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Abstract

We have developed compiler algorithms that analyze coarse-grained, explicitly parallel programs and

restructure their shared data to minimize the number of false sharing misses. The algorithms analyze

the per-process data accesses to shared data, use this information to pinpoint the data structures that

are prone to false sharing and choose an appropriate transformation to reduce it.

The algorithms eliminated an average (across the entire workload) of 64% of false sharing misses,

and in two programs more than 90%. However, how well the reduction in false sharing misses translated

into improved execution time depended heavily on the memory subsystem architecture and previous

programmer e�orts to optimize for locality. On a multiprocessor with a large cache con�guration and

high cache miss penalty, the transformations improved the execution time of programmer-unoptimized

applications by as much as 60%. However, on programs where previous programmer e�orts to improve

data locality had reduced the original amount of false sharing, and on a multiprocessor with a small

cache con�guration and cache miss penalty, the gains were more modest.

1 Introduction

On bus-based, shared memory multiprocessors, much of the \unnecessary" bus tra�c, i.e., that which could

be eliminated with better processor locality [AG88], is coherency overhead caused by false sharing [TLH90,

EJ91]. False sharing occurs when multiple processors access (both read and write) di�erent words in the same

cache block. Although they do not actually share data, they incur its costs, because coherency operations

are often cache block-based. In a write-invalidate coherency protocol the overhead of false sharing takes

the form of additional invalidations when a processor updates data and additional invalidation misses when

other processors reread (di�erent) data that resides in the invalidated cache block. In some coarse-grain,

explicitly parallel applications, misses due to false sharing comprise between 40% and 90% of all cache misses

(over block sizes ranging from 8 to 256 bytes) [EJ91].

False sharing is caused by a mismatch between the memory layout of write-shared data and the cross-

processor memory reference pattern to it. Manually changing the placement of this data to better conform

to the memory reference pattern (based on pro�les derived from trace-driven simulations) can reduce false

sharing misses by up to 75% [TLH90, EJ91]. However, manual restructuring requires that the programmer

pinpoint the data structures that su�er from false sharing in a particular memory (cache) architecture. (Sim-

ulation pro�les are generally not available during the development cycle.) To identify these data structures it

is necessary to know their layout in memory, the cross-processor memory reference pattern to them, as well

as details of the memory architecture and coherency protocol. All this is hard to determine; knowledge of
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how each data object is shared is often non-intuitive, and each application must be tailored to the particular

memory architecture of the system on which it is running.

For these reasons we have automated the elimination of false sharing. We have developed and incorporated

into the Parafrase-2 [PGH

+

89] source-to-source restructurer a series of compiler-directed algorithms [Anoa,

Anob] and a suite of transformations that restructure shared data at compile time. Our algorithms analyze

explicitly parallel programs, producing information about their cross-processor memory reference patterns

that identi�es data structures susceptible to false sharing and then chooses appropriate transformations to

eliminate it.

This paper reports the results of applying the static analysis to a set of explicitly parallel programs. While

no single algorithm nor transformation eliminated false sharing in all applications, when used together, they

were more successful than the programmer-directed e�orts. They eliminated on average (across all block

sizes and for the entire workload) 64% of the false sharing misses, and up to 90% for the programs that had

previously been manually transformed. Although some of the transformations increase the data size of the

programs, the negative impact on spatial locality was in all but one program less than the bene�ts achieved

by eliminating false sharing misses. In fact, for two applications spatial locality improved.

The e�ect of reducing false sharing on execution time was extremely dependent on the memory subsystem

architecture. When the local cache, the cache block size (coherency unit) and the miss penalty were large,

as they are on the KSR1, the transformations improved execution time by as much as 60%. However,

with older technology, such as that used on the Sequent Symmetry, virtually no execution time impact of

the transformations was observed. Three factors were responsible. First, the false sharing problem was

diminished, because less sharing occurred within the smaller cache blocks and shared data in smaller caches

was often replaced before it could be invalidated. Second, memory latency, and thus the cost of each

coherency operation induced by false sharing was lower. Third, the small cache size increased the negative

impact on capacity misses of transformations that increase the data size, thus o�setting the positive e�ects

from reducing (a small amount of) false sharing.

In the next section we describe our model of parallel programming. Section 3 presents a brief overview of

the compile time analysis performed by our system and gives a breakdown of its di�erent levels of accuracy

in computing the inter-process reference pattern; section 4 describes the transformations; section 5 describes

our workload and methodology; section 6 presents the experimental results; related work is discussed in

section 7; and section 8 concludes.

2 Model of Parallel Programming

Our analysis and transformations are aimed at coarse-grained, explicitly parallel programs for shared memory

multiprocessors, written in traditional high level languages such as C, that have been enriched with process

creation and synchronization primitives. These programs are typical of those that currently execute on

small to medium scale, bus-based multiprocessors, both commercially (e.g., Sequent Symmetry [LT88] and

the KSR1 [KSR92]) and in research environments (e.g., DASH [LLG

+

92]).
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..

...

cell2 = cell_num2[proc];

cell1 = cell_num1[proc];

int proc;

SubPart1(proc)

...

.

..

Work() {

while (converged != 0) {

Wait_Barrier(&MyBarr1);

.

Wait_Barrier(&MyBarr2);

(c)

SubPart1(pid);

SubPart2(pid);

shared barrier_t MyBarr1, MyBarr2, MyBarr3;

private int pid;

shared int NumProcs;

if (pid == 1)

converged = TestConverged();

Wait_Barrier(&MyBarr3);

}

}

exit(0);

for ( pid = 1; pid < NumProcs; pid++) {

Work();

if (fork() == 0) {

}

}

Work();

(a) (b)

Figure 1: Example program segment that illustrates the use of a process di�erentiating variable in process

creation (a), per-process control 
ow (b), and shared data access (c).

The granularity of parallelism in these programs is very coarse, on the level of an entire process. In our

model the number of processes equals the number of processors and processes do not migrate. The programs

conform to an SPMD model of parallel programming: the processes all have identical code, but they need

not take the same paths through the program. They may or may not access di�erent data.

Processes are created explicitly, e.g., using a fork() system call (illustrated in Figure 1). They are typically

spawned in a loop that iterates over the number of processes; each value of the induction variable (e.g., pid)

is stored in a private (to each process) variable as a de facto process identi�er. We call this a process

di�erentiating variable.

Process synchronization is performed using global barriers. When the control 
ow of a process reaches a

barrier, it must wait until all participating processes also reach it. Barriers are used in shared memory mul-

tiprocessors as a (relatively) inexpensive mechanism to enforce large sets of cross-process data dependences

that otherwise would have to be enforced by a large number of locks. Locks are only used to enforce mutual

exclusion, i.e., they serialize access to critical sections. In our false sharing analysis we treat accesses to locks

just like accesses to the shared data they protect.

3 Compile-time Analysis

In order to determine which data structures are susceptible to false sharing, where locality may be improved,

and which transformations to apply at compile time, we analyze a program and compute an approximation of

the memory access pattern of each of its processes. The compiler analysis involves three separate stages. The

�rst determines which sections of code each process executes by computing its control 
ow graph [Anoa].

The second performs non-concurrency analysis [MR93] by examining the barrier synchronization pattern

of the program, delineating the phases that cannot execute in parallel and computing the 
ow of control

between them [Anob]. The third stage performs an enhanced interprocedural, 
ow-insensitive, summary
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side-e�ect analysis [Bar78, Ban79, Mye81, CK88b] and static pro�ling [Wal91] on a per-process basis (based

on the control 
ow determined in stage one) for each phase (determined in stage two). In this paper we only

discuss those aspects of the static analysis that clarify how it e�ects the detection of false sharing.

Per-process references to shared data occur either as a result of the processes executing di�erent code

(thus accessing di�erent elements of shared data) or by the implicit partitioning of arrays across the processes

when they execute the same code. Per-process control 
ow analysis (stage 1) detects the �rst case, and

summary side-e�ect analysis and process di�erentiating variables

1

(stage 3) help detect the second. The

side-e�ect analysis represents the sections of each array that each process accesses using bounded regular

section descriptors

2

to describe the index expressions [HK91]. When a regular section descriptor indicates

that a process di�erentiating variable is used in the index expressions for array accesses, we test whether

the descriptor identi�es disjoint sections of the array for di�erent values of the variable. The array is

implicitly partitioned across processes if the sections are disjoint. The per-process control 
ow analysis, on

the other hand, identi�es control statements where the control 
ow of di�erent processes diverges, and uses

this information to compute a separate control 
ow graph for each process. Analyzing shared arrays and

structures that are indexed by process di�erentiating variables, and applying the side e�ect analysis to the

separate control 
ow graphs yields the sections of shared data that each process reads and writes.

There are two problems with using traditional summary side-e�ect analysis. First, using a single regular

section descriptor to represent a process's array accesses results in a loss of accuracy (in describing the index

expressions) when the array is accessed di�erently in di�erent parts of the program. To improve the accuracy

we allow multiple regular section descriptors to exist for each array. Instead of eagerly merging descriptors

[CK88a, HK91] (and losing information in the process), we only merge descriptors when very little or no

information will be lost, or when the number of descriptors for a single array exceeds some small preset limit.

(None of the arrays used in our benchmarks required more than 10 descriptors).

The second problem with summary side-e�ect analysis is that it does not di�erentiate between accesses

that occur inside and outside loops, thereby failing to discern the dominant (most frequently executed) mem-

ory reference pattern. To counter this, we use static pro�ling information [Wal91] to produce a weighting of

the side-e�ects with respect to estimated execution frequency. This allows us to disregard data structures

that are accessed infrequently, or are read frequently but seldom written. Using both static pro�ling infor-

mation and multiple regular section descriptors enables us to get a much better picture of the predominant

sharing patterns in the programs, and consequently to make more and better data restructuring decisions.

The non-concurrency analysis (stage 2) uses barrier synchronization points to determine which portions

of a program can execute in parallel and which cannot. It therefore can detect the memory access pattern

of distinct phases of a program (between barriers), and, more importantly, when the pattern shifts. When

coupled with static pro�ling, it can determine the dominant sharing pattern in the program and restructure

1

As mentioned in section 2, process di�erentiating variables are private variables that have values that vary across the

processes and are invariant throughout the lifetime of the processes. pid in Figure 1 is an example.

2

A regular section descriptor is a vector of subscript positions in which each element describes the accessed portion of the

array in that dimension. Each element is either a simple, invariant expression of program variables or constants (when the

index expression for that dimension does not contain an induction variable), a range (giving simple, invariant expressions for

the lower bound, upper bound and stride), or unknown (when the index expressions are too complex or variable).
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for that pattern. For example, in one application the non-concurrency analysis revealed that shared structures

were accessed on a distinct per-process basis in all parts of the program except during the �nal convergence

testing. It therefore transformed the data by process, according to the dominant usage. Without non-

concurrency analysis, the side e�ect analysis would have discouraged the transformation.

Including all techniques in the source-to-source restructurer had little impact on the overall compile costs.

When techniques commonly used in optimizing compilers (such as call and 
ow graph construction, alias,

dependence and loop analysis) were included in our source-to-source restructurer, the execution time of our

algorithms made up only 5% (on average) of the total running time.

4 Transformations

In order to eliminate or signi�cantly reduce the number of false sharing misses, data must be restructured so

that (1) data that is only, or overwhelmingly, accessed by one processor is grouped together, and (2) write

shared data objects with no processor locality [AG88] do not share cache lines. Two transformations, group

and transpose and indirection [Anoa], address item (1); the third, padding , is aimed at item (2).

Group and transpose physically groups data together by changing the layout of the data structures in

memory. It groups together vectors in which adjacent elements are accessed by di�erent processors and then

transposes the group. If each processor's data is less than the cache block size, it may be padded, so that no

two processors' data share a cache block. In addition to eliminating false sharing misses, this transformation

improves spatial locality.

When it is not possible to physically change the data layout (because, for example, the a�ected per-process

data structure is embedded into the elements of a dynamically allocated list or graph), we can achieve a

similar result by using indirection. Indirection allocates data areas of memory for each processor, places

shared data into them, and locates the shared data with pointers that replace the values in the original data

structures. Unlike group and transpose, indirection has two possible sources of run time overhead: additional

space for the pointers, and an additional memory access for each reference to the data.

The third transformation pads data that is falsely shared in the short term but eventually write shared by

all processes over time. Padding the data structures increases the data set size, and may therefore increase

con
ict and capacity misses, and reduce spatial locality when a processor must access the entire shared

area. However, judicious use of padding need not have these e�ects. In order for spatial locality to bene�t

write-shared data, it must be synonymous with processor locality, i.e., a processor must access the data over

a short period of time. If it does not, other processors will invalidate the data before it can be referenced.

Therefore we only pad data structures that lack processor locality, i.e., where the possible loss of spatial

locality is insigni�cant relative to the savings in coherency overhead.

Locks are also padded, to the size of the cache block, rather than allocated with the write-shared data

they protect. The latter generates coherence tra�c when there is contention for the locks: the processor

that holds the busy lock loses exclusive ownership of its cache block, because of reads by waiting processors.

Its writes to the data cause invalidations, and then invalidation misses when the waiting processors reread
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the status of the lock.

Once all stages of the static analysis have been performed, we use a number of heuristics to detect which

data structures are susceptible to false sharing and which transformation should be applied to eliminate it

[Anob].

5 Methodology

The static analysis and false sharing detection algorithms were implemented as separate passes in Parafrase-2

[PGH

+

89].

We perform two kinds of experiments to measure the e�ects of the data transformations on the programs

in our workload. False sharing reductions were measured using trace-driven simulation. Each program was

traced (both before and after shared data was transformed) on a 20-processor Sequent Symmetry [LT88],

using a software tracing tool for parallel programs [EKKL90]. Cache miss rates were analyzed with a

multiprocessor simulator that emulates a simple, shared memory architecture. The processors are assumed

to be RISC-like, with a 32 KB �rst level cache and an in�nite second level cache

3

.

Execution times were measured on two di�erent shared-memory multiprocessors, a 56-processor Kendall

Square Research KSR1 [KSR92], and the Sequent. They represent two very di�erent points in the shared-

memory multiprocessor design space, in particular with respect to their memory subsystem designs.

The KSR1 memory subsystem has big caches, big cache blocks and long memory latencies. Each processor

has a 512 KB �rst level cache, divided equally between data and instructions. The block size is 2 KB, and

each is divided into 64 byte subblocks. The second level cache contains 32 MB and is divided into 16 KB

pages, each consisting of 128 subpages of 128 bytes. A subpage is the unit of coherency. There is a 20-

24 cycle latency to access the second level caches, which are connected to a 2-level hierarchical ring-based

interconnect. There is a 175 cycle latency to access the cache of another processor on the same ring. If the

processor is on a di�erent ring, the latency is 600 cycles.

On the KSR1 the lock data structure is large (80 bytes) and aligned on cache block boundaries. To

make more accurate, i.e., implementation independent, comparisons with the simulations and the Sequent

experiments, we used KSR1 synchronization primitives to implement a smaller version of locks.

The memory subsystem on the Sequent Symmetry is smaller in scale and faster relative to processor

speed. Each processor has a 64 KB, 2-way set associative, uni�ed cache, with 16 bytes blocks. The time to

service a cache miss is approximately 4 cycles.

On the KSR1 additional run time statistics such as the number of cache misses (both �rst and second

level), page faults, and memory stall time were available from the KSR Performance Monitoring Library.

The workload consisted of six coarse-grained, explicitly parallel programs, all written in C (Table 1).

Water, Mp3d and LocusRoute are from the Stanford SPLASH benchmarks [SWG91]. They are all programs

in which considerable programming e�ort has been expended to improve data locality, including eliminating

false sharing. They were included in our workload to see if our static analysis could improve upon programmer

3

In�nite caches can be used to approximate very large (on the order of several megabytes) second level caches [Anoc].
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Program Description Lines of C

LocusRoute VLSI standard cell router 6709

Max
ow maximum 
ow in a directed graph 810

Mp3d rare�ed 
uid 
ow 1653

Topopt topological optimization 2206

Pverify logical veri�cation 2759

Water n-body molecular dynamics 1451

Table 1: Benchmarks used in our study.

e�orts to reduce false sharing. In Pverify [MDWSV87], Topopt [DN87] andMax
ow [Car88] the programmers

made no attempt to improve locality, because of the added complexity of (multiprocessor) cache-conscious

programming.

6 Results

We present two sets of results to describe the impact of our analysis and transformations on the benchmarks.

The �rst demonstrates their overall e�ectiveness in eliminating false sharing, as well as the relative contri-

bution of the di�erent phases of the static analysis and the di�erent transformations. These results were

obtained by trace-driven simulation. The second details the e�ect on overall performance by using data from

direct execution on the two multiprocessors.

6.1 Eliminating False Sharing

Figure 2 shows the shared data and false sharing cache miss rates for each program before and after applying

transformations, and using the full scope of the static analysis to make the transformation decisions. The

total miss rate is not shown, because it closely tracks the shared data miss rate in almost all cases. The

�gures con�rm previous results that false sharing misses have the greatest impact at large block sizes and

less at smaller.

The transformations have noticeably reduced the false sharing miss rate for all programs. For Mp3d,

Pverify and Water, false sharing misses have been all but eliminated; on average less than 0.35% of shared

data misses caused by false sharing remain for any block size. The transformations have also been very

successful in eliminating false sharing misses in Topopt. Averaged over multi-word cache blocks the reduction

is 79% (56% to 87%). The remainder of Topopt's false sharing is primarily caused by writes into a shared

array that is partitioned across the processes in such a way that it is not detectable by our static analysis

4

.

For LocusRoute the false sharing miss rate is cut in half for block sizes of 128 and 256 bytes, but is only

reduced by 5% to 10% for smaller block sizes. The transformations had the smallest impact on Max
ow.

Much of the false sharing in Max
ow is caused by busy, write-shared scalars that have been allocated to the

4

Using manual inspection of the program and applying an additional transformation we call \privatization", we were able to

further reduce Topopt's false sharing miss rate for all block sizes to less than 0.12%. We have not (yet) automated privatization.
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Figure 2: Shared data and false sharing miss rates, before and after transformations, for the programs in

our workload. Notice that the miss rate axis varies across the programs.

same cache block. Our static analysis accurately detects per-process accesses to arrays and structures, but

cannot identify when write-shared scalars cause false sharing.

Topopt and Pverify had previously been analyzed and transformed manually [EJ91]. The static analysis

achieved reductions in false sharing that well exceeded the previous results. For Topopt the manual ap-

proach succeeded in eliminating an average of 59% of false sharing misses, while our compile time approach
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eliminated 79%. Similar �gures for Pverify were 76% versus 91%. Considerable programmer e�ort had been

expended to improve data locality in the SPLASH programs. Nevertheless, our static analysis was able to

eliminate a signi�cant portion of the false sharing misses that still remained.

Total Fraction of reduction by stage of analysis

Program reduction +locks +side-e�ect +multiple RSDs +pro�ling +non-concurrency

LocusRoute 23.6% 23.6%

Max
ow 21.6% 21.6%

Mp3d 65.9% 65.9%

Pverify 91.2% 3.1% 6.4% G 81.6% I

Topopt 79.9% 12.5% I 6.1% I 61.3% G

Water 99.2% 99.2%

Table 2: Average (over multi-word block sizes) reduction in false sharing by di�erent stages of analysis

and di�erent transformations. A \G" indicates that group and transpose was used, while \I" indicates

indirection.

Although false sharing was completely or signi�cantly eliminated (in all programs but one), di�erent

analysis and transformations were responsible. To gauge the e�ectiveness of the di�erent techniques, we

examine them in �ve stages of increasing sophistication. In the �rst stage we only consider locks and pad

them to the size of the cache blocks. Stage two builds upon stage one by including per-process control 
ow

analysis and side-e�ect analysis, but without the enhancements. Stage three adds multiple regular section

descriptors to the side-e�ect analysis, while stage four includes static pro�ling. Finally, stage �ve adds

non-concurrency analysis. Table 2 summarizes the results. It depicts the average reduction in false sharing

across multi-word cache blocks for each program (column 2), together with a breakdown of the reduction

caused by transformations at each stage of analysis (columns 3{7).

Most of the false sharing was caused by contention for locks, and the analysis accurately detected this. For

four of the benchmarks, LocusRoute, Max
ow, Mp3d and Water, the most successful transformation was also

the simplest (padding locks). The other stages of analysis discouraged additional transformations. (Recall

that these are the applications in which programmers had designed shared data structures to maximize

spatial and processor locality.)

When the static analysis detected additional opportunities to apply transformations, the highest bene�ts

where obtained with the most aggressive analysis. Pverify has two vectors that were accessed overwhelm-

ingly on a per-process basis. Traditional side-e�ect analysis (without the enhancements) could not detect

this, because other, and less frequent, accesses to these vectors forced a loss of precision when the side-e�ect

information was summarized. By using multiple regular section descriptors and static pro�ling, our algo-

rithms identi�ed and factored out the dominant access pattern, and consequently transformed the data. For

Topopt non-concurrency analysis detected that a set of vectors was accessed on a per-process basis in all

but one phase of the program. It therefore transformed for the dominant access pattern.

For all but one program the shared data miss rate mirrors the decline in the false sharing miss rate, i.e., the
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Figure 3: Deviation from expected shared data miss rate.

transformations yield an improvement in processor locality that counterbalances any loss in spatial locality

5

.

The e�ect can be measured by comparing the shared data miss rate of each transformed program with an

ideal miss rate that re
ects no change in spatial locality. The ideal shared data miss rate is computed by

reducing the original shared data miss rate by the percentage decline in the false sharing miss rate multiplied

by the ratio of false sharing misses to shared data misses. Figure 3 shows the percentage deviation of the

shared data miss rate, after transformations, from the ideal; a negative deviation indicates that the ideal

shared data miss rate is less than the observed miss rate, i.e., there is a loss in spatial locality. The �gure

shows that with two exceptions, the transformations have little e�ect on spatial locality. For LocusRoute,

Topopt, Max
ow and Water, the shared data miss rates neither improve on the ideal miss rate by more than

10%, nor do they exceed it by more than 20%. LocusRoute shows the least e�ect on spatial locality, while

the spatial locality in Topopt improves slightly. Figure 2 shows that even though Max
ow and Water both

experience a small loss in spatial locality, it is still outweighed by the drop in false sharing.

The exceptions are Pverify and Mp3d. The transformations enhance the spatial locality in Pverify,

particularly for the smallest block sizes. Both Pverify and Topopt are examples where indirection actually

betters spatial locality, despite the addition of pointers. The transformations do not work well for Mp3d,

where the shared data miss rate climbs to almost twice that of the ideal miss rate for 256 byte blocks.

5

Recall that spatial locality may su�er because of either padding or the addition of a pointer in indirection.
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Padding locks to the size of cache blocks in Mp3d turns out not to be pro�table, because there is little

contention for the locks. Mp3d is the single case when locks should be allocated with the data they protect.

6.2 Execution Time

The previous results demonstrate that the static analysis techniques and transformations are successful in

eliminating false sharing misses. However, whether the false sharing miss reductions produce improvements in

execution time depends on two factors. The �rst is the size of the original false sharing problem. Programs

that have less false sharing, because programmers had designed shared data structures to minimize false

sharing and maximize spatial locality, reap lower bene�ts than programs in which no such attempts had

been made. Second, the design of the memory subsystem architecture has an e�ect. Machines with a

small cache, a small block size and a low cache miss penalty bene�t less than architectures with a larger

con�guration.
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Figure 4: Speedup of original and transformed versions of Topopt, Pverify, Mp3d and Water on the KSR1.

Note that the speedup axis varies across programs.

The best results occurred with applications that had not been programmer-enhanced and a multiprocessor

with large cache and block sizes and a long miss penalty, i.e., Pverify and Topopt executing on the KSR1. For

Pverify (Figure 4), the di�erence in speedup between the two versions is very large. For up to 16 processors,

the average speedup after applying transformations is almost 2.4 times greater than before. Beyond 16, when

the problem no longer scales with the number of processors, the processors' contention for data dominates
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and the overall performance of both versions is reduced. However, the original version is impacted more

severely, because of false sharing of the locks. (In fact, the original version is 2.7 times faster when it runs

on a single processor than when it runs on 20!)

The transformed version of Topopt exhibits better speedups than its original version when running on 32

processors or less. For example, execution time is reduced by as much as 14% when running on 24 processors.

Data from the KSR performance monitor attributes the speedups to a reduction in memory stall time, which

declines an average of 39% for runs of the program using 2 to 32 processors. For runs with more than 32

processors the original version does better.

The results for Pverify and Topopt also show that applying indirection can have an overall positive e�ect

on execution time, even though it adds one more memory access to every reference of the data structure.

These accesses are much more likely to be cache hits; therefore the total amount of time spent to access

the transformed data structures (more cache hits, but fewer invalidation misses) is less than in the original

program.

The di�erence in speedup between the original and transformed versions of Water (a programmer-

optimized program) is slight until more than 24 processors are used. Not until then does contention for

locks reach the level where the decrease in false sharing from padding outweighs the loss of spatial locality

caused by the additional space. After 24 processors, the di�erence between the original and transformed ver-

sions grows, indicating that the transformations have postponed the point at which the problem no longer

scales with the number of processors. The performance of the other programs where locks were padded

(LocusRoute, Max
ow) are similarly a�ected.

As expected, the loss of spatial locality caused by the transformations adversely e�ects Mp3d's execution

time. As with the other programmer-optimized programs, that loss is eventually o�set by the reduction in

false sharing. At a similar number of processors, the original version begins to su�er from a lack of scalability.

Again, the transformations serve to enhance program scalability.

Original Transformed
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Figure 5: Speedup of original and transformed versions of Pverify on the Sequent Symmetry.
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The impact of transformations on the execution time on the Sequent is all but non-existent. (Speedups

for Pverify are the largest we saw for any program.) We attribute the lack of improvement to three aspects of

the Sequent's cache organization. First, the average lifetime of data objects in the small 64 KB board-level

cache is shorter than on the KSR, and they are often replaced before they can be invalidated. This reduces

the original false sharing problem. Furthermore, the smaller cache size heightens the negative impact on

capacity misses relative to any positive e�ect on invalidation misses of transformations that increase the

data size. Second, the cache block size is relatively small, only 16 bytes; fewer data objects can share cache

blocks and subsequently the amount of false sharing is less. Third, the Sequent Symmetry has a low memory

latency relative to the processor speed, so reductions in bus tra�c have less impact than on the KSR.

7 Related Work

Related work describes either hardware solutions or compile time techniques that reorganize control struc-

tures rather shared data.

Dubois et al. [DSR

+

93] reduced false sharing by either delaying invalidations (at the sender, receiver or

both) until special acquire or release instructions are executed, or performing invalidations on a word basis.

Delaying invalidations both at the sender and the receiver and invalidating cache subblocks consistently

perform well. The former reduced false sharing misses by 85% to 100%; the latter totally eliminated them.

These reductions were achieved at the cost of increased memory tra�c and additional hardware complexity.

The �rst approach requires a change in the instruction set architecture, as well as hardware to implement

invalidation bu�ers at each processor node. The second requires an invalid bit per word in the cache block,

and causes more invalidations when the writes exhibit spatial locality.

Granston [Gra93] presented a theory to identify and eliminate page-level sharing between processors that

occur in parallel do-loops. The transformations select blocking and alignment factors that cause minimal

overlap between sets of pages accessed by di�erent processors. No results have been reported, as the theory

and transformations have yet to be implemented.

Ju and Dietz [JD91] restructured a program fragment of several loops accessing array elements. Their

restructuring algorithm applies loop transformations (such as loop distribution) and data layout transfor-

mations (accessing arrays in row or column major order), according to a coherency cost function. The

restructuring provided a 25% improvement in execution time of the loops for a 64 KB cache.

Gupta and Padua [GP91] also examined sequential programs that were automatically parallelized at the

loop level. They strip-mined the loops to the size of the cache block and assigned each strip to a di�erent

processor. The decline in miss ratios ranged from 4% to almost 60%, as block size was increased to 128

bytes. No execution times were reported.

Peir and Cytron [PC89] partitioned loops to minimize inter-processor communication when processing

recurrences. Their mechanism for partitioning utilizes loop unrolling and dependence vectors. Partitions are

then scheduled on di�erent processors.

For the compiler-based approaches, the workload consisted of either loops or library routines that have
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�ne-grain parallelism. Their studies recorded performance improvements only for the code fragments that

have been transformed. Therefore the results were overly optimistic with regard to the expected performance

of executing entire programs.

8 Conclusion

In this paper we have analyzed the e�ectiveness of using compile-time analysis and shared data transforma-

tions to reduce false sharing in coarse-grained, explicitly parallel programs. For the most part our techniques

were successful in eliminating false sharing misses. For the programs in our workload they reduced the false

sharing miss rate by an average of 64%. In two programs that had not previously been programmer-enhanced

for locality the average reduction in the false sharing miss rate was 86%. The reduction in false sharing miss

rates were for all but one program followed by proportional reductions in the shared data miss rate. The

exception proved to be due to a loss of spatial locality caused by isolating locks from the data they protected.

We also examined how well the reduction in false sharing misses translated into improvements in execution

time. The programs were run on two di�erent multiprocessors that represent di�erent points in the memory

subsystem design space. The KSR1 has large caches, block size and miss penalty; the Sequent Symmetry

has a much smaller con�guration. The results indicated that execution time is very sensitive to the memory

subsystem architecture, as well as the original amount of false sharing. The two programmer-unoptimized

programs running on the larger machine bene�tted much more from compiler-directed transformations than

other cache/program combinations. The primary e�ect on the programmer-optimized programs was to

improve their scalability, relative to the untransformed versions. On the smaller machine no signi�cant

speedups were measured.

Our results indicate that with the trend toward larger caches, larger coherence units, and longer memory

latencies, false sharing will have an increasingly large (negative) performance impact. Regaining the per-

formance will necessitate either a signi�cant programming e�ort to improve locality or the use of a compile

time system like ours.

This paper argues for the latter, on two grounds. The �rst concerns ease of programming. Compiler-

based solutions allow the programmer to focus on the semantics of the application, divorced from details

of the caching structures and coherency operations, the shared data structures' layout in memory and the

often nonintuitive (particularly over the temporal domain) cross-processor memory accesses to them. The

second relates to the gains in multiprocessor performance that the �rst brings about. Our particular static

analyses led to transformations that were more successful than programmer e�orts for all applications in our

workload. These bene�ts were realized with only a 5% increase in compile time.
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