elements of the knapsack, and the second provides the random seed value. The

�nal required knapsack value 'M' can also be speci�ed as part of the input.

5

2.11 life

Author: Rice University.

The life application plays the game of Life. It uses a default 16 x 16 size board. Worker

threads divide up the number of rows on the board equally among themselves. The game uses two

phases, with barrier synchronization between them. The �rst phase calculates new values into the

scratch board, and the second phase stores these new values back into the original board.

2.12 merge

Author: Rice University.

The merge program merges two sorted lists of N numbers into a single sorted list. The parallel

algorithm works by creating twice as many threads as the number of processors, and dividing each

list up equally into sublists among the threads. The separation points in each list are the \break"

points. The algorithm then �nds the insertion point in the other list, corresponding to each of the

break points. The break and insertion points are then combined to obtain the starting indices to

the independent merges of the sublists. The current size limit of each list is 2

32

� 1 numbers.

2.13 mst

Author: Rice University.

The mst application �nds the minimum spanning tree for a given input connected graph using

Prim's algorithm [1]. If V is the set of vertices of the graph, the algorithm begins with a set U

initialized to 1. And at each iteration, it �nds the lowest cost edge (u; v) that connects U to V �U

and adds v 2 V � U to U . This loop is repeated until U = V .

Sample input graphs may be built using the source �les in the buildGraph directory.

2.14 qsort

Author: Rice University.

The qsort application implements a parallel quicksort algorithm by forking a thread for each

array partition in a recursive fashion. The algorithm works on an integer array and generates the

array 1 : : :numelements, given the number of elements in the array (numelements) as input.

2.15 sieve

Author: Rice University.

The sieve application implements the Sieve of Erastosthenes algorithm. It calculates all prime

numbers less than some given limit. The maximum allowable limit is 10

7

. The algorithm works by

a process of elimination. It removes, in parallel, all multiples of some integer i, where i could be a

prime. This is repeated for all numbers that are less than the truncated square root of the given

limit. Note that this upper bound is safe, since there can be at most one remaining multiple less

than the limit, which is the square of this upper bound. All other multiples must be greater than

or equal to the limit.

6

2.16 sor

Author: Rice University.

The sor program implements the successive over-relaxation algorithm. The program takes the

size of the matrix as input, and begins by initializing the boundary values to 1. It then computes

the values inside the matrix with the given boundary conditions. If the number of iterations is not

speci�ed, it uses a default tolerance of 1% as the terminating condition, i.e., when the maximum

di�erence between the new and old values is less than 1%.

2.17 sparse

Author: Rice University.

The sparse application implements an equation solver that gets its values from a sparse matrix.

The inputs to the program specify the sparsity value, the total matrix dimension and the seed.

Using these inputs, the program �rst automatically generates a sparse integer matrix, and set up

the Equation object. This object is a set of coe�cient values and a set of participating elements

in the equation. A list is used to identify the dependency of the equation on remote objects. The

solution to the equation can be obtained when all remote data is available locally. This movement

of data is achieved using a set of message passing protocols implemented for this purpose.

2.18 string

Author: Rice University.

The string program �nds the k-di�erence in a string of patterns to a string of given text. Each

of the k di�erences represent modi�cations that would be required in the text in order to make

an exact match with the pattern. The modi�cations may be, for example, changing a character,

inserting a character, or deleting a character. The algorithm uses dynamic programming to compute

successive values. The parallel implementation does not use synchronization as some values may

be computed more than once.

2.19 mult

Author: Rice University.

The mult program does matrix multiply. It takes the matrix size as input and generates two

identical matrices which are then multiplied. Each thread is responsible for generating one row of

the result matrix.

2.20 factorial

Author: Rice University.

The factorial application computes the factorial of a given number. The size limitation on the

generated factorial value is machine dependent. This parallel version of factorial works by dividing

up the work, i.e., the multiplication of the sequence of numbers, among the di�erent threads. Lastly,

a single thread accumulates the individual products into the �nal factorial product.

7

3 Pointers to Other Application Sources

Finally, we include pointers to other application sources

1

available in the public domain, that

are known to us. The SPLASH applications are available via anonymous ftp from Stanford

(mojave.stanford.edu). The original Split-C version of the EM3D application is available from

Berkeley (http://http.cs.berkeley.edu/public/parallel/software.html). Applications from their re-

cent publications [6, 7] are also available via anonymous ftp from the University of Wisconsin

(ftp.cs.wisc.edu/pub/WWT).

Acknowledgements

We thank all the authors who let us use their applications for our studies, and who have now

graciously given us permission to make these sources available to other researchers.

DISCLAIMER

These PRESTO application sources are distributed free of charge without any warranty. These

applications were part of a research e�ort of the Computer Science departments at the University

of Washington and Rice University. Neither the departments nor the authors make any claim

beyond this. In particular, no liability is assumed.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addision-

Wesley, 1983.

[2] J. Barnes and P. Hut. A hierarchical o(nlogn) force-calculation algorithm. Nature 24, pages

446{449, 1986.

[3] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache management for

distributed shared memory architectures. 17th Annual International Symposium on Computer

Architecture, pages 125{134, May 1990.

[4] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A system for object-oriented

parallel programming. Software: Practice and Experience, 18(8):713{732, August 1988.

[5] Brian N. Bershad. The PRESTO user's manual. Technical Report TR. No. 88-01-04, University

of Washington, January 1988.

[6] S. Chandra, J. R. Larus, and A. Rogers. Where is time spent in message passing and shared

memory programs? To be published in Sixth International Conference on Architectural Support

for Programming Languages and Operating Systems, October 1994.

1

The authors of this report do not consider themselves in any way responsible for the availability or location of

these sources.

8

[7] J. R. Larus, B. Richards, and G. Viswanathan. LCM: memory system support for parallel

language implementation. To be published in Sixth International Conference on Architectural

Support for Programming Languages and Operating Systems, October 1994.

[8] G. Lomov, J. Cleary, B. Unger, and D. West. A performance study of time warp. In Distributed

Simulation, July 1988.

[9] Charles T. Loop. Generalized b-spline surfaces of arbitrary topological type. Technical Report

TR. No. 92-10-01 (Ph.D. thesis), University of Washington, October 1992.

[10] Symmetry Technical Summary. Sequent Computer Systems, Inc.

[11] R. Thekkath and S. J. Eggers. The e�ectiveness of multithreaded architectures. To be published

in Sixth International Conference on Architectural Support for Programming Languages and

Operating Systems, October 1994.

[12] R. Thekkath and S. J. Eggers. Impact of sharing-based thread placement on multithreaded

architectures. 21th Annual International Symposium on Computer Architecture, pages 176{

186, April 1994.

[13] M. Upton, K. Samii, and S. Sugiyama. Integrated placement for mixed standard cell and

macro-cell designs. Proceedings of the 27th Design Automation Conference, pages 32{35, June

1990.

[14] D. B. Wagner. Conservative Parallel Discrete-Event Simulation: Principles and Practice.

Ph.D. thesis, University of Washington, September 1989.

9

