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Abstract

Architectural Support for Compiler-Generated Data-Parallel Programs

by Alexander C. Klaiber

Chairperson of Supervisory Committee: Professor Henry M. Levy

Department of Computer Science

and Engineering

To fully realize the advantages of parallel processing demands the design of efficient com-

munication mechanisms. Existing communication architectures span a spectrum ranging

from message passing to remote-memory access, shared memory and cache-only architec-

tures. These communication architectures are often used (and designed to be used) directly

by the programmer. However, in the future we can expect more programs to be written

in high-level parallel languages and compiled to the specific parallel target; the compiler

will hide the details of the underlying hardware from the programmer. The communication

architecture should then be designed with the compiler, not the programmer, in mind.

The goal of our work is to improve communication performance for programs that are

written in a high-level parallel language and then compiled to a specific communication

architecture. To make this task manageable, we focus on the class of data-parallel languages

and we pick C* as one representative for our experiments.

We evaluate three competing communication architectures — message-passing, remote-

memory access and cache-coherent shared-memory — for a set of benchmarks written in

C* and compiled to the respective architecture. We show that the message-passing model

has several inherent advantages for these benchmarks, resulting in less interconnect traffic

and less time spent waiting for messages to traverse the interconnect.

On the other hand, the message-passing architecture requires the CPU to perform

significantly more work per message than the other architectures. This communication

overhead destroys much of the message passing model’s advantage.

We propose a language-oriented communication architecture that retains the advantages



of the message-passing model, yet (in cooperation with the compiler) significantly reduces

the communication overhead. To do so, we first identify a small set of low-level commu-

nication and synchronization primitives that are well matched to the needs of C*. We then

design a network interface that is tuned to these primitives and describe the C* compilation

for this base; our network interface includes hardware for remote read/write requests plus

counter-based synchronization support. We simulate and measure our compiled C* bench-

marks on a traditional message-passing interface as well as our language-oriented design;

our measurements demonstrate that our design is effective at reducing communication-

related CPU overhead.
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Chapter 1

INTRODUCTION

Massively parallel computers are an attractive tool for solving many computationally

intensive problems. Unlike traditional supercomputers which generally use expensive

custom-designed processors, parallel computers can be built from off-the-shelf micropro-

cessors and achieve supercomputer class performance through parallelism. Because of

their design, parallel computers gain a significant market advantage by tracking the steady

performance improvement of mass-produced commodity parts.

Unfortunately, the cost of communication may limit the performance of parallel com-

puters. To fully realize the advantages of parallel processing, we need to design efficient

communication mechanisms. Existing communication architectures span a spectrum rang-

ing from message passing [Arlauskas 88, Intel 91a, Dally 90, TMC 91b] to remote-memory

access [Crowther et al. 85, Cray 93], shared memory [Sequent 87, Lenoski et al. 92,

Agarwal et al. 91] and cache-only architectures [Hagersten 92a, KSR 92]. These commu-

nication architectures are often used directly by the programmer — a fact that has influenced

their design, much as assembly language programming has influenced the design of CISC

instruction sets. For example, one commonly cited argument in favor of shared-memory

machines is that they are easier to use than message-passing machines — a statement that

clearly reveals a design bias towards simplifying the communication architecture for the

benefit of the programmer.

However, in the future we can expect more programs to be written in high-level parallel

languages and compiled to the specific parallel target; the compiler will hide the details of

the underlying communication architecture from the programmer. Hence, the programmer’s

convenience is no longer a major concern in the design of the communication architecture,

since the programming language already provides a convenient programming model. In-

stead, performance becomes a driving concern, and the communication architecture must

provide interfaces that best suit the needs of the compiler. This approach is similar to the

RISC philosophy in processor design.
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1.1 Goal of this Dissertation

The goal of our work is to improve communication performance for programs that are

written in a high-level parallel language and then compiled to a specific communication

architecture.

To make this task manageable, we focus on the class of data-parallel languages, and

we pick the C* language as one representative for our experiments. The data-parallel

model is an important one; a study by Fox [Fox 88] has shown that a majority of existing

scientific applications fit that model well. As a framework for our architectural studies, we

concentrate on MIMD parallel computers and three competing communication architectures

— message-passing, remote-memory access and cache-coherent shared-memory.

The core of this dissertation consists of two parts. In the first part (Chapter 5), we

evaluate the three communication architectures in order to gain better insight into their

relative strengths, as well as the compiler’s demands on the communication architecture.

Comparing such widely differing architectures has been difficult in the past, for two rea-

sons. First, applications had to be hand-crafted for each architecture, often resulting in

radically different sources for comparison. Second, a host of implementation details (such

as processor speed, cache organization and size, and network bandwidth available) can

easily obscure any architecture-inherent characteristics; given different execution times on

different machine configurations, it becomes nearly impossible to attribute the performance

differences to any specific source(s).

We avoid these problems by using the following approach. We use a single suite of

C* source programs, compile each program with a C* compiler, and simulate its execution

on the alternative communication architectures. This ensures that the different architec-

tures execute the same source program. Further, our objective is to examine underlying,

implementation-independent costs inherent in each alternative. To this end, we abstract

many implementation details and focus on metrics that are not affected by, say, processor

or network speed. For example, we measure the number of messages sent, the total in-

terconnect control and data traffic, and the number of round-trip communication latencies

incurred. We deliberately reject overall execution time as a metric, since it cannot yield

the same kind of fundamental insight as our implementation-independent metrics. While

our results do not directly indicate which architecture is “best,” they do show the relative

communication work required to execute our data parallel programs on the different ar-

chitectures. Specifically, we will see that the message-passing model has some inherent
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advantages for these benchmarks, resulting in less interconnect traffic and less time spent

for messages traversing the interconnect.

In the second part of the dissertation (Chapter 6), we focus specifically on distributed-

memory architectures, and we examine one metric that we have ignored in Chapter 5,namely

the time to send a message, or the communication overhead. We note that in practice, the

message-passing communication model incurs significant per-message overhead and thus

is unable to fully exploit the advantages we have identified before.

A good communication architecture would combine the advantages of message-passing

with the low per-message overhead of shared-memory. As one possible solution, we propose

a language-oriented design that retains the advantages of the message-passing model, yet

(in cooperation with the compiler) significantly reduces the per-message overhead. To do

so, we first identify a small set of low-level communication and synchronization primitives

that are well matched to the needs of C* (and, presumably, other data-parallel languages as

well). We then design a network interface that is tuned to these primitives and describe the

C* compilation for this base; our network interface includes hardware for remote read/write

requests, plus counter-based synchronization support.

Finally, to evaluate the effectiveness of this approach, we simulate and measure our

compiled C* benchmarks on a traditional message-passing interface as well as our language-

oriented design. These measurements demonstrate that our design is effective at reducing

communication-related CPU overhead; for example, traffic between the CPU and network

interface is reduced by 50 to 90 percent on these benchmarks.

1.2 Related Work

Much research has been done in the past to improve performance of both shared-memory

and message-passing architectures. For message-passing systems, researchers have largely

focused on reducing the high per-message overhead typically found in message-passing

systems. For example, active messages [von Eicken et al. 92] are a low-level transport

mechanism that achieves low latency by efficiently dispatching to a message handler on the

receiving node. Felten [Felten 93a] proposes using a protocol compiler to custom-generate

message-passing protocols for a given program and thus reduce protocol overhead.

The above two approaches rely entirely on software techniques; however, hardware

approaches have been suggested as well. For example, the Shrimp architecture [Blum-

rich et al. 94] implements a low-overhead data transport mechanism which for selected
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memory pages automatically forwards a processor’s store operations to other nodes. The

resulting system shares some of the characteristics of remote-memory and shared-memory

architectures.

There also is a large body of work aimed at improving the performance of cache-

coherent shared-memory architectures. For example, researchers have studied adaptive or

user/compiler selectable cache coherence mechanisms that use different coherency proto-

cols for different sharing patterns [Carter et al. 91, Bennett et al. 92, Stenstrom et al.

93]. Some machines like the KSR-1 [KSR 92] provide processor instructions to prefetch or

poststore data, or load data in a state that facilitates future writes. Most of these techniques

try to improve performance by giving the application more explicit control over how and

when data is moved between processing nodes. As a result, shared-memory systems take on

some of the characteristics of message-passing systems (where data movement is entirely

under explicit application control).

A related approach [Frank & Vernon 93] integrates message passing and shared memory

by introducing a new cache line state, possibly-stale, into a conventional cache coherence

protocol. The proposed architecture lets user programs move data between nodes without

the overhead of cache coherence operations. At the same time, caches are kept coherent to

provide a traditional shared memory model.

Relaxed memory consistency models [Gharachorloo et al. 90, Adve & Hill 90, Hutto

& Ahamad 90] attempt to improve shared memory performance by allowing temporary

inconsistencies among multiple copies of the same data. This is similar in nature to what

happens in message-passing systems where copies of remote data are created under the

control of the application program.

Yet another approach, taken by the Alewife machine, is to offer both a shared-memory

system and message-passing primitives. In [Kranz et al. 93], the authors identify several

scenarios where a compiler or programmer could implement operations more cheaply

through message passing than through shared memory.

Finally, the FLASH [Kuskin et al. 94] and Typhoon [Reinhardt et al. 94] shared-memory

architectures include fully programmable network interfaces. In principle, this would allow

coherence protocols to be tailored to specific applications; it is even conceivable to turn

these machines into NUMA or message-passing machines simply by reprogramming the

network interfaces.

The current trends in research discussed above indicate that the different communi-
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cation architectures are starting to converge. Shared-memory architectures are acquiring

message-passing like features such as better user-level control over data movement, whereas

message-passing architectures are striving for data transport mechanisms with low over-

heads comparable to shared-memory and remote-memory architectures.

In our work, we compare these different architectures at a high level of abstraction; our

goal is to clarify the tradeoffs between the architectures and point out desirable features

of each architecture. Our results should be helpful in future research on communication

architectures that unify the advantages of message-passing and shared-memory.

1.3 Contributions of this Dissertation

In this dissertation, we make the following contributions:

� We recognize that most existing communication architectures have been designed to

be used directly by the programmer. However, in the future, more programs will be

written in high-level parallel languages and compiled to a specific communication

architecture. The compiler hides the details of the communication architecture from

the programmer. We show that this change in programming style both requires and

enables changes to the communication architecture in order to improve performance.

� We evaluate the strengths and weaknesses of three competing communication ar-

chitectures — message-passing, remote-memory access, and cache-coherent shared-

memory — for a workload of compiled C* programs. We show that compared to

the other architectures, the message-passing model has various advantages. For ex-

ample, the compiler has better control over data movement and granularity, and the

run-time system can combine data transfer and synchronization in a single operation.

As a result, the message-passing model requires less interconnect bandwidth and

incurs lower communication latencies than the other models. In the process, we also

present a strategy for obtaining meaningful comparisons across such widely differing

of architectures.

� Noting that the message-passing model incurs significant per-message CPU overhead,

we propose a language-orientedapproach to designing a communication architecture.

We first identify a small set of communication primitives that match the needs of the
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C* compiler. We then present the design of a network interface for a distributed-

memory architecture that is tuned to those communication primitives. Together with

a compilation approach normally used on shared-memory machines, we are able to

retain the above advantages of the message-passing model while drastically reducing

the per-message CPU overhead.

1.4 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss parallel

machine architecture, which sets up the hardware framework for our studies. In Chap-

ter 3, we describe the C* language and highlight its close similarity to High Performance

Fortran, another data-parallel language. We then outline, in Chapter 4, how our compiler

translates C* for different target communication architectures. In Chapter 5, we evaluate

the relative strengths and weaknesses of three different communication architectures —

message-passing, remote-memory access, and cache-coherent shared memory. Our re-

sults show that the message-passing model generates less interconnect traffic, sends fewer

messages and incurs less network latency than either of the competing models, primarily

because it offers the compiler better control over data movement and granularity of com-

munication. These findings imply that message-passing has some inherent advantages over

the other models, at least for the benchmarks studied. In practice, however, this advantage

can not currently be realized, due to the extremely high per-message CPU overhad in exist-

ing message-passing systems. In Chapter 6, we propose a language-oriented approach to

designing a communication architecture. Our network interface includes hardware support

for a small set of communication primitives that match the needs of the C* compiler. Our

simulations show that our design retains the advantages of the message-passing model while

drastically reducing the per-message CPU overhad. We summarize our results, present our

conclusions and discuss future work in Chapter 7.



Chapter 2

ARCHITECTURAL FRAMEWORK

Figure 2.1 shows an MIMD parallel computer, organized into three major component

groups: interconnection network, processing nodes and network interfaces (“NI”). The

network interfaces connect the processing nodes to the interconnect. In this chapter, we

describe some of the architectural tradeoffs for each of the three components. Many of the

design decisions are beyond the scope of this dissertation so we discuss them only briefly

in order to provide a framework for our architectural research; we focus primarily on the

network interface.

2.1 Processing Nodes

A fundamental decision in designing the processing node is whether to use commodity or

custom processors. A custom processor design can improve communication performance;

for example, the architect can integrate the network interface more tightly with the CPU

[Henry & Joerg 92a], or include special-purpose communication instructions in the CPU.

The Kendall Square KSR-1 shared-memory computer [KSR 92] uses both approaches; its

processors provide instructions for prefetching or post-storing cache lines, plus a host of

instructions that control the memory system, especially the caching strategy. Different

variants of the load instruction exist that can request a writable copy of a cache line (useful

if the cache line is written later), or specify that the level-0 processor caches are to be

bypassed by the access. The designers have added these instructions to the processor in

order to provide the programmer or compiler with better control over data movement, with

the ultimate goal of improving performance.

However, many of these functions can also be implemented on systems that use only

commodity processors — albeit possibly with slightly lower performance. For example, the

operating system can create multiple virtual memory mappings for a given area of physical

memory, with each mapping providing different access semantics. Performance may not

match that of special-purpose load and store instructions, since the processor must likely

perform more address arithmetic to access the different mappings. Likewise, the network
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Figure 2.1: A generic parallel machine.

interface can be made accessible as a memory-mapped device, such that the processor can

initiate special operations (e.g., prefetching or flushing data) by writing memory-mapped

control registers in the network interface. Again, the performance of off-chip logic may be

worse than dedicated on-chip hardware, but both designs provide the same functionality.

Using off-the-shelf processors reduces overall design time for the machine and results

in faster time-to-market. In fact, most existing parallel computers, such as Intel’s series of

message-passing machines [Arlauskas 88, Bokhari 90, Intel 91b, Intel 91a], the Thinking

Machines CM-5 [TMC 91b], or the Cray T3D [Cray 93] (a NUMA machine), use processing

nodes built around a commercial off-the-shelf microprocessor. Instead of requiring special-

purpose processor instructions, these machines control communication through hardware

external to the processor.

We conclude that the choice between custom or commodity processors is not likely to

affect functionality, though it could possibly affect the speed at which some communication

operations can be executed. In our studies, we focus on the functionality of the commu-

nication architecture, and abstract implementation-dependent details such as timing; our

results apply equally well to either design alternative.
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2.2 Interconnection Network

The interconnection network is the physical substrate for moving data between processing

nodes. Some key design decisions for the network are its topology, reliability, routing

strategy and packet size (where applicable). In this section, we discuss some of the

tradeoffs and how they interact with the design of network interfaces, described in the next

section.

Reliability

Different networks offer different degrees of reliability. For example, due to congestion

or transmission errors, the network may lose or corrupt data packets, or it may deliver

spurious messages; the network may or may not detect and report these conditions. ATM

network switches [Minzer 89] are allowed to “drop” packets without notification if network

congestion gets too high.

If the network does not deal with such events, the communication endpoints (i.e., the NI

or processing node) must execute a protocol that can handle them. Note that this involves

work beyond the actual data transfer — extra processing time in the NI or node, plus possibly

transmission of additional protocol messages. If the network can lose packets, the sender

must be prepared to re-send a given message until it has received an acknowledgement

that the message has indeed been delivered. Usually, the sender must save a copy of

each message until it is acknowledged; this in turn may incur overhead for managing the

required buffer space. Brustoloni and Bershad [Brustoloni & Bershad 92] have developed

an efficient protocol for ATM-based networks that can handle message loss.

For our studies, we assume that the communication primitives used by the programmer

or compiler are reliable, i.e., the network neither loses nor corrupts messages, and it does

not introduce spurious messages.

Topology

Many different network topologies have been explored in the literature. Some topologies,

for example buses and rings, provide inherent broadcast capabilities, whereas others, such

as meshes, hypercubes or trees are point-to-point interconnects. Different topologies have

different scaling characteristics, and often perform particularly well on some set of com-

munication patterns — e.g., 2-D nearest-neighbor communication maps well onto mesh
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interconnects. The topology of the network does not significantly affect the design of the

network interface (though the NI designer may wish to include some mechanism to access

the interconnect’s broadcast capabilities, if applicable.) For this reason, we do not assume

any particular network topology in our studies; the results we present will be independent

of topology though they may translate into different execution times depending on the

topology. We do, however, examine the impact of broadcast capability.

Routing and Ordering

Networks use a routing algorithm to direct messages from their source node to their des-

tination. We consider two important classes of routing strategies: oblivious and adaptive

algorithms. Given a source and destination node number for a data packet, an oblivious

algorithm will always choose the same path for the packet, whereas an adaptive algorithm

may route the packet along any of several paths, depending on network load. Adaptive rout-

ing algorithms have the advantage that they may use the interconnect’s aggregate bandwidth

more efficiently [Ngai & Seitz 89, Snyder 92, Konstantinidou & Snyder 91]. However,

they also do not generally guarantee FIFO delivery of messages; in other words, if node

A sends messages m
1

and m

2

to node B in that order, the messages may arrive in reverse

order at node B.

Clearly, this can be a problem for application programs. For example, it is harder to

implement efficiently a sequentially consistent shared-memory system if data packets can

be delivered out of order [Thapar et al. 93]. Weaker memory consistency models [Hutto

& Ahamad 90, Gharachorloo et al. 90] may be able to tolerate out-of-order delivery more

easily.

Note that one can implement in-order message delivery on top of a network that delivers

messages out of order, for example by adding sequence numbers to packet headers, and by

reordering packets according to the sequence numbers at the receiving node. However, this

approach requires the receiver to buffer packets that arrive “early” and hence also incurs

overhead (processing time and possibly extra protocol messages) for managing the buffer

space.

Except where noted otherwise, we assume that the communication primitives used by

the programmer or compiler guarantee in-order message delivery.
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Packet Size

Modern networks using packet-switching techniques have to split large messages into

smaller packets that are then routed through the network. The CPU or NI of the sender

of a large message must perform packetization (i.e., split the message body into multiple

small packets), and the receiver must generally reassemble (unpacketize) the message

from the individual packets.1 Note that even with FIFO delivery in the network, a node

may receive packets from different messages (sent by different nodes) interleaved with

each other. Some programming models (including “traditional” message-passing) require

receipt of a message to be atomic. Providing those semantics in the presence of packetization

again incurs buffering and protocol overhead. Clearly, the larger the packet size, the less

packetization-related overhead is incurred. Also, larger packet sizes amortize any message

header overhead over a larger body. On the other hand, smaller packets may be easier to

route.

A network’s packet size may further be fixed or variable — in the former case, all

packets sent through the network are of one fixed size, even if only part of the packet body

carries useful data. In the latter approach, the packet header includes a field indicating

the size of the packet body; this may result in more efficient utilization of the network’s

bandwidth. Overall, there appears to be no clear consensus which of these approaches is

better, or what packet sizes are desirable; in fact, the “ideal” packet size depends heavily on

the workload [Cypher et al. 93]. In our work, we therefore examine different packet sizes.

Special-Purpose Networks

Some machines, such as the Thinking Machines CM-5 [TMC 91b] or the Cray T3D [Cray

93], use dedicated networks for certain communication operations. For example, the

CM-5 includes a control network that has been specifically optimized to perform efficient

reduction and broadcast operations. Similarly, the T3D has a synchronization network

that provides very low-latency barrier synchronization operations. In both cases, these

special-purpose networks have been included in order to improve the performance of some

common communication operations.

1 Note the interaction between packetization and out-of-order delivery: due to the former, a large message
must be split into separate packets, and due to the latter, the packets may arrive at the receiver in arbitrary
order, thus complicating unpacketization.
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However, this can be a rather expensive approach, and a dedicated synchronization

network may not always result in as significant a performance improvement as expected.

For example, on the Cray T3D, the barrier hardware propagates the signal throughout a

256-node machine in 26 cycles, yet the barrier routine takes about 240 cycles because it

has to flush the write buffer and wait for asynchronous remote writes to complete. The write

messages, of course, propagate through the data network which has much higher latency

than the dedicated barrier network [Barrusio 94]. This drastically limits the potential

performance gains from the dedicated network.

Protection

Parallel machines that support time- or space-sharing among multiple users must address

the issue of protecting different jobs from each other. One user’s job should not be allowed

to send messages to another user’s job. Likewise, the network traffic generated by one

job should not keep another job from making progress, e.g., by deadlocking the network.

Solving this problem may in general require cooperation between the network interface and

the network.

The topology of the CM-5’s network makes it possible to partition the machine such

that two different partitions do not physically share any part of the network. By preventing

users from sending messages to nodes in a different partition (this is implemented in the NI)

and by gang-scheduling jobs within each partition (implemented by the operating system),

different jobs cannot interfere with each other. To simplify gang-scheduling, the CM-5

network provides a mechanism that allows the operating system to drain the network of all

messages from one job before context-switching to another job.

On shared-memory machines, the operating system can use the protection mechanism

of the virtual memory system to keep different jobs from accessing each other’s memory.

However, as long as nodes are allowed to generate an arbitrary number of communication

requests, it is still possible for one job to slow down another job’s progress by causing

congestion in shared portions of the interconnect.

Protection is largely independent of the tradeoffs we study in this dissertation, so we do

not further explore the issue.
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2.3 Network Interface

The network interface (“NI” for short) provides the interface that the processing nodes use to

inject and extract messages into and out of the network. More than any other component, the

network interface defines the communication architecture of a parallel machine. Depending

on the NI, the machine depicted in Figure 2.1 may be a message-passing machine, a remote

memory access machine (also sometimes called NUMA for Non Uniform Memory Access),

or a cache-coherent shared-memory machine. The complexity of the NI varies dramatically

depending on what communication architecture it implements.

Message-Passing

For a message-passing communication architecture, the NI can be very simple. For example,

the NI on the message-passing Intel iPSC/860 consists of little more than two FIFO buffers

and some control circuitry. The receive FIFO accumulates incoming data from the network

and the send FIFO holds data that is to be injected into the network. The processing node

accesses the network interface through a set of memory-mapped NI registers. Reading and

writing these registers allows the CPU to inject data into the send FIFO and extract data

from the receive FIFO. Other NI registers hold information about the status of the FIFOs or

allow the processor to control the NI’s mode of operation; e.g., whether or not to interrupt

the CPU when the receive FIFO fills up. A traditional message-passing library (like Intel’s

NX [Pierce 88] or Thinking Machines’ CMMD [TMC 92]) can be implemented on top of

these primitives to provide higher levels of abstraction to the programmer. Some machines

include DMA hardware to speed transfer of data between main memory and NI. Generally,

DMA operations have to be initiated by the CPU for each packet sent or received, therefore

such DMA support is less useful for small packets.

Remote Memory

In a remote memory architecture, processors communicate by accessing a (physically

distributed) shared memory space through load and store instructions. A reference to

data that resides on a remote node automatically generates a message to read or write

the desired remote data; references to local data are directly satisfied by the node’s own

memory. To implement such a communication architecture, the NI becomes somewhat

more complex. For example, the NI needs to observe the processor’s memory references
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(e.g., by snooping on the processing node’s memory bus), and it must be able to determine,

based on the observed address, whether data resides on the local node or a remote node.

A simple solution distributes memory among nodes such that the high order bits of a

physical address indicate the processing node that holds that memory location.2 For remote

accesses, the NI then needs to create a message, inject it into the network, and possibly

stall the processor until the operation is complete. The NI must also be able to access the

processing node’s main memory in order to reply to memory requests from other nodes.

Cache-Coherent Shared Memory

Cache-coherent shared-memory machines use essentially the same communication interface

as remote-memory machines. However, the NI now includes caches (or uses the node’s

main memory as a cache) that can hold data from remote nodes, and the NI must implement

some cache coherence protocol to keep all caches in the system consistent with each other.3

In our work, we examine two classes of cache coherence protocols: write-invalidate

and write-update. In a write-invalidate protocol, a processing node that is about to write

to a cache line needs to first invalidate all other copies of that cache line, to ensure it has

an exclusive (and hence writable) copy. This involves sending invalidation messages to all

other nodes that hold a copy of the cache line, and possibly waiting for acknowledgement

messages to indicate that the invalidation has been performed. In a write-update protocol,

more than one node may keep a writable copy of a cache line. Whenever the cache line is

written, the changes are forwarded to all other nodes holding a copy of the line.

The choice of interconnect may influence the design of the cache coherency protocol.

For example, if the network supports efficient broadcast operations, then a snoopy cache

coherence protocol (e.g. [McCreight 84]) can be used. Otherwise, directory-based pro-

tocols (such as [Censier & Feautrier 78]) are more attractive. . However, the difference

2 The Cray T3D uses an approach similar in spirit. However, the T3D is supposed to scale to large numbers
of nodes, and sacrificing enough high-order physical address bits to encode that many processing node
numbers would reduce the available per-node physical address space by too much. Instead, the T3D
dedicates a smaller number of high-order address bits to encode a node identifier, and each processing node
uses a lookup table (the “TLB Annex”) [MacDonald & Barrusio 94] to translate this identifier into a full

node number.

3 Such as design usually requires a very tight coupling between the NI and the processing node’s memory
system, so one could argue whether the caches are part of the NI or part of the processing node. For the
purpose of this discussion, we consider the caches for remote data a part of the NI.
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between snoopy and directory-based protocols does not affect the programmer’s view of the

communication interface, so we do not explore this otherwise very important issue further.

In most existing shared-memory machines, all data in the system’s caches is backed by

main memory. In the case where main memory is physically distributed with the processing

nodes, e.g. on the Stanford DASH [Lenoski et al. 92], each cache line has a home node,

namely the processing node holding the portion of main memory that backs the cache line.

To access data in a given cache line, processing nodes send their requests to the home node,

which keeps track of all copies of the line and can properly serialize accesses to the cache

line.

A different approach is taken in so-called COMA (Cache-Only Memory Architecture)

shared-memory machines, such as the DDM [Hagersten 92a] or the KSR-1 [KSR 92].

These systems do not include any “main memory”; data exists only in the caches, and cache

lines do not have a home node — in other words, there is no fixed node in the system that

at all times keeps track of a given cache line’s state or location, or that serializes accesses

to the line. Generally, accessing data therefore involves some form of search for a copy

of the cache line. In the case of the KSR-1, the search mechanism takes advantage of the

inherent broadcast capabilities of the underlying interconnect, which has a ring topology.4

In our experiments, we will study both COMA and more conventional cache-coherent

shared-memory machines, and we will examine both write-invalidate and write-update

protocols.

2.4 Summary

The hardware components of a parallel computer can be organized into three groups: an

interconnection network, and a set of processing nodes and network interfaces. We have

described some of the design tradeoffs for each of these components.

Our goal is to study the interaction of communication architecture (i.e., the communi-

cation interface available to the programmer or compiler) and programming languages. We

focus on the design of the network interface, which more than any other component defines

a machine’s communication architecture.

Issues of programming node and network design are largely orthogonal to our studies.

4 The KSR-1 can actually use two levels of rings, and it maintains directories at the up/down-links between
the levels, to determine whether a request needs to be propagated to the other rings as well.
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All NI designs we will discuss in this dissertation are intended to work well with off-

the-shelf processors. Unless otherwise stated, we assume in our experiments that the

underlying interconnection network is reliable (e.g., it does not lose, duplicate, or corrupt

packets without signalling an error) and provides FIFO ordering.



Chapter 3

DATA-PARALLEL LANGUAGES

We have chosen C* [Rose & Steele Jr. 87, TMC 90], a data-parallel language, as the

high-level parallel language for our experiments. There exists a significant body of work

on C* as well as other data-parallel languages such as Force [Jordan 87], Dino [Rosing

et al. 90], Kali [Koelbel & Mehrotra 91], Vienna Fortran [Chapman et al. 92] or High-

Performance Fortran (HPF) [HPFF 93], to name just a few. This reflects the growing

popularity of this type of language. The following two properties are shared by almost all

(imperative) data-parallel languages.

� Parallelism is obtained by performing similar (or identical) operations in parallel on

the elements of a large data set. The elementwise addition of vectors would be a

trivial example.

� The language semantics offer the illusion of lockstep execution; in other words,

no matter how many processors are used, conceptually there is a single “program

counter.” This execution model avoids race conditions and thus greatly simplifies the

understanding and debugging of data-parallel programs.

While the data-parallel model of execution is not as general as arbitrary MIMD compu-

tation, it is nonetheless a very powerful model. A study by Fox [Fox 88] showed that 70 out

of 84 scientific applications studied, or over 80%, fit the data-parallel model. Klaiber and

Frankel [Klaiber & Frankel 93] have demonstrated that even an application that intuitively

does not seem to fit the data-parallel model — a distributed event-driven simulation — can

be expressed cleanly and efficiently in a data-parallel language.

Several data-parallel languages, including an older version of C* [Rose & Steele Jr.

87], originated as a programming language for SIMD machines. However, researchers

have shown [Hatcher & Quinn 91, Rosing et al. 90, Koelbel & Mehrotra 91, Chapman

et al. 92] that data-parallel programs can be compiled to run efficiently on MIMD hard-

ware as well — both distributed-memory and shared-memory architectures. To do this,

the compiler generates code that includes communication and synchronization operations
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carefully chosen to preserve the lockstep semantics of the data-parallel language while also

minimizing the total amount of communication.

Compilers for data-parallel languages essentially produce SPMD (single-program,

multiple-data) style code, a common programming paradigm on MIMD machines. Par-

allelizing compilers for sequential languages, such as Paradigm [Su et al. 93], generate

similar code. In fact, since most parallelizing compilers exploit mainly data parallelism

(e.g., by parallelizing loops), we expect programs generated this way to exhibit execution

behavior similar to compiled programs written in high-level data-parallel languages.

In Section 3.1, we give an overview of the C* language, and we draw a brief compar-

ison between C* and High Performance Fortran (HPF) in Section 3.2, demonstrating the

similarity of the two languages.

3.1 The C* Language

Several languages featuring data-parallel execution have been proposed over the last years.

For this work, we chose the “new” revision of C* [TMC 90, TMC 91a] as a representative

data-parallel language. As we will see shortly, C*’s communication operations are typical

of what we would expect from other data-parallel languages, hence our findings should

extend to those languages as well. We particularly highlight the similarity between C* and

HPF in the next section.

Significant work has been done on the compilation of an older version of C* (defined in

[Rose & Steele Jr. 87]) for both distributed-memory and shared-memory multiprocessors;

see for example [Hatcher & Quinn 91] for a summary. For a detailed description of the

current language, the reader is referred to [TMC 91a]; we give a brief overview here.

C* distinguishes between scalar and parallel variables; the latter have a shape associated

with them that describes how the data is organized. Attributes of a shape are its rank, layout

and number of positions; there is one virtual processor (VP) per position. Shapes serve as

templates to declare parallel variables of that shape: when a parallel variable of some shape

S is declared, one element of the variable is allocated in each position (i.e., each VP) of the

shape. Parallel variables of identical shape are laid out identically, meaning corresponding

positions of all parallel variables of a given shape are mapped to the same VP.

The compiler and run-time system create the final data distribution by mapping the

virtual processors onto the physical processors. C* does not provide mechanisms for ex-

plicitly specifying this mapping, though the programmer can provide hints. Unfortunately,
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there is no way to specify the alignment of two different shapes with respect to each other.

To operate on parallel data, the programmer selects a current shape using the with

statement. Simple operations such as addition, when applied to parallel data, are executed

in parallel for each position in the current shape.

The following example first declares the shape MatrixShape as a two-dimensional

(100 � 100) grid, and then declares two parallel variables, a and b, of type double and

shape MatrixShape. Since a and b have the same shape, corresponding positions of the

two variables are co-located in the same virtual processor. I.e., the virtual processor at

position (i; j) in the shape will hold the matrix elements a

i;j

and b

i;j

. When data is co-

located on the same virtual processor, it is also co-located on the same physical processor,

hence the elementwise addition performed in the example below does not generate any

inter-processor communication.

shape [100][100]MatrixShape;

double:MatrixShape a, b;

with (MatrixShape)

a = a + b;

Control flow in C* is sequential, i.e., from the programmer’s point of view, conditional

branches, procedure calls, etc. are followed by all processors. In fact, virtual processors

behave as if they were executing code synchronously. Parallel operations can be contextu-

alized inside a where statement by specifying a parallel boolean expression that determines

which virtual processors are “active”. Conceptually, a where statement first executes the

where branch, then the else branch, with parallel operations restricted to the virtual pro-

cessors on which the condition evaluates to true and false respectively.1 The following

example computes the square root of the absolute value of each element in the matrix a.

with (MatrixShape)

where (a >= 0.0) b = sqrt(a);

else b = sqrt(-a);

Communication in C* is performed by send or get operations, which are written as parallel

left index expressions, using a syntax reminiscent of array references. The code below

1 The semantics of C* specify that scalar code inside branches of a where statement is always executed,
i.e., independent of the condition in the where. This is in keeping with C*’s “global model of execution”
[TMC 91a].
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transposes matrix a by sending each element at position (i; j) to position (j; i). Matrix

b is transposed using an equivalent (but not necessarily equally efficient) get operation.

The parallel expression pcoord(i) evaluates to a position’s index along dimension i of the

current shape, i.e., for C*’s row-major layout, pcoord(0) yields an element’s row number

in the matrix and pcoord(1)yields the column number. Send and get operations are atomic

in that they behave as though all data elements were sent simultaneously.

with (MatrixShape) {

[pcoord(1)][pcoord(0)]a = a;

b = [pcoord(1)][pcoord(0)]b;

}

In the case where multiple VPs send data to the same destination VP, C*’s combining send

operations allow the programmer to specify a binary combining operation, such as addition,

which will be performed on all data arriving at the same destination VP. By default, the

receiving VP may arbitrarily choose one of the conflicting data items.

In addition, C* provides powerful reduction operations by overloading the C language’s

“embedded assignment” operators.2 A simple example that computes the sum of all

elements in matrix a is given below.

double elementSum;

with (MatrixShape)

elementSum = (+= a);

Finally, C* provides access to individual elements of parallel data, which may require data

to be broadcast to all nodes. The syntax is the same as a get or send operation, but all left

indices are scalar rather than parallel expressions (note that it is trivial for a compiler to

detect this). The code fragment below divides all matrix elements by the element in the

upper left corner of the matrix. Since the matrix is distributed across nodes but all nodes

need the value of a
0;0

, that matrix element needs to be broadcast.

with (MatrixShape) {

a /= [0][0]a;

}

2 More complex reduction and scan operations are available using function call syntax, i.e., the language
provides no special operators for them.
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Functions in C* can take parallel arguments and return parallel results. For example,

the parallel version of the sin function is declared as

double:current sin(double:current);

where current is a reserved word referring to the shape that is in effect at the time of

the function call. The syntax for calling parallel functions is the same as that for scalar

functions; e.g. to compute the sine of all non-negative elements in matrix a, one would

write

with (MatrixShape)

where (a >= 0.0) a = sin(a);

Given the synchronous model of execution, C* programs do not exhibit race conditions,

and execution does not depend on nondeterministic events such as message arrival orders.3

The simple programming model of sequential control flow coupled with deterministic

execution makes programming and debugging of C* programs almost as easy as for purely

sequential languages. While requiring that all communication be explicit in the source

code does place additional burden on the programmer, it also provides the programmer

with a clear performance model, exactly because any potentially expensive communication

operations are clearly visible in the code. One drawback of C* (or similar languages)

is that sometimes the synchronous semantics overly constrain a solution, as one cannot

efficiently express arbitrary asynchronous operations. Naı̈ve compilation may exacerbate

this problem, but some language extensions and compiler techniques can alleviate the

problem [Klaiber & Frankel 93].

3.2 C* versus HPF

The C* language originated as a language for SIMD architectures, so there may be concerns

over how well it represents other data-parallel languages. In this section, we compare C*

with the more recently developed High Performance Fortran (HPF), another data-parallel

language. We show that, despite their different syntax, heritage and emphasis, both C*

and HPF share important characteristics, especially regarding communication. We provide

3 The one obvious exception is the combiningsendoperation. However, it is easy to make this a deterministic
operation as well — in fact, Thinking Machines’ C* implementation does just that.
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this comparison as a “proof-by-example” that our findings obtained from analyzing C*

benchmarks and compilation should extend to other data-parallel languages.

As we have seen, variables in C* are explicitly declared parallel by associating a shape

with them. We can think of the shape as a set of virtual processors, with each virtual

processor holding one element of the parallel variable. The parallelism in operations on

parallel variables is implicit in C* — the programmer specifies no looping construct or

index variables. For example, the code below declares two matrices a and b, and performs

elementwise addition in parallel.

shape [100][100]MatrixShape;

float:MatrixShape a, b;

with (MatrixShape) {

a = a + b;

}

In contrast, parallel variables in HPF are first declared as arrays, and then distributed

across processors. In HPF, data distribution is a two-step process: the programmer can

specify how to distribute the array over a set of abstract processors, which the compiler

(possibly in cooperation with the run-time system) then maps onto physical processors.

HPF’s abstract processors are similar to virtual processors in C*. The key difference is

that in C*, the mapping of data to VPs is fixed — exactly one element per VP. To operate

on parallel variables, HPF provides a parallel looping statement, FORALL. Assuming there

are 10 abstract processors, the above C* example could be written in HPF as follows:

REAL a(100,100), b(100,100)

!HPF$ PROCESSORS procs(10)

!HPF$ DISTRIBUTE (BLOCK,*) ONTO procs :: a, b

FORALL (i=1:100, j=1:100) a(i,j) = a(i,j) + b(i,j)

Certain forms of parallel operations can be expressed more conveniently using the Fortran 90

triplet notation. For example, we could replace the FORALL loop in the above code by the

statement

a(:,:) = a(:,:) + b(:,:)

HPF’s approach to data distribution is more complex and flexible than the one taken by

C*, but the end result is the same: elements of a parallel variable are distributed among a
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set of physical processors. The biggest drawback of C* is probably that one cannot align

different shapes with respect to each other. The C* benchmarks we study do not require

particularly elaborate data distributions, and would not benefit from HPF’s added flexibility.

Also, researchers have recently had great success in deriving data distributions automatically

[Su et al. 93]; this may obviate HPF’s complex data distribution specifications.

To express communication, C* and HPF again use different syntax but very similar

semantics. C* uses left index expressions to describe communication operations, whereas

in HPF, any array index operation potentially causes communication. For example, the C*

code to set b to the transpose of matrix a (using a send operation)

with (MatrixShape) {

[pcoord(1)][pcoord(0)]b = a;

}

has the following equivalent in HPF:

FORALL (i=1:100, j=1:100)

b(j,i) = a(i,j)

END FORALL

Like C*, HPF provides reduction operations, and accessing individual elements of a

parallel variable (either through the Fortran 90 SPREAD operation or through array indexing)

may require broadcast operations. While HPF does not include an operation corresponding

to the C* combining send, other communication operations are semantically comparable,

and we argue that the two languages’ demands on the communication substrate should

likewise be similar.

Since C* parallel operations and HPF FORALL loops are semantically equivalent, and

since communication operations are also comparable in both languages, the overall compi-

lation strategy and communication requirements for C* and HPF are essentially the same.

We conclude that despite different heritage and emphasis, there are many similarities

between HPF and C*, including the computation and communication model. Therefore,

we postulate that the findings we present in chapters 5 and 6 will apply to data-parallel

languages other than C* as well (at the very least to HPF).
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3.3 Summary

The C* language originated as a language for SIMD architectures, whereas more recent

data-parallel languages, such as High Performance Fortran (HPF), have been designed from

the start with MIMD target machines in mind. We have compared C* with HPF. Though

the latter places a much heavier emphasis on allowing the programmer to specify details

of how to distribute parallel data, we have found that the two languages are in fact very

similar. Specifically, we argue that the demands on the communication architecture are

comparable, hence the results (obtained from C* benchmarks) we present in the core of this

dissertation should also apply to HPF, and likely to other data-parallel languages as well.



Chapter 4

THE C* COMPILER

In this chapter, we outline our compilation strategy for C*. Our C* compiler is based on

a recent version of the compiler by Hatcher and Quinn [Quinn et al. 88, Hatcher et al. 91,

Hatcher & Quinn 91] that we have modified for our purposes. The overall approach is to

translate C* into mostly machine-independent C code that makes calls to run-time libraries

for all communication and synchronization operations. The resulting code is then linked

with architecture-specific run-time libraries.1 Figure 4.1 outlines the compilation process.

The simulation framework, used to gather our measurements, is described in section 5.3.

Our C* compiler generates code for an abstract communication model which the run-

time libraries map onto the target machine’s communication architecture. The compiler’s

communication model need not be identical to the target communication architecture (in

fact, it may help to hide some details of the hardware), but of course there must exist an

efficient mapping from the former onto the latter. In Section 4.1, we contrast existing

communication models for shared-memory and distributed memory targets; our compiler

uses a hybrid of these models. In Section 4.2, we then describe in more detail the different

tasks that our compiler performs, and we give a very high-level outline of the run-time

libraries.

The experiments described later in this dissertation focus on communication operations

rather than efficient code generation for local (i.e., non-communication) operations. In fact,

we explicitly ignore time spent performing computation, so we need not concern ourselves

with “traditional” optimizations or C*-specific optimizations (such as reducing the cost of

emulating virtual processors) that improve execution speed of local operations.

1 In practice, one would presumably inline most of the communication operations in order to obtain better
performance, but this was not necessary for the purpose of this dissertation.
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Figure 4.1: Compiling C* for multiple target architectures.

4.1 Alternative Communication Models

Hatcher and Quinn describe two alternative approaches for compiling C* for shared-

memory and distributed-memory targets, respectively [Hatcher & Quinn 91]. In this

section, we briefly review and contrast their approaches, and then outline the compilation

strategy of the C* compiler used in this dissertation.

4.1.1 Compiling for a Shared-Memory Target

In a shared-memory architecture, all nodes can access each other’s memory through load

and store instructions. When generating code for such an architecture, the compiler need

not treat accesses to remote data any differently from accesses to local data. This greatly

simplifies how the compiler handles C* communication operations, since C* get and send

operations translate directly into load and store instructions. However, the compiler must

insert explicit synchronization operations in the generated code to prevent race conditions.

Hatcher and Quinn describe this approach in [Hatcher et al. 91].

Consider the C* code in Figure 4.2a, where each VP sends a copy of its y variable to its

left neighbor, which stores the data in its x variable. To simplify the following discussion,
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we ignore effects at the ends of the VP array, and assume one virtual processor per physical

processor, i.e., each physical processor “owns” one element of the parallel variables x and

y.

Figure 4.2b represents the corresponding C code generated for a shared-memory ma-

chine. This code is executed independently on all processing nodes; self contains the

processor number. The parallel variables have been transformed into arrays located in the

shared address space,2 and the C* send to variable x has been translated directly into a

variable access. Note that the compiler had to insert a call to Synchronize in order to

ensure that processors do not read “their” element in x until it has first been written by

their neighboring processor. To preserve the inter-node data dependencies in our example,

Synchronizemust make the calling processor wait until its right neighbor has also called

Synchronize.

As this example shows, the main task when compiling for a shared-memory architecture

is to determine a minimal set of points where synchronization is required.

4.1.2 Compiling for a Distributed-Memory Target

For distributed-memory targets, message-passing has traditionally been the communication

model of choice (e.g., [Chapman et al. 92, Su et al. 93, Quinn et al. 88]). By analyzing

the accesses to parallel variables, the compiler (or the run-time system) determines the set

of data elements that must be communicated between nodes, and emits matching pairs of

message-passing msg send and msg recv calls to perform the communication.

An advantage of this approach is that the message-passing model combines data transfer

and synchronization in one operation. Hence, the processors need not perform synchro-

nization as a separate operation, as is the case in a shared-memory communication model.

Also, the generated code can take advantage of the “just-in-time” delivery semantics of

messages: a node can send data to another node even before the receiver has posted a

matching msg recv operation. The message-passing library (or operating system) on the

receiver will simply buffer the incoming message until it is needed by the application pro-

gram. As a result, there is more “slack” in the synchronization between the two nodes,

which may help hide temporary load imbalances, and increases potential for overlap of

2 Note that unless the cache line size is � the size of an integer, a data distribution of one array element
per processor is going to cause false sharing. We will describe shortly how our compiler addresses this
problem.
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shape [N proc]S;

int:S x,y;

[.-1]x = y;

use(x);

(a) original C* code.

SHARED int x[N proc], y[N proc];

x[self-1] = y[self];

Synchronize();

use(x[self]);

(b) code generated for shared-memory model.

int x[1], y[1];

msg send(self-1, &y[0], sizeof(int));

msg recv(self+1, &x[0], sizeof(int));

use(x[0]);

(c) code generated for message-passing model.

int x[1], y[1];

remote write(remote addr(self-1, "x[0]"), y[0]);

Synchronize();

use(x[0]);

(d) code generated for remote-memory model.

Figure 4.2: Communication for different communication models.
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communication and computation.

Returning to the C* example in figure 4.2, the compiler determines that each physical

processor sends one data item to its left neighbor, and receives one data item from the

right neighbor. Again, we are assuming a mapping of one VP per physical processor,

and we ignore effects at the ends of the VP array. Figure 4.2c shows the C code a

compiler would generate for a message-passing communication model. Since the target

is a distributed-memory machine where each node has its own separate address space, the

compiler physically partitions the parallel variables: each processor holds one element of the

variables x and y. The msg send and msg recv operations implement the communication

by sending a copy of y to the left neighbor (self-1) and receiving a new value for x

from the right neighbor. Note that the code does not require an explicit synchronization

operation. Instead, a processor can safely continue execution as soon as the data from the

right neighbor has arrived.

Unfortunately, the message-passing communication model also has several drawbacks.

First, traditional message-passing incurs run-time protocol overhead, e.g., for managing the

buffers required for the “just-in-time” delivery semantics. Felten has shown that protocol

overhead degrades the performance of message-passing codes [Felten 93a]. Since the C*

communication operations read and write parallel variables that are already allocated by

the compiler, most of the buffer management overhead is completely unnecessary.

Second, in a message-passing model of communication, data transfer and synchroniza-

tion are always combined, even when only one of the two functions is needed. Since neither

function is free, the processors have to perform unnecessary work; we discuss this point in

more detail in Chapter 6.

Third, programs often exhibit communication patterns that cannot be analyzed at com-

pile time. In that case, the compiler cannot determine the set of data elements that must

be communicated, and hence it cannot generate the required msg send and msg recv op-

erations. Note that this problem does not occur in the shared-memory model. The reason

is that communication in the shared-memory model is requester based, meaning a given

node can read and write another node’s memory without the cooperation of the other node.

The compiler therefore can simply emit code to perform the read or write operation. In the

message-passing model, both nodes must actively participate in the communication: the

sender must execute a msg send, and the receiver must execute a matching msg recv. To

generate code for a given node A, the compiler must therefore have complete knowledge
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about all requests for A made by any of the other nodes. A general solution to this problem

requires extra communication and computation at run-time, just to determine which nodes

have to send which data items where [Clark et al. 92, von Hanxleden et al. 92]. To reduce

this overhead, the run-time system can analyze a communication pattern once at run-time,

and amortize the cost of the analysis over many reuses of the pattern [Wu et al. 91]. Also,

researchers have optimized the analysis phase itself [Leung & Zahorjan 93].

However, we wish to reduce this overhead further, even in cases where the above

techniques are not applicable.

4.1.3 Our Compilation Strategy

We now describe the strategy our compiler uses to generate code for shared-memory and

distributed-memory target architectures.

Distributed Memory

As we have seen above, compilation for a message-passing model is harder than for a

shared-memory model, and programs that cannot be fully analyzed at compile-time may

incur additional run-time communication overhead. To make things worse, traditional

message-passing libraries already have a very high per-message overhead.

One reason for this is that messages are a very general mechanism for communication.

Conceptually, a message per se has no semantics attached, and it is up the the receiver to

place an interpretation on the message, and to determine how to process it. The semantics

of message-passing also specify many functions besides the actual data transfer — e.g.,

automatic buffering of messages and implicit synchronization between sender and receiver.

However, most communication in the C* language only requires one specific primitive

operation to be performed, and there is only a small number of commonly used primitives.

For example, almost all C* communication operations involve reading or writing memory

on a remote node.

Our C* compiler therefore uses a remote memory access model of communication which

better matches the language’s communication operations. The remote memory model is

very similar to the shared-memory model, in that the two fundamental communication

primitives are reading and writing of memory on a remote node. To access data on a remote

node, the compiler need only generate an operation on the requesting node. Since remote-

memory access communication does not perform implicit synchronization between sender
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and receiver, the compiler has to insert explicit synchronization operations to preserve

inter-node data dependencies — just like it does for the shared-memory model.

In fact, as far as our compiler is concerned, compilation for the remote-memory and

shared-memory models is exactly the same, since the machine-specific communication

libraries hide the few remaining differences.

Figure 4.2d shows the code generated for the remote-memory access model; note the

similarity between this version and the one for the shared-memory model. The expression

remote addr(nodeno, "var") computes the address of variable var on node number

nodeno, for use in the remote write operation. In order to obtain good performance,

nodes must be able to compute this address quickly. Fortunately, this is not a problem for

most regular data distributions; for irregular distributions, all compilation approaches will

incur higher overhead for address and index calculation.

Note that the remote read and write operations can be implemented efficiently on a

message-passing communication architecture using a low-level mechanism like Active

Messages [von Eicken et al. 92], which provide a very low overhead data transfer mecha-

nism, without the protocol overhead of message passing.

On the other hand, we have introduced explicit synchronization operations that were

performed implicitly in the message-passing model. We can think of the synchronization

operations as another form of protocol overhead, taking the place of the “traditional”

message-passing protocol overhead [Felten 93a, Felten 94]. At this point, we make no

attempt to quantify this tradeoff. In Chapter 6, we will see that the true advantage of

compiling for a remote-memory model is that it uses a small set of simple, well-defined

communication primitives. This will allow us to provide simple hardware support for

communication.

In some cases, the compiler can recombine data transfer and synchronization, and

eliminate some of the explicit synchronization operations. Our compiler does not currently

perform this optimization, so the results presented in the remainder of this dissertation have

slightly higher synchronization traffic than what we could expect from a production quality

compiler.

Note also that there is ample opportunity for combining data transfer and synchroniza-

tion in the run-time libraries, e.g. inside broadcast, reduce and barrier operations.

Even though the compiler generates code for a remote-memory model, the run-time li-

braries for the message-passing communication architecture do combine data transfer and
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synchronization wherever possible.

Shared Memory

We make one small change to Hatcher and Quinn’s compilation strategy for shared-memory,

namely we use a different layout for parallel data. Allocating parallel variables contiguously

in memory may increase false sharing and distort our results. For example, even operations

that only access locally owned data (such as elementwise addition) generate inter-node

traffic due to false sharing if the per-node partition of a parallel variable is not a multiple of

the cache line size.

Our compiler allocates disjoint memory areas for each processor and maps each proces-

sor’s partition of parallel data into the processor’s own memory area. In effect, we simulate

a distributed-memory machine on the shared-memory hardware — with one crucial differ-

ence: all data is still accessible as part of the shared memory space.3

A production-quality compiler would use other techniques to reduce false sharing, such

as padding variables or otherwise changing the layout [Su et al. 93, Ju & Dietz 91, Eggers

& Jeremiassen 91]. Yet even with our rather ad-hoc method, we were able to significantly

reduce the level of false sharing in our benchmarks. Also, both the shared-memory and

remote-memory models use the same kind of data layout, which makes comparisons be-

tween the two easier. The drawback of this approach, like most more sophisticated data

layout strategies, is that array index calculation becomes more complicated.

4.2 Compiler Overview

We now describe in more detail the C* compiler used in this dissertation. The compiler

must perform three major tasks:

� generate code for parallel computation and manage the virtual processor model

� generate code for inter-node communication

� insert synchronization to maintain inter-node data dependencies.

3 The original C* compiler by Hatcher and Quinn stored parallel variables as contiguous arrays in shared
memory [Hatcher & Quinn 91]; it therefore did not address the issue of false sharing.
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4.2.1 Parallel Computation

We first describe how to generate code for parallel statements (except communication), and

how the virtual processor model is managed.

Parallel variables are implemented as arrays, with one entry for each position in the

parallel variable’s shape; the arrays are then distributed among the physical processors.

The C* shape of a variable is represented at run-time by a shape descriptor, which contains

information such as the total number of positions in the shape, how the data is distributed

among the physical processors, and how many array elements are mapped to a given

processor. In our compiler, the number of physical processors need not be known at

compile-time, since the data distribution for all shapes is computed at run-time. Consider

the declarations

shape [1024]S;

int:S a;

When the program containing these declarations is executed on 16 processors, each physical

processor will map 64 positions of the shape S. The descriptor for shape S is initialized to

reflect this data distribution.4 Each processor then allocates an array of 64 integers to hold

its part of the parallel variable a. The compiler generates roughly the following C code to

be executed on each node.

ShapeDescriptor S; /* this node's copy of shape descriptor */

int *a; /* this node's portion of variable 'a' */

/* initialize shape descriptor: each node has 64 positions */

S.posnsTotal = 1024;

S.posnsThisNode = 1024 / N_nodes; /* 1024/16 = 64 per node */

/* allocate this node's portion of parallel variable `a' */

a = stack_alloc(S.posnsThisNode * sizeof(int));

Note that we assume that each processor gets its own copy of the variables S and a; on

some shared-memory machines such variables must be marked “private”.

We compile parallel statements by wrapping a virtual processor emulation loop (VP

loop for short) around them. For example, the parallel statement

4 Each physical processor maintains its own copy of all shape descriptors.
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with (S) {

a = 0;

}

is compiled in to the following C code:

currShape = &S;

for (vp=0; vp < currShape->posnsThisNode; ++vp) {

a[vp] = 0;

}

Note the assignment to currShape, which keeps track of C*’s current shape. If the

number of physical processors (and hence the details of the data distribution) were known

at compile-time, the expression currShape->posnsThisNode could be replaced with a

constant, e.g., 64 for execution on 16 processors.

Sequences of parallel statements of identical shape can of course share a single enclosing

VP loop. However, intervening scalar operations, such as an assignment to a scalar variable,

must only be executed once and hence cannot be nested inside the VP loop. The compiler

must “break” the VP loop at the location of the scalar operation.

The cost of breaking VP loops can be greater than immediately obvious. Recall that in

C*, every parallel statement is implicitly “contextualized” by any (dynamically) enclosing

where statements. The VP loop must therefore include a test to check whether the VP

being simulated in a given iteration is active. When the compiler breaks a VP loop into

multiple parts, it may also have to introduce a temporary variable to hold the context. For

example, the sequence of statements

where (a == 0) {

a = 1;

scalar = 99;

a = 2;

}

generates the following (unoptimized) code:

/* allocate temporary to save context across VP loops */

temp = stack_alloc(currShape->posnsThisNode * sizeof(BOOLEAN));

/* first part of VP loop */
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for (vp=0; vp < currShape->posnsThisNode; ++vp) {

temp[vp] = (a[vp] == 0); /* save the context */

if (temp[vp]) { /* this VP active? */

a[vp] = 1;

}

}

/* scalar statement; splits VP loop in to parts */

scalar = 99;

/* second part of VP loop */

for (vp=0; vp < currShape->posnsThisNode; ++vp) {

if (temp[vp]) { /* reuse the context */

a[vp] = 2;

}

}

stack_unwind(temp);

Note the introduction of the temp array which is required to save the current context across

VP loops.

Various optimizations can improve execution speed. For example, the compiler could

move the scalar operation before or after the VP loop, promote the scalar to a parallel

variable, or evaluate the conditional expression in each VP loop fragment, assuming this

is cheap enough and data dependencies permit it (in our simple example, there exists an

inhibiting data dependency on variable a). In [Klaiber & Frankel 93] the authors discuss

other optimizations that reduce the cost of VP emulation.

We reiterate that the experiments described later in this dissertation focus on communi-

cation operations rather than efficient code generation for local (i.e., non-communication)

operations. In fact, since we explicitly ignore time spent performing computation, the

optimizations discussed above do not affect the results we present in chapters 5 and 6.

4.2.2 Inter-Node Communication

By analyzing the usage of the C* communication operations in the source code, the compiler

can classify them as one of five communication primitives:

� get — Each VP retrieves one data item from another VP.
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Figure 4.3: Fanin/fanout tree of processing nodes.

� send — Each VP sends one data item to another VP.

� combining send — As above, but with combining for collisions.

� broadcast— Data from one VP is broadcast to all other VPs.

� reduce — Each VP contributes one data item to a global sum.

In addition, the compiler inserts barrier synchronization operations to preserve inter-node

data dependencies, this is the sixth communication primitive.

Each of the six primitives is implemented in a machine-specific library function. For

example, the shared-memory implementation of get uses processor load instructions to

access data; the remote-memory implementation uses active messages. From the compiler’s

point of view, the barrier primitive is the only one that performs any synchronization

between nodes.5

Our run-time libraries implement the broadcast, reduce and barrier primitives

using fanin/fanout tree algorithms. We arrange the machine’s processing nodes in a k-ary

tree, as shown in Figure 4.3 for k = 2. In a broadcast, the node owning the data to be

broadcast sends the data to the root (node 0) of the tree. Starting at the root, each node

forwards the data to its children. In a reduce operation, each node sends its contribution to

its parent node. The parent computes the local reduction of its data and the data obtained

5 When a reduce is followed by a barrier, the compiler merges the two, since both already use the
same communication pattern.
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from the children, and sends the result to its parent. Once the reduction reaches the root of

the tree, the final result is broadcast to all nodes. Broadcasts, reductions and barriers can

therefore be performed in O(logp) operations on p processors. Note that the tree structure

need not be physically implemented in the interconnection network; we simply impose it

logically.

Each step in the fanin/fanout tree requires data transfer as well as synchronization — a

node cannot, for example, forward broadcast data to its children until it has received the data

from its parent node, as well as notification that the data has arrived. Our run-time libraries

combine the two functions, data transfer and synchronization, into a single communication

operation wherever the underlying communication architecture allows this.

The quality of the code generated by our compiler could easily be improved, for example,

we could inline most of the communication in the shared-memory architecture, eliminate

some data copying inherent in the run-time libraries, or reduce the cost of index calculation,

e.g., by applying strength reduction. However, as mentioned at the end of Section 4.2.1,

our experiments do not measure the cost of local computation, so this does not affect our

results.

4.2.3 Synchronization

As outlined above, our compiler inserts explicit synchronization operations to preserve inter-

node data dependencies, even on distributed-memory machines. (Note that when compiling

for a shared-memory machine, this step is always necessary.) The overall approach is

rather simple. The compiler uses data-flow analysis to determine where inter-node data

dependencies may arise, and inserts synchronization operations to cut the dependencies.

Figure 4.4(a) shows a C* code fragment that has inter-node data dependencies between

statements 1 and 3, and 2 and 4: the parallel variables x and y are written by one processor

before they are read by another processor. Figure 4.4(b) shows that a single synchronization

barrier is enough to properly synchronize the generated code, since it cuts both dependence

arcs 1! 3 and 2! 4.

The minimal set of barriers can be found in linear time for sequential code, but for

general control flow graphs, this is an NP-hard problem [Hatcher et al. 91]. Our compiler

uses a set of heuristics to achieve near-optimal barrier placement in practice, e.g., it places

barriers before rather than inside loops whenever possible.

As a side-effect of inserting explicit synchronization operations to preserve inter-node
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0. int:S x,y;

1. [.-1]x = ...;

2. [.+1]y = ...;

3. use(x);

4. use(y);

(a) original C* code.

int x[1], y[1];

remote-write(remote-addr(self-1, "x[0]"), ...);

remote-write(remote-addr(self+1, "y[0]"), ...);

BARRIER;

use(x[0]);

use(y[0]);

(b) properly synchronized remote-memory model code

Figure 4.4: Preserving inter-node data dependecies.
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data dependencies, the run-time system can use asynchronous messages to implement the

remote read and write operations — the communication operations do not need to complete

until the next barrier synchronization point. In effect, this is a software implementation of

a relaxed memory consistency model, similar to release consistency [Gharachorloo et al.

90].

Several optimizations can further reduce the cost of synchronization. First, for some

communication patterns that are amenable to static analysis, point-to-point synchronization

can be used instead of barrier synchronization. For example, when data is exchanged

between neighbors in a linear array, global barrier synchronization is too “strong;” syn-

chronization between pairs of neighboring nodes is sufficient. If the required number of

point-to-point synchronizations is small enough, this approach achieves lower synchroniza-

tion latencies than barriers. However, when each node needs to synchronize with more than

two other nodes, the number of messages sent for synchronization increases, since barrier

synchronization only sends two messages per node.

Second, the compiler could recombine separate data transfer and synchronization op-

erations, which may improve performance if the underlying communication system can

support it.

While our compiler does not perform the above optimizations, the run-time communi-

cation libraries offer many opportunities for combining data transfer and synchronization,

and our run-time libraries for the message-passing architecture do in fact take advantage of

this optimization.

4.3 Summary

We have outlined the compilation of C* for shared-memory and distributed-memory archi-

tectures. When compiling for a distributed-memory target, we express communication in

terms of remote memory accesses instead of message exchanges. This approach, similar

to Hatcher and Quinn’s compilation strategy for shared-memory machines [Hatcher et al.

91], avoids most of the overheads associated with traditional message-passing.

The more significant advantage of our approach is that communication is performed by

a small set of well-defined primitives which are much less general than message-passing.

In Chapter 6, we will see how this allows us us to provide simple and efficient hardware

support for C* communication.
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ARCHITECTURAL COMPARISON

In this chapter, we study communication architectures for data-parallel programs by

comparing three existing models: message-passing, remote-memory and cache-coherent

shared-memory. Our goal is to gain a better understanding of how well these architec-

tures support data-parallel programs, and to evaluate the underlying communication costs

inherent in each of the three architectures.

A fair evaluation of such fundamentally different architectures has so far been difficult

to produce for several reasons. First, the communication model greatly influences the

programming model (and vice-versa). Programs are typically hand tailored for different

communication architectures, often resulting in vastly different algorithms for the same

application. Second, while program execution time can be measured on different multi-

processors, such measurements are difficult to compare, since the many implementation

differences between machines — such as processor architecture and cycle time, memory

system details, and bus technology — tend to obscure the architecture-inherent differences

that we are interested in.

We avoid this problem by a two-pronged approach: first, we begin with a single suite

of benchmarks written in C*, which are compiled to the architectures under consideration.

We thus measure the work required by each architecture to execute the same data-parallel

programs. Second, we examine metrics that are mainly technology-independent. For

example, we evaluate the data and control traffic that flows over the interconnect for various

benchmarks, the traffic due to synchronization, and the number of network round-trip

latencies incurred.

Our methodology is as follows. We compile each of our C* benchmarks using a C*

compiler. Our compiler generates code that is more or less machine independent, and

includes calls to a runtime library that manages all inter-processor communication. We

have written an optimized runtime library for each architecture. For example, the library

simply executes load and store instructions for a shared-memory machine (simulating the

cache and bus as necessary), while simulating message sends and receives for a message
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passing machine. More details of our methodology are presented in Section 5.3.

This approach has three advantages. First, the benchmarks represent a compiler-

generated workload, which as outlined earlier, we believe is indicative of future workloads.

Second, and perhaps more importantly, this allows us to make meaningful comparisons

across a range of machines, as all execute the same source program. Third, our measure-

ments are concerned with more abstract metrics such as traffic and network round-trips, not

cycle time, and are thus independent of many implementation details.

Our results quantify the relative interconnect work (e.g., bandwidth consumed, number

of messages injected, number of round-trip latencies incurred) required to execute these data

parallel programs on different architectures. Those measurements do not by themselves

translate directly into performance figures; however they are a key factor, and also point

out some relative strengths and weaknesses of the architectures. Given technology-specific

parameters, such as message startup cost, bandwidth available, etc., one can derive a first

approximation of actual communication cost from our measurements. The results in this

chapter should therefore be considered more as a guideline for determining architectural

tradeoffs rather than a direct indicator of which of the models is “best.” For example,

the results show that a significant fraction of the total traffic used by the shared-memory

architectures for these benchmarks is explicit synchronization. We argue that those ma-

chines would benefit greatly from architectural support, such as adaptive or user-selectable

cache coherence protocols [Carter et al. 91, Bennett et al. 92], full/empty bits on memory

words [Agarwal et al. 91, Alverson et al. 90], a network or network interface dedicated

to barrier synchronization and reduction (e.g., the control network on the CM-5 [TMC

91b]), or direct access to message-passing primitives as implemented on the Alewife ma-

chine [Agarwal et al. 91].

As far as our latency measurements are concerned, we find that even the basic message-

passing machine can easily hide network latencies by using asynchronous message ex-

changes. To achieve similar results, a shared memory machine needs architectural enhance-

ments such as lockup-free caches, hardware support for prefetching, selective write-update

(instead of write-invalidate), relaxed memory consistency, or asynchronous propagation of

writes. Without these enhancements (which may require substantial changes in hardware

and software), the shared-memory architecture can incur up to an order of magnitude more

network latency than the message-passing model.

This chapter is organized as follows. In Section 5.1, we define the baseline architectures
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Abbreviation Description

MSG 32 Baseline message-passing model with maximum packet of

32 data bytes.

MSG inf Message passing with a maximum packet of 64 Kbytes.

MSG blk Message passing that attempts to aggregate multiple requests

into one message, provided they exhibit constant stride.

NUMA The remote-memory model, with a wordsize of 8 bytes.

CACHE n Write-invalidate cache-coherent model, cache line size of n

bytes, broadcast-capable interconnect.

CACHE n wu Cache-coherent model with selective use of write-update.

CACHE n dash xxx Uses a point-to-point interconnect and a DASH-like co-

herency protocol.

Figure 5.1: Summary of architectural models.

we use in our studies, and in Section 5.2, we outline how the C* communication primitives

are implemented on these different architectures. Section 5.3 describes our simulation

methodology and Section 5.4 discusses the benchmarks we use. In sections 5.5 and 5.6, we

present our measurements of interconnect traffic and latency, respectively, and point out the

strengths and weaknesses of the different communication architectures. We discuss related

work in Section 5.7 and give a summary of this chapter in Section 5.8.

5.1 Architectural Models

We consider three baseline architectures: message-passing, remote-memory and cache-

coherent shared memory. All architectures use 64-bit addresses and 16-bit processor IDs.

Table 5.1 summarizes the models used in our study, which are described in more detail

below.

Message-Passing Model

In the message-passing model (MSG in the rest of this dissertation), all interprocessor

communication occurs through explicit message passing. All messages contain a standard
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header that includes the destination processor ID and a message type. No fixed format is

defined for the body of a message.

We make no assumptions about how messages are injected by the sending processor

(operating system calls, user-level calls, or special processor instructions) or received

(interrupt, polling by the CPU, or handling entirely in hardware). However, some messages

do require the active participation of the receiving processor in order to exploit implicit

synchronization information present in the arrival of a message.

We implemented three variations of the message-passing model: MSG 32, which has

a maximum packet size of 32 bytes, and MSG inf, which allows messages of arbitrary

size. Another model, MSG blk, is based on MSG inf but attempts (at runtime) to aggregate

multiple per-VP requests into a single message.

Remote-Memory Model

Our remote-memory (NUMA) model is based on architectures such as the BBN Butterfly

[Crowther et al. 85] or the Cray T3D [Cray 93]. Memory is statically distributed among

processors and there are no caches. Processors access memory through 1, 2, 4, or 8-byte

load and store instructions. When a processor issues a memory reference, the hardware

decides whether that reference is to local or remote memory. Local accesses are completed

in processor-local memory. For a remote access, the processor creates a request message

and injects it into the network. Request messages contain enough information for the

remote node to create a reply message.

Cache-Coherent Model

For the cache-coherent shared-memory model (CACHE), we examine several different

variants. For most of our results in this chapter, we show measurements for a COMA

(cache-only memory architecture [Hagersten 92b]) roughly based on the KSR-1 [KSR 92],

which assumes an interconnect capable of broadcast.1 We also simulate an interconnect

similar to the DASH [Lenoski et al. 92], where, based on its address, a memory block

is assigned a “home” processor that handles all requests for that memory block. The

coherency protocol used by the DASH does not require a broadcast-capable interconnect

1 The KSR-1 uses a hierarchical interconnect consisting of up to two levels of rings. Our model is simplified
in that we assume a single-level ring interconnect.



44

and only sends point-to-point messages, an important consideration for scalability.

We consider both write-invalidate (CACHE) and write-update (CACHE wu) coherence

protocols. In the write-invalidate protocol, a node wishing to write a cache line first acquires

an exclusive copy of the cache line by invalidating all other copies. In the write-update

protocol several nodes may hold writable copies; whenever a node writes (part of) a cache

line, the changed words are forwarded to all other nodes holding a copy. We assume that

a write-cache [Jouppi 93] is used, i.e., successive writes to the same cache line generate

a single forwarding message. For both the write-invalidate and write-update versions, we

assume that data is always fetched in cache line units.

5.2 Implementation of C* Communication Primitives

As noted before, the C* communication primitives are implemented in machine-specific

runtime libraries. In this section, we describe how the C* communication primitives

are mapped onto the alternative architectures and point out any mismatches between the

language’s needs and the different communication architectures. For a more detailed

description of the C* communication primitives, the reader is referred back to sections 3.1

and 4.1.

get and send In the message-passing model, one message is created for each VP in order

to send or request data. The NUMA and cache-coherent models simply use load and

store instructions to access remote data and the hardware initiates any necessary

communication. If the per-VP data is large, multiple messages are sent, or multiple

load/store instructions are issued.

combining send Combining sends are easy to implement in a message-passing model,

with the combining operation performed by the receiving node. The other models

need to perform the combining operation on the sending nodes, which requires the

use of locks to ensure proper serialization among multiple senders.

reduce and barrier Reductions and barriers are implemented using a fanin/fanout tree.

The message-passing model implements the tree operations directly in terms of

sending messages, whereas the NUMA and CACHE implementations are based on

the lock-free barriers described in [Mellor-Crummey & Scott 91], which achieve the

theoretical minimum of (2p � 2) remote accesses on p processors.



45

use(data)

node 1

node 2

msg_send(...)

msg_recv(&data)

(a) Combined data transfer and synchronization in MSG.

test(flag) use(data)

flag=!flag
node 1

node 2

data=...

(b) Separate data transfer and synchronization in NUMA.

Figure 5.2: Implicit versus explicit synchronization.

broadcast Broadcasts are implemented using a fanout tree (essentially the second half

of a reduction): the node owning the data sends it to the root of the fanout tree, which

then distributes it to all nodes. Note that even though the interconnect in the CACHE

model has a broadcast capability, this facility is not available to the user, and hence

cannot be used to implement the C* broadcast operation.

Implementing fanin/fanout trees on NUMA and cache-coherent machines is more costly

than on message-passing machines. Each step in the combining tree requires synchroniza-

tion, e.g. a parent node needs to know when data from its children is available and vice-versa.

In a message-passing environment, this synchronization information is conveyed implicitly

with the data transfer, whereas the other models require a separate, explicit synchronization

step.
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test(flag)

ack req

node 1

node 2

flag=!flag

inv

Figure 5.3: Traffic for synchronization under write-invalidate protocol.

Figure 5.2 demonstrates implicit vs. explicit synchronization for two nodes, where

node 1 produces data which is to be consumed by node 2. Obviously, this operation

requires synchronization in addition to the data transfer, since node 2 must be able to

determine when the data has arrived. In the message-passing model (Figure 5.2a), data

transfer and synchronization are achieved by sending a single message: the receiver posts a

msg recv operation that matches the sender’s msg send operation, and the completion of

the msg recv call serves to indicate arrival of the data.

In the NUMA model, there is no operation corresponding to explicit receipt of a message,

and data transfer cannot be combined with synchronization. Instead, synchronization needs

to be performed as a separate operation. In Figure 5.2b, data is “sent” by simply assigning it

to a variable, data, in node 2’s memory. To implement the synchronization, node 1 toggles

the flag variable, and node 2 busy-waits for flag to change before it reads data.2

The CACHE model uses the same approach as the NUMA model, however the write-

invalidate protocol interacts badly with the synchronization operations. Figure 5.3 shows

the sequence of operations that take place in the CACHE model for synchronization. The

boxes represent copies of the cache line containing the flag variable. Before node 1 can

write flag, it first needs to invalidate node 2’s copy of the cache line. This operation results

in two messages, one invalidation request and one acknowledgement message.3 When later,

node 2 needs to read the flag, another two messages are sent, one request for the cache

2 Note that this approach relies on FIFO delivery of messages through the network.

3 Under a weaker memory consistency model, the acknowledgement message could possibly be omitted or
executed asynchronously.



47

line and one reply carrying a copy of the cache line. The same operation that took a single

message in the NUMA model now requires four messages, one of which carries a copy of

an entire cache line. This results in significantly higher synchronization traffic. Note that

by using a write-update protocol for synchronization operations, the number of messages

can be reduced to one, as in the NUMA model.

In most benchmarks, the get and send operations access little data per VP (e.g., a

single word), which prevents the message-passing runtime library from taking advantage

of large packets. For the MSG blk model, we implemented a run-time library that attempts

to combine multiple small per-VP requests into one large request, provided the accesses

exhibit constant stride. This mimics compiler optimizations that aggregate messages for

fixed communication patterns. We will see in Figure 5.5 that message aggregation can

significantly reduce traffic in the message-passing model, for some benchmarks.

Recall that, as discussed in Section 4.1, we assume that only barrier operations carry

synchronization information. For example, when the compiler generates a send call, it does

not require the library to ensure that data dependencies are preserved, or to perform any

kind of synchronization between the sender and receiver. This allows an arbitrary number

of get, send, or broadcast operations to be outstanding at any time, and lets us amortize

synchronization operations over multiple data transfers.

5.3 Simulation Methodology

As discussed in Chapter 4, the C* source is compiled into mostly machine-independent C

code, with communication primitives provided by machine-specific run-time libraries. To

simulate the message-passing architectures, we instrument the run-time libraries to capture

the communication and synchronization operations, since these are the only points where

inter-processor communication occurs.

In contrast, the cache-coherent and NUMA models require that all memory references

be traced. To this end, our compiler instruments the generated code and tracks all references

to parallel variables. References to scalars are always local since they are replicated on

every node, therefore we ignore them. In our simulations of the cache-coherent models, we

assume fully-associative, infinite-size caches, thus eliminating conflict and capacity misses.

We also detect all cold misses and exclude them from the results as well. Thus, all inter-

node traffic is due to active sharing of data. In our benchmarks, the data layout was chosen

(by programmer and/or compiler) such as to reduce false sharing as well. Note that these
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are very optimistic assumptions but they also isolate the results from more implementation

details, such as cache size or organization. For the results presented in this chapter, keep in

mind that in reality, the CACHE model would generate significantly more traffic.

Statistics are gathered through execution of the benchmarks on a KSR-1; we drive

several simulation models at once to amortize the cost of program execution. Traffic is

divided into three categories:

� Traffic due to get and send operations, in essence point-to-point communication

between pairs of nodes.

� Traffic due to broadcast and reduce operations, which are examples of collective

communication operations.

� Traffic entirely due to synchronization, such as barriers or the explicit synchronization

in CACHE and NUMA fanin/fanout tree operations.

The first two categories are further subdivided into data sent and control information, such

as message headers or invalidation messages. All measurements in this dissertation were

performed on simulations of 8-node machines. We have simulated selected benchmarks

for up to 64 nodes and verified that our conclusions remain essentially the same.

5.4 Benchmarks

For our experiments, we utilized six benchmarks: jacobi, gauss, matrix, ocean,

shallow, and misra. Jacobi implements 18 passes of a Jacobi iteration on a 128 � 128

grid, using a two-dimensional block partitioning of the grid. Remote data is accessed with

get operations, and a reduction is performed at the end of every iteration to determine an

error term.

Gauss performs Gaussian elimination with pivoting on a 128 � 128 matrix which is

distributed by rows. Matrix multiplies two 128 � 128 matrices which are distributed by

columns. Both matrix and gauss broadcast matrix columns or rows, respectively. Gauss

also uses reduction operations to determine pivot rows.

Ocean is a model of ocean circulation using a one-dimensional data partitioning. Data

is accessed exclusively through get operations accessing 8- and 16-byte quantities. The



49

original Fortran code came from the Ocean Engineering department at Oregon State Uni-

versity.

Shallow is based on Fortran from NCAR. It is an atmosphere model based upon the

shallow-water equations. A 64 � 64 grid is distributed by columns and data is accessed

using both fine-grain (one double at a time) get and coarse-grain (one column at a time)

send operations.

Finally,misra is an event-driven logic simulator. Essentially all traffic in this application

is due to reduction and combining send operations. The combining send communication

patterns are highly irregular and fine-grained.

5.5 Traffic Measurements

In this section, we discuss the results of our traffic measurements. To simplify the presen-

tation, Section 5.5.1 starts by selecting, for detailed examination in the rest of the chapter, a

line size for the cache-coherent model and one version of the message-passing architecture.

In the rest of this section, we present our measurements of interconnect traffic. As

mentioned earlier, we divide traffic into three major categories: traffic from get and

send operations, traffic from reduce and broadcastoperations, and pure synchronization

traffic. In sections 5.5.2 through 5.5.4, we examine each traffic component separately and

then, in Section 5.5.5, compare the relative importance of the individual traffic components.

We also contrast traffic in the KSR-like and DASH-like models and examine how increasing

the number of processors affects our results, in sections 5.5.7 and 5.5.8, respectively.

In this chapter, we focus exclusively on the interconnect traffic generated by the different

communication architectures. While traffic is an important metric, it obviously does not

translate directly into performance. The amount of work to send a message also varies

drastically between models — in the CACHE and NUMA models, a single load or store

instruction suffices to have the hardware generate a message, whereas in existing message-

passing machines, the cost is significantly higher. We will address the issue of message

handling overheads in more detail in the next chapter.

5.5.1 Selecting Simulation Parameters

While we have abstracted away many implementation details such as timing, cache size and

organization, bus technology, etc., our baseline models still require some parameterization.
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Figure 5.4: Total traffic in CACHE model, as function of cache line size.

Presenting all possible variations would be impractical; in this section we select, for detailed

examination in the rest of the chapter, a line size for the cache-coherent model and one

version of the message-passing architecture.

Choosing a Cache Line Size

Obviously, the performance of a cache-coherent architecture depends to a high degree on

the cache line size chosen. Longer cache lines take better advantage of spatial locality, but

may result in higher levels of false sharing or inefficient use of the interconnect when only

parts of a cache line are actually used.

Figure 5.4 shows total traffic for the invalidation-based cache coherent model as a

function of cache line size. From these results, we choose a cache line size of 32 bytes as

the basis of our comparisons throughout the rest of this chapter.4

Observe that ocean is not very well optimized for spatial locality. We include this

4 Further measurements indicate that this is a good line size for the other variants (write-update, or DASH-
style protocol) of the cache-coherent model as well.
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Figure 5.5: Message-passing models: total traffic.

benchmark as an indication of what happens when a compiler fails to arrange memory

accesses for optimum cache utilization.

Choosing a Message-Passing Implementation

Figure 5.5 shows the total message traffic for our three message-passing models. The

baseline model, MSG 32, allows a maximum of 32 data bytes per packet and thus uses

the same granularity as the CACHE model. Larger messages must be split into individual

packets, each carrying its own copy of control information. Two variants of the baseline

model attempt to reduce this overhead. The MSG inf model allows packets up to 64 KB,

and can therefore communicate large per-VP data structures in a single message. Since

get and send operations often generate many small requests (one per VP), the MSG blk

model attempts to aggregate at runtime multiple per-VP requests of constant stride into

one large packet. Both of these optimizations come at a cost: the MSG inf model needs a

larger “size” field in the message header, and the MSG blk model needs to send count and

stride information.

We see in Figure 5.5 how these changes affect total traffic. In the case of jacobi, each

physical processor holds a subgrid of VPs, and each of the VPs on the subgrid’s boundary

issues a request for a small data item. Therefore, aggregating messages (MSG blk) reduces
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traffic by amortizing the message header over more useful data. However a single per-VP

request fits perfectly into a small packet and hence simply increasing the maximum packet

size (MSG inf) only adds control information — the packet header in MSG inf contains 2-

byte size field whereas in MSG 32, 1 byte is sufficient. In the case of shallow, which uses a

coarser data decomposition, only one VP per physical processor sends data off-node. Each

item represents an entire column of data, therefore it helps to send larger packets. Since

only one VP per physical processor sends data, aggregation does not improve performance

beyond that, however. Finally, in ocean only one VP sends data per physical processor, and

data items are small. Therefore, neither larger packets nor aggregation can reduce control

traffic.

Throughout the rest of this chapter, we use the simpler MSG 32 model as the basis of

our comparisons, although for some regular communication patterns or coarse-grained data

decompositions, its performance may be improved considerably.

5.5.2 Traffic from get and send Operations

We now turn to evaluating the traffic generated by the various communication architectures.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Traffic in MB

oc
ea

n
sh

al
lo

w
ja

co
bi

  MSG_32

  NUMA

  CACHE_32

  MSG_32

  NUMA

  CACHE_32

  MSG_32

  NUMA

  CACHE_32

(a) Data traffic

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Traffic in MB

oc
ea

n
sh

al
lo

w
ja

co
bi

  MSG_32

  NUMA

  CACHE_32

  MSG_32

  NUMA

  CACHE_32

  MSG_32

  NUMA

  CACHE_32

(b) Control traffic

Figure 5.6: Comparison of get/send traffic.

Figures 5.6a and 5.6b show the data and control traffic, respectively, generated by the

C* get and send operations for a set of representative benchmarks. Control traffic includes
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packet headers and “pure” control messages, such as requests for data or invalidation

messages. As our CACHE model sends much less control information per message (i.e.,

CACHE uses much smaller message headers) than the other models, we also show the

number of messages due to get and send operations in Figure 5.7.

All data transfers in the CACHE model occur in cache line units. In the case of jacobi,

which uses a two-dimensional block decomposition, half of the remote accesses have unit-

stride and touch all the data in a cache line, while half use only one data item per cache

line fetched. This results in a more than threefold increase in data traffic over the MSG and

NUMA models. ocean also suffers from this problem.
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Figure 5.7: Number of messages for get/send operations.

A different effect is responsible for higher data traffic in shallow. Some variables in

this application are alternately written locally and from a remote node, via a send operation.

The two write operations together require four messages in the CACHE model, two of which

carry control information only, and two of which carry a copy of the cache line.5 The MSG

and NUMA models only require one message for the remote write, and none for the local

write. This explains why despite good cache line utilization, the CACHE model generates

nearly twice the data traffic of the MSG and NUMA models for shallow.

Figure 5.6b shows that the CACHE model generates 30% less control traffic than the

5 If it is known in advance that the entire cache line is going to be overwritten, then the first transfer of data
can be omitted. However, this information is not always easy to infer.
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others for jacobi, although it actually sends a larger number of messages — about 30%

more than the MSG model, as shown in Figure 5.7. As a node attempts to write grid values

locally, it must first invalidate the copies of boundary elements that have been accessed by

remote nodes, causing extra control messages. However, because the CACHE model sends

very little control information per load or invalidate request, the actual traffic is lower.

The behavior of ocean is similar, and in the case of shallow, extra control messages are

needed to implement the send operation, as discussed above.

In summary, the CACHE model relies heavily on spatial and temporal locality to

amortize the cost of the cache coherence protocol. The former is needed to make full

use of all data in a cache line, and can often be achieved through careful optimization of

data layout. However, many scientific applications, especially iterative algorithms, tend to

update most if not all of their data set on each iteration; therefore, little temporal locality

exists between iterations, which renders caching less useful. For example, in jacobi, a

processor accesses each neighboring grid point exactly once per iteration; the values for

those grid points will be overwritten by the remote processor before the next iteration. In

other words, data from remote nodes are not reused and hence caching of remote data does

not pay off — however, the system still incurs the overhead of the cache coherence protocol.

As a result, the CACHE model generates 2 to 3 times the data traffic of the MSG model for

the applications shown in Figure 5.6.

The NUMA model often suffers from the fact that it can only access one word (64 bits)

per request and therefore may require large amounts of control traffic — about 45% to

150% more than MSG on the ocean and shallow applications, respectively.

5.5.3 Traffic from broadcast and reduce Operations

To illustrate performance on broadcast and reduce operations, we choose the matrix,

gauss and misra benchmarks. Matrix broadcasts columns of a matrix (128 words),

whereas misra performs many reduction operations on small (4-byte) data items. In

gauss, both broadcasts of matrix rows and reductions of small data items are used, so its

behavior lies between the other two benchmarks. Figures 5.8a and 5.8b show data and

control traffic, respectively, for these benchmarks. Since the basic CACHE model performs

rather badly on the communication patterns in the fanin/fanout tree, we also consider the

CACHE wu model, which allows the library to request a write update protocol for selected

store instructions.
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Figure 5.8: Comparison of bcast/reduce traffic.

As matrix transfers large contiguous chunks of data, the CACHE model can fully

utilize the cache line, and all three models transfer about the same amount of data.

At the other extreme, misra does not use broadcasts and all data traffic shown here is

due to reductions of small data. Since the CACHE model transfers data in cache line units,

this results in an eightfold increase in data traffic over the MSG and NUMA models, which

only transfer the actual amount of data needed. Note that the write-update cache-coherent

model, CACHE wu, does not have this problem; it performs as well as the MSG and NUMA

models.

Control traffic is also strongly influenced by granularity and sharing patterns. In matrix,

entire columns of the matrix (128 elements) are broadcast at once. The CACHE and MSG

models transfer 32 bytes at a time, whereas the NUMA model is restricted to one word per

request and thus needs to send more requests than the other models. While the CACHE

model makes good use of the entire cache line, the write-invalidate protocol also interacts

badly with the fanout-tree communication pattern, which explains why CACHE sends over

three times as much control traffic as the MSG model. However, due to the large number

of small requests it requires, the NUMA model produces even more control traffic than the

CACHE model. The same drawback of the write-invalidate protocol is responsible for the

CACHE model’s tenfold increase in control traffic over MSG on the misra benchmark.

Note that overall, the CACHE wu model performs significantly better than CACHE, with
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Figure 5.9: Number of messages for bcast/reduce operations.

performance comparable to the MSG model on the matrix and gauss benchmarks.

Some of the differences between models are caused by different message header sizes,

so we also show the total number of messages sent for broadcast and reduce operations

in Figure 5.9. While the ratios between the different models are slightly different than for

number of bytes sent, our conclusions remain the same.

In summary, we see that implementations of combining tree operations are significantly

more expensive in the CACHE model than in either the NUMA or MSG models. Whenever

fanin/fanout tree operations are performed, the CACHE models generate excess traffic

as cache lines ping-pong between nodes. Considering how important combining tree

operations are for scalability purposes, this can be considered a severe drawback of the

CACHE model. The CACHE wu model allows the communication library to request a

write-update protocol for selected store operations, which improves the performance of

the cache-coherent model to the level of the message-passing architecture — at the cost of

extra hardware, including the write-cache as described on page 44.

The NUMA model again shows that the lack of a block transfer mechanism drastically

increases the amount of control information sent, to over four times that in the MSG model

on the matrix and gauss benchmarks. Both of these benchmarks broadcast data structures

significantly larger than a word, namely entire rows or columns of a matrix.
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Figure 5.10: Comparison of synchronization traffic.

5.5.4 Synchronization Traffic

Figure 5.10 shows the amount of data and number of messages that are used solely for

internode synchronization. Synchronization operations occur primarily in the fanin/fanout

trees used to implement barriers, reductions and broadcasts.

A major advantage of the MSG model is that it can combine data transfer and syn-

chronization in a single message, as discussed in Section 5.2. In our benchmarks, the

opportunity to combine data transfer and synchronization arises frequently, specifically in

all fanin/fanout tree operations. Since the NUMA and CACHE models need to implement

the synchronization as a separate operation, it is therefore not surprising that the MSG

model generates far less synchronization traffic than the other models.

The CACHE model suffers from additional drawbacks. First, the write-invalidate cache

coherence mechanism requires four message exchanges for each synchronization operation.

Second, all data is transferred in units of entire cache lines, whereas theoretically, the

exchange of a single bit is sufficient to implement the synchronization. As a result, the

CACHE model generates between 25 and 30 times the amount of synchronization traffic of

the MSG model.

In addition to the CACHE model, we again consider the CACHE wu model, which

allows the library to select a write update protocol for stores that are use to implement

synchronization operations. The CACHE wu model reduces the cost of each step to a single
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message, and transfers written data at a granularity finer than a cache line. Performance of

CACHE wu is about equal to that of NUMA, with a small difference due to handling of

locks in send operations, which we will not discuss here.

The NUMA model offers better control over data movement than the CACHE model,and

allows data transfers in small units more appropriate for the synchronization operations.

While both NUMA and CACHE wu perform noticeably better than the basic CACHE

model, they still generate 5 to 10 times as much synchronization traffic as the MSG model.

Figure 5.10b shows the number of messages sent for synchronization, which abstracts

from the size of message headers and the fact that the CACHE models have to send entire

cache lines for synchronization when a single bit would suffice. As we see, the graphs look

essentially the same as Figure 5.10a, hence our above conclusions remain the same.

In summary, we re-emphasize that, as noted in the previous section, write-invalidate

protocols exhibit significant degradation when faced with a sharing pattern that exhibits no

temporal locality. A write-update model fares much better as long as data can be forwarded

at a fine enough granularity, i.e., less than a cache line.6 Combining synchronization

with data transfer, as done in the MSG model, is a useful technique for further reducing

synchronization traffic.

5.5.5 Contribution of Traffic Categories

To visualize the importance of each traffic category, Figure 5.11 shows the individual

traffic components for each model. Clearly, synchronization traffic (shown as the rightmost

striped bar in the figure) can represent a major fraction of total traffic for the CACHE and

NUMA models. In the case of ocean and misra, the CACHE model even generates more

traffic for synchronization than for transfer of actual data. The NUMA model performs

synchronization operations more efficiently, since no cache coherence mechanism can get

in the way, and data can be transferred in units smaller than a cache line.

In the NUMA model, control traffic is a very prominent component, due mainly to

the lack of a block-transfer mechanism: many individual messages, each carrying a full

message header, are required to transfer large data structures (e.g. a row of a matrix).

Not surprisingly, the amount of synchronization traffic is negligible in the message-

6 Note that a write-update model, indiscriminately applied to all remote accesses, can result in huge increases
in traffic, depending on the access pattern. This is borne out by simulations we performed. In general,
therefore, the user should have control over the cache coherence protocol.



59

0 1 2 3 4 5 6

Traffic in MB

oc
ea

n
sh

al
lo

w
m

at
ri

x
ga

us
s

ja
co

bi
m

is
ra

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA
  CACHE_32_wu

  CACHE_32

get/send DATA

get/send CONTROL

bcast/reduce DATA

bcast/reduce CONTROL

synchronization

Figure 5.11: Overall traffic.



60

0 50 100 150 200 250 300 350

Messages x1000

oc
ea

n
sh

al
lo

w
m

at
ri

x
ga

us
s

ja
co

bi
m

is
ra

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA

  CACHE_32_wu
  CACHE_32

  MSG_32
  NUMA
  CACHE_32_wu

  CACHE_32

get/send DATA

get/send CONTROL

bcast/reduce

synchronization

Figure 5.12: Overall traffic: number of messages.

passing model. This shows the advantage of exploiting the synchronization information

implicit in the arrival of a message.

Note that no spatial or temporal locality is present in the synchronization operations

(only one bit of synchronization information is transmitted,and nothing is gained by caching

that bit), therefore large cache lines will drastically increase the amount of synchronization

traffic in the cache-coherent models.

We argue that since synchronization traffic can comprise such a large fraction of total

traffic in the NUMA and CACHE models, alternative synchronization mechanisms need to

be explored for these models. In addition, the NUMA model would benefit greatly from

a block transfer mechanism.

5.5.6 Total Number of Messages Sent

So far, we have concentrated on the amount of traffic sent over the interconnect. However,

processors also incur some fixed overhead for each message sent or received. Figure 5.12
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shows the number of messages sent in each traffic category. The CACHE model sends

between 30% to 500% more messages than the MSG model, though the CACHE wu model

performs much better, generating between 6% to 70% more messages than the MSG model

(with the exception of shallow, where CACHE wu still sends about three times as many

messages as MSG.)

While this difference is significant, recall that the amount of work the CPU performs

to handle each message also varies drastically between models — in the CACHE and

NUMA models, a single load or store instruction suffices to have the hardware generate

a message, whereas in existing message-passing machines, the cost is significantly higher.

We will examine these per-message overheads in more detail in the next chapter.

Figure 5.12 also yields another insight — in the results shown in Figure 5.11, the

CACHE model is penalized for being unable to send data at a smaller granularity than an

entire cache line. By just counting the number of messages sent, we can abstract away the

effects of cache line size. However, even under such optimistic assumptions, the CACHE

model still generates more traffic than either the NUMA or the MSG model.

5.5.7 Broadcast versus Point-to-Point Interconnect

In this section, we briefly compare the CACHE model based on the KSR and the one

based on the DASH. Recall that the KSR’s coherence protocol relies on the interconnect’s

broadcast capabilities, and that cache lines have no fixed “home” node. In contrast, the

DASH’s coherence protocol only sends point-to-point messages and each cache line has a

home node which handles all requests for that cache line. The latter approach may require

more messages to be sent. For example, the KSR always handles a read miss in two

messages — one to broadcast the read request and another to broadcast the reply containing

the cache line. On the DASH, a read miss may generate three messages if the home node

does not have a valid copy of the requested cache line. In that scenario, the requester sends

a message to the cache line’s home node, the home node forwards the request to some node

that currently holds a copy of the cache line, and that node sends a reply message back to

the requester.

Similarly, the KSR can invalidate multiple copies of a cache line with a single broadcast

message, whereas the DASH must invalidate each copy with a separate message.

Figure 5.13 shows that the DASH-like model generates only about 10%–20% more

traffic than the KSR-like model. There are three reasons for this. First, in most of the cases
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where the DASH sends more messages than the KSR, the extra messages are small control

messages (read requests, invalidations, acknowledgements, etc.) that do not carry a copy

of a cache line. Second, in our benchmarks the number of nodes sharing a given cache line

is usually low, so the DASH does not require substantially more invalidation messages than

the KSR. Third, the data layouts used in our benchmarks usually allow the DASH to handle

read or write misses in two messages, just like the KSR.

In addition, keep in mind that messages in DASH are point-to-point, whereas they must

be broadcast in the KSR model. For a given size machine, and assuming equal technology

parameters for the interconnect, one would expect the DASH-like machine to perform

better, as the aggregate bandwidth required, taking into account number of nodes visited

by each message, should actually be lower.

5.5.8 Scaling of Benchmarks

Figure 5.14 shows how traffic for the shallow and gauss benchmarks increases with

the number of processors. As we can see, the relative importance of the different traffic

categories remains essentially the same. The scaling behavior of these two benchmarks is

representative of our other benchmarks and we therefore expect our conclusions to remain

valid for larger numbers of processors as well.

5.6 Latency Measurements

One important aspect of communication performance that we have ignored so far is latency,

the amount of time that elapses between the initiation and completion of a communication

operation. Communication latency can severely limit the performance of parallel machines,

as processors may have to busy-wait or stall until a communication operation completes.

For example, when accessing data on a remote node, the requesting processor may have to

wait one round-trip through the network until the desired data is available. This is similar

to the latency problem that uniprocessors face as the ratio of processor speed to memory

speed increases, except that network latencies are generally an order of magnitude higher

than memory latencies.

Most parallel architectures try to reduce the impact of communication latency by pro-

viding some form of asynchronous (or non-blocking) communication primitives. The idea

is that a processor can initiate the communication and perform some other work while the
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communication is in progress. Depending on how much “other work” is available, this

approach can partially or completely hide the latency of the communication operation.

It is easy to implement this approach on a message-passing architecture, where the basic

communication primitives — injecting a message into the network, or receiving a message

— are inherently asynchronous. For example, the processor can proceed immediately after

sending a message.7 Hence, to retrieve data from another node, a processor can inject

a request for that data into the network and proceed with other work before attempting

to use that data. Note also the message-passing communication model does not have an

architecture-inherent limit on the number of outstanding asynchronous messages. This

makes it easier to pipeline large numbers of communication operations, which can help to

hide communication latency.

The situation is somewhat different on cache-coherent shared-memory machines, where

the basic communication primitives, i.e., load and store instructions, are not as suited

to asynchronous communication as the message-passing model’s primitives. Even when

load and store are not outright blocking (where the processor always stalls until the

instruction completes), the number of outstanding requests is usually limited, e.g., to the

number of registers available in the processor. Also, allowing fully asynchronous writes

may affect the type of memory consistency model that the system provides. Cache-coherent

architectures therefore provide latency hiding either through separate mechanisms such as

data prefetching or by modifying the cache coherence mechanism. For example, the cache

coherence protocol could be made adaptive [Archibald 88, Stenstrom et al. 93, Bennett

et al. 90, Carter et al. 91], or it could implement a weaker memory consistency model

[Hutto & Ahamad 90, Gharachorloo et al. 90].

In this section, we evaluate our three communication architectures with respect to the

amount of communication latency they incur. We begin by describing, in Section 5.6.1, the

tradeoffs we had to make in our simulations to obtain results that are largely independent

of implementation details, and comparable across different architectures. In Section 5.6.2,

we examine the effects of augmenting the basic CACHE model with various latency hiding

mechanisms and we select the best variation of the CACHE model for further study in

the rest of this chapter. As we did before, we divide traffic into three major categories:

7 If the network is busy, some buffering would have to be performed by the sender to keep the processor from
stalling. The key point is that in principle, barring congestion, the fundamental communication primitives
in the message-passing architecture are naturally non-blocking.
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traffic from get and send operations, traffic from reduce and broadcast operations,

and pure synchronization traffic. In sections 5.6.3 through 5.6.5, we examine each traffic

component separately and then, in Section 5.6.6, compare the relative importance of the

individual traffic components. We also contrast communication latency in the KSR-like

and DASH-like cache-coherent models, in Section 5.6.7.

5.6.1 Assumptions and Limitations

As in our traffic studies, our goal is to examine the technology-independent differences

between the architectures, meaning we are interested in metrics that are unaffected by

details such as network topology, routing strategy, or the ratio of processor to interconnect

speed.

For example, communication latency is largely determined by the time it takes for

a message to traverse the interconnection network, which is a function of the network’s

topology, its routing strategy, and the technology used to build the routers. Another factor

that contributes to latency is the amount of time is takes to process a message — for

example, the time taken to receive a request for data, access the data, form a reply message

and inject the reply into the network.

To allow reasonable comparison of our results across architectures, we again focus on

implementation-independent metrics. Specifically, we gauge communication latency by

simply counting the number of message round-trips during which processors are stalled.

This is a reasonable simplification, since we can expect the gap between processing speed

and network latency to grow larger in the future, hence the latter is bound to become the

dominant factor. Furthermore, we do address the issue of message processing overheads in

the next chapter.

Also, as mentioned above, realistic architectures use various techniques for hiding com-

munication latencies, using some form of asynchronous communication, such as prefetch-

ing. The extent to which these techniques are successful depends critically on how much

computation can be performed between the initiation of the communication operation, and

the time that the result of the communication is needed. Specifically, the work used to hide

the communication must take time greater than or equal to the communication latency. But,

to simulate this effect correctly, we would need to know (at least) the ratio of processor

to interconnect speed — which is exactly the kind of implementation detail that we wish

to avoid. We therefore make some tradeoffs that sacrifice simulation detail in favor of
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implementation independence:

� Realistically, the latency for a given message can vary depending on the distance the

message travels, or the amount of network contention it encounters along the way.

Both distance and contention depend on, for example, the network topology, speed,

and routing strategy — implementation details that we wish to ignore. For our study,

we assume that network latency is a constant, so we can express communication

latencies in terms of the number of message round-trips taken. Essentially, our

studies assume a contention-free network with a fully interconnected topology.

� Our programs make frequent use of barrier synchronization. It is clear that the

processor stall time in barriers is very sensitive to load balancing — a single processor

reaching the barrier “late” can hold up all others. For our studies, we assume that the

benchmarks are perfectly load balanced, meaning all processors reach the barrier at

the same time. Note that for most of the benchmarks we study, this is actually a good

approximation. If there was a high degree of load imbalance, our approach would

overestimate the importance of communication latency relative to load imbalance.

� As outlined above, to fully simulate latency hiding, we would need to know the ratio

of processor to interconnect speed. This is because the effectiveness of latency hiding

depends on the amount of computation that can be done while the communication

operation is in progress. However, we can make a conservative approximation.

When a variable is written by one processor and read by another processor later, the

C* compiler inserts a synchronization point between the two accesses, in order to

prevent races. When simulating asynchronous writes, we assume that the issuing

processor has to wait for one message round-trip at the next synchronization point,

i.e., until the last write has been acknowledged. This is a worst-case assumption, but

it is reasonable for our benchmarks, where the inter-processor data-dependencies are

relatively “tight”, i.e., there is generally not much computation between the last write

operation and the following synchronization point.

� In fanin/fanout tree operations, the individual nodes do not perform much computa-

tion, hence there is not enough work to hide communication latencies. Hence, for

the communication in fanin/fanout trees, our simulations charge a one-way network

latency to model the propagation of data from the source to the destination.
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We are confident that despite these simplifications, our results are still useful for quali-

tatively comparing the relative performance of the different communication architectures.

This is because all our simplifications should have a similar impact on all architectures

studied. For example, on a given benchmark, the sharing pattern between nodes is the same

regardless of the target architecture, hence for example the effect of changing the network’s

topology or routing strategy should affect all architectures in the same way.

Finally, note that the results for each of the architectures could be improved further,

either by adding more hardware for latency hiding, or by using more aggressive compiler

optimizations that hoist communication operations “up” from their use, thus increasing

the potential for latency hiding. In that sense, our results indicate how effective these

additional techniques must be for the different architectures in order to attain a given level

of performance.

5.6.2 Selecting Simulation Parameters

As we mentioned before, the message-passing model already supports latency hiding

through asynchronous message exchanges. The cache-coherent architecture can use many

different, more specialized, mechanisms. In this section, we explore the effects of three

mechanisms to reduce or hide latency in cache-coherent shared-memory machines: selec-

tively using a write-update protocol, automatically prefetching data for sequential accesses,

and asynchronously propagating write operations. For the latter technique, we assume

a relaxed memory consistency model, similar to release consistency [Gharachorloo et al.

90]. Figure 5.15 summarizes the different models. Note that the study of latency reducing

techniques for cache-coherent shared-memory machines is beyond the scope of this disser-

tation, so our list is necessarily incomplete. However, note that few existing commercial

(or even research) shared-memory machines provide all the techniques we examine here.

Figure 5.16 demonstrates the effectiveness of the different latency hiding techniques;

the figure shows the number of message round-trips during which processors are stalled

in the different cache-coherent models. As we can see, the cache-coherent architecture

benefits greatly from these relatively simple enhancements — there is a twofold to tenfold

difference in latency between the best and worst models.

We have already seen that selective write-update improves the performance of the

fanin/fanout tree operations (broadcast, reduce and synchronization) with respect to the

amount of traffic generated. As we can see in Figure 5.16, write-update also drastically
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Abbreviation Description

MSG 32 Uses asynchronous writes, but reads block until data arrives.

NUMA Uses asynchronous writes, but reads block until data arrives.

CACHE 32 Both reads and writes block. Uses a write-invalidate protocol

and implements sequential consistency.

CACHE 32 wu As CACHE 32, but can selectively use a write-update proto-

col where beneficial.

CACHE 32 aw Uses asynchronous propagation of writes, and implements a

relaxed memory consistency model similar to release consis-

tency [Gharachorloo et al. 90].

CACHE 32 pre Uses sequential prefetching of data for reads: only the first

of a series of sequential cache line accesses incurs latency.

Figure 5.15: Summary of models.

lowers the latency of those operations. For example, for a producer/consumer sharing

pattern, the write-update protocol forwards data written by the producer to the consumer

in a single message. In comparison, under a write-invalidate protocol the producer would

have to invalidate the consumer’s copy of the cache line, and then the consumer would have

to request the cache line again. Clearly, the second approach incurs much higher latency.

Asynchronous propagation of writes is especially effective in the gauss, matrix and

shallow benchmarks, which perform many writes in a row to transfer large blocks of data.

The individual write operations are effectively pipelined; the processor only has to wait at

the next synchronization point for the last write to be acknowledged. This is similar to the

release consistency protocol described in [Gharachorloo et al. 90]. Note that CACHE aw

still uses an invalidation-based protocol, so a consumer of newly written data still incurs

the latency of requesting the data from the producer. This can be seen in the misra

benchmark, where CACHE aw does not significantly improve synchronization latency

beyond CACHE wu. However, when the two techniques are combined (CACHE wu aw),

the benefits are significant.

Finally, sequential prefetching helps reduce the latency of block transfers: only the first

of a sequence of sequential cache line accesses incurs latency. We see noticeable improve-
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Figure 5.16: Choosing a shared-memory implementation.

ments for the matrix and gauss benchmarks, which broadcast entire rows and columns

of a matrix; each row or column occupies several cache lines. The other benchmarks do

not usually transfer data items occupying more than one cache line, so prefetching does not

noticeably improve their performance.

We select the best of the cache-coherent models, CACHE wu aw pre, for detailed

examination in the rest of this chapter. For brevity, we will refer to it as “CACHE+”

throughout the rest of this chapter. Note that the cache-coherent architecture could be

improved further, for example, by using more sophisticated hardware prefetching mecha-

nisms [Baer & Chen 91, Dahlgren et al. 94, Fu et al. 92], or through software-controlled

prefetching [Callahan et al. 91, Klaiber & Levy 91, Mowry & Gupta 91]. Similarly, the

NUMA and MSG models could be improved by adding asynchronous messages for read

accesses, thus achieving an effect similar to prefetching. However, the architectural models

as summarized in Figure 5.15 give us sufficient insight into the issue of communication

latency.
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Figure 5.17: Communication latency in get and send operations.

5.6.3 Latency in get and send Operations

We now turn to evaluating the communication latency incurred by the different architectures.

Figure 5.17 shows the number of network round-trip latencies incurred by the different

architectures for C* get and send operations. We examine the representative ocean,

shallow and jacobi benchmarks.

Note that despite its hardware enhancements, the CACHE+ model still incurs more

latency than the other models, with the exception of the jacobibenchmark where CACHE+

incurs only about 75% of MSG’s latency. The main reason NUMA and MSG do not perform

as well as the cache-coherent model is that the former two do not prefetch data for get

operations, whereas the CACHE+ model performs sequential prefetching.

CACHE+ incurs 380% of MSG’s latency on shallow, and 200% of MSG’s latency

on ocean. The increase in latency is largely due to the actions of the cache coherence

mechanism, which, as noted before, sometimes introduces unnecessary migrations of cache

lines, which in turn results in more cache misses. Also, a fundamental difference between

the cache-coherent shared-memory and message-passing architectures is that to move data

from one node to another, a message-passing machine can simply send a message to the

destination, whereas on a shared-memory machine, the destination node needs to request

the data from the source node. This approach inherently incurs higher latency (a network

round-trip as opposed to a one-way trip), and it is not always possible to hide the extra
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Figure 5.18: Communication latency in broadcast and reduce operations.

latency by prefetching or other techniques.

5.6.4 Latency in broadcast and reduce Operations

Figure 5.18 shows the number of network round-trip latencies incurred for broadcast and

reduce operations. We examine the matrix, gauss and misra benchmarks which execute

significant numbers of these operations.

For the misra benchmark, the CACHE+ model incurs only about 15% more network

latency than the MSG or NUMA model, indicating that its latency hiding techniques are very

effective. Its performance on the other benchmarks is not as good, however — CACHE+

incurs 50% more latency than MSG on gauss, and over 100% more on matrix. We traced

most of the increase to the change in sharing patterns that occurs when one node stops

broadcasting and another one takes over.8 If the CACHE+ model gave the application more

control over how and when data moves between nodes, most of this difference could be

eliminated.

8 The reason is that in the current libraries, the broadcasting node sends its data to the root of the fanout tree,
by writing to a shared memory area. Normally, that memory area is shared between the broadcasting node
and the root of the tree, but when a new node starts broadcasting, the memory is temporarily shared by
three nodes. This interacts badly with the write-update protocol used by the fanout tree.
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Figure 5.19: Communication latency for synchronization operations.

5.6.5 Synchronization Latency

Figure 5.19 shows the number of network round-trip latencies incurred for synchronization

operations. We present results for the shallow, gauss and misra benchmarks; the other

benchmarks have similar characteristics.

As we can see, the performance for the CACHE+ model is comparable to the perfor-

mance of the NUMA model. This is not surprising, since the write-update protocol gives

the cache-coherent model almost the same degree of control over data movement as the

NUMA model.

At the same time, both CACHE+ and NUMA incur from 20% to over 50% more

communication latency than the MSG model. The reason for this is that, as discussed

before, the MSG model can sometimes combine data transfer and synchronization, hence

there are fewer synchronization operations to perform in the first place.

Note that our compiler does not currently use “fuzzy” barriers [Gupta 89]. Doing so

has the potential for reducing the overall synchronization latency, though we do not expect

this to give either of the architectures a larger benefit than the others.
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Figure 5.20: Contribution of traffic categories.

5.6.6 Contribution of Traffic Categories

To summarize the results from the previous sections, we see that the CACHE+ model

generally incurs higher communication latency than the MSG model; the NUMA model’s

performance lies between the two. The increase can be traced to two fundamental drawbacks

of the cache-coherent shared-memory architecture:

� In cases where the communication pattern is known, such as in fanin/fanout trees, the

MSG and NUMA models allow the compiler to carefully coordinate the movement of

data between nodes to provide the best feasible match. In the CACHE model, this is

not possible — most cache coherence mechanisms are oblivious to the application’s

communication patterns, and even adaptive protocols [Carter et al. 91, Stenstrom

et al. 93] may take some time to recognize a pattern; there is generally no way for

the application to inform the hardware ahead of time of an upcoming communication

pattern. Moreover, adaptive protocols have to base their decisions on observed sharing

patterns, they cannot exploit à priori knowledge about the application program.
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Figure 5.21: Broadcast versus point-to-point Interconnect.

� Another fundamental difference between the cache-coherent shared-memory and

message-passing architectures is that to move data from one node to another, a

message-passing machine can simply send a message to the destination, whereas

on a shared-memory machine, the destination node needs to request the data from

the source node. This approach inherently incurs higher latency — for example, a

network round-trip as opposed to a one-way trip.

Figure 5.20 shows the latency contribution of the different C* traffic categories. Overall,

the CACHE+ model, despite its many (and expensive) latency-hiding hardware enhance-

ments described in Section 5.6.2, incurs more communication latency than the MSG model;

results for the NUMA architecture lie in between CACHE+ and MSG.

5.6.7 Broadcast versus Point-to-Point Interconnect

In this section, we briefly compare the cache-coherent model based on the KSR and the

one based on the DASH. Figure 5.21 shows that on some benchmarks (e.g., shallow), the
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DASH model performs better than the KSR model. This is somewhat surprising, since

remote accesses in the DASH model may require up to three network hops if the desired

data is not present at the home node. However, in the KSR model all communication

involves at least one network round-trip, as the KSR’s network is a ring, and the coherency

protocol relies on the ring’s broadcast capability. On the DASH model, a given cache

line’s home node can, under certain circumstances, start a write operation to that cache line

without having to wait for invalidations to complete. Due to the good data partitioning in

our benchmarks, this case occurs relatively frequently, which can give the DASH model a

slight advantage.

This is only a minor difference between the models, and it fades as more latency

hiding techniques are employed. Note, however, that messages in DASH are point-to-

point, whereas they must be broadcast in the KSR model. For a given size machine, and

assuming equal technology parameters for the interconnect, one would expect message

round-trip latencies to be lower in the DASH.

5.7 Related Work

Several studies have examined the performance impact of shared-memory versus message-

passing programming styles, e.g. [Lin & Snyder 90] and [Ngo & Snyder 92]. Their

experiments, performed on different shared-memory machines, show that frequently the

message-passing version of a program outperforms the shared-memory version,due to better

locality. Similar research comparing the performance of shared-memory and message-

passing implementations of a standard cell router was performed by [Martonosi & Gupta

89]. This study, too, focused on the programming style, not on the architectural mechanisms.

In [Kranz et al. 93], the authors argue that traditional shared-memory machines suffer

from the limitations of shared memory as the only communication mechanism available.

They identify several scenarios where a compiler or programmer could implement opera-

tions more cheaply through message passing than through shared memory. By selectively

using messages rather than shared memory for some communication operations, they

achieved significant performance gains for runtime system primitives and one application.

The results of the experiments are expressed in terms of execution time on the Alewife,

and are therefore somewhat specific to that implementation, though their conclusions agree

with ours.

A related approach [Frank & Vernon 93] integrates message passing and shared memory
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by introducing a new cache line state, possibly-stale, into a conventional cache coherence

protocol. The proposed architecture permits data to be moved between nodes without

the overhead of cache coherence operations. At the same time, caches are kept coherent

to provide a traditional shared memory model. The current studies do not yet include

quantitative results.

There also is a large body of work aimed at improving the performance of the cache-

coherent shared-memory architecture without changing the programming model. For

example, researchers have studied adaptive or user/compiler selectable cache coherence

mechanisms that use different coherency protocols for different sharing patterns [Carter

et al. 91, Bennett et al. 92, Stenstrom et al. 93].

One way of combining synchronization and data transfer in the framework of a shared-

memory architecture is through the use of full/empty bits on memory words [Agarwal et al.

91, Alverson et al. 90], though we would argue that this approach can be very costly, and

certainly is overkill for the needs of the C* compiler.

Performance of fanin/fanout tree operations can of course be improved dramatically by

providing dedicated hardware, even dedicated networks, as is done on the CM-5 [TMC

91b]. However, we know of no shared-memory machine that incorporates such hardware.

5.8 Summary

We have compiled a suite of scientific C* applications for message-passing, NUMA and

cache-coherent architectures. We have simulated execution of the benchmarks and the

respective architectures and measured technology-independent information about intercon-

nect traffic and latency. These measurements permit evaluation of the underlying costs

inherent in each of the three communication architectures. Most of our observations on

traffic and communication latency can be traced back to a small number of fundamental

differences between the architectures:

� Messages in a message-passing architecture carry data and synchronization infor-

mation due to the fact that both sender and receiver can be explicitly involved in

the communication operation. In contrast, messages in a NUMA or shared-memory

model only carry data, therefore, those machines may have to synchronize explicitly

where needed.
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� In cache-coherent shared-memory architectures, data moves through the system ac-

cording to a (fixed) cache coherency protocol, which is oblivious to the application’s

sharing pattern. For example, write-invalidate protocols perform badly on synchro-

nization operations. Even adaptive protocols [Carter et al. 91, Stenstrom et al. 93]

may take some time to recognize a pattern; there is generally no way for the appli-

cation to inform the hardware ahead of time of an upcoming communication pattern.

Moreover, adaptive protocols can misinterpret sharing patterns and make suboptimal

decisions that a compiler could avoid.

� To move data from one node to another, the message-passing and remote-memory

architectures can simply send the data to its destination, whereas in most cache-

coherent architectures, the destination model needs to request the data from the

source node. This approach inherently incurs higher latency (a network round-trip as

opposed to a one-way trip).

� Message-passing machines can generally send data in whatever granularity is re-

quired by the application, whereas most current cache-coherent machines transfer

data in units of cache lines. Especially for synchronization operations, where the

“information” content of a message is theoretically a single bit, this can lead to

inefficient use of the interconnect.

In particular, our experiments have shown that

� The cache-coherent models rely on spatial and temporal locality to amortize costs

of the cache-coherence protocol, such as data migration or invalidation messages.

Many scientific applications, especially ones employing iterative algorithms, do not

exhibit much temporal locality, as all or most of the application’s data set is rewritten

on each iteration of the algorithm. A common example of a communication pattern

that exhibits neither spatial nor temporal locality occurs when two nodes synchronize

through memory operations. Again, cache-coherent models will perform badly.

� When imperfect data layout results in only part of a cache line being touched,

bandwidth is wasted due to the fact that cache-coherent machines transfer data in

units of entire cache lines. Unless data is rearranged dynamically (i.e., at the cost of

copying), such situations cannot always be avoided.
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� Message-passing architectures benefit greatly from being able to exploit synchroniza-

tion implicit in the arrival of a message. Significant amounts of traffic are generated

in the other models in order to effect synchronization explicitly. This is exacerbated

by the above observation that synchronization operations exhibit no locality.

� The cache-coherent architecture incurs more network round-trip latencies than the

other two architectures. Moreover, it requires hardware additions such as support

for prefetching, selective write-update, asynchronous write propagation or relaxed

memory consistency to approach performance of the message-passing architecture.

The latter can use asynchronous messages as a latency hiding technique, without

requiring extra hardware.

� For the benchmarks examined, the NUMA model suffers primarily from its “narrow

path” to the interconnect, which often requires more control information to be sent

over the interconnect. For regular traffic and tree-based algorithms, the NUMA model

has an advantage over the cache-coherent model in that it affords the programmer or

compiler much better control over data movement.

Although measurements of interconnect bandwidth consumed, number of messages

sent and amount of network latencies incurred do not by themselves translate directly into

performance figures, they are a key factor, and also point out some strengths and weaknesses

of the architectures. Given technology-specific parameters such as message startup cost,

bandwidth available, etc., we can derive a first approximation of actual communication cost

from our measurements. Our results should therefore be considered more of a guideline

for determining architectural tradeoffs rather than a direct indicator of which of the models

is “best.”

That said, we have demonstrated that for important regular and synchronization-

intensive sharing patterns, there is a significant gap between the cache-coherent and

message-passing architectures. To close this gap, cache-coherent architectures should

be augmented with mechanisms that address the specific weaknesses describe above.

The Alewife machine’s approach of providing both a shared-memory and a low-level

message-passing interface to the interconnect may be a possible solution. Other approaches,

such as user-selectable coherence protocols, fine-grain data transfer mechanisms, dedicated

synchronization networks, or full/empty bits should be considered as well. As we have

seen, hardware support for prefetching, asynchronous propagation of writes, or relaxed
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memory consistency all help hide communication latencies. We discuss the approach of

augmenting shared-memory machines in more detail in our section on future work.

However, note that most of these enhancements add significantly to the already high

hardware cost and complexity of the shared-memory architecture. In comparison, the

message-passing architecture achieves its advantages with minimal communication hard-

ware.

The NUMA architecture suffers primarily from being limited to transferring at most

one word per request. An efficient block transfer mechanism is essential for competitive

performance (as was already noted in [Cox & Fowler 89]).



Chapter 6

IMPROVING MESSAGE-PASSING

The previous chapter has focused on the amount of interconnect traffic generated by

the different architectures. In this chapter, we study a different metric, namely the CPU

overhead required to send a message. Communication-related CPU overhead affects per-

formance in two ways. First, as CPU overhead increases, so does the communication

latency as seen by the application program. Second, the more time the CPU spends on

communication, the less time it can spend on useful computation.

Clearly, CPU overhead is already minimal in shared-memory and NUMA architectures,

since the CPU need only reference remote data using conventional load or store instruc-

tions. The NI hardware performs all the communication work and (assuming nonblocking

caches) the CPU can proceed with local computations while the communication is in

progress. In contrast, CPU overhead is very high in traditional message-passing machines,

often over an order of magnitude higher than the interconnect latency [Felten 93b].

However, we have seen in the previous chapter that the message-passing model has

many desirable features. Our goal in this chapter is to design a network interface for

distributed-memory architectures that achieves low CPU overhead comparable to shared-

memory machines, while at the same time retaining the advantages of the message-passing

architecture that we have demonstrated in the previous chapter.

We use a language-oriented design approach. We first identify a small set of low-level

communication and synchronization primitives that are well matched to the needs of C*

(and, we argue, other data-parallel languages as well). We then design a network interface

that implements these primitives efficiently and with minimal CPU overhead. Our network

interface is derived from a conventional message-passing interface, and includes hardware

for remote read/write requests plus counter-based synchronization support.

This chapter is organized as follows. In Section 6.1, we briefly review the sources of

CPU overhead in traditional message-passing hardware and software. Section 6.2 describes

the design of a traditional message-passing network interface; we show how to implement

the C* communication primitives on that hardware base, and we discuss the disadvantages
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of the design. In Section 6.3, we present our improved network interface design. We

describe the implementation of C* communication on the new NI design, and show how

the new design addresses the drawbacks of the conventional interface. In Section 6.4, we

describe our experimental methodology for comparing the two designs. Our simulation

results in Section 6.5 show the effectiveness of our new design at reducing per-message

CPU overhead. We discuss related work in Section 6.6 and give a summary of this chapter

in Section 6.7.

6.1 Problems of Traditional Message Passing

As mentioned above, traditional message-passing systems incur significant communication-

related CPU overheads. A study by Felten of several scientific message-passing applications

running on an iPSC/860 under NX/2 showed that these programs spend between 20% to

70% communicating, and an average of 33% of that time is communication overhead

[Felten 93a]. Clearly, communication overhead can dramatically degrade the performance

of parallel programs.

We distinguish two types of CPU overhead, protocol and NI management overhead.

The former is a result of the semantics of message-passing; it is largely independent of the

design of the NI hardware. NI management overhead encompasses all work that the CPU

must do in order to interface with the NI, and hence is highly dependent on how the NI is

designed. We briefly review both kinds of CPU overhead.

6.1.1 Protocol Overhead

Protocol overhead is an inevitable result of any form on inter-node communication [Felten

93a]. For example, nodes executing a parallel program must synchronize their actions in

order to avoid race conditions; following [Felten 93a], we consider the associated work a

form of protocol overhead. A major source of CPU overhead in traditional message-passing

libraries is due to buffer management: receiving nodes must dynamically allocate buffer

space for messages that arrive before the receiver has issued a matching msg recv call.

Since the available buffer space is finite, the nodes must execute a protocol which manages

the buffers, in order to avoid deadlock. Between buffer management and other overheads

due to the rich semantics of most message-passing libraries (e.g., message matching, implicit

synchronization, etc.), the CPU overhead can be significant.
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Felten [Felten 93a] has proposed a compiler-based approach for reducing the protocol

overhead in data-parallel programs. The compiler analyzes the source program (which

makes conventional message-passing calls) and extracts information about the program’s

communication pattern. The compiler then creates a custom message-passing protocol that

gives the user the illusion of traditional message-passing semantics, yet reduces the protocol

overhead by exploiting the program-specific information previously extracted.

As outlined in section 4.1.3, our compiler uses a different approach to reduce the

protocol overhead. Instead of generating code for a message-passing communication

model, it compiles code for a remote memory access model which does not require any

buffer management. Our run-time libraries for distributed-memoryarchitectures implement

the C* communication primitives using active messages [von Eicken et al. 92], a very

lightweight data transport mechanism. The residual protocol overhead exists in the form

of synchronization between nodes, though as long as synchronization and data transfer can

be combined in the same operation, this is a very low overhead.1 Our approach is more

ad-hoc than Felten’s, yet it is very effective.

6.1.2 NI Management Overhead

Even if all protocol overhead were removed, one source of CPU overhead remains: the

CPU and NI must exchange information in order to coordinate their actions. Traditionally,

the NI is a passive device and, as we shall see in the next section, the CPU incurs significant

overhead in managing that device. This generally involves reading and writing data and

control words from and into memory-mapped NI registers, moving data between memory

and the NI, fielding interrupts, etc. Since our compiler largely eliminates protocol overhead,

the NI management overhead becomes more important.

In older message-passing machines, such as the Intel Delta [Intel 91b],only the operating

system can access the NI. With such a design, most message-passing operations therefore

incur the additional cost of a system call [Anderson et al. 91]. More modern machines,

such as the CM-5 [TMC 91b], use a network interface that can be safely accessed from

user-mode. We assume that all network interfaces used in our study have this property as

well.

Note that unlike protocol overhead, the amount of NI management overhead is highly

1 The amount of synchronization is guaranteed to be no more than what a shared-memory or NUMA
architecture would require.
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dependent on the details of the NI design. Also, software techniques alone cannot reduce

the NI management overhead; we must also change the design of the NI.

6.2 Traditional Network Interface Design

To make the discussion of NI management overhead more concrete, we describe how

to implement the C* communication primitives on a traditional NI. Figure 6.1 shows a

traditional design for a message-passing architecture; machines like the Intel Delta [Intel

91b] or Thinking Machines CM-5 [TMC 91b] use this basic network interface design.

The NI itself consists of little more than two FIFOs (one to receive data from the network

and one to hold data that is to be injected into the network) and simple control circuitry. The

NI is accessible through a set of NI registers that are mapped into the CPU’s address space.

For example, the CPU can read successive words from the receive FIFO by reading one of

the NI registers, or start composing a message by writing message header information into

another register. Other registers may provide NI status information to the CPU, such as the

space left in the send FIFO, or the number or words waiting in the receive FIFO.

The NI is a passive device; all movement of data to and from the CPU or the node’s

memory is initiated by the CPU. For example, to send a message, the CPU deposits the

message header in one NI register and the message body in another NI register. The CPU

must also check a NI status register to determine how much space is left in the send FIFO,

and whether the last message was injected successfully. If the network imposes an upper

limit on the size of a packet in the network, the CPU must also packetize large messages,

i.e., split them into individual packets and send those one at a time.

To receive a message, the CPU extracts the message header from the receive FIFO,

interprets the header to determine how the message is to be processed, and then retrieves the

message body itself. Note that until the CPU starts emptying the receive FIFO, incoming

data just accumulates there. To prevent traffic from backing up in the network, the NI

typically interrupts the CPU when the receive FIFO fills up (or is about to fill up). The NI

may also provide a mechanism to interrupt the CPU whenever a message with a specified

tag arrives. The run-time system can use such a facility to force the CPU to receive and

process a message immediately rather than waiting for the next time the receive FIFO fills

up.

Some machines, such as the iPSC/2 [Arlauskas 88], include DMA hardware to facilitate

transferring data between memory and the NI. However, the CPU must still initiate all DMA
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Figure 6.1: A generic message-passing network interface.

transfers. More precisely, to send a message, the CPU first creates and injects the message

header, then it instructs the DMA to move the message body from memory into the NI’s

send FIFO. If the message is larger than the network’s maximum packet size, the CPU

also packetizes the message and initiates the DMA transfer for each packet. To receive

a message, the CPU must at least extract enough information from the receive FIFO in

order to start the DMA transfer, again for each packet. This is because messages are a very

general communication mechanism; simple DMA hardware cannot decide what actions to

take for a given incoming packet. Therefore, the CPU needs to actively participate in the

sending and receiving of each network packet. We can see that simple DMA hardware

cannot eliminate all CPU overhead; in fact, DMA hardware is not very attractive when the

network’s packet size is small, since the CPU overhead is proportional to the number of

packets sent and received.

We now discuss how the C* communication primitives can be implemented on such an

interface. Several of the primitives described below use a fanin/fanout tree of nodes; this tree

structure is imposed logically, and need not be represented physically in the interconnect.

Recall that our compiler generates code for a remote memory access model of com-

munication. Almost all communication therefore is expressed in terms of read and write

messages that access memory on remote nodes.

� send The sending processor injects a write message that contains data and a

destination address on the remote processor. The CPU on the receiving node extracts

the message from the FIFO, examines the header and moves the data from the FIFO

into memory. If the size of the message exceeds the network’s maximum packet size,
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the CPU must split the message into smaller packets and send each of the packets

separately.

� get The requesting processor injects a read message that contains the address of

the desired data and a local address where the result is to be stored. On the receiving

node, the CPU extracts the message from the FIFO, examines the header, reads the

memory, and injects a write message in reply.

� combining send The sending processor injects a message containing the data and

information describing the desired combining operation. Note that the combining

operation is executed by the receiving node; since the node processes one message at

a time, this automatically serializes multiple combining operations.

� broadcast The node owning the data to be broadcast first sends the data to the

root of the fanout tree. Then, starting at the root, each node forwards the message

to its children. To reduce the overall latency of the broadcast operation, the arrival

of a broadcast message generates an interrupt that causes the CPU to forward the

message immediately instead of waiting until the next time the receive FIFO fills up.

Our implementation of broadcast generates a total of p interrupts in a system of

p processors. If the network supports broadcasts directly, no interrupts are needed

to speed up forwarding, but each CPU must still extract the message from the NI’s

receive FIFO. Note that message-passing allows us to combine data transfer and

synchronization: when a node receives data from its parent, it can also set a flag that

indicates that fact to the application program.

� reduce Each node in the fanin-tree sends a contribution to its parent node. Once

the parent has received data from all of its children, it computes the local sum and in

turn sends it to its parent. When the reduction is complete, the root of the fanout tree

initiates a broadcast of the final result. Again, the run-time library uses interrupts

to minimize the overall latency of the reduction phase; a reduction requires a total

of p interrupts in a system of p processors, plus another p interrupts to broadcast the

result.

� barrier Barriers are implemented like reductions, but since barriers only occur at

the end of compute phases where the CPU has no other work to do, the nodes can



87

poll for the barrier messages and thus avoid interrupts.

Recall that our compiler has already eliminated most of the overhead present in tradi-

tional message-passing libraries. Our run-time libraries use active messages [von Eicken

et al. 92] to implement the remote read and write operations; they do not need to perform

any buffer management.

With most protocol overhead eliminated, a significant amount of CPU overhead remains,

namely the NI management overhead discussed earlier. As we have seen, the CPU has to

actively participate in the sending and receipt of all messages. Specifically, it must send

data and control information to the NI, read data and status information from the NI and

move the data in message bodies to and from main memory. Since message receipt is

inherently asynchronous, the CPU incurs an interrupt every time the receive FIFO fills up,

or a message requiring immediate processing arrives. Alternatively, the CPU may poll for

incoming messages, but this can also consume significant amounts of CPU time.

Asynchronous messages are another source of CPU overhead. We overlap asynchronous

read and write messages with computation in order to hide network latencies. The run-

time system must keep track of all pending asynchronous requests so it can determine when

they have completed. For example, the program may transfer data from a remote node to

local memory by issuing a series of asynchronous read requests — the local copy must not

be accessed until all replies have been received. Similarly, to preserve inter-processor data

dependencies, nodes may not enter a barrier until all of their messages have been delivered.

Therefore, the CPU must keep a count of all outstanding asynchronous messages and also

send acknowledgements for asynchronous write messages.

In summary, we find that the CPU performs a significant amount of work for every

network packet sent and received. For example, the CPU sends data and control information

to the NI, reads data and status information from the NI, moves data to and from main

memory and handles interrupts from the NI. Simple DMA hardware cannot completely

eliminate this overhead, since the CPU must still process the header of each network

packet, and explicitly initiate the DMA transfer for each packet.

As our experiments in Section 6.5 will show, relying on the CPU to perform all of

these operations can result in significant overhead. This is particularly noticeable when

the compiler has already eliminated the protocol overhead of traditional message-passing

libraries.
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6.3 New Network Interface Design

In this section, we present a design that significantly reduces the CPU overhead for man-

aging the NI. The key insight is that the compiler uses only a small set of well-defined

communication primitives: almost all data transfer occurs through remote read and write

operations and almost all synchronization involves counting messages. Our NI design is

language-oriented, i.e., it is tuned to efficiently execute the most common operations with-

out CPU intervention. We derive our design from a traditional message-passing interface by

adding hardware support for remote read and write operations, and for message counting.

The new NI retains all the advantages of the MSG model studied in the previous chapter;

the only difference is that the per-message CPU overhead is much lower.

We first present the details of our design and then demonstrate how it efficiently supports

the C* communication primitives. Figure 6.2 shows our language-oriented network inter-

face design. The NI has direct access to the node’s memory, and handles read and write

messages in hardware. This includes sending acknowledgement messages for writes, if

requested by the application. Since the application program can only specify virtual ad-

dresses in read/write messages, a translation lookaside buffer (TLB) in the NI translates

and checks all of the NI’s memory accesses. When a TLB miss occurs, the NI interrupts

the CPU, which can then supply a valid mapping or signal an error. The TLB is entirely

under software control by the CPU, and the CPU must keep it consistent with its own virtual

memory maps. However, since each NI TLB only maps data local to its node, we need not

keep TLBs consistent across nodes.

The NI contains two banks of counters that are used for various synchronization oper-

ations. The CPU can read and write the counters and the NI can increment or decrement

them as messages are sent and received; bits in the message header can specify a counter

number and a counter operation. Another bit in the header controls whether the NI should

interrupt the CPU when the counter reaches zero. The remote counters are intended to count

messages arriving from other nodes, whereas the local counters keep track of pending asyn-

chronous messages originated from the local node. The compiler uses register-allocation

techniques to assign counters to communication operations.

For example, to implement a communication pattern where each node receives four mes-

sages from other nodes, the compiler allocates one remote counter for the communication

operation and initializes it to the value 4. All messages sent as part of the communication

operation specify that the NI should decrement that counter upon receipt. When a node’s
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Figure 6.2: Language-oriented network interface.

counter reaches zero, this indicates that all expected messages have been received, and the

communication operation is complete. Our run-time libraries use the same approach in all

fanin/fanout tree operations, and our compiler could use it to combine C* data transfers

with synchronization operations in order to reduce network traffic.

The local counters are designed to be used in conjunction with asynchronous messages.

For example, when transferring data to a remote node using asynchronouswrite operations,

the compiler allocates a local counter for the transfer. Each time the node sends a write

message, the NI increments the counter. The NI decrements the counter when it receives

an acknowledgement message from the remote node. When the counter reaches zero, this

indicates that all writes have been received by the remote node.

Finally, a traditional receive FIFO provides message passing functionality as an escape

mechanism for operations that do not fit well into a remote memory access model. Small

buffers provide some amount of decoupling of the interface from the network.

C* on Improved Hardware

We now describe the implementation of the C* communication primitives on our improved

hardware.
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� send The sending CPU packetizes the write message, and injects the packets,

including their headers, into the network. At the receiving node, the NI interprets the

message header and stores the message body at the address indicated in the message

header. For asynchronous operations, the message header specifies a local counter

that the NI increments as the message is sent, and that it decrements when it receives

an acknowledgement.

� get The requesting CPU injects a read message that contains the address of the

desired data and a local address where the result is to be stored. On the receiving

node, the NI receives the message, reads the requested memory area and creates and

injects a write message in reply. The NI at the requesting node handles the write

message. Like for send operations, the CPU can specify a local counter, so the CPU

can detect when a series of asynchronous get operations has completed. We require

the requesting CPU to perform packetization, i.e., it has to split large requests into

separate requests such that the response fits into a single network packet. This way,

the NI need not perform packetization when replying to read requests. We later

study a version of the NI that can perform packetization as well.

� combining send To implement this operation using remote read and write op-

erations, the run-time library would have to use locks to ensure that combining

operations from different processors are properly serialized. Instead, we fall back

on the message-passing implementation described in Section 6.2, which naturally

provides serialization at the receiving node.

� broadcast We implement data transfer for a broadcast in terms of writemessages;

the compiler ensures that the destination of the broadcast is located at the same virtual

address on each node. The compiler also allocates a remote counter and initializes it

to “1”; the NI interrupts the CPU when the counter reaches zero (i.e., when the data

from the parent node has arrived) and the CPU forwards the data to the children. This

is only a slight improvement over the traditional NI design, but when the network

has broadcast capabilities (i.e., the nodes need not forward data to their children),

our design can perform the C* broadcast without any CPU intervention. With a

traditional network interface, the CPU must at least extract and examine the message

header, set a flag to indicate the message arrival, and initiate DMA to store the
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message body in memory.

� reduce For a k-ary fanin tree, the compiler preallocates k+1 memory locations on

each non-leaf node in the fanin tree in order to hold the contributions from the node

itself and the k children. The compiler also allocates a remote counter and initializes

it to the value k + 1. Every time data arrives from a child, the NI decrements the

counter. For the local contribution, the node’s CPU itself decrements the counter.

Once the counter reaches zero, the NI interrupts the CPU, which can then perform

the local reduction step and send the result to the parent node. On the traditional

hardware, each non-leaf CPU is interrupted k times, whereas our design only requires

a single interrupt. In the case where the CPU makes the local contribution after all

the children’s contributions have arrived, the CPU can even avoid interrupts entirely.

The remote counter scheme as described above requires nodes to initialize the re-

mote counters before any other node can send a message using that counter. A purely

compiler-based solution must therefore initialize all counters in the preceding compute

phase. However, each phase may have several control flow predecessors and/or successors,

with possibly different uses of the counters in each. To prevent conflicts, the compiler

would either have to use more counters or else insert additional synchronization operations.

Instead, we allow the message header to specify, along with a remote counter number, an

initial value for that counter. If the counter’s value is still zero upon message receipt, then it

is loaded with the value from the message. This way, nodes can initialize a remote counter

during the phase in which it is used: all messages will include the initial value, but only

the first to arrive will actually be used to initialize the counter. This technique allows us to

get by with only a few remote counters — none of our simulations requires more than 16

remote counters.

We can also use remote synchronization counters to perform synchronization at the end

of a compute phase. When nodes can determine a priori the number of messages they are

to receive in a given phase, the compiler can allocate a remote counter to detect when all

messages have been received. The compiler can then replace the barrier at the end of the

phase with a test of the remote counter.
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Network Considerations

Our decision to provide node-to-node remote memory access while allowing arbitrary

numbers of outstanding asynchronous messages complicates the issue of deadlock in the

network. In our design, we avoid deadlock by classifying messages into requests and

replies. Replies can always be sunk, i.e., the NI can consume them immediately, regardless

of how congested the network is or what other resources are currently in use. We assume

that the network provides two separate (virtual or physical) channels; by using one for

requests and the other for replies we prevent cycles and hence deadlock. This approach to

deadlock avoidance is similar to the one used in the DASH [Lenoski et al. 92] and FLASH

[Kuskin et al. 94] multiprocessors.

An interesting property of our design is that it can be readily used with a network that

delivers messages out of order. Our compilation strategy guarantees that messages need

only be ordered with respect to the synchronization points. Therefore, read and write

messages sent within the same phase can be processed in any order.

Faster Message Injection

The CPU injects a message into the network by storing the message header and body into

a set of NI control registers that are mapped into user space. For example, our NI requires

three control words for a write message, one more than the traditional design. Both

designs require additional work for packetization, for constructing the control words, and

for checking whether the NI has successfully sent the message.

We can reduce the cost of message injection in several ways. First, we can add hardware

to the NI that can send large messages directly out of the node’s memory. The CPU only

indicates the start address and size of the message, and the NI performs all memory reads and

takes care of packetization. Second, the compiler can usually precompute the bit patterns

for some of the control words. Even when some fields are not known at compile-time, the

compiler can precompute a header template, such that fewer fields need to be filled in at

runtime. Third, we expect programs to send sequences of messages with the same type

and options; the NI can provide a way to initialize the type and option word once, and

send several messages using that control word. Finally, by using extra mapping hardware

as on the Cray T3D [MacDonald & Barrusio 94] or Typhoon [Reinhardt et al. 94] we can

implement NUMA-style access to remote memory though conventional load and store

instructions.
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6.4 Experimental Methodology

We evaluate several variants of the two base architectures. The “traditional” NI design is

the one shown in Figure 6.1 on page 85. In our simulations, the FIFO can receive 4 KB of

messages before interrupting the CPU.2

send send recv recv
model header body header body packetize broadcast

OLD CPU CPU CPU CPU CPU –

NEW CPU CPU NI NI CPU –

OLD+bcast CPU CPU CPU CPU CPU yes

NEW+bcast CPU CPU NI NI CPU yes

OLD+bcast+dma CPU NI CPU NI NI yes

NEW+bcast+dma CPU NI NI NI NI yes

Figure 6.3: Architectural models evaluated.

Implementation details of our language-oriented NI design are as follows. The TLB in

the NI is fully associative with 64 entries; each entry maps a 4 KB page. The size of the

receive FIFO is 512 bytes — since the FIFO is an escape mechanism, we expect to use it

less than in the old design, so it can be smaller. Note that in this baseline model, the CPU

must still perform packetization and inject the packet headers for get and send operations.

For send operations, the CPU must also inject the message body itself.

We also evaluate several variations of the two base architectures by adding hardware

support for broadcast and DMA capabilities to the NI. With a network that directly supports

broadcasting, nodes need no longer forward broadcast data to their children, and the

CPU does not incur an interrupt. In the designs with DMA support, we assume that

the NI can send directly from the node’s memory and packetize messages as required by

the network. When receiving messages through the old NI the CPU must still examine

each packet’s header before it can initiate the DMA transfer. All the models studied use

small (32-byte) network packets; we discuss the effect of larger packets in section 6.5.5.

Table 6.3 summarizes the different architectural models; the columns indicate whether

2 By way of comparison, the receive FIFO on the Intel Delta is 2 KB in size.
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CPU or NI/DMA are responsible for sending and receiving packet headers and bodies, and

whether the interconnect provides broadcasting.

As in the previous chapter, we instrument the machine-specific communication libraries

to capture the communication performed by the CPU in each of the the alternative network

architectures. We gather statistics by executing the benchmarks on the KSR-1; we drive

several simulation models at once to amortize the cost of program execution. For each ar-

chitectural model, the instrumentation code in the run-time libraries computes the following

metrics:

� Number of packets sent and received by the CPU

� Amount of data exchanged between CPU and NI

� Communication-related memory references by the CPU

� Number of communication interrupts incurred by the CPU.

These metrics summarize the CPU’s communication overhead in a largely implementation-

independent manner; given machine-specific timing information we can derive cycle counts

from these measurements.
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Figure 6.4: Total traffic between CPU and NI.

6.5 Results

In this section, we present the results of our simulations. As discussed in the previous

section, we measure communication-related work performed by the CPU. We show graphs

for the matrix, jacobi and misra benchmarks running on 8 nodes. Unless indicated in

the text, our findings are qualitatively the same for the other benchmarks, and likewise for

execution on up to 64 nodes.

6.5.1 Traffic between CPU and NI

Figure 6.4a shows the amount of data, including message headers and NI commands,

exchanged between the CPU and the NI. Figure 6.4b shows a breakdown of the traffic by

language-level message types. Since the new NI handles all read and writemessages, the

CPU need not receive and process these, as we can see in in Figure 6.4a. In all benchmarks,

this effect alone reduces traffic between CPU and NI in the new design to about half that of

the old design. In jacobi, which uses mainly get operations, the difference is even larger

since in the new design, the NI also sends the replies to the get requests; in the old design

this must be done by the CPU. On average, our improved design reduces traffic between

CPU and NI by 50% to 75% compared to the old NI design.
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Figure 6.5: Number of packets sent and received by CPU.

Figure 6.5a shows the number of packets the CPU receives from or injects into the NI.

This is an important metric, since the CPU incurs per-packet startup costs, such as checking

for successful message injection or dispatching on message type for message receipt.

The results here parallel those for message traffic — our improved design consistently

outperforms the traditional hardware by a factor of two to three.

6.5.2 Communication-related Memory Accesses

Figure 6.6 shows the CPU’s communication-related memory traffic. In jacobi, almost all

messages are read requests and write replies for get operations. Since the new design

handles these in the NI, the CPU does not need to touch memory at all. In the old design,

the CPUs are responsible both for creating and receiving the reply messages. Therefore,

while the CPUs in the old model must access about 300 KB of memory, virtually no

communication-related memory traffic is required in our model. (The residual traffic is due

to reduce operations.)

For matrix, both NI designs need to forward broadcast messages. However, in our

design the incoming data is stored in memory by the NI, whereas in the old design this is the

CPU’s responsibility. We later show how these results change when the network directly
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Figure 6.6: CPU memory accesses by message type.

supports broadcasting.

The misra benchmark shows a different source of overhead. Almost all messages are

part of reduction or barrier operations (see Figure 6.5b). Very little data is carried by these

messages, but nodes must count the number of contributions they have received from child

nodes. In our design, the compiler allocates a remote counter and the NI does the counting.

In the old design, the CPU must update a set of counters in memory. This results in a

significant overhead, shown under the category of “bookkeeping” in Figure 6.6. Note that

combining send messages are implemented the same way on both models, hence there is

no difference in memory traffic.

Overall, we find that in our design the CPU performs significantly fewer communication-

related memory accesses than with a traditional NI design — usually about 50% of the

memory traffic of the old design, and as little as 2% for jacobi.

6.5.3 Communication-related Interrupts

Figure 6.7 shows the number of communication-related interrupts incurred by the CPU,

broken down by the reason for the interrupt. A synchronization interrupt occurs when the

sender of a message requests an interrupt upon message delivery, or when a synchronization

counter reaches zero. Recall that our run-time libraries generate interrupts for broadcast
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Figure 6.7: Number of CPU interrupts, by reason.

and reduce operations, to reduce the overall latency of the operation. When a memory

access by the NI misses in the TLB, the NI generates a TLB interrupt. Finally, when the

receive FIFO fills up, the NI sends a buffer-full interrupt to the CPU.

As mentioned before, all communication in matrix is due to broadcasts. To keep the

latency of broadcasts low, our runtime system ensures that a broadcast message generates

an interrupt on the receiver, such that the receiving node can forward the message to its

children immediately — as opposed to at the end of the current compute phase, or the next

time the receive FIFO fills up. Our synchronization counters cannot improve performance

here; only direct hardware support for broadcasts eliminates these interrupts.

The jacobi benchmark shows again the advantage of supporting remote read and write

in hardware. In the old NI, all communication flows through the receive FIFO, which

causes an interrupt whenever the FIFO fills up. This does not happen with the new design,

which stores incoming data directly into memory. jacobi also uses reductions, which can

take advantage of the remote synchronization counters, as discussed below. The new NI

incurs a noticeable number of TLB interrupts, but all of them are due to cold misses, and

their number does not increase for longer running times of the benchmark. If the NI’s TLB

were warm-started, these interrupts would be eliminated. Alternatively, doubling the size

of the pages mapped by the TLB halves the number of cold misses while also increasing
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the maximum amount of memory the TLB can map at once. Including the TLB interrupts,

the new NI generates about 25% fewer interrupts than the old NI, or 50% fewer interrupts

than the old NI if we do not count cold TLB misses.

Both misra and jacobi make frequent use of reduce operations. As for broadcasts,

the run-time libraries use interrupts to reduce the overall latency of the reduction operation.

With the old NI, each message from a child to its parent in the reduction tree causes an

interrupt at the parent. This allows the parent to count the contributions and start the local

reduction as soon as all children have sent their contribution. Our new NI uses the remote

synchronization counters to count the children’s contributions and only interrupts the CPU

when all contributions have arrived. Note that in our simulations, we use binary reduction

trees; our technique is much more efficient for higher-arity trees. Also, in some cases we

could avoid the interrupt entirely, though we do not exploit this feature in the simulations.

The results in the figure therefore show the worst-cast for the improved design. Even under

these conservative assumptions, the use of synchronization counters can reduce the number

of interrupts in reductions or broadcasts by up to 20% compared to the traditional network

interface.

6.5.4 Broadcast and DMA Capabilities

We now present the results for variants of the baseline models that have hardware support

for broadcast and augmented DMA capabilities. Refer back to Figure 6.3 on page 93 for a

quick summary of the different models.

When the network supports broadcast, the nodes do not have to forward data to their

children any more, and the NI does not need to interrupt the CPU. This reduces the number

of messages the CPU has to inject, and the number of interrupts it has to handle. Note that

the data being broadcast must still be stored in the receiving nodes’ memory.

We also add DMA capabilities to the old design, and augment our new design’s capa-

bilities to match. To send a write message, the CPU need only pass to the NI the message

header and the start address and size of the data to be sent. The NI reads, packetizes and

sends the data without further intervention by the CPU.

There remains one crucial difference between the old and new NI designs: when

receiving a message, the new NI design interprets the message header and handles read

and write messages without CPU intervention. With the old design the CPU needs to

interpret the message header and initiate the DMA transfer. This is because the old NI itself
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Figure 6.8: CPU–NI traffic with broadcast and DMA, matrix benchmark.

does not handle read and write messages directly. The impact of this minor difference is

significant: recall that nodes receive large messages one packet at a time and the CPU on

the receiving node must read and examine the header and initiate DMA transfer for every

packet.

Figure 6.8 shows the control and data traffic between CPU and NI for the different

variations of the old and new NI. A new traffic category, “DMA commands,” represents

the control information the CPU sends to the NI in order to initiate DMA transfers. Only

the old NI design generates such traffic. The matrix benchmark broadcasts large blocks

of data; the results for gauss are similar since it shares the same characteristics.

The basic new design generates about half as much traffic as the old design. Adding

a broadcast-capable interconnect reduces the traffic for both designs, since the nodes need

no longer forward broadcast data to their children in the fanout tree. We also see that the

relative difference between the two designs has increased. In the new design, the NI on each

node deposits the incoming broadcast data directly into memory without CPU intervention.

In the old design, the CPUs must still receive the data and store it in memory; the figure

shows that hardware broadcast reduces the number of bytes sent by the CPU, but not the

number of bytes received.

With DMA support the CPUs needs no longer send data to the NI. However, with the

old NI, the CPU must still examine the header of every network packet it receives, and
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initiate the DMA transfers. In the new design, this is handled entirely by the NI. The figure

shows that in the new design with broadcast and DMA, the CPU hardly sends any data at

all. In contrast, with the old design the CPUs receive about 500 KB of message headers

and send over 300 KB of commands to the DMA hardware. Note that this overhead is

particularly noticeable with the small packet size we have chosen. As we will see later in

Figure 6.11, larger packets alleviate this problem somewhat.

Figure 6.9 shows the CPU’s communication-related memory traffic. As we can see,

the augmented designs perform substantially better than the baseline models. Note the

performance difference between the old and new NI designs when broadcast but not DMA

support is added — with new NI, the CPU accesses 100 KB of memory compared to 1.1 MB

with the old NI. The reason for this is that the new NI handles the receipt of the broadcast

message, whereas with the old NI, every node must receive the broadcast data through

the CPU. Both models perform equally well when both broadcast and DMA support are

available.

Results for the gauss and shallow benchmarks resemble those of the matrix bench-

mark, and we have seen some performance improvement for the misra benchmark. For

jacobi, neither hardware broadcast nor DMA support reduces traffic between the CPU

and memory or the NI. This is because jacobi transfers data at a granularity of 8 bytes per

message, which makes DMA unattractive. We later discuss a version of jacobi that takes
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Figure 6.10: Interrupts with broadcast and DMA.

advantage of large messages.

Figure 6.10 shows how adding broadcast and DMA support affects the number of

communication-related CPU interrupts. In matrix, shown in Figure 6.10a, almost all

interrupts are caused by broadcast operations; implementing broadcasting in the network

completely eliminates these interrupts, with both the new and old NI. Note also that with

DMA (i.e. sending out of memory), the new NI performs a larger fraction of the memory

accesses, which explains why the number of TLB misses increases slightly. On the other

hand, all TLB interrupts shown in the figure are caused by cold misses. Warm-starting the

NI’s TLB would eliminate all TLB interrupts.

In jacobi, shown in Figure 6.10b, broadcasts are used infrequently, to distribute the

result of reductions. As formatrix, adding direct broadcast support eliminates the interrupts

for that operation, but adding DMA has no effect. The remaining “synchronization”

interrupts are caused by reduction operations.

6.5.5 Large Packet Sizes

We also simulate our benchmarks for a network that supports arbitrarily large messages.

For this experiment, we modified the jacobi benchmark to aggregate the small per-VP

requests into a single large message. This is easy for a compiler, since the communication

pattern in jacobi is static and very regular. Figure 6.11 shows the traffic between CPU
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Figure 6.11: Total traffic between CPU and NI, large packets.

and NI for a network using large packets. As expected from larger packets, the ratio of data

payload to packet header (control) information increases drastically, except in misra (not

shown) which simply cannot exploit large packets.

Comparing the results in Figure 6.11 to those obtained on a network with small packets

(Figure 6.4 on page 95), we find a significant reduction in traffic, for both the old and new

NI designs.

However, the relative difference between the old and new designs is now much higher

than it was for small packets. We conclude that while larger packets improve absolute

performance of all NI designs, the new design can take better advantage of the larger

packets.

6.6 Related Work

Several researchers have proposed software techniques to reduce message-passing over-

head. Active messages [von Eicken et al. 92] are a low-level transport mechanism that

achieves low latency by efficiently dispatching to a message handler on the receiving node.

Felten [Felten 93a] proposes using a protocol compiler to custom-generate message-passing

protocols for a given program and thus reduce protocol overhead. Neither approach can
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completely overcome inadequacies of existing network interface hardware.

The Intel Paragon [Intel 91a] uses a second i860 microprocessor on each node to handle

communication operations. However, the network interface is not accessible at the user level

and all communication must pass through the coprocessor. This requires synchronization

between the two processors, which for small messages may be more costly than allowing

either processor to directly access the network interface, as is done on the CM-5 [TMC

91b]. Given that the coprocessor is identical to the compute processor, it may be more

efficient to use it for general computation, performing communication through the kernel

on both processors.

The Shrimp architecture [Blumrich et al. 94] implements a low-overhead data transport

mechanism by marking memory pages as “mapped out”; store operations to those pages

cause the written data to be automatically forwarded to the memory of another node. The

mapping, established by the OS kernel, specifies destination node and address. Our work

focuses more specifically on the needs of a parallel compiler, and on the separation of data

transport and synchronization.

[Thekkath et al. 93] propose a remote memory access model instead of traditional

message-passing for streamlining data and control transfer between workstations on a

local area network. Though our approach is similar in nature, our emphasis lies on user-

level communication and compiler support for parallel programming; their emphasis is on

distributed applications.

In [Henry & Joerg 92b], the authors propose a network interface design that provides

special support for Id [Nikhil 90] programs that have been compiled to Berkeley’s Threaded

Abstract Machine [Culler et al. 91a]. They reduce communication overhead by imple-

menting message dispatching, forwarding and replying in hardware, and by mapping the

network interface into the processor’s general-purpose registers. Compared to our work,

they target a much more fine-grained computation model, yet reach similar conclusions.

The FLASH multiprocessor [Kuskin et al. 94] and Typhoon [Reinhardt et al. 94] use

very flexible network interfaces built around a fully programmable microprocessor core.

While the aim of these architectures is to support shared-memory systems, it should be

possible to implement our communication primitives on their network interfaces. They

would therefore provide an ideal testbed for the communication architecture proposed in

this chapter.
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6.7 Summary

In the previous chapter, we have seen that message passing architectures do have several

inherent advantages. However, the software cost of sending and receiving data in a message-

passing machine is generally high, negating any possible performance advantages [Felten

93b].

Our goal is to reduce the overhead of data transfer and synchronization in message-

passing distributed-memory architectures. We leverage off of the assumption that in the

future, fewer programmers will use message passing primitives directly; instead, programs

will be written in high-level parallel languages or generated from sequential code using

parallelizing compilers. By using a high-level parallel compiler, it is possible to exploit

information about communication patterns and perform at compile-time many of the tasks

traditionally provided by a communication library. Specifically, the compiler can eliminate

most of the protocol overhead of traditional message-passing libraries [Felten 93a].

However, the communication primitives offered by traditional message-passing network

interfaces do not match well the needs of compilers. We have found that implementations of

C* on traditional message-passing hardware require significant CPU overhead for commu-

nication. Specifically, since those network interfaces are typically passive, the CPU must

participate in the receipt of all messages; all communication traffic flows through the CPU.

As message receipt is inherently asynchronous, the CPU must either poll for incoming

messages, or incur interrupts.

We observe that in our benchmarks, nearly all data transfer is done by reading and

writing remote memories. Similarly, nearly all synchronization is performed by counting

messages sent or received. Both of these operations are simple enough to be provided

by the hardware, and the compiler can use them as building blocks to implement C*

communication operations.

Based on these observations, we have proposed an improved network interface design

that supports remote read and write operations in hardware, and provides a set of syn-

chronization counters that the NI manipulates as part of message handling. The user is

given full control over how counters are used by the NI and the compiler can thus combine

data transfer and synchronization where appropriate. The NI counters can also be used to

provide efficient support for asynchronous messages, reducing the amount of bookkeeping

the CPU must do.

Compiler support is essential in order to best make use of our design. For example,
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register-allocation techniques are used to choose synchronization counters. The compiler

must also infer the destination addresses for remote memory accesses, allocate buffer space,

and insert synchronization operations in order to preserve inter-node data dependencies.

To compare our language-oriented design against traditional network interfaces, we

simulated the execution of a set of C* benchmarks on both architectures. We measured

the traffic between the CPU and the NI, the amount of communication-related memory

traffic, and the number of interrupts incurred by the CPU. For our C* implementation, these

measurements capture the dominant sources of CPU overhead in a timing- and technology-

independent manner.

Our results demonstrate the effectiveness of our design at reducing communication-

related CPU overhead. Traffic between CPU and NI is reduced by at least 50%, and even

as much as 90% in some cases. We find similar reductions in traffic between CPU and

memory. For some benchmarks, our design also achieves a substantial reduction in the

number of communication-related interrupts.

We conclude that as high-level parallel languages become more common and fewer pro-

grams directly use traditional message passing primitives, integrated compiler and hardware

design approaches are essential for achieving good communication and synchronization

performance.



Chapter 7

CONCLUSIONS

The work described in this dissertation is motivated by a growing trend towards using

high-level parallel languages to program parallel computers. To date, existing communi-

cation architectures, such as message passing, remote-memory access and shared memory,

have been primarily used (and designed to be used) directly by the programmer. This bias

has influenced their design, much as assembly language programming has influenced the

design of CISC instruction sets. For example, one commonly cited argument in favor of

shared-memory machines is that they are easier to use than message-passing — a statement

that clearly reveals a design bias towards simplifying the communication architecture for

the benefit of the programmer.

In the future, programs will be compiled to the specific parallel target; the compiler

will hide the details of the underlying communication architecture from the programmer.

Hence, the programmer’s convenience is no longer a major concern in the design of the com-

munication architecture, since the programming language already provides a convenient

programming model. Instead, performance becomes a driving concern, and the communi-

cation architecture must provide interfaces that best suit the needs of the compiler. This

approach is similar to the RISC philosophy in processor design.

In this dissertation, we have focused on the class of data-parallel languages and have

picked the C* language as one representative for our experiments. We have compared

three communication architectures — message-passing, remote-memory access and shared-

memory — for a set of scientific benchmarks written in C* and compiled to the respective

architectures.

A fair evaluation of such fundamentally different architectures has so far been difficult

to produce for several reasons. First, programs were typically hand tailored for different

architectures, often resulting in vastly different algorithms for the same application. Sec-

ond, while program execution time can be measured on different multiprocessors, such

measurements are difficult to compare, since the many implementation differences between

machines — such as processor architecture and cycle time, memory system details, and
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bus technology — tend to obscure the architecture-inherent differences in which we are

interested.

We avoid the first problem by using a single suite of benchmarks written in C*, which

are compiled to the architectures under consideration. We thus measure the work required

by each architecture to execute the same data-parallel programs.

To address the second problem, our simulations abstract implementation details and

instead focus on metrics that are not affected by implementation details like processor or

network speed. We have measured the number of messages sent, the total interconnect

control and data traffic, and the number of round-trip communication latencies incurred.

We have deliberately rejected overall execution time as a metric, since it cannot yield the

same kind of fundamental insight as our implementation-independent metrics.

The drawback of our approach is that our results do not by themselves translate into

absolute performance; we would need to know machine-specific data such as processor

speed, time to send a message, network latency, etc., in order to derive a first-order estimate

of execution time. On the other hand, our method can point out differences that are inherent

in the architectures, rather than any specific implementations of the architectures.

Our results have shown that message-passing has several important advantages over

the competing architectures. The shared-memory model sends between 6% to 500% more

messages than the message-passing model and requires 25% to 250% more bandwidth.

Even with aggressive hardware support for latency hiding, the shared-memory model incurs

from 20% to 100% more network round-trip latencies than the message-passing model on

all benchmarks except jacobi, where it incurs 15% fewer round-trip latencies than the

message-passing model.

We have identified three architectural differences that account for these results. First, in

a message-passing model, the compiler has full control over when data is moved between

nodes and at what granularity. In shared-memory, data movement is largely under the

control of the cache-coherence mechanism, and usually occurs at a granularity of entire

cache lines. Second, message-passing allows the compiler to combine data transfer and

synchronization in a single message, whereas two separate operations are required in a

shared-memory model. Third, to move data from one node to another, the message-passing

and remote-memory architectures can simply send the data to its destination, whereas in

most cache-coherent architectures, the destination model needs to request the data from the

source node, an approach that inherently requires more trips through the network and hence
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incurs higher latency.

However, traditional message-passing implementations also have a major drawback: the

amount of work the CPU must perform for each message (the communication overhead)

is very high, which hurts performance — especially when programs send many small

messages. The shared-memory and remote-memory access architectures do not have this

problem. An ideal communication architecture for C* would unite the above advantages

of the message-passing architecture with the low communication overhead of the shared-

memory architecture.

As one possible solution, we have proposed a language-oriented design that retains the

advantages of the message-passing model, yet in cooperation with the compiler significantly

reduces the per-message overhead. To do so, we have identified a small set of low-level

communication and synchronization primitives that are well matched to the needs of C*

and then designed a network interface that efficiently supports these primitives.

Our network interface includes hardware for remote read/write operations plus counter-

based synchronization support. These primitives are a good match for C* (as well as similar

data-parallel languages, such as HPF), since almost all communication operations in C*

read or write variables (i.e., memory) on remote nodes. Similarly, the communication

libraries can easily perform inter-node synchronization by counting messages.

To evaluate the effectiveness of our approach, we have simulated and measured our com-

piled C* benchmarks on a traditional message-passing interface as well as our language-

oriented design. These measurements have demonstrated that our design is effective at re-

ducing communication-related CPU overhead. Compared to a traditional message-passing

NI design, the CPUs in our improved design exchange 50% to 75% less data with our NI,

perform 50% to 90% fewer communication-related memory accesses on average, and incur

up to 20% fewer interrupts for broadcast and reduction operations. Our design is also better

able to exploit networks with broadcast capabilities.

7.1 Future Work

Our work could be extended in several ways. First, we could improve the compiler,

especially for the message-passing architecture. Second, in this dissertation we have

proposed a language-oriented design derived from message passing; an alternative would

be to design a network interface based on a shared-memory model. Finally, we could extend

our study to programming models that are not data-parallel.
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7.1.1 Improved Compiler

Though the message-passing model already compares favorably to the other architectures,

we could significantly improve its performance by using more aggressive communication

optimizations. For example, our compiler does not currently perform message vectorization

or message aggregation.

Our compiler also does not fully exploit the capabilities of our new NI design; we only

use the synchronization counters for synchronization internal to broadcast, reduce or

barrier operations. For regular communication patterns, the compiler could precompute

the number of messages expected by each node and use the counters to synchronize, instead

of a barrier operation.

We could also improve the shared memory model’s performance on jacobi by copying

non-contiguous data into a contiguous memory area before the neighboring node accesses it;

this would improve the utilization of the cache lines. Note that this optimization presumes a

fairly static and regular communication pattern that is amenable to detailed analysis by the

compiler. It is likely that the same compile-time analysis would yield an even more efficient

implementation on a message-passing machine, where the compiler has better control over

data movement.

7.1.2 Enhancing Shared-Memory Architectures

In this dissertation, we have proposed a language-oriented network interface design that

was derived from a traditional message-passing network interface. The goal was to attack

the drawback of traditional message-passing, namely the high communication overhead,

while retaining the advantages of the message-passing model.

A different approach would be to start with a shared-memory architecture and modify the

design to address its specific shortcomings, e.g., by giving the compiler better control over

data movement, or providing communication mechanisms that can combine data transfer

and synchronization in a single operation. We have already mentioned enhancements such

as prefetching, compiler-selected coherence protocols, asynchronous write propagation,

relaxed consistency models or full/empty bits. Machines like FLASH [Kuskin et al. 94]

or Typhoon [Reinhardt et al. 94] would be ideal testbeds for such an approach, since their

network interface is fully programmable.

Another promising approach is to build hybrid architectures that support both shared-

memory and message-passing, such as the Alewife [Agarwal et al. 91]. The challenge here
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is to carefully integrate the different communication models in the compiler.

The guiding force behind any such effort should the the principle that whenever the

compiler can identify a particularly efficient approach to communication, the hardware

must not stand in the way or hide too many details of the communication architectures.

7.1.3 Extending to Wider Class of Programs

Our work has so far focused on data-parallel high-level programming languages. While

this is an important class of languages, not all algorithms can be expressed efficiently in

a data-parallel form. It would be useful to examine how the communication requirements

for other programming models differ from those of data-parallel languages. For example,

Henry and Joerg designed a NI for use with the TAM [Culler et al. 91b] model of execution

and reached conclusions that are somewhat different from ours [Henry & Joerg 92a]. While

this is a fairly extreme example, in that their programming model is radically different from

the data-parallel model, it shows the tight connection between the choice of a programming

model and the design of the communication architecture.

7.2 Conclusions

We have identified architecture-inherent advantages and disadvantages of the message-

passing, remote-memory access and shared-memory communication architectures, and

have shown a way to remedy the deficiencies of the message-passing model. Thus, the

reports of the demise of message passing have been greatly exaggerated. We believe that

the shared-memory model is also amenable to enhancements that address its shortcomings.

Future work may tell which of the two architectures, message-passing or shared-memory,

provides the better starting point for high-performance, low-overhead communication ar-

chitectures.
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