
Optimizing Static Calendar Queues

�

K. Bruce Erickson Richard E. Ladner Anthony LaMarca

University of Washington

Seattle, WA 98195

September 13, 1994

Abstract

The calendar queue is an important implementa-

tion of a priority queue which is particularly useful in

discrete event simulators. In this paper we present an

analysis of the static calendar queue which maintains

N active events. A step of the discrete event simulator

removes and processes the event with the smallest as-

sociated time and inserts a new event whose associated

time is the time of the removed event plus a random

increment with mean �. We demonstrate that for the

in�nite bucket calendar queue the optimal bucket width

is approximately

�

opt

=

r

2b

c

�

N

where b is the time to process an empty bucket and c

the incremental time to process a list element. With

bucket width chosen to be �

opt

, the expected time to

process an event is approximately minimized at the

constant c +

p

2bc + d, where d is the �xed time to

process an event. We show that choosing the number

of buckets to be O(N) yields a calendar queue with per-

formance equal to or almost equal to the performance

of the in�nite bucket calendar queue.

1 Introduction

The calendar queue data structure, as described by

Brown [2], is an important implementation of a pri-

ority queue which is useful as the event queue in a

discrete event simulator. At any time in a discrete

event simulator there are N active events, where each

�

This paper appears in the Proceedings of the 35th Annual

IEEE Symposium on Foundations of Computer Science, Nov.

20-22, 1994. This paper is University of Washington, Dept. of

Computer Science and EngineeringTechnical Report No. 94-09-

02. Erickson's address is Department of Mathematics. Ladner's

research was supported by NSF, CCR-9108314. LaMarca's re-

search was supported by an A.T.&T. Fellowship.

event e has an associated event time t(e) when it in-

tended to occur in simulated time. The set of events

are stored in the priority queue ordered by their as-

sociated event times. A basic simulation step consists

of �nding an event e

0

which has the smallest t(e

0

),

removing the event from the priority queue, and pro-

cessing it. As a result of the processing new events

may be generated. Each new event e has an event

time t(e) > t(e

0

) and must be inserted in the prior-

ity queue accordingly. The quantity t(e) � t(e

0

) can

often be modeled as a non-negative random variable

de�ned by some distribution, such as an exponential

or uniform distribution.

Generally, the number of active events may vary

over time. An important case is the static case which

arises when N is a constant, such as the case of sim-

ulating a parallel computer. In this case, each event

corresponds to execution of a segment of code by one

of the processors. Thus, if there are N processors,

then there are exactly N active events in the priority

queue.

In many situations the calendar queue signi�cantly

outperforms traditional priority queue data struc-

tures. Brown [2] has given empirical evidence that

the calendar queue, with its parameters properly set,

achieves expected constant time per event processed.

The main contribution of this paper is to prove

that, under reasonable assumptions, the optimally

performing calendar queue data structure has con-

stant (i.e., independent of N) expected time per event

processed. In addition, simple formulas are derived

for setting the parameters of the calendar queue to

achieve optimal or near optimal performance.

1.1 The Calendar Queue

A calendar queue has M buckets numbered 0 to

M � 1, a current bucket i

0

, a bucket width �, and a

current time t

0

. We have the relationship that i

0

=

t

0

=� modM . For each event e in the calendar queue,

t(e) � t

0

, and event e is located in bucket i if and only

1

if i � t(e)=� modM < (i + 1). The analogy with a

calendar can be stated by: there are M days in a year

each of duration � and today is i

0

which started at

absolute time t

0

. Each event is found on the calendar

on the day it is to occur regardless of the year.

As an example choose N = 8, M = 10, � = 10,

i

0

= 3 and t

0

= 30. The 8 events have times 31, 54,

85, 98, 111, 128, 138, 251.

+

0 1 2 3 4 5 6 7 8 9

{ 111 128 31 { 54 { { 85 98

138 251

In this example the next event to process has time 31

which is in the current bucket numbered 3. Suppose

it is deleted and the new event generated has time

87. Then, the new event is placed in bucket 8 next

to event with time 85. Since 138 � 40 it will not be

processed until the current bucket has cycled around

all the buckets once. Thus, t

0

is increased by � and the

next bucket to be examined is bucket 4 which happens

to be empty. Thus, the processing of the buckets is

done in cyclic order and only the events e which are

in the current cycle, t

0

� t(e) < t

0

+ �, are processed.

A calendar queue is implemented as an array of

lists. The current bucket is an index into the array,

the bucket width and current time are either integers,

�xed-point or
oating-point numbers. Each bucket

can be implemented in a number of ways most typ-

ically as an unordered linked list or as an ordered

linked list. In the former case insertion into a bucket

takes constant time and deletion of the minimum from

a bucket takes time proportional to the number of

events in the bucket. In the latter case insertion may

take time proportional to the number of events in the

bucket, but deletion of the minimum takes constant

time. The choice of algorithm for managing the indi-

vidual buckets is called the bucket discipline.

1.2 Results

For the calendar queue, the performance measure

we are most interested in is the expected time per

event, that is, the time to delete the event with mini-

mum time and insert the generated new event. There

are two key parameters in the implementation of a cal-

endar queue which e�ect its performance, namely, the

bucket width � and the number of buckets M . The

choice of the best � and M depends on the number

of events N , the bucket discipline, and the process

by which t(e) is chosen for a newly generated event

e. Assuming M is very large, if � is chosen too large

then the current bucket will tend to have many events

which is ine�cient. On the other hand if � is chosen

too small then there will be too many empty buckets

to traverse before reaching a non-empty bucket, which

again is ine�cient. Assuming � is chosen well for very

large M , if M is chosen too small the current bucket

will again tend to have too many events in it, partic-

ularly events which are not to be processed until later

visits to the same bucket.

The problem we address is �rst, how to choose � op-

timally when M is in�nite. Although the case when

M is in�nite is not directly implementable on a com-

puter, it has bearing on the case where M is �nite.

The second problem we address is how to choose M

large enough so that the calendar queue behaves al-

most as if M were in�nite.

We begin by focusing on the in�nite bucket calen-

dar queue with the unordered list implementation as

the bucket discipline. In this discipline the time to

process an event can be divided into three parts. The

�rst part d is the �xed cost to process an event, which

includes the time to process the event and insert a

new event into a bucket. The �nal two parts are the

variable costs to process a event. If m empty buck-

ets are visited before reaching a bucket with n events

(n � 1) then the variable cost is bm + cn. Thus, b is

the incremental time to process an empty bucket and

c is the incremental time to traverse a member of a

list in search of the minimum in the list. The time to

process an event is de�ned to be:

bm+ cn+ d:

If we let E(�) be the expected value of bm + cn + d,

then our goal are �rst, to �nd the value of � which

minimizes E(�) when M is in�nite, then, second, to

select a good �nite M which does not compromise the

minimum very much.

As mentioned earlier, if event e

0

generates event e

then t(e)�t(e

0

) may be modeled as a random variable

chosen according to some distribution. We assume

that we are given a probability density f de�ned on

[0;1) and that t(e) � t(e

0

) is the random variable

de�ned by f . That is, f(x) is non-negative for x � 0,

R

1

0

f(x)dx = 1, and the probability that t(e)�t(e

0

) �

t is exactly

R

t

0

f(x)dx. We call f the jump density and

its random variable simply the jump. Let � be the

mean of the jump, that is:

� =

Z

1

0

xf(x)dx:

For example, the exponential jump with mean � has

jump density f(x) =

1

�

e

�x=�

and the uniform jump

2

0

5

10

15

20

25

T
im

e

0.
00

01

0.
00

1

0.
01 0.
1 1

δ

Figure 1: Graph of � vs. expected time per event

(E(�)) for � near �

opt

in the in�nite bucket calendar

queue with 100 events.

0

5

10

15

20

25

T
im

e

0

10
00

20
00

30
00

40
00

50
00

M

Figure 2: Graph of M vs. expected time per event

(E

M

(�

opt

)) in the M bucket calendar queue with

1,000 events.

with mean � has jump density f(x) =

1

2�

for 0 � x �

2� and x = 0 for x > 2�.

Our main result is that if M is in�nite, N is large,

and � is chosen to be approximately equal to �

opt

where

�

opt

=

r

2b

c

�

N

;

then the calendar queue performs optimally. Further-

more, when the bucket width is chosen to be �

opt

the

expected time per event E(�

opt

) is approximately

E

min

= c+

p

2bc+ d

which is a constant. These results depend on using the

unordered list bucket discipline, but do not depend on

any speci�c characteristics of the jump random vari-

able except its mean. The proof of these results comes

from the analysis of a continuous state Markov chain

which models the calendar queue data structure. In-

terestingly, a key ingredient in the proof is the analy-

sis of a Markov chain which models a static calendar

queue with just one event.

If M is in�nite we know how to select the best �.

The next task is to choose M as small as possible yet

maintain the minimal, or near minimal, expected time

per event of the in�nite bucket calendar queue. We say

that the jump has �nite support � if its jump density

f satis�es f(x) = 0 for all x > �. The uniform jump

of mean � has support 2� while the exponential jump

does not have �nite support. If the jump has �nite

support � then the choice of any M � �=� + 1 will

guarantee no loss of performance over in�nitely many

buckets. If the jump does not have �nite support then

we present an asymptotic expression for the degrada-

tion in performance of choosing anM bucket calendar

queue instead of the in�nite bucket calendar queue.

We show that it is possible to select a constant r such

that M = rN buckets is su�cient to achieve a small

desired degradation in performance with M buckets

over in�nitely many buckets.

Figure 1 demonstrates the existence of an optimal

� for minimizing the expected time per event. Fig-

ure 2 demonstrates the e�ect of selection of M on the

expected time per event. The graphs in both �gures

were generated by simulating the calendar queue with

an exponential jump with mean 1 and b = c = d = 1.

The simulation of Figure 1 uses an in�nite number

of buckets with 100 events. The simulation of Figure

2 uses the optimal bucket width for N = 1; 000 for

the in�nite bucket calendar queue, then varying the

number of buckets.

1.3 Related Results

There are a large number of implementations of pri-

orities queues [1, 5, 7, 9, 10, 11]. An interesting em-

pirical comparison of eleven popular implementations

is provided by Jones [6]. Most of the popular imple-

mentations have expected time per event performance

O(logN), which can be excessive for discrete event

3

simulation with very large N and a large number of

simulation steps. As mentioned earlier Brown did an

empirical study of the dynamic calendar queue [2]. In

the empirical study, Brown's main emphasis was on

techniques for changing the bucket width and number

of buckets dynamically as N changed. He did not seek

to �nd the optimal bucket width for a given N , just

one which would give good performance. The calendar

queue provides an attractive alternative priority queue

in any discrete event simulation where there is some

predictability of the event time of a newly generated

event.

1.4 Organization

In section 2 we present our Markov chain model

which models the calendar queue and present our main

results concerning choosing the optimal � for M in�-

nite. In section 3 we describe how to choose M �nite

without signi�cantly compromising the performance

of the in�nite bucket calendar queue. In section 4 we

describe some of our experiences in implementing the

calendar queue and give our conclusions.

2 Optimizing the Bucket Width

In this section we show how to choose the op-

timal bucket width �

opt

when the number of buck-

ets is in�nite. As mentioned in the introduction we

assume we have N events and a jump with prob-

ability density f with mean �. We model the in-

�nite bucket calendar queue as a Markov chain

b

X

with state space in [0;1)

N

. For t = 0; 1; 2; ::: let

(X

1

(t); X

2

(t); :::; X

N

(t)) denote the state of the chain

at time t. The transitions of

b

X are as follows: Let

i be such that X

i

(t) = minfX

1

(t); X

2

(t); :::;X

N

(t)g.

If X

i

(t) � � then X

j

(t + 1) = X

j

(t) � � for all j. If

X

i

(t) < � then for j 6= i, X

j

(t + 1) = X

j

(t), and

X

i

(t+1) = X

i

(t)+ �

t

where �

0

; �

1

; ::: are independent

non-negative random variables. It is assumed that

these random variables �

t

; t � 0, all have the same

probability density f . The parameter � is a �xed non-

negative real number. We can think of X

i

(t) as the

position of the i-th particle in an N particle system.

If no particle is in the interval [0; �) then all particles

move � closer to the origin, otherwise the particle clos-

est to the origin jumps a random distance from where

it is while the other particles remain stationary. Thus,

a particle in the Markov chain

b

X represents an event

in the calendar queue where the position of the parti-

cle corresponding to an event e is the quantity t(e)�t

0

.

The interval [0; �) corresponds to the current bucket

in the calendar queue.

De�ne q

i

to be the limiting probability that the

interval [0; �) has exactly i particles in it. Under mild

hypotheses this probability is well de�ned, depends on

� (and N), and is independent of the of the initial state

of

b

X . Suppose a > 0 is a given constant and that the

cost of a step of the Markov chain is 1+aj if there are

j particles in the interval [0; �). If the expected cost

of �nding the minimum particle and moving it in the

Markov chain is K(�), then we have:

K(�) =

1 + a

P

N

j=1

jq

j

1� q

0

:

The relationship between the expected cost per parti-

cle in the Markov Chain

b

X and the expected time to

process an event in the in�nite bucket calendar queue

are related in the following lemma.

Lemma 2.1 Consider an in�nite bucket calendar

queue with bucket width �, the unordered list bucket

discipline, and parameters b, c, and d. If E(�) is the

the expected time to process an event and a = c=b then

E(�) = bK(�)� b+ d:

Proof: The Markov chain

b

X models the calendar

queue, where q

0

is the portion of buckets visited which

are empty and for j > 0, q

j

is the portion of buck-

ets visited which have j events. Each empty bucket

visited does not result in �nding an event to process,

while each non-empty bucket visited will result in �nd-

ing an event to process. Thus, the expected cost per

event in the calendar queue is

E(�) =

q

0

b+

P

N

j=1

q

j

(cj + d)

1� q

0

: (1)

This quantity equals bK(�)� b+ d.

Lemma 2.1 implies that �nding the � to minimize

the expected time per event in the calendar queue is

the same � which minimizes K(�).

Theorem 2.1 Assume that the density f(x) is a

bounded function of x for x near 0 and that the mean

� =

R

1

0

xf(x)dx is �nite. Then the function K(�) is

minimized at approximately

�

opt

=

r

2

a

�

N

:

The value of K(�

opt

) is approximately

K

min

= 1 + a+

p

2a:

4

The error in �

opt

is O(N

�

3

2

) and the error in K

min

is

O(N

�1

).

The proof of this theorem is long and requires back-

ground in the analysis of Markov chains with a con-

tinuous state space. The proof can be found in the

Appendix, section A.

As an immediate consequence of lemma 2.1 and the-

orem 2.1 we have our main theorem.

Theorem 2.2 Consider an in�nite bucket calendar

queue with bucket width �, the unordered list bucket

discipline and with parameters b, c, and d. The ex-

pected time per event, E(�), is minimized at approxi-

mately

�

opt

=

r

2b

c

�

N

:

The value of E(�

opt

) is approximately

E

min

= c+

p

2bc+ d:

The error in �

opt

is O(N

�

3

2

) and the error in E

min

is

O(N

�1

).

Thus, with the proper choice of � the in�nite bucket

calendar queue has a constant expected time per

event. Most interestingly, the choice of the optimal

bucket width depends only on the mean of the jump

and not on the shape of its probability density.

In the derivation of the optimal � we observed that

q

0

=

�

�+N�

(see equation 8 in section A.2). If � is chosen to be �

opt

then q

0

= 1=(1+

p

2b=c). Thus, the current bucket is

empty a signi�cant portion of the time.

3 Choosing the Number of Buckets

Now that we have found how to select � so as to

minimize the expected time per event in the in�nite

bucket calendar queue our goal is to select M , the

number of buckets, so that the M bucket calendar

queue has the same or similar performance as the in-

�nite bucket calendar queue.

Recall, that the jump has �nite support � if its

jump density f satis�es f(x) = 0 for all x > �. In

the case when the jump has �nite support, there is a

natural choice for M which guarantees that the cal-

endar queue with M buckets has exactly the same

performance as the in�nite bucket calendar queue. If

M � �=� + 1 then it is guaranteed that in the long

run all the events e in the current bucket will have

t

0

� t(e) < t

0

+ �. Thus, we have:

Theorem 3.1 If the jump has �nite support � and

M � �=� + 1 then the M bucket calendar queue and

the in�nite bucket calendar queue with bucket width �

have the same expected time per event.

In the case when the jump does not have �nite sup-

port or its �nite support � would cause �=� to be too

large to be practical, then a M will have to be chosen

which gives performance less than that of the in�nite

bucket calendar queue. The same Markov chain

b

X can

be use to analyze this case. Let L

M

(�) be the (steady

state) expected number of particles in the set

� =

1

[

j=1

[jM�; jM� + �):

In terms of the M bucket calendar queue, if an event e

has t(e)�t

0

2 � then the event is in the current bucket

but is not processed. The occurrence of such an event

will cause the M bucket calendar queue to run less ef-

�ciently than the in�nite bucket calendar queue. The

following lemma quanti�es the di�erence between the

performance of the �nite and in�nite bucket calendar

queues.

Lemma 3.1 Consider an M bucket calendar queue

with bucket width �, the unordered list bucket disci-

pline, and parameters b, c, and d. If E

M

(�) is the

expected time to process an event then

E

M

(�) = E(�) +

c(�+ N�)

N�

L

M

(�):

Proof: In the Markov chain

b

X , let q

ij

be the limiting

probability that the there are i particles in the interval

[0; �) and j particles in �. In the M bucket calendar

queue the cost of visiting a bucket with i events whose

times are in the interval [t

0

; t

0

+�) and j events whose

times are in the set ft

0

+ x : x 2 �g is c(i + j) + d if

i > 0 and cj + b if i = 0. Thus, the expected cost per

event E

M

(�) equals

P

N

i=1

P

N

j=0

q

ij

(c(i + j) + d) +

P

N

j=0

q

0j

(cj + b)

1�

P

N

j=0

q

0j

:

We have

P

N

j=0

q

0j

= q

0

= �=(�+ N�) (equation 8 in

section A.2) and

P

N

j=0

j

P

N

i=0

q

ij

= L

M

(�). By using

equation 1 in the proof of lemma 2.1 we derive the

equation for E

M

(�).

Let F be the cumulative probability distribution

de�ned by the jump density f , that is,

F (x) =

Z

x

0

f(y)dy:

5

In the Appendix, section B, we indicate brie
y how

to derive the following rather horrible looking bounds

for L

M

(�).

Theorem 3.2 L

M

(�) is bounded above by

N�f[1� F (�)](Np+ 1)�

1

+ p(Np+ 2� p)�

2

g

(� +N�)[1� F (�)]

2

and bounded below by

N�(Np+ 1� p)�

1

�+ N�

where

p =

1

�

Z

�

0

[1� F (x)]dx;

�

1

=

1

�

1

X

j=1

Z

jM�+�

jM�

[1� F (x)] dx;

�

2

= max

0�y��

1

X

j=1

[F (jM� + � � y) � F (jM� � y)]:

It should be noted that under the hypothesis � <1,

the above series converge and can be given bounds in

terms of �; �, and M . However, using the bounds as

stated in the theorem, we can derive a more useful

asymptotic expression for L

M

(�).

Corollary 3.1 If � = ��=N and r = M=N where r

and � are constants, then

L

M

(�) ' �

1

X

j=1

[1� F (j��r)]:

1

De�ne �

M

to be the degradation in performance in

choosingM buckets instead of in�nitely many buckets,

that is,

�

M

=

E

M

(�) �E(�)

E(�)

:

If we choose � = �

opt

=

q

2b

c

�

N

, then corollary 3.1 and

theorem 2.2 yield the following asymptotic expression

for �

M

Corollary 3.2 IfM=N is constant and � = �

opt

, then

�

M

'

c+

p

2bc

c+

p

2bc+ d

1

X

j=1

[1� F (j�

r

2b

c

M

N

)]: (2)

The following asymptotic bound is implied by corol-

lary 3.2.

1

We de�ne g(N) ' h(N) if lim

N!1

g(N)=h(N) = 1.

Corollary 3.3 IfM=N is constant and � = �

opt

, then

�

M

�

c+

p

2bc

c+

p

2bc+ d

�

r

c

2b

�

N

M

:

2

Proof: By corollary 3.2 it su�ces to show that

P

1

j=1

[1�F (jMD)] � �=D for D > 0. To see this let

k � 2, then

�

D

=

1

D

Z

1

0

xf(x)dx �

k

X

j=0

1

D

Z

jD+D

jD

x f(x)dx

�

k

X

j=0

j [F ((j + 1)D)� F (jD)]

=

k

X

j=1

[1� F (jD)]� k[1� F ((k + 1)D)]:

The �niteness of � implies that x[1 � F (x)] ! 0 as

x ! 1. Therefore, if we let k ! 1, we get �=D �

P

1

j=1

[1� F (jD)].

It follows from corollary 3.3 that one can always

choose the number of buckets M to be a (moderate)

multiple of N and still obtain a performance almost

as good as that of the in�nite bucket case.

For the interesting case of the exponential jump

density f(x) =

1

�

e

�x=�

; x � 0, we can calculate the

the series in (2) exactly:

�

M

'

c+

p

2bc

c+

p

2bc+ d

�

1

e

p

2b

c

M

N

� 1

: (3)

Let us suppose b = c = d = 1. If � = �

opt

=

p

2�=N ,

then equation (3) allows us to solve for M=N given

an acceptable degradation in performance of the M

bucket calendar queue over the the in�nite bucket cal-

endar queue. For example, if we choose �

M

= :05 then

M=N should be approximately 1:92 and if �

M

= :01

then M=N should be approximately 3:02. Figure 3

illustrates that asymptotic equation (3) provides an

excellent choice of M over a wide range of N . Using

our simulation of the calendar queue we plot for a wide

range of N the value of �

M

for each of M=N = 1:92

and M=N = 3:02. Both plots are relatively
at near

the asymptotic values .01 and .05, respectively.

4 Conclusion

We have shown that bucket width of the in�nite

bucket static calendar queue can be chosen to mini-

mize the expected time per event. With the optimal

2

We de�ne g(N) � h(N) if lim sup

N!1

g(N)=h(N)� 1.

6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
D

eg
ra

da
tio

n

10
0

10
00

10
00

0
N

M/N = 3.02

M/N = 1.92

Figure 3: Graph ofN vs. degradation (�

M

) forM=N =

1:92 and M=N = 3:02.

bucket width the calendar queue has expected con-

stant time per event. The optimal bucket width de-

pends only on a few parameters, the incremental time

to process an empty bucket (b), the incremental time

to traverse a list item (c), the mean of the jump (�),

and the number of events (N). In addition, we have

shown that the number of buckets M can be chosen to

be O(N) so as to achieve minimal or almost minimal

expected time per event.

We implemented our calendar queue in C

++

for

execution on a DEC alpha [3]. Because the DEC al-

pha has a two-level cache architecture the values of

the \constants" b, c, and d actually depend on N , M

and even on properties the jump probability density f

other than its mean. As N grows the cache miss ratio

increases, in e�ect, causing b, c, and d to grow. Even-

tually, when N gets large enough the growth in b, c,

and d will stop. In the formula for �

opt

it is the ratio of

b to c that is important. One would hope that this ra-

tio of b to c would not change as N grows, but it does.

The value of b depends of the time to process empty

buckets, which are in an array, and consequently are

spacially correlated. The value of c depends on the

time to process list entries, which are not in general

spacially correlated. Some jump densities will lead to

more temporal correlation between memory accesses

than others. For example, the temporal correlation

of list items will be higher with the exponential jump

than with the uniform jump. Both spacial and tem-

poral correlation of memory accesses e�ect the cache

miss ratio, thereby e�ecting the values of b, c, and

d. We are currently studying methodologies for set-

ting the parameters of the calendar queue on modern

computers with multi-level memory hierarchies.

Our analysis applies to the unordered list bucket

discipline for the calendar queue. An interesting ques-

tion is to analyze the calendar queue with the ordered

list bucket discipline.

References

[1] M.R. Brown. Implementation and analysis of bi-

nomial queue algorithms. SIAM Journal on Com-

puting, Vol. 7, pp. 298-319, 1978.

[2] R. Brown. Calendar Queues: A fast O(1) prior-

ity queue implementation for the simulation event

set problem. Communications of the ACM, Vol.

31, pp. 1120-1227, 1988.

[3] DECchip 21064-AA Microprocessor, Hardware

Reference Manual. Digital Equipment Corpora-

tion. Order Number: EC-N0079-72. 1992.

[4] W. Feller. An Introduction to Probability The-

ory and Its Applications, Vol. II. John Wiley and

Sons, New York, 1971.

[5] J. Francon, G Viennot, and J. Vuillemin. Descrip-

tion and Analysis of an e�cient priority queue

representation. Proceedings of the 19th Annual

Symposium on Foundations of Computer Science,

pp. 1-7, 1978.

[6] D.S. Jones. An empirical comparison of priority-

queue and event-set implementations. Communi-

cations of the ACM, Vol. 29, pp. 300-310, 1986.

[7] D.E. Knuth. The Art of Computer Programming,

Vol. 3, Sorting and Searching. Addison-Wesley,

Reading, MA, 1973.

[8] D. Revuz. Markov Chains. North-Holland, New

York. 1984.

[9] D.D. Sleator and R.E. Tarjan. Self-adjusting bi-

nary search trees. Journal of the ACM, Vol. 32,

pp. 652-686. 1985.

[10] D.D. Sleator and R.E. Tarjan. Self-adjusting

heaps. SIAM Journal on Computing, Vol. 15, pp.

52-69, 1986.

[11] J. Vuillemin. A data structure for manipulating

priority queues. Communications of the ACM,

Vol. 21, pp. 309-315, 1978.

7

A Proof of Theorem 2.1

A.1 Invariant Distribution, Positive Re-

currence, and Limits.

Let F denote the common distribution function of

the random variables �. Since we are assuming the

existence of a density this means that

F (x) =

Z

x

0

f(z)dz; 0 � x <1:

(More compactly, dF (z) = f(z)dz.) For the most part

we work with F rather than f . Let � denote the set

of points bx in [0;1)

N

with no repeating coordinates.

In what follows the reader should understand all set

operations taken relative to �. The density assump-

tion implies that the probability is zero that any two

particles which start at di�erent positions will ever be

found at the same position at some time in the future,

so the chain stays in � once started there. Indeed,

� is an absorbing set for the chain under the den-

sity assumption. The true state space of the chain

is, therefore, a subset of � but one may certainly re-

fer to [0;1)

N

as the state space without harm. Let

B

i

be the set of bx = (x

1

; x

2

; : : : ; x

N

) in � such that

x

i

= minfx

1

; x

2

; : : : ; x

N

g < �, and let A

0

= [�;1)

N

For arbitrary bx in the state space and arbitrary (mea-

surable) subset A, the one-step transition probability

(T.P.) that the chain will move from bx to a state in A

is given by

P (bx;A) =

N

X

i=1

1

B

i

(bx)

Z

1

0

1

A

(bx+ zbe

i

)dF (z)

+ 1

A

0

(bx)1

A

(bx� �

b

1); (4)

where,

b

1 = (1; 1; : : : ; 1); be

i

= the i-th unit coordi-

nate vector with all of its components 0 except the

i-th which is 1, and 1

A

(bx) is the function which is 1

for bx in A and 0 otherwise. In Revuz [8], Chapter 1,

may be found the basic theory of Markov chains. We

use P

�

to denote the probability measure induced on

the "trajectory space" of the chain when the initial

distribution is �, and P

bx

when the chain is started

at bx (i.e., � is unit point mass at bx). Integration of

random variables (called \expectation") with respect

to these measures is denoted E

�

and E

bx

, respectively.

A distribution m is called an invariant probability dis-

tribution for the T.P. P if m has total mass 1 and for

every subset A of the state space

m(A) =

Z

P (bx;A)dm(bx): (5)

(The integration is over the entire state space.) For

the T.P. de�ned by (4) it can be established that if

the number � is �nite, then the Markov chain is posi-

tive recurrent. That means there is a unique invariant

probability distribution m and if A is any set with

m(A) > 0, then, with probability 1;

b

X(t) will be in

A for an in�nite (but usually random) sequence of t's

tending to in�nity. Under any of various mild assump-

tions on the support of F (e.g., if it contains at least an

interval of length strictly > �, or if it contains points

arbitrarily close to 0), then the chain is also aperiodic.

This is a property of the chain whose only signi�cance

for us is that its presence justi�es the �rst limit in

(6) below and later on a similar limit for a related

embedded chain. (The existence of limits of averages

does not require aperiodicity, however.) Since it is

convenient to do so and results in only a minor loss of

generality we will assume that F satis�es at least one

of the above restrictions making the chain aperiodic.

The limit theory for positive chains (ergodic theory)

is comprehensive. See [8], Chapter 6. In our case if A

is any set of states and � any initial distribution

lim

t

P

�

f

b

X(t) 2 Ag = lim

t

1

t

t

X

s=1

P

�

f

b

X(s) 2 Ag

= m(A) (6)

= lim

t

#fs : s � t;

b

X(s) 2 Ag

t

:

(Note that the last limit is a limit of random quantities

and the assertion is that the limit (as t ! 1) exists

with probability 1 (w.p.1) and equals the non-random

quantity m(A). Note also that P

m

f

b

X(0) 2 Ag =

m(A) in our notation.) In particular, if

A

j

= fbx : exactly j components of bx lie in [0; �)g

and Z(t) = the number of particles in interval [0; �) at

time t, then q

j

� lim

t

P

�

fZ(t) = jg = m(A

j

) and

K(�) = lim

t

1 + aE

�

fZ(t)g

P

�

fZ(t) > 0g

=

1 + a

N

P

1

jq

j

1� q

0

: (7)

A.2 The computation of q

0

=m(A

0

).

Recall that A

0

= [�;1)

N

. In this section we estab-

lish the formula

m(A

0

) = q

0

=

�

�+ N�

; (8)

provided � is �nite.

8

The sets B

i

, de�ned in the last section, are mutually

disjoint and their union is the complement (in �) of

A

0

. Since m assigns 0 mass to [0;1)

N

\ �

c

, we have

m(A

0

) = 1�

N

X

1

m(B

i

) : (9)

Let be any bounded or positive function on A

0

.

Equation (5) has a valid analogue for functions

which reads:

R

 (bx)dm(bx) =

R

dm(bx)

R

 (by)P (bx; dby).

The integrals with respect to m are sums of the in-

tegrals over the above mentioned sets. Noting that

R

A

0

dm(bx)

R

 (by)P (bx; dby) =

R

A

0

 (bx � �

b

1)dm(bx), by

(4), and doing a little rearranging, we get

Z

A

0

[(bx � �

b

1)� (bx)]dm(bx) =

N

X

1

Z

B

j

dm(bx)[(bx)�

Z

 (by)P (bx; dby)]: (10)

Let us �x i and for take (bx) = exp(��x

i

) where �

is any complex number with nonnegative real part in-

dependent of bx. Then, from the above considerations

and (4), we �nd that for bx in B

i

,

Z

 (by)P (bx; dby) =

Z

1

0

expf��(x

i

+ z)gdF (z)

= exp(��x

i

)�(�);

where �(�) =

R

1

0

e

��z

dF (z) is the Laplace transform

of F . On the other hand, for bx in B

j

with j 6= i,

Z

 (by)P (bx; dby) =

Z

1

0

exp(��x

i

)dF (z)

= exp(��x

i

) = (bx):

Thus all but the i

th

term on the right-hand side of

(10) vanishes and it becomes

[1� (�)]

Z

B

i

exp(��x

i

)dm(bx):

The left-hand side of (10), also simpli�es easily and

one eventually arrives at

[e

��

� 1]

Z

A

0

exp(��x

i

)dm(bx) =

[1� �(�)]

Z

B

i

exp(��x

i

)dm(bx) : (11)

Divide both sides by � and let � tend to 0. Noting

that the integrands tend to 1, [1 � �(�)]=� tends to

��

0

(0) = �, and (e

��

� 1)=� tends to �, we get that

�m(A

0

) = �m(B

i

), for each i = 1; : : : ; N . Equation

(8) now follows immediately from this and (9).

A.3 The Case N = 1:

If we observe the successive positions of a single

one of our N particles at only those times at which it

actually moves, we get a 1-dimensional version of the

N -dimensional chain. For i = 1; : : : ; N , let u

i

(0) = 0,

and for r = 1; 2; : : :, let

u

i

(r) = minft : t > s

i

(r�1); &X

i

(t) 6= X

i

(u

i

(r�1))g:

From the description of the chain in terms of the

independent random variables �, one concludes: (I)

Each sequence fX

i

(u

i

(r)) : r = 0; 1; 2; : : :g is itself

a Markov chain on the line; (II) These N Markov

chains are mutually independent. If one can �nd an

increasing sequence of times fS

k

g such that each S

k

is a common value of every one of the u

i

(i.e., for each

k there are numbers r

i

(k), not the same, such that

S

k

= u

i

(r

i

(k)), for every i), then, given

b

X(0) = bx,

b

X(S

k

) has, for each k > 0, mutually independent com-

ponents. Here is such a sequence: let S

0

= 0, and for

k > 0, let S

k

= 1 + minft : t � S

k�1

&

b

X(t) 2 A

0

g.

The times T

k

= S

k

� 1 are the successive (random)

times at which the interval [0; �) is empty of particles

(Z(T

k

) = 0). Since

b

X(T

k

) is obtained from

b

X(S

k

) by

adding the deterministic constant � to each of the com-

ponents of

b

X(S

k

), it follows that the components of

b

X(T

k

) are also mutually independent. The sequence

f

b

X(T

k

); k � 0g also forms a Markov chain called the

trace chain on A

0

. An important point to note is

that the special structure of

b

X implies that for each

i = 1; : : : ; N the chain fX

i

(T

k

); k � 0g itself coincides,

in law, with the trace chain on [�;1) of an N = 1

version of

b

X. The general theory of trace chains (cf.

[8], Ex.3.13, p. 27 & Prop.2.9, p. 93) implies, rea-

sonably enough, that the trace chain f

b

X(T

k

)g is also

positive recurrent with an invariant probability distri-

bution m

0

, say, obtained by renormalizing the distri-

bution m restricted to A

0

. That is, for subsets B,

m

0

(B) =

m(B \A

0

)

m(A

0

)

= (1 +

N�

�

)m(B \A

0

): (12)

But because this trace chain also has independent

components, it follows thatm

0

is a \product measure"

built up from the invariant distributions of each of

its component chains. These component chains have

identical T.P.'s, so the factors in m

0

are the same. Let

us call this common distribution G

0

. Once computed,

G

0

(concentrated on [�;1)) is used to compute the

limit, as k !1, of the probability of �nding exactly j

particles in the interval [0; �) at the times S

k

= T

k

+1.

By now it should be clear that the limiting distribu-

9

tion of Z(S

k

) is a binomial distribution correspond-

ing to N Bernoulli trials with \success" parameter

p = G

0

f[�; 2�)g. (However, the limit distribution of

Z(t) for t tending to in�nity without restriction is not

a binomial.)

The invariant distribution, let us call it G rather

than m, in the case N = 1 of our basic chain can be

calculated explicitly and then G

0

obtained from the

special case of (12). In the case N = 1; A

0

= [�;1)

and B

1

= [0; �) and equation (11), simpli�es to

[e

��

� 1]

Z

1

�

e

��x

dG(x) = [1� �(�)]

Z

�

0

e

��x

dG(x);

which is valid for any complex number �; Re(�) � 0.

If we set � = �2n�i=�, where n is an arbitrary integer,

and i

2

= �1, we �nd that the left-hand side vanishes.

The density assumption implies that �(�) 6= 1 for any

� 6= 0. Hence

R

�

0

exp(2n�ix=�)dG(x) = 0 for every

n 6= 0. Standard uniqueness results in the theory of

Fourier series implies that we must have dG(x) = Cdx,

0 � x � �, for some constant C. From (8) in the case

N = 1 we �nd C� = 1 � Gf[�;1)g = �=(� + �); so

C = 1=(� + �). For the Laplace transform of G on

[�;1), we get

Z

1

�

e

��x

dG(x) =

1� �(�)

e

��

� 1

Z

�

0

e

��x

Cdx

= e

���

1� �(�)

�(� + �)

:

Inverting the Laplace transforms in this equation re-

veals that the density function g of G on [�;1) exists

and for x � �, is given by g(x) = [1�F (x��)]=(�+�);

and from (12) it is then clear that G

0

has the density

g

0

(x) = (1 + �=�)g(x) for x � �. Thus, the limit

distribution of Z(S

k

) as k!1 is:

b(i) = lim

k

P

�

fZ(S

k

) = ig =

�

N

i

�

p

i

(1� p)

N�i

= lim

n

(1=n)#fk : k � n; Z(S

k

) = ig (13)

(w.p.1), for i = 0; 1; : : : ; N , where

p = G

0

f[�; 2�)g =

1

�

Z

�

0

[1� F (x)]dx

=

1

�

Z

�

0

Z

1

x

f(z)dzdx (14)

A.4 Estimates for the q

j

.

Apart from the explicit representation of m on A

0

discussed in the last section, a simple direct expression

for m on all of [0;1)

N

for N > 1 is not available.

(In particular it appears that m is generally not a

product measure on all of [0;1)

N

.) This means that,

with one exception noted below, for j > 0 we do not

have explicit formulas for the values of q

j

= m(A

j

)

and must resort to approximations. In this section we

establish two inequalities:

q

j

� q

0

N

X

j

b(i) ; (15)

q

j

� q

0

[1� F (�)]

�1

N

X

j

b(i) ; (16)

for j = 1; 2; : : : ; N . (The one case where we get equal-

ity instead of inequality is when the distribution F

assigns no mass to [0; �); so that F (�) = 0:)

To simplify the notation a little, the starting distri-

bution � will be omitted, if not forgotten, when it is

not essential. Finally, we put

D(j) =

P

N

i=j

b(i);

n

�

(t) = maxfk : S

k

� tg;

#(t; j) = #fs : s � t & Z(s) = jg;

#

�

(n; j+) = #fk : k � n & Z(S

k

) � jg:

Consider one of the stopping times S

k

. If Z(S

k

) � j,

then as t goes from S

k

to T

k+1

= S

k+1

� 1, the values

of Z(t) must decrease through each value of i from j

to 0, possibly pausing for a time at one or more of

these values. It follows that for every t

#(t; j) � #

�

(n

�

(t); j+):

Now #(t; 0) di�ers from n

�

(t) by at most 1, since the

T

k

's are the zeros of Z. Therefore, by the law of large

numbers for

b

X(t),

lim

t!1

n

�

(t)

t

= q

0

; (17)

and, see (13),

q

j

= lim

t

#(t; j)

t

�

�

lim

t

n

�

(t)

t

��

lim

n

#

�

(n; j+)

n

�

= q

0

D(j) :

This proves (15).

To prove equation (16) note �rst that equation (17)

entails lim

n

S

n

=n = lim

n

S

n

=n

�

(S

n

) = lim

t

[t=n

�

(t)] =

1=q

0

, and then

lim

n

#(S

n

; j)

n

=

�

lim

n

#(S

n

; j)

S

n

� �

lim

n

S

n

n

�

=

q

j

q

0

:

10

Fix j > 0 and let us de�ne a sequence of random

variables fV

k

g by

V

k

= maxfr : Z(s) = Z(s + 1) = � � �Z(s + r) = j

for some s in [S

k�1

; S

k

)g:

Note that V

k

= 0 if Z(S

k�1

) < j or if Z(s) = j only

once during [S

k�1

; S

k

). Clearly

#(S

n

; j) = #

�

(n; j+) +

n

X

1

V

k

:

Therefore, by Fatou's Lemma and the dominated con-

vergence theorem,

q

j

q

0

= Eflim

n

#(S

n

; j)

n

g � lim inf

n

Ef

#(S

n

; j)

n

g

� lim

n

Ef

#

�

(n; j+)

n

g+ lim sup

n

Ef

1

n

n

X

1

V

k

g

� D(j) + lim sup

k

EfV

k

g: (18)

To get a bound for the constant lim supEfV

k

g we pro-

ceed as follows. Let R be the �rst s � S

k�1

such that

Z(s) = j. Then, by the Markov property,

EfV

k

g = EfV

k

: Z(S

k�1

) � jg

= EfEfV

k

jF

R

g; Z(S

k�1

) � jg

= EfE

b

X(R)

fV

1

g;Z(S

k�1

) � jg

� B PfZ(S

k�1

) � jg; (19)

where B = supfE

bx

fV

1

g : bx 2 A

j

g. (The vertical bar

with the inner expectation after the second equality

above denotes conditional expectation given F

R

, the

�-�eld generated by f

b

X(t) : t � Rg. The shift back

to k = 1 is a consequence of the time homogeneity of

the chain f

b

X(S

k

)g.)

Note that when the initial value of Z is j, the event

fV

1

> rg implies that at least r + 1 independent ran-

dom variables � (remember the �'s?) had values not

larger than �. Hence, for any bx in A

j

, we must have

P

bx

[V

1

> r] � F (�)

r+1

. Therefore

E

bx

fV

1

g =

1

X

r=1

rP

bx

fV

1

= rg

=

1

X

r=0

P

bx

fV

1

> rg �

F (�)

1� F (�)

;

for all bx in A

j

. Returning to (19) with this bound for

B and then to (18) and recalling (13) again, we get:

q

j

q

0

� D(j) +

F (�)

1� F (�)

lim

k

P

�

fZ(S

k�1

) � jg

= (1 +

F (�)

1� F (�)

)D(j) =

D(j)

1� F (�)

;

which proves (16).

A.5 The Minimization Problem.

Throughout this section we assume that N � 2.

The binomial distribution fb(i)g for N trials with

success parameter p has mean Np and second moment

(Np)

2

+Np(1� p). Hence,

P

N

1

j

�

P

N

j

b(i)

�

=

P

N

1

1

2

(i

2

+ i)b(i)

=

1

2

[(N

2

�N)p

2

+ 2Np]:

Now p � � [1� F (�)]=� and (1 � q

0

)

�1

= 1 + �=N�.

(See (8) and (14.) These considerations and formulas

(7), (15), and (16), yield

K(�) �

1 +

1

2

aq

0

[(N

2

�N)p

2

+ 2Np]

1� q

0

� [1� F (�)]

2

h(x) � [1� 2F (�)]h(x);

where x = N�=� and

h(x) = 1 + a+

1

x

+

1

2

a(1� 1=N)x:

On the other hand note that p � �=�, so if we take

� � �

0

, where �

0

is chosen so that F (�

0

) � 1=2, then

K(�) �

1 +

1

2

aq

0

[1� F (�)]

�1

[(N

2

�N)p

2

+ 2Np]

1� q

0

� [1� F (�)]

�1

h(x) � [1 + 2F (�)]h(x):

Since the density f is bounded near 0, there is a con-

stant C

0

such that for small �

0

> 0 (in particular we

want �

0

� minf�

0

;

1

2

g), F (�) � C

0

� � C

0

�

0

<

1

2

for all

0 < � � �

0

, and then

(1� 2C

0

�

0

)h(x) � K(�) � (1 + 2C

0

�

0

)h(x):

Now the extreme members of this last inequality have

absolute minimum values on (0;1) at the point x

0

=

p

2N=a(N � 1) =

p

2=a(1+�=N), where � is in (0; 1).

It follows (as the reader can easily convince himself by

sketching some graphs) that the GLB (greatest lower

bound) of K(x�=N) can be calculated by examining

its values for x between the solutions, z

1

and z

2

, of the

equation (1 � 2C

0

�

0

)h(z) = (1 + 2C

0

�

0

)h(x

0

). It can

be shown that jz

2

� z

1

j = O(

p

�

0

) for �

0

' 0. Further-

more, x

0

lies between z

1

and z

2

. Hence, if x is such

thatK(x�=N) is near its GLB, then jx�x

0

j � C

1

p

�

0

,

withC

1

a constant which can be chosen independent of

�

0

. Therefore the minimizing �(= �x=N) is bounded

by a constant C

2

, say, times 1=N . Replacing �

0

by

11

C

2

=N , where N � C

2

=�

0

, and repeating the previ-

ous argument, shows that we can replace C

1

p

�

0

in

the inequality for jx � x

0

j by C

3

=

p

N with C

3

inde-

pendent of N . Multiplying this formally improved in-

equality by �=N gives j�

opt

�

p

2=a�=N j = O(N

�3=2

).

This estimate and our inequalities for the function K

now yield that K

min

= 1 + a +

p

2a with an error

O(�) = O(N

�1

).

B Proof of Theorem 3.2

We continue the notation of the preceding sections

of the appendix. In addition we will write L

M

for

L

M

(�) and Z

A

(t) for the number of particles in set A

at time t. Since � = [M�;M�+�)[[2M�; 2M�+�)[� � �

is a subset of [�;1) we have

Z

�+�

(T

j�1

) = Z

�

(S

j�1

) � Z

�

(s) � Z

�

(T

j

)

for S

j�1

= T

j�1

+ 1 � s � T

j

. Hence,

L

M

= lim

t

(1=t)

X

s�t

Z

�

(s)

= lim

k

(k=T

k

) lim

k

(1=k)

k

X

j=1

[

T

j

X

s=S

j�1

Z

�

(s)]

= q

0

lim

k

E[

T

k

X

s=S

k�1

Z

�

(s)]

� q

0

lim sup

k

E[Z

�

(T

k

)(�

k

)]; (20)

w.p.1, where �

k

= T

k

� T

k�1

. Suppose that at time

T

k�1

there are r = Z

[�;2�)

(T

k�1

) particles at positions

x

1

+ �; : : : ; x

r

+ � in [�; 2�). Then at S

k�1

there will

be r particles in [0; �) at positions x

1

; : : : ; x

r

. So

Z

�

(T

k

) = Z

�+�

(T

k�1

) + u

1

+ � � �+ u

r

where u

i

= 1 or 0 according as the i-th of these parti-

cles lands in � or not when it is �nally removed from

the interval [0; �). (Which removal must occur during

[S

k�1

; T

k

].) Writing u = u

i

; x = x

i

, then

p

x

= Pfu = 1jF

T

k�1

g

=

1

X

j=1

[H

��x

(jM�) �H

��x

(jM� � �)]

where H

t

(b) is the probability that a particle starting

at the origin lands in the interval [t; t+b) when it �rst

jumps over t. H satis�es

H

t

(b) =

Z

t

0�

[F (t+ b� y) � F (t� y)]dU (z);

where U is the renewal function. (See Feller [4], page

369. The function de�ned by Feller is the hitting

probability of (t; t + b]; this coincides with our H

on account of the density assumption.) In general

U (z) � [1�F (z)]

�1

for distributions on [0;1) so that

p

x

�

Z

��x

0�

1

X

j=1

[F (jM� + � � x� z)

�F (jM� � x� z)] dU (z)

� �

2

=[1� F (�)]

(Recall the de�nition of �

2

.) Calling the right hand

side p

�

and noting that conditional on the �-�eld

F

T

k�1

, the variables u

i

are independent of �

k

, we have

EfZ

�

k

�

k

jF

T

k�1

g � [Z

�+�

k�1

+ rp

�

]Ef�

k

jF

T

k�1

g

� [Z

�+�

k�1

+ rp

�

]

�

r

1� F (�)

+ 1

�

:

where r = Z

[�;2�)

k�1

, and Z

f�g

j

means Z

f�g

(T

j

), j =

k � 1; k. Now at the times fT

j

g the particles are in-

dependent so the limiting joint distribution of Z

�+�

k�1

and Z

[�;2�)

k�1

is a trinomial. (Separately, they have bi-

nomial limit distributions.) Letting k ! 1 we get

EfZ

[�;2�)

k�1

g ! Np, EfZ

�+�

k�1

g ! N�

1

, Var(Z

[�;2�)

k�1

) !

Np(1� p), and

EfZ

[�;2�)

k�1

Z

�+�

k�1

g ! N (N � 1)p�

1

;

where p is de�ned at (14) and �

1

= G

0

(�+ �). Going

back to (20) with these calculations we obtain

L

M

� q

0

lim

k

Ef[Z

�+�

k�1

+ p

�

Z

[�;2�)

k�1

]

Z

[�;2�)

k�1

+ 1

1� F (�)

!

g

=

Nq

0

f(Np+ 1)�

1

+ pp

�

[Np+ 2� p]g

1� F (�)

:

(Recall that EfE[� jF

T

k�1

]g = Ef � g.) Replacing p

�

with �

2

=[1�F (�)] and q

0

with �=(�+N�) (equation

(8)) we obtain the upper bound on L

M

.

For the lower bound we have

L

M

� q

0

lim inf

k

E[Z

�+�

k�1

�

k

]

� q

0

lim

k

EfZ

�+�

k�1

(Z

[�;2�)

k�1

+ 1)g;

= q

0

fN (N � 1)p�

1

+N�

1

g;

which evaluates to the lower bound on L

M

.

12

