Architectural Support for Compiler-Generated
Data-Parallel Programs

by

Alexander C. Klaiber

A dissertation submitted in partia fulfillment of
the requirementsfor the degree of

Doctor of Philosophy

University of Washington

1994

Approved by

(Chairperson of Supervisory Committee)

Program Authorized
to Offer Degree

Date

In presenting this dissertation in partia fulfillment of the requirements for the Doctoral
degree at the University of Washington, | agree that the Library shall make its copies
freely available for inspection. | further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to University Microfilms, 1490 Eisenhower Place, PO. Box 975, Ann Arbor, M1 48106, to
whom the author has granted “the right to reproduce and sell (a) copies of the manuscript
in microform and/or (b) printed copies of the manuscript made from microform.”

Signature

Date

University of Washington
Abstract
Architectural Support for Compiler-Generated Data-Parallel Programs
by Alexander C. Klaiber

Chairperson of Supervisory Committee: Professor Henry M. Levy
Department of Computer Science
and Engineering

To fully realize the advantages of parallel processing demands the design of efficient com-
munication mechanisms. Existing communication architectures span a spectrum ranging
from message passing to remote-memory access, shared memory and cache-only architec-
tures. These communication architectures are often used (and designed to be used) directly
by the programmer. However, in the future we can expect more programs to be written
in high-level parallel languages and compiled to the specific parallel target; the compiler
will hide the details of the underlying hardware from the programmer. The communication
architecture should then be designed with the compiler, not the programmer, in mind.

The goal of our work isto improve communication performance for programsthat are
written in a high-level parallel language and then compiled to a specific communication
architecture. To makethistask manageable, wefocusontheclassof data-parallel |languages
and we pick C* as one representative for our experiments.

We eval uate three competing communi cati on architectures— message-passing, remote-
memory access and cache-coherent shared-memory — for a set of benchmarks written in
C* and compiled to the respective architecture. We show that the message-passing model
has several inherent advantages for these benchmarks, resulting in less interconnect traffic
and less time spent waiting for messages to traverse the interconnect.

On the other hand, the message-passing architecture requires the CPU to perform
significantly more work per message than the other architectures. This communication
overhead destroys much of the message passing model’s advantage.

We proposealanguage-oriented communication architecturethat retainsthe advantages

of the message-passing model, yet (in cooperation with the compiler) significantly reduces
the communication overhead. To do so, we first identify a small set of low-level commu-
nication and synchronization primitives that are well matched to the needs of C*. We then
design anetwork interfacethat is tuned to these primitives and describe the C* compilation
for this base; our network interface includes hardware for remote read/write requests plus
counter-based synchronization support. We simulate and measure our compiled C* bench-
marks on a traditional message-passing interface as well as our language-oriented design;
our measurements demonstrate that our design is effective at reducing communication-
related CPU overhead.

Table of Contents

List of Figures

Chapter 1: Introduction

11
12
1.3
14

Goa of thisDissertation
RelatedWork
Contributionsof thisDissertation
Organization e

Chapter 2: Architectural Framework

21
22
2.3
24

ProcessngNodes
Interconnection Network
Network Interface

Chapter 3: Data-Parallel Languages

31
3.2

TheC* Language
CrversusHPF

Chapter 4: The C* Compiler

41

4.2

Alternative CommunicationModels L.
411 Compiling for aShared-Memory Target
4.1.2 Compiling for aDistributed-Memory Target
413 Our CompilationStrategy
Compiler Overview
421 Pardle Computation
4.2.2 Inter-Node Communication

423 Synchronizationo

D 01 W N P

\‘

13
15

17
18
21
24

43 SUMMAY o e 39
Chapter 5: Architectural Comparison 40
5.1 Architecturad Models. 42
5.2 Implementation of C* Communication Primitives 44
53 SimulationMethodology 47
54 Benchmarks 438
55 TrafficMeasurements 49
55.1 Selecting Simulation Parameters. 49

552 Trafficfromget and send Operations. 52

55.3 Trafficfrombroadcast and reduce Operations 54

554 Synchronization Traffic 57

55.5 Contribution of TrafficCategories 58

55.6 Total Number of MessagesSent 60

5.5.7 Broadcast versus Point-to-Point Interconnect 61

558 Scdingof Benchmarks 63

56 Latency Measurements. 63
5.6.1 Assumptionsand Limitations 66

5.6.2 Selecting Simulation Parameters. 68

56.3 Latency inget and send Operations 71
5.6.4 Latency inbroadcast and reduce Operations 72

56.5 SynchronizationLatency 73

5.6.6 Contributionof TrafficCategories 74

5.6.7 Broadcast versus Point-to-Point Interconnect 75

57 ReatledWork 76
5.8 Summary. 77
Chapter 6: I mproving M essage-Passing 81
6.1 Problemsof Traditional MessagePassing 82
6.1.1 ProtocolOverhead 82
6.1.2 NI ManagementOverhead 83

6.2 Traditional Network InterfaceDesign 84

6.3 New Network InterfaceDesign 88
6.4 Experimental Methodology 93
6.5 Results. 95
6.5.1 TrafficbetweenCPUandNI 95

6.5.2 Communication-related Memory Accesses 96

6.5.3 Communication-related Interrupts 97

6.5.4 Broadcast and DMA Capabilities 99

6.5.5 LargePacketSizes. 102

6.6 RelatledWork 103
6.7 SUMMAyY. 105
Chapter 7: Conclusions 107
7.1 FutureWork 109
711 Improved Compiler 110

7.1.2 Enhancing Shared-Memory Architectures 110

7.1.3 Extendingto Wider Classof Programs 111

7.2 Conclusions 111
Bibliography 112

21

41
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

List of Figures

A genericparadlel machine. oL 8
Compiling C* for multiple target architectures. 26
Communication for different communicationmodels. 28
Fanin/fanout tree of processingnodes. 36
Preserving inter-node datadependecies. 38
Summary of architectural models. 42
Implicit versusexplicit synchronization. 45
Traffic for synchronization under write-invalidate protocol. 46
Total trafficin CACHE model, asfunction of cachelinesize. 50
Message-passing models: total traffic. 51
Comparison of get/send traffic. L. 52
Number of messages for get/send operations. 53
Comparison of bcast/reducetraffic. 55
Number of messages for bcast/reduce operations. 56
Comparison of synchronization traffic. 57
Overdl traffic. 59
Overdl traffic: numberof messages. 60
Trafficin DASH-likeand KSR-likemodels. 62
Traffic asfunction of number of processors. 64
Summaryof models. 69
Choosing ashared-memory implementation. 70
Communication latency in get and send Operations. 71
Communication latency in broadcast and reduce operations. 72
Communication latency for synchronization operations. 73
Contribution of trafficcategories. 74
Broadcast versus point-to-point Interconnect. L. 75

iv

6.1 A generic message-passing network interface. L. 85
6.2 Language-oriented network interface. L. 89
6.3 Architectura modelsevaluated.o 93
6.4 Totd trafficbetweenCPUandNI. 95
6.5 Number of packets sent and receivedby CPU. 96
6.6 CPU memory accesses by messagetype. 97
6.7 Number of CPU interrupts,byreason. 98
6.8 CPU-NI traffic with broadcast and DMA, matrix benchmark. 100
6.9 Memory traffic with broadcast and DMA, matrix benchmark. 101
6.10 Interruptswithbroadcastand DMA. 102
6.11 Total traffic between CPU and NI, largepackets. 103

ACKNOWLEDGMENTS

I’d like to thank al the people who have made this possible. My parents for
their unwavering support. Beth for keeping me sane. My advisor Hank Levy for
teaching me how to do research and, more importantly, how to write. All my fellow
grad students for many hours of productive discussions, especially Craig Anderson,
Robert Bedichek, Edward Felten, Dave “Pardo” Keppel, Brian Lockyear, Neil
McKenzie and Dylan McNamee. Extrathanksto Dylan for histhorough reading of
thefirst draft of this dissertation.

Thanks to Jamie Frankel for getting me interested in data-paralel languages
in the first place. Phil Hatcher at UNH supplied me with an early version of his
compiler for the “new” C* and most of the benchmarks.

Finally, thanks to Wassif at the Shalimar for keeping me well fed!

Vi

To my parents.

Vii

Chapter 1
INTRODUCTION

Massively parallel computers are an attractive tool for solving many computationally
intensive problems. Unlike traditional supercomputers which generally use expensive
custom-designed processors, parallel computers can be built from off-the-shelf micropro-
cessors and achieve supercomputer class performance through parallelism. Because of
their design, parallel computers gain a significant market advantage by tracking the steady
performance improvement of mass-produced commodity parts.

Unfortunately, the cost of communication may limit the performance of parallel com-
puters. To fully realize the advantages of parallel processing, we need to design efficient
communication mechanisms. Existing communication architectures span a spectrum rang-
ing from message passing [Arlauskas 88, Intel 91a, Dally 90, TMC 91b] to remote-memory
access [Crowther et al. 85, Cray 93], shared memory [Sequent 87, Lenoski et al. 92,
Agarwal et a. 91] and cache-only architectures [Hagersten 92a, KSR 92]. These commu-
nication architecturesare often used directly by the programmer — afact that hasinfluenced
their design, much as assembly language programming has influenced the design of CISC
instruction sets. For example, one commonly cited argument in favor of shared-memory
machines is that they are easier to use than message-passing machines — a statement that
clearly reveds a design bias towards smplifying the communication architecture for the
benefit of the programmer.

However, in the future we can expect more programsto be written in high-level parallel
languages and compiled to the specific parallel target; the compiler will hide the details of
theunderlying communi cation architecturefromthe programmer. Hence, theprogrammer’s
convenience is no longer amgjor concern in the design of the communication architecture,
since the programming language already provides a convenient programming model. In-
stead, performance becomes a driving concern, and the communication architecture must
provide interfaces that best suit the needs of the compiler. This approach is similar to the
RISC philosophy in processor design.

1.1 Goal of thisDissertation

The goa of our work is to improve communication performance for programs that are
written in a high-level parallel language and then compiled to a specific communication
architecture.

To make this task manageable, we focus on the class of data-parallel languages, and
we pick the C* language as one representative for our experiments. The data-parallel
model is an important one; a study by Fox [Fox 88] has shown that a majority of existing
scientific applicationsfit that model well. Asaframework for our architectural studies, we
concentrateon MIMD parallel computersand three competing communication architectures
— message-passing, remote-memory access and cache-coherent shared-memory.

The core of this dissertation consists of two parts. In the first part (Chapter 5), we
evaluate the three communication architectures in order to gain better insight into their
relative strengths, as well as the compiler’s demands on the communication architecture.
Comparing such widely differing architectures has been difficult in the past, for two rea-
sons. First, applications had to be hand-crafted for each architecture, often resulting in
radically different sources for comparison. Second, a host of implementation details (such
as processor speed, cache organization and size, and network bandwidth available) can
easily obscure any architecture-inherent characteristics; given different execution times on
different machine configurations, it becomes nearly impossible to attribute the performance
differencesto any specific source(s).

We avoid these problems by using the following approach. We use a single suite of
C* source programs, compile each program with aC* compiler, and simulate its execution
on the alternative communication architectures. This ensures that the different architec-
tures execute the same source program. Further, our objective is to examine underlying,
implementation-independent costs inherent in each alternative. To this end, we abstract
many implementation details and focus on metrics that are not affected by, say, processor
or network speed. For example, we measure the number of messages sent, the total in-
terconnect control and data traffic, and the number of round-trip communication latencies
incurred. We deliberately reject overall execution time as a metric, since it cannot yield
the same kind of fundamental insight as our implementation-independent metrics. While
our results do not directly indicate which architecture is “best,” they do show the relative
communication work required to execute our data parallel programs on the different ar-
chitectures. Specifically, we will see that the message-passing model has some inherent

advantages for these benchmarks, resulting in less interconnect traffic and less time spent
for messages traversing the interconnect.

In the second part of the dissertation (Chapter 6), we focus specifically on distributed-
memory architectures, and we examine one metric that we haveignoredin Chapter 5, namely
the time to send a message, or the communication overhead. We note that in practice, the
message-passing communication model incurs significant per-message overhead and thus
isunableto fully exploit the advantages we have identified before.

A good communication architecture would combine the advantages of message-passing
withthelow per-message overhead of shared-memory. Asone possi ble solution, wepropose
a language-oriented design that retains the advantages of the message-passing model, yet
(in cooperation with the compiler) significantly reduces the per-message overhead. To do
so, wefirst identify a small set of low-level communication and synchronization primitives
that are well matched to the needs of C* (and, presumably, other data-parallel languages as
well). We then design anetwork interface that is tuned to these primitives and describe the
C* compilationfor thisbase; our network interfaceincludes hardwarefor remoteread/write
requests, plus counter-based synchronization support.

Finaly, to evaluate the effectiveness of this approach, we ssmulate and measure our
compiled C* benchmarkson atraditional message-passing interfaceaswell asour language-
oriented design. These measurements demonstrate that our design is effective at reducing
communication-related CPU overhead; for example, traffic between the CPU and network
interface is reduced by 50 to 90 percent on these benchmarks.

1.2 Related Work

Much research has been done in the past to improve performance of both shared-memory
and message-passing architectures. For message-passing systems, researchers have largely
focused on reducing the high per-message overhead typically found in message-passing
systems. For example, active messages [von Eicken et al. 92] are a low-level transport
mechanism that achieves|ow latency by efficiently dispatching to amessage handler on the
receiving node. Felten [Felten 93a] proposes using a protocol compiler to custom-generate
message-passing protocols for a given program and thus reduce protocol overhead.

The above two approaches rely entirely on software techniques, however, hardware
approaches have been suggested as well. For example, the Shrimp architecture [Blum-
rich et al. 94] implements a low-overhead data transport mechanism which for selected

memory pages automatically forwardsa processor’s store operations to other nodes. The
resulting system shares some of the characteristics of remote-memory and shared-memory
architectures.

There dso is a large body of work aimed at improving the performance of cache-
coherent shared-memory architectures. For example, researchers have studied adaptive or
user/compiler selectable cache coherence mechanisms that use different coherency proto-
cols for different sharing patterns [Carter et al. 91, Bennett et a. 92, Stenstrom et al.
93]. Some machineslikethe KSR-1[KSR 92] provide processor instructionsto prefetch or
poststore data, or load datain a state that facilitates future writes. Most of these techniques
try to improve performance by giving the application more explicit control over how and
when datais moved between processing nodes. Asaresult, shared-memory systemstakeon
some of the characteristics of message-passing systems (where data movement is entirely
under explicit application control).

A related approach [Frank & Vernon 93] integrates message passing and shared memory
by introducing a new cache line state, possibly-stale, into a conventional cache coherence
protocol. The proposed architecture lets user programs move data between nodes without
the overhead of cache coherence operations. At the same time, caches are kept coherent to
provide atraditional shared memory model.

Relaxed memory consistency models [Gharachorloo et a. 90, Adve & Hill 90, Hutto
& Ahamad 90] attempt to improve shared memory performance by alowing temporary
inconsistencies among multiple copies of the same data. Thisis similar in nature to what
happens in message-passing systems where copies of remote data are created under the
control of the application program.

Yet another approach, taken by the Alewife machine, isto offer both a shared-memory
system and message-passing primitives. In [Kranz et a. 93], the authors identify several
scenarios where a compiler or programmer could implement operations more cheaply
through message passing than through shared memory.

Finaly,theFLASH [Kuskinet al. 94] and Typhoon [Reinhardt et al. 94] shared-memory
architecturesinclude fully programmabl e network interfaces. In principle, thiswould allow
coherence protocols to be tailored to specific applications; it is even conceivable to turn
these machines into NUMA or message-passing machines smply by reprogramming the
network interfaces.

The current trends in research discussed above indicate that the different communi-

cation architectures are starting to converge. Shared-memory architectures are acquiring
message-passing likefeaturessuch asbetter user-level control over datamovement, whereas
message-passing architectures are striving for data transport mechanisms with low over-
heads comparabl e to shared-memory and remote-memory architectures.

In our work, we compare these different architectures at a high level of abstraction; our
god is to clarify the tradeoffs between the architectures and point out desirable features
of each architecture. Our results should be helpful in future research on communication
architectures that unify the advantages of message-passing and shared-memory.

1.3 Contributionsof thisDissertation

In this dissertation, we make the following contributions:

¢ We recognize that most existing communication architectures have been designed to
be used directly by the programmer. However, in the future, more programs will be
written in high-level parale languages and compiled to a specific communication
architecture. The compiler hidesthe details of the communication architecture from
the programmer. We show that this change in programming style both requires and
enables changes to the communication architecture in order to improve performance.

e We evauate the strengths and weaknesses of three competing communication ar-
chitectures — message-passing, remote-memory access, and cache-coherent shared-
memory — for a workload of compiled C* programs. We show that compared to
the other architectures, the message-passing model has various advantages. For ex-
ample, the compiler has better control over data movement and granularity, and the
run-time system can combine datatransfer and synchronization in asingle operation.
As a result, the message-passing model requires less interconnect bandwidth and
incurs lower communication latencies than the other models. In the process, we also
present astrategy for obtaining meaningful comparisons across such widely differing
of architectures.

¢ Noting that the message-passing model incurssignificant per-message CPU overhead,
we propose alanguage-oriented approach to designing acommuni cation architecture.
We first identify asmall set of communication primitives that match the needs of the

C* compiler. We then present the design of a network interface for a distributed-
memory architecturethat is tuned to those communication primitives. Together with
a compilation approach normally used on shared-memory machines, we are able to
retain the above advantages of the message-passing model while drastically reducing
the per-message CPU overhead.

1.4 Organization

Theremainder of thisdissertationisorganized asfollows. In Chapter 2, we discuss parall€l
machine architecture, which sets up the hardware framework for our studies. In Chap-
ter 3, we describe the C* language and highlight its close similarity to High Performance
Fortran, another data-parallel language. We then outline, in Chapter 4, how our compiler
trandates C* for different target communication architectures. In Chapter 5, we evaluate
the relative strengths and weaknesses of three different communication architectures —
message-passing, remote-memory access, and cache-coherent shared memory. Our re-
sults show that the message-passing model generates less interconnect traffic, sends fewer
messages and incurs less network latency than either of the competing models, primarily
because it offers the compiler better control over data movement and granularity of com-
munication. These findingsimply that message-passing has some inherent advantages over
the other models, at least for the benchmarks studied. In practice, however, this advantage
can not currently berealized, due to the extremely high per-message CPU overhad in exist-
ing message-passing systems. In Chapter 6, we propose a language-oriented approach to
designing a communication architecture. Our network interface includes hardware support
for asmall set of communication primitives that match the needs of the C* compiler. Our
simulations show that our design retainsthe advantages of the message-passing model while
drastically reducing the per-message CPU overhad. We summarize our results, present our
conclusions and discuss future work in Chapter 7.

Chapter 2
ARCHITECTURAL FRAMEWORK

Figure 2.1 shows an MIMD parallel computer, organized into three major component
groups. interconnection network, processing nodes and network interfaces (“NI”). The
network interfaces connect the processing nodes to the interconnect. In this chapter, we
describe some of the architectural tradeoffsfor each of the three components. Many of the
design decisions are beyond the scope of this dissertation so we discuss them only briefly
in order to provide a framework for our architectural research; we focus primarily on the
network interface.

2.1 Processing Nodes

A fundamental decision in designing the processing node is whether to use commodity or
custom processors. A custom processor design can improve communication performance;
for example, the architect can integrate the network interface more tightly with the CPU
[Henry & Joerg 924, or include special-purpose communication instructions in the CPU.
The Kendall Square KSR-1 shared-memory computer [KSR 92] uses both approaches; its
processors provide instructions for prefetching or post-storing cache lines, plus a host of
instructions that control the memory system, especially the caching strategy. Different
variants of the 1oad instruction exist that can request awritable copy of acacheline (useful
if the cache line is written later), or specify that the level-0 processor caches are to be
bypassed by the access. The designers have added these instructions to the processor in
order to provide the programmer or compiler with better control over data movement, with
the ultimate goal of improving performance.

However, many of these functions can also be implemented on systems that use only
commodity processors— albeit possibly with dightly lower performance. For example, the
operating system can create multiple virtual memory mappingsfor a given area of physical
memory, with each mapping providing different access semantics. Performance may not
match that of special-purpose load and store instructions, since the processor must likely
perform more address arithmetic to access the different mappings. Likewise, the network

[Interconnection Network }
NI NI NI NI
CPU CPU CPU nEn CPU
mem mem mem mem

Figure2.1: A generic parallel machine.

interface can be made accessible as a memory-mapped device, such that the processor can
initiate specia operations (e.g., prefetching or flushing data) by writing memory-mapped
control registersin the network interface. Again, the performance of off-chip logic may be
worse than dedicated on-chip hardware, but both designs provide the same functionality.

Using off-the-shelf processors reduces overall design time for the machine and results
in faster time-to-market. In fact, most existing paralel computers, such as Intel’s series of
message-passing machines [Arlauskas 88, Bokhari 90, Intel 91b, Intel 914], the Thinking
MachinesCM-5[TMC 91b], or the Cray T3D [Cray 93] (aNUMA machine), use processing
nodes built around acommercial off-the-shelf microprocessor. Instead of requiring special-
purpose processor instructions, these machines control communication through hardware
external to the processor.

We conclude that the choice between custom or commodity processorsis not likely to
affect functionality, though it could possibly affect the speed at which some communication
operations can be executed. In our studies, we focus on the functionality of the commu-
nication architecture, and abstract implementation-dependent details such as timing; our
results apply equally well to either design alternative.

2.2 Interconnection Network

The interconnection network is the physical substrate for moving data between processing
nodes. Some key design decisions for the network are its topology, reliability, routing
strategy and packet size (where applicable). In this section, we discuss some of the
tradeoffs and how they interact with the design of network interfaces, described in the next
section.

Reliability

Different networks offer different degrees of reliability. For example, due to congestion
or transmission errors, the network may lose or corrupt data packets, or it may deliver
spurious messages,; the network may or may not detect and report these conditions. ATM
network switches[Minzer 89] areallowed to “drop” packets without notification if network
congestion getstoo high.

If the network does not deal with such events, the communi cation endpoints(i.e., the NI
or processing node) must execute a protocol that can handle them. Note that this involves
work beyond theactual datatransfer — extraprocessingtimeintheNI or node, pluspossibly
transmission of additional protocol messages. If the network can lose packets, the sender
must be prepared to re-send a given message until it has received an acknowledgement
that the message has indeed been delivered. Usualy, the sender must save a copy of
each message until it is acknowledged; this in turn may incur overhead for managing the
required buffer space. Brustoloni and Bershad [Brustoloni & Bershad 92] have developed
an efficient protocol for ATM-based networks that can handle message | oss.

For our studies, we assume that the communication primitives used by the programmer
or compiler arereliable, i.e., the network neither loses nor corrupts messages, and it does
not introduce spurious messages.

Topology

Many different network topologies have been explored in the literature. Some topol ogies,
for example buses and rings, provide inherent broadcast capabilities, whereas others, such
as meshes, hypercubes or trees are point-to-point interconnects. Different topologies have
different scaling characteristics, and often perform particularly well on some set of com-
munication patterns — e.g., 2-D nearest-neighbor communication maps well onto mesh

10

interconnects. The topology of the network does not significantly affect the design of the
network interface (though the NI designer may wish to include some mechanism to access
the interconnect’s broadcast capabilities, if applicable.) For this reason, we do not assume
any particular network topology in our studies; the results we present will be independent
of topology though they may trandate into different execution times depending on the
topology. We do, however, examine the impact of broadcast capability.

Routing and Ordering

Networks use a routing agorithm to direct messages from their source node to their des-
tination. We consider two important classes of routing strategies. oblivious and adaptive
algorithms. Given a source and destination node number for a data packet, an oblivious
algorithm will always choose the same path for the packet, whereas an adaptive algorithm
may routethe packet along any of several paths, depending on network load. Adaptive rout-
ing agorithms have the advantage that they may use theinterconnect’ s aggregate bandwidth
more efficiently [Ngai & Seitz 89, Snyder 92, Konstantinidou & Snyder 91]. However,
they also do not generally guarantee FIFO delivery of messages; in other words, if node
A sends messages m; and m, to node B in that order, the messages may arrive in reverse
order at node B.

Clearly, this can be a problem for application programs. For example, it is harder to
implement efficiently a sequentially consistent shared-memory system if data packets can
be delivered out of order [Thapar et al. 93]. Weaker memory consistency models [Hutto
& Ahamad 90, Gharachorloo et a. 90] may be able to tolerate out-of-order delivery more
easly.

Note that one can implement in-order message delivery on top of anetwork that delivers
messages out of order, for example by adding sequence numbersto packet headers, and by
reordering packets according to the sequence numbers at the receiving node. However, this
approach requires the receiver to buffer packets that arrive “early” and hence aso incurs
overhead (processing time and possibly extra protocol messages) for managing the buffer
space.

Except where noted otherwise, we assume that the communication primitives used by
the programmer or compiler guarantee in-order message delivery.

11

Packet Sze

Modern networks using packet-switching techniques have to split large messages into
smaller packets that are then routed through the network. The CPU or NI of the sender
of alarge message must perform packetization (i.e., split the message body into multiple
small packets), and the receiver must generally reassemble (unpacketize) the message
from the individual packets.! Note that even with FIFO délivery in the network, a node
may receive packets from different messages (sent by different nodes) interleaved with
each other. Some programming models (including “traditional” message-passing) require
receipt of amessageto beatomic. Providing those semanticsin the presence of packetization
again incurs buffering and protocol overhead. Clearly, the larger the packet size, the less
packetization-related overhead isincurred. Also, larger packet sizes amortize any message
header overhead over a larger body. On the other hand, smaller packets may be easier to
route.

A network’s packet size may further be fixed or variable — in the former case, dl
packets sent through the network are of one fixed size, even if only part of the packet body
carries useful data. In the latter approach, the packet header includes a field indicating
the size of the packet body; this may result in more efficient utilization of the network’s
bandwidth. Overall, there appears to be no clear consensus which of these approachesis
better, or what packet sizes are desirable; infact, the “ideal” packet size depends heavily on
the workload [Cypher et al. 93]. In our work, we therefore examine different packet sizes.

Special-Purpose Networks

Some machines, such as the Thinking Machines CM-5 [TMC 91b] or the Cray T3D [Cray
93], use dedicated networks for certain communication operations. For example, the
CM-5 includes a control network that has been specifically optimized to perform efficient
reduction and broadcast operations. Similarly, the T3D has a synchronization network
that provides very low-latency barrier synchronization operations. In both cases, these
special-purpose networks have been included in order to improve the performance of some
common communication operations.

! Note the interaction between packetization and out-of-order delivery: due to the former, a large message
must be split into separate packets, and due to the latter, the packets may arrive at the receiver in arbitrary
order, thus complicating unpacketization.

12

However, this can be a rather expensive approach, and a dedicated synchronization
network may not always result in as significant a performance improvement as expected.
For example, on the Cray T3D, the barrier hardware propagates the signal throughout a
256-node machinein 26 cycles, yet the barrier routine takes about 240 cycles because it
hasto flush the write buffer and wait for asynchronous remotewritesto complete. Thewrite
messages, of course, propagate through the data network which has much higher latency
than the dedicated barrier network [Barrusio 94]. This drastically limits the potential
performance gains from the dedicated network.

Protection

Parallel machines that support time- or space-sharing among multiple users must address
theissue of protecting different jobs from each other. One user’sjob should not be allowed
to send messages to another user’s job. Likewise, the network traffic generated by one
job should not keep another job from making progress, e.g., by deadlocking the network.
Solving this problem may in general require cooperation between the network interfaceand
the network.

The topology of the CM-5's network makes it possible to partition the machine such
that two different partitions do not physically share any part of the network. By preventing
usersfrom sending messagesto nodesin adifferent partition (thisisimplemented inthe NI)
and by gang-scheduling jobs within each partition (implemented by the operating system),
different jobs cannot interfere with each other. To simplify gang-scheduling, the CM-5
network provides a mechanism that allows the operating system to drain the network of all
messages from one job before context-switching to another job.

On shared-memory machines, the operating system can use the protection mechanism
of the virtual memory system to keep different jobs from accessing each other’'s memory.
However, as long as nodes are allowed to generate an arbitrary number of communication
requests, it is still possible for one job to slow down another job’'s progress by causing
congestion in shared portions of the interconnect.

Protection islargely independent of the tradeoffswe study in this dissertation, so we do
not further explore the issue.

13

2.3 Network Interface

Thenetworkinterface (“NI” for short) providestheinterfacethat the processing nodesuseto
inject and extract messagesinto and out of the network. Morethan any other component, the
network interface defines the communication architecture of aparallel machine. Depending
on the NI, the machine depicted in Figure 2.1 may be a message-passing machine, aremote
memory access machine (al so sometimescalled NUMA for Non UniformMemory Access),
or acache-coherent shared-memory machine. The complexity of the NI variesdramatically
depending on what communication architecture it implements.

Message-Passing

For amessage-passing communication architecture, the NI can bevery simple. For example,
the NI on the message-passing Intel iPSC/860 consists of little more than two FIFO buffers
and some control circuitry. The receive FIFO accumulatesincoming data from the network
and the send FIFO holds data that is to be injected into the network. The processing node
accesses the network interface through a set of memory-mapped NI registers. Reading and
writing these registers allows the CPU to inject data into the send FIFO and extract data
from thereceive FIFO. Other NI registers hold information about the status of the FIFOs or
allow the processor to control the NI's mode of operation; e.g., whether or not to interrupt
the CPU when thereceive FIFO fillsup. A traditional message-passing library (likelIntel’s
NX [Pierce 88] or Thinking Machines CMMD [TMC 92]) can be implemented on top of
these primitivesto provide higher levels of abstraction to the programmer. Some machines
include DMA hardwareto speed transfer of data between main memory and NI. Generadly,
DMA operations haveto beinitiated by the CPU for each packet sent or received, therefore
such DMA support isless useful for small packets.

Remote Memory

In a remote memory architecture, processors communicate by accessing a (physically
distributed) shared memory space through load and store instructions. A reference to
data that resides on a remote node automatically generates a message to read or write
the desired remote data; references to local data are directly satisfied by the node's own
memory. To implement such a communication architecture, the NI becomes somewhat
more complex. For example, the NI needs to observe the processor’'s memory references

14

(e.g., by snooping on the processing node’'s memory bus), and it must be able to determine,
based on the observed address, whether data resides on the local node or a remote node.
A smple solution distributes memory among nodes such that the high order bits of a
physical addressindicate the processing node that holdsthat memory location.? For remote
accesses, the NI then needs to create a message, inject it into the network, and possibly
stall the processor until the operation is complete. The NI must also be able to access the
processing node’'s main memory in order to reply to memory requests from other nodes.

Cache-Coherent Shared Memory

Cache-coherent shared-memory machinesuse essentially the same communicationinterface
as remote-memory machines. However, the NI now includes caches (or uses the node’'s
main memory as acache) that can hold datafrom remote nodes, and the NI must implement
some cache coherence protocol to keep all cachesin the system consistent with each other.?

In our work, we examine two classes of cache coherence protocols: write-invalidate
and write-update. In a write-invalidate protocol, a processing node that is about to write
to a cache line needs to first invalidate all other copies of that cache line, to ensure it has
an exclusive (and hence writable) copy. This involves sending invalidation messagesto al
other nodes that hold a copy of the cache line, and possibly waiting for acknowledgement
messages to indicate that the invalidation has been performed. In awrite-update protocol,
more than one node may keep awritable copy of a cache line. Whenever the cachelineis
written, the changes are forwarded to all other nodes holding a copy of theline.

The choice of interconnect may influence the design of the cache coherency protocol.
For example, if the network supports efficient broadcast operations, then a snoopy cache
coherence protocol (e.g. [McCreight 84]) can be used. Otherwise, directory-based pro-
tocols (such as [Censier & Feautrier 78]) are more attractive. . However, the difference

2 The Cray T3D uses an approach similar in spirit. However, the T3D is supposed to scale to large numbers
of nodes, and sacrificing enough high-order physical address bits to encode that many processing node
numbers would reduce the available per-node physical address space by too much. Instead, the T3D
dedicates asmaller number of high-order address bitsto encode anodeidentifier, and each processing node
uses a lookup table (the “TLB Annex”) [MacDonald & Barrusio 94] to trandate this identifier into a full
node number.

3 Such as design usually requires a very tight coupling between the NI and the processing node's memory
system, so one could argue whether the caches are part of the NI or part of the processing node. For the
purpose of this discussion, we consider the caches for remote data a part of the NI.

15

between snoopy and directory-based protocol s does not affect the programmer’ sview of the
communication interface, so we do not explore this otherwise very important issue further.

In most existing shared-memory machines, al datain the system’s cachesis backed by
main memory. Inthe case where main memory is physically distributed with the processing
nodes, e.g. on the Stanford DASH [Lenoski et a. 92], each cache line has a home node,
namely the processing node holding the portion of main memory that backs the cache line.
To access datain agiven cache line, processing nodes send their requests to the home node,
which keeps track of all copies of the line and can properly serialize accesses to the cache
line.

A different approach is taken in so-called COMA (Cache-Only Memory Architecture)
shared-memory machines, such as the DDM [Hagersten 92a] or the KSR-1 [KSR 92].
These systems do not include any “main memory”; data exists only in the caches, and cache
lines do not have a home node — in other words, there is no fixed node in the system that
at all times keeps track of a given cache line’s state or location, or that serializes accesses
to the line. Generally, accessing data therefore involves some form of search for a copy
of the cache line. In the case of the KSR-1, the search mechanism takes advantage of the
inherent broadcast capabilities of the underlying interconnect, which has aring topology.*

In our experiments, we will study both COMA and more conventional cache-coherent
shared-memory machines, and we will examine both write-invalidate and write-update
protocols.

24 Summary

The hardware components of a paralel computer can be organized into three groups: an
interconnection network, and a set of processing nodes and network interfaces. We have
described some of the design tradeoffsfor each of these components.

Our goal isto study the interaction of communication architecture (i.e., the communi-
cation interface available to the programmer or compiler) and programming languages. We
focus on the design of the network interface, which more than any other component defines
amachine’s communication architecture.

I ssues of programming node and network design are largely orthogonal to our studies.

4 The KSR-1 can actually use two levels of rings, and it maintains directories at the up/down-links between
the levels, to determine whether a request needs to be propagated to the other rings as well.

16

All NI designs we will discuss in this dissertation are intended to work well with off-
the-shelf processors. Unless otherwise stated, we assume in our experiments that the
underlying interconnection network isreliable (e.g., it does not lose, duplicate, or corrupt
packets without signalling an error) and provides FIFO ordering.

Chapter 3
DATA-PARALLEL LANGUAGES

We have chosen C* [Rose & Steele Jr. 87, TMC 90], a data-parallel language, as the
high-level parallel language for our experiments. There exists a significant body of work
on C* as well as other data-parallel languages such as Force [Jordan 87], Dino [Rosing
et a. 90], Kali [Koelbel & Mehrotra 91], Vienna Fortran [Chapman et a. 92] or High-
Performance Fortran (HPF) [HPFF 93], to name just a few. This reflects the growing
popularity of this type of language. The following two properties are shared by aimost all
(imperative) data-parallel languages.

e Parallelism is obtained by performing similar (or identical) operationsin parallel on
the elements of a large data set. The elementwise addition of vectors would be a
trivial example.

e The language semantics offer the illuson of lockstep execution; in other words,
no matter how many processors are used, conceptually there is a single “program
counter.” Thisexecution model avoidsrace conditions and thus greatly smplifiesthe
understanding and debugging of data-parallel programs.

Whilethe data-parallel model of execution isnot as general asarbitrary MIMD compu-
tation, it isnonetheless avery powerful model. A study by Fox [Fox 88] showed that 70 out
of 84 scientific applications studied, or over 80%, fit the data-parallel model. Klaiber and
Frankel [Klaiber & Frankel 93] have demonstrated that even an application that intuitively
does not seem to fit the data-parallel model — a distributed event-driven ssimulation — can
be expressed cleanly and efficiently in a data-parallel language.

Several data-parallel languages, including an older version of C* [Rose & Steele Jr.
87], originated as a programming language for SIMD machines. However, researchers
have shown [Hatcher & Quinn 91, Rosing et a. 90, Koelbel & Mehrotra 91, Chapman
et d. 92] that data-parallel programs can be compiled to run efficiently on MIMD hard-
ware as well — both distributed-memory and shared-memory architectures. To do this,
the compiler generates code that includes communication and synchronization operations

18

carefully chosen to preserve the lockstep semantics of the data-parallel language while aso
minimizing the total amount of communication.

Compilers for data-paralel languages essentially produce SPMD (single-program,
multiple-data) style code, a common programming paradigm on MIMD machines. Par-
alelizing compilers for sequential languages, such as Paradigm [Su et a. 93], generate
similar code. In fact, since most paralelizing compilers exploit mainly data paralelism
(e.g., by paral€elizing loops), we expect programs generated this way to exhibit execution
behavior similar to compiled programswritten in high-level data-parallel languages.

In Section 3.1, we give an overview of the C* language, and we draw a brief compar-
ison between C* and High Performance Fortran (HPF) in Section 3.2, demonstrating the
similarity of the two languages.

3.1 TheC* Language

Several languages featuring data-parallel execution have been proposed over thelast years.
For thiswork, we chose the “new” revision of C* [TMC 90, TMC 914a] as arepresentative
data-paralel language. Aswe will see shortly, C*’s communication operations are typical
of what we would expect from other data-parallel languages, hence our findings should
extend to those languages as well. We particularly highlight the smilarity between C* and
HPF in the next section.

Significant work has been done on the compilation of an older version of C* (definedin
[Rose & Steele Jr. 87]) for both distributed-memory and shared-memory multiprocessors,
see for example [Hatcher & Quinn 91] for a summary. For a detailed description of the
current language, the reader isreferred to [TMC 91a]; we give abrief overview here.

C* distinguishesbetween scalar and parallel variables; thelatter have ashapeassociated
with them that describes how the datais organized. Attributesof ashape areitsrank, layout
and number of positions; thereis one virtual processor (VP) per position. Shapes serve as
templatesto declare parallel variablesof that shape: when aparallel variable of some shape
S isdeclared, one element of the variableisallocated in each position (i.e., each VP) of the
shape. Parallel variables of identical shape are laid out identically, meaning corresponding
positions of al parallel variables of a given shape are mapped to the same VP,

The compiler and run-time system create the final data distribution by mapping the
virtual processors onto the physical processors. C* does not provide mechanisms for ex-
plicitly specifying this mapping, though the programmer can provide hints. Unfortunately,

19

there is no way to specify the alignment of two different shapes with respect to each other.

To operate on paralel data, the programmer selects a current shape using the with
statement. Simple operations such as addition, when applied to parallel data, are executed
in parallel for each position in the current shape.

The following example first declares the shape MatrixShape as a two-dimensiond
(100 x 100) grid, and then declares two parallel variables, a and b, of type double and
shape MatrixShape. Since a and b have the same shape, corresponding positions of the
two variables are co-located in the same virtual processor. |.e., the virtua processor at
position (z, j) in the shape will hold the matrix elements «; ; and b, ;. When data is co-
located on the same virtual processor, it is aso co-located on the same physical processor,
hence the elementwise addition performed in the example below does not generate any
inter-processor communication.

shape [100] [100]MatrixShape;
double:MatrixShape a, b;
with (MatrixShape)

a=a+b;

Control flow in C* is sequential, i.e., from the programmer’s point of view, conditiona
branches, procedure cals, etc. are followed by all processors. In fact, virtual processors
behave as if they were executing code synchronously. Parallel operations can be contextu-
alized inside awhere statement by specifying aparallel boolean expression that determines
which virtual processors are “active’. Conceptually, a where statement first executes the
where branch, then the else branch, with paralel operations restricted to the virtua pro-
cessors on which the condition evaluates to true and false respectively.! The following
example computes the square root of the absolute value of each element in the matrix a.

with (MatrixShape)
where (a >= 0.0) b = sqrt(a);
else b = sqrt(-a);

Communication in C* is performed by send or get operations, which arewritten as parallel
left index expressions, using a syntax reminiscent of array references. The code below

! The semantics of C* specify that scalar code inside branches of a where statement is always executed,
i.e., independent of the conditioninthewhere. Thisisin keeping with C*’s*global model of execution”
[TMC914].

20

transposes matrix « by sending each element at position (¢, 7) to position (j,¢). Matrix
b is transposed using an equivalent (but not necessarily equally efficient) get operation.
The parallel expression pcoord (z) evaluatesto aposition’sindex along dimension : of the
current shape, i.e., for C*’srow-major layout, pcoord (0) yields an element’s row number
inthematrix and pcoord (1) yieldsthe column number. Send and get operationsare atomic
in that they behave as though all data el ements were sent ssmultaneoudly.

with (MatrixShape) {
[pcoord(1)] [pcoord(0)]a = a;
b = [pcoord(1)] [pcoord(0)]b;
+

In the case where multiple VPs send data to the same destination VP, C*’s combining send
operationsallow the programmer to specify abinary combining operation, such as addition,
which will be performed on all data arriving at the same destination VP. By default, the
receiving VP may arbitrarily choose one of the conflicting dataitems.

In addition, C* provides powerful reduction operationsby overloading the C language's
“embedded assignment” operators.? A simple example that computes the sum of all
elementsin matrix a is given below.

double elementSum;
with (MatrixShape)

elementSum = (+= a);

Finaly, C* provides access to individual elements of parallel data, which may require data
to be broadcast to all nodes. The syntax isthe same as a get or send operation, but all left
indices are scalar rather than paralel expressions (note that it is trivial for a compiler to
detect this). The code fragment below divides all matrix elements by the element in the
upper left corner of the matrix. Since the matrix is distributed across nodes but all nodes
need the value of «y o, that matrix element needs to be broadcast.

with (MatrixShape) {
a /= [0][0]a;
+

2 More complex reduction and scan operations are available using function call syntax, i.e., the language
provides no specia operatorsfor them.

21

Functionsin C* can take parallel arguments and return parallel results. For example,
the parallel version of the sin functionis declared as

double:current sin(double:current);

where current is a reserved word referring to the shape that is in effect at the time of
the function call. The syntax for calling parallel functionsis the same as that for scalar
functions, e.g. to compute the sine of all non-negative elements in matrix a, one would
write

with (MatrixShape)

where (a >= 0.0) a = sin(a);

Given the synchronous model of execution, C* programsdo not exhibit race conditions,
and execution does not depend on nondeterministic events such as message arrival orders.®
The smple programming model of sequential control flow coupled with deterministic
execution makes programming and debugging of C* programs almost as easy asfor purely
sequential languages. While requiring that all communication be explicit in the source
code does place additional burden on the programmer, it aso provides the programmer
with aclear performance model, exactly because any potentially expensive communication
operations are clearly visible in the code. One drawback of C* (or similar languages)
is that sometimes the synchronous semantics overly constrain a solution, as one cannot
efficiently express arbitrary asynchronous operations. Naive compilation may exacerbate
this problem, but some language extensons and compiler techniques can aleviate the
problem [Klaiber & Frankel 93].

3.2 C*versusHPF

The C* language originated as alanguage for SIMD architectures, so there may be concerns
over how well it represents other data-parallel languages. In this section, we compare C*
with the more recently developed High Performance Fortran (HPF), another data-parallel
language. We show that, despite their different syntax, heritage and emphasis, both C*
and HPF share important characteristics, especially regarding communication. \WWe provide

3 Theoneobviousexceptionisthecombining send operation. However, itiseasy to makethisadeterministic
operation aswell — in fact, Thinking Machines' C* implementation does just that.

22

this comparison as a “proof-by-example’ that our findings obtained from analyzing C*
benchmarks and compilation should extend to other data-parallel languages.

Aswe have seen, variablesin C* are explicitly declared parallel by associating a shape
with them. We can think of the shape as a set of virtual processors, with each virtua
processor holding one element of the parallel variable. The paralelism in operations on
parallel variables is implicit in C* — the programmer specifies no looping construct or
index variables. For example, the code below declares two matrices a and b, and performs
elementwise addition in parallel.

shape [100] [100]MatrixShape;

float:MatrixShape a, b;

with (MatrixShape) {
a=a+b;

b

In contrast, parallel variables in HPF are first declared as arrays, and then distributed
across processors. In HPF, data distribution is a two-step process: the programmer can
specify how to distribute the array over a set of abstract processors, which the compiler
(possibly in cooperation with the run-time system) then maps onto physical processors.
HPF's abstract processors are similar to virtual processors in C*. The key difference is
that in C*, the mapping of datato VPsis fixed — exactly one element per VP. To operate
on parallel variables, HPF provides a parallel looping statement, FORALL. Assuming there
are 10 abstract processors, the above C* example could be written in HPF as follows:

REAL a(100,100), b(100,100)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK,*) ONTO procs :: a, b
FORALL (i=1:100, j=1:100) a(i,j) = a(i,j) + b(i,j)

Certainformsof parallel operationscan be expressed more conveniently using the Fortran 90
triplet notation. For example, we could replace the FORALL loop in the above code by the
statement

a(:,:) =a(:,:) + b(:,:)

HPF' s approach to data distribution is more complex and flexible than the one taken by
C*, but the end result is the same: elements of a parallel variable are distributed among a

23

set of physical processors. The biggest drawback of C* is probably that one cannot align
different shapes with respect to each other. The C* benchmarks we study do not require
particularly elaborate data distributions, and would not benefit from HPF sadded flexibility.
Also, researchershaverecently had great successin deriving datadistributionsautomatically
[Su et a. 93]; thismay obviate HPF' s complex data distribution specifications.

To express communication, C* and HPF again use different syntax but very similar
semantics. C* uses left index expressions to describe communication operations, whereas
in HPF, any array index operation potentially causes communication. For example, the C*
code to set b to the transpose of matrix a (using a send operation)

with (MatrixShape) {
[pcoord(1)] [pcoord(0)]b = a;

has the following equivaent in HPF:

FORALL (i=1:100, j=1:100)
b(j,1) = a(i,j)
END FORALL

Like C*, HPF provides reduction operations, and accessing individual elements of a
parallel variable(either through the Fortran 90 SPREAD operation or through array indexing)
may require broadcast operations. While HPF does not include an operation corresponding
to the C* combining send, other communication operations are semantically comparable,
and we argue that the two languages demands on the communication substrate should
likewise be similar.

Since C* parallel operations and HPF FORALL loops are semantically equivalent, and
since communication operations are al so comparable in both languages, the overall compi-
lation strategy and communication requirementsfor C* and HPF are essentially the same.

We conclude that despite different heritage and emphasis, there are many similarities
between HPF and C*, including the computation and communication model. Therefore,
we postulate that the findings we present in chapters 5 and 6 will apply to data-parallel
languages other than C* aswell (at the very least to HPF).

24

3.3 Summary

The C* language originated as a language for SIMD architectures, whereas more recent
data-parallel languages, such as High Performance Fortran (HPF), have been designed from
the start with MIMD target machines in mind. We have compared C* with HPF. Though
the latter places a much heavier emphasis on allowing the programmer to specify details
of how to distribute parallel data, we have found that the two languages are in fact very
similar. Specificaly, we argue that the demands on the communication architecture are
comparable, hencethe results (obtained from C* benchmarks) we present in the core of this
dissertation should also apply to HPF, and likely to other data-parallel languages as well.

Chapter 4

THE C* COMPILER

In this chapter, we outline our compilation strategy for C*. Our C* compiler isbased on
arecent version of the compiler by Hatcher and Quinn [Quinn et al. 88, Hatcher et a. 91,
Hatcher & Quinn 91] that we have modified for our purposes. The overall approach isto
trandate C* into mostly machine-independent C code that makes callsto run-timelibraries
for all communication and synchronization operations. The resulting code is then linked
with architecture-specific run-timelibraries.! Figure 4.1 outlines the compilation process.
The ssimulation framework, used to gather our measurements, is described in section 5.3.

Our C* compiler generates code for an abstract communication model which the run-
time libraries map onto the target machine’s communication architecture. The compiler’s
communication model need not be identical to the target communication architecture (in
fact, it may help to hide some details of the hardware), but of course there must exist an
efficient mapping from the former onto the latter. In Section 4.1, we contrast existing
communication models for shared-memory and distributed memory targets; our compiler
uses a hybrid of these models. In Section 4.2, we then describe in more detail the different
tasks that our compiler performs, and we give a very high-level outline of the run-time
libraries.

The experiments described later in this dissertation focus on communication operations
rather than efficient code generation for local (i.e., non-communication) operations. Infact,
we explicitly ignore time spent performing computation, so we need not concern ourselves
with “traditional” optimizations or C*-specific optimizations (such as reducing the cost of
emulating virtual processors) that improve execution speed of local operations.

!In practice, one would presumably inline most of the communication operations in order to obtain better
performance, but thiswas not necessary for the purpose of this dissertation.

26

)
C* code g C code g object
U H
o o
architecture-specific run-time libraries < m) ge remote shared
passing memory memory

simulation framework

Figure4.1: Compiling C* for multiple target architectures.

4.1 AlternativeCommunication Models

Hatcher and Quinn describe two alternative approaches for compiling C* for shared-
memory and distributed-memory targets, respectively [Hatcher & Quinn 91]. In this
section, we briefly review and contrast their approaches, and then outline the compilation
strategy of the C* compiler used in this dissertation.

411 Compiling for a Shared-Memory Target

In a shared-memory architecture, all nodes can access each other’s memory through load
and store instructions. When generating code for such an architecture, the compiler need
not treat accesses to remote data any differently from accesses to local data. This greatly
smplifies how the compiler handles C* communication operations, since C* get and send
operationstrandatedirectly into 1oad and store instructions. However, the compiler must
insert explicit synchronization operationsin the generated code to prevent race conditions.
Hatcher and Quinn describe this approach in [Hatcher et a. 91].

Consider the C* code in Figure4.2a, where each VP sendsacopy of itsy variableto its
left neighbor, which storesthe datain its x variable. To smplify the following discussion,

27

we ignore effects at the ends of the VP array, and assume one virtual processor per physical
processor, i.e., each physical processor “owns’ one element of the parallel variablesx and
y.

Figure 4.2b represents the corresponding C code generated for a shared-memory ma-
chine. This code is executed independently on al processing nodes; self contains the
processor number. The paralel variables have been transformed into arrays located in the
shared address space,> and the C* send to variable x has been trandated directly into a
variable access. Note that the compiler had to insert a call to Synchronize in order to
ensure that processors do not read “their” element in x until it has first been written by
their neighboring processor. To preserve the inter-node data dependencies in our example,
Synchronize must make the calling processor wait until its right neighbor has also called
Synchronize.

Asthisexample shows, the main task when compiling for ashared-memory architecture
isto determine aminimal set of points where synchronization is required.

4.1.2 Compiling for a Distributed-Memory Target

For distributed-memory targets, message-passing has traditionally been the communication
model of choice (e.g., [Chapman et al. 92, Suet a. 93, Quinn et a. 88]). By analyzing
the accesses to parallel variables, the compiler (or the run-time system) determines the set
of data elements that must be communicated between nodes, and emits matching pairs of
message-passing msg_send and msg_recv callsto perform the communication.

An advantage of thisapproach isthat the message-passing model combinesdatatransfer
and synchronization in one operation. Hence, the processors need not perform synchro-
nization as a separate operation, asis the case in a shared-memory communication model.
Also, the generated code can take advantage of the “just-in-time” delivery semantics of
messages. a node can send data to another node even before the receiver has posted a
matching msg_recv operation. The message-passing library (or operating system) on the
receiver will simply buffer the incoming message until it is needed by the application pro-
gram. As aresult, there is more “slack” in the synchronization between the two nodes,
which may help hide temporary load imbalances, and increases potential for overlap of

? Note that unless the cache line size is < the size of an integer, a data distribution of one array eement
per processor is going to cause false sharing. We will describe shortly how our compiler addresses this
problem.

28

shape [N_proclS;
int:S x,y;
[.-1]x = y;

use(x);

(a) original C* code.

SHARED int x[N_procl], y[N_procl;
x[self-1] = y[self];
Synchronize() ;

use(x[self]);

(b) code generated for shared-memory model.

int x[1], y[1];
msg_send(self-1, &y[0], sizeof(int));
msg recv(self+1l, &x[0], sizeof(int));

use(x[0]);

(c) code generated for message-passing model.

int x[1], y[1];
remote write(remote addr(self-1, "x[0]"), y[0]);

Synchronize() ;
use(x[0]);

(d) code generated for remote-memory model.

Figure 4.2: Communication for different communication models.

29

communication and computation.

Returning to the C* example in figure 4.2, the compiler determines that each physical
processor sends one data item to its left neighbor, and receives one data item from the
right neighbor. Again, we are assuming a mapping of one VP per physical processor,
and we ignore effects at the ends of the VP array. Figure 4.2c shows the C code a
compiler would generate for a message-passing communication model. Since the target
is a distributed-memory machine where each node has its own separate address space, the
compiler physically partitionsthe parallel variables: each processor holdsoneelement of the
variablesx and y. Themsg_send and msg_recv operationsimplement the communication
by sending a copy of y to the left neighbor (self-1) and recelving a new vaue for x
from the right neighbor. Note that the code does not require an explicit synchronization
operation. Instead, a processor can safely continue execution as soon as the data from the
right neighbor has arrived.

Unfortunately, the message-passing communication model also has several drawbacks.
Firgt, traditional message-passing incursrun-timeprotocol overhead, e.g., for managing the
buffers required for the “just-in-time” delivery semantics. Felten has shown that protocol
overhead degrades the performance of message-passing codes [Felten 93a]. Since the C*
communication operations read and write parallel variables that are already allocated by
the compiler, most of the buffer management overhead is completely unnecessary.

Second, in a message-passing model of communication, datatransfer and synchroniza-
tion are always combined, even when only one of thetwo functionsisneeded. Since neither
function isfree, the processors have to perform unnecessary work; we discuss thispoint in
more detail in Chapter 6.

Third, programs often exhibit communication patterns that cannot be analyzed at com-
pile time. In that case, the compiler cannot determine the set of data elements that must
be communicated, and hence it cannot generate the required msg_send and msg_recv Op-
erations. Note that this problem does not occur in the shared-memory model. The reason
is that communication in the shared-memory model is requester based, meaning a given
node can read and write another node’s memory without the cooperation of the other node.
The compiler therefore can ssmply emit code to perform the read or write operation. Inthe
message-passing model, both nodes must actively participate in the communication: the
sender must execute amsg_send, and the receiver must execute a matching msg_recv. To
generate code for a given node A, the compiler must therefore have complete knowledge

30

about all requestsfor A made by any of the other nodes. A general solution to this problem
requires extra communication and computation at run-time, just to determine which nodes
have to send which data items where [Clark et al. 92, von Hanxleden et al. 92]. To reduce
this overhead, the run-time system can analyze a communication pattern once at run-time,
and amortize the cost of the analysis over many reuses of the pattern [Wu et al. 91]. Also,
researchers have optimized the analysis phase itself [Leung & Zahorjan 93].

However, we wish to reduce this overhead further, even in cases where the above
techniques are not applicable.

4.1.3 Our Compilation Srategy

We now describe the strategy our compiler uses to generate code for shared-memory and
distributed-memory target architectures.

Distributed Memory

As we have seen above, compilation for a message-passing model is harder than for a
shared-memory model, and programs that cannot be fully analyzed at compile-time may
incur additional run-time communication overhead. To make things worse, traditional
message-passing libraries already have a very high per-message overhead.

Onereason for thisisthat messages are avery general mechanism for communication.
Conceptually, a message per se has no semantics attached, and it is up the the receiver to
place an interpretation on the message, and to determine how to process it. The semantics
of message-passing also specify many functions besides the actual data transfer — e.g.,
automatic buffering of messages and implicit synchronization between sender and receiver.

However, most communication in the C* language only requires one specific primitive
operation to be performed, and there is only asmall number of commonly used primitives.
For example, amost all C* communication operations involve reading or writing memory
on aremote node.

Our C* compiler therefore usesaremote memory accessmodel of communicationwhich
better matches the language’s communication operations. The remote memory model is
very similar to the shared-memory model, in that the two fundamental communication
primitivesare reading and writing of memory on aremotenode. To access dataon aremote
node, the compiler need only generate an operation on the requesting node. Since remote-
memory access communication does not perform implicit synchronization between sender

31

and receiver, the compiler has to insert explicit synchronization operations to preserve
inter-node data dependencies — just like it does for the shared-memory model.

In fact, as far as our compiler is concerned, compilation for the remote-memory and
shared-memory models is exactly the same, since the machine-specific communication
libraries hide the few remaining differences.

Figure 4.2d shows the code generated for the remote-memory access model; note the
similarity between this version and the one for the shared-memory model. The expression
remote_addr(nodeno, "var") computes the address of variable var on node number
nodeno, for use in the remote write operation. In order to obtain good performance,
nodes must be able to compute this address quickly. Fortunately, thisis not a problem for
most regular data distributions; for irregular distributions, all compilation approaches will
incur higher overhead for address and index calculation.

Note that the remote read and write operations can be implemented efficiently on a
message-passing communication architecture using a low-level mechanism like Active
Messages [von Eicken et al. 92], which provide a very low overhead data transfer mecha-
nism, without the protocol overhead of message passing.

On the other hand, we have introduced explicit synchronization operations that were
performed implicitly in the message-passing model. We can think of the synchronization
operations as another form of protocol overhead, taking the place of the “traditional”
message-passing protocol overhead [Felten 933, Felten 94]. At this point, we make no
attempt to quantify this tradeoff. In Chapter 6, we will see that the true advantage of
compiling for a remote-memory model is that it uses a small set of smple, well-defined
communication primitives. This will alow us to provide smple hardware support for
communication.

In some cases, the compiler can recombine data transfer and synchronization, and
eliminate some of the explicit synchronization operations. Our compiler does not currently
perform this optimization, so the results presented in the remainder of thisdissertation have
dightly higher synchronization traffic than what we could expect from a production quality
compiler.

Note also that there is ample opportunity for combining data transfer and synchroniza-
tion in the run-time libraries, e.g. insde broadcast, reduce and barrier operations.
Even though the compiler generates code for a remote-memory model, the run-time li-
braries for the message-passing communication architecture do combine data transfer and

32

synchronization wherever possible.

Shared Memory

We makeone small changeto Hatcher and Quinn’scompilation strategy for shared-memory,
namely weuseadifferent layout for parallel data. Allocating parallel variablescontiguousy
in memory may increase fal se sharing and distort our results. For example, even operations
that only access locally owned data (such as elementwise addition) generate inter-node
traffic dueto false sharing if the per-node partition of a paralel variableis not amultiple of
the cacheline size.

Our compiler allocates digoint memory areasfor each processor and maps each proces-
sor’spartition of parallel datainto the processor’'s own memory area. I1n effect, we smulate
adistributed-memory machine on the shared-memory hardware — with one crucial differ-
ence: al datais till accessible as part of the shared memory space.®

A production-quality compiler would use other techniquesto reduce fal se sharing, such
as padding variables or otherwise changing the layout [Su et al. 93, Ju & Dietz 91, Eggers
& Jeremiassen 91]. Yet even with our rather ad-hoc method, we were able to significantly
reduce the level of false sharing in our benchmarks. Also, both the shared-memory and
remote-memory models use the same kind of data layout, which makes comparisons be-
tween the two easier. The drawback of this approach, like most more sophisticated data
layout strategies, isthat array index calculation becomes more complicated.

4.2 Compiler Overview

We now describe in more detail the C* compiler used in this dissertation. The compiler
must perform three major tasks:

e generate code for paralel computation and manage the virtual processor model
e generate code for inter-node communication

e insert synchronization to maintain inter-node data dependencies.

3 The original C* compiler by Hatcher and Quinn stored parallel variables as contiguous arrays in shared
memory [Hatcher & Quinn 91]; it therefore did not address the issue of false sharing.

33

4.2.1 Paralle Computation

Wefirst describe how to generate code for parallel statements (except communication), and
how the virtual processor model is managed.

Parallel variables are implemented as arrays, with one entry for each position in the
paralel variable's shape; the arrays are then distributed among the physical processors.
The C* shape of avariableisrepresented at run-time by a shape descriptor, which contains
information such as the total number of positions in the shape, how the datais distributed
among the physical processors, and how many array elements are mapped to a given
processor. In our compiler, the number of physical processors need not be known at
compile-time, since the data distribution for all shapes is computed at run-time. Consider
the declarations

shape [1024]S;

int:S a;

When the program contai ning these decl arationsis executed on 16 processors, each physical
processor will map 64 positions of the shape S. The descriptor for shape S isinitialized to
reflect this data distribution.* Each processor then allocates an array of 64 integersto hold
its part of the paralel variable a. The compiler generates roughly the following C code to
be executed on each node.

ShapeDescriptor S; /* this node’s copy of shape descriptor */
int *a; /* this node’s portion of variable ’a’ */
/* initialize shape descriptor: each node has 64 positions */
S.posnsTotal = 1024;

S.posnsThisNode = 1024 / N_nodes; /* 1024/16 = 64 per node */

¢

/* allocate this node’s portion of parallel variable ‘a’ */

a = stack_alloc(S.posnsThisNode * sizeof (int));

Note that we assume that each processor gets its own copy of the variables S and a; on
some shared-memory machines such variables must be marked “private’.

We compile parallel statements by wrapping a virtual processor emulation loop (VP
loop for short) around them. For example, the parallel statement

4 Each physical processor maintainsits own copy of all shape descriptors.

with (S) {

}
iscompiled in to the following C code:

currShape = &S;

for (vp=0; vp < currShape->posnsThisNode; ++vp) {
alvp]l = 0;

by

Note the assignment to currShape, which keeps track of C*’s current shape. If the
number of physical processors (and hence the details of the data distribution) were known
at compile-time, the expression currShape->posnsThisNode could be replaced with a
constant, e.g., 64 for execution on 16 processors.

Sequencesof parallel statements of identical shape can of courseshareasingleenclosing
VPloop. However, intervening scalar operations, such asan assignment to ascalar variable,
must only be executed once and hence cannot be nested inside the VP loop. The compiler
must “break” the VP loop at the location of the scalar operation.

The cost of breaking VP loops can be greater than immediately obvious. Recall that in
C*, every pardld statement isimplicitly “contextualized” by any (dynamically) enclosing
where statements. The VP loop must therefore include a test to check whether the VP
being smulated in a given iteration is active. When the compiler breaks a VP loop into
multiple parts, it may also have to introduce a temporary variable to hold the context. For
example, the sequence of statements

where (a == 0) {
a=1;

scalar = 99;

generates the following (unoptimized) code:

/* allocate temporary to save context across VP loops */
temp = stack_alloc(currShape->posnsThisNode * sizeof (BOOLEAN)) ;
/* first part of VP loop */

35

for (vp=0; vp < currShape->posnsThisNode; ++vp) {

temp[vp] = (alvp] == 0); /* save the context */

if (templvpl) { /* this VP active? */
alvpl = 1;

by

by
/* scalar statement; splits VP loop in to parts */
scalar = 99;
/* second part of VP loop */
for (vp=0; vp < currShape->posnsThisNode; ++vp) {
if (templvpl) { /* reuse the context */
alvpl = 2;

b

stack_unwind (temp) ;

Note the introduction of the temp array whichis required to save the current context across
VP loops.

Various optimizations can improve execution speed. For example, the compiler could
move the scalar operation before or after the VP loop, promote the scalar to a parallel
variable, or evaluate the conditional expression in each VP loop fragment, assuming this
is cheap enough and data dependencies permit it (in our smple example, there exists an
inhibiting data dependency on variable a). In [Klaiber & Frankel 93] the authors discuss
other optimizations that reduce the cost of VP emulation.

We reiterate that the experiments described later in this dissertation focus on communi-
cation operations rather than efficient code generation for local (i.e., non-communication)
operations. In fact, since we explicitly ignore time spent performing computation, the
optimizations discussed above do not affect the results we present in chapters 5 and 6.

4.2.2 Inter-Node Communication

By analyzing the usage of the C* communi cation operationsin the source code, the compiler
can classify them as one of five communication primitives:

e get — Each VP retrieves one data item from another VP.

36

Figure 4.3: Fanin/fanout tree of processing nodes.

e send — Each VP sends one dataitem to another VP,
e combining send — As above, but with combining for collisions.
e broadcast — Datafrom one VP isbroadcast to al other VPs.

e reduce — Each VP contributes one dataitem to a global sum.

Inaddition, the compiler insertsbarrier Synchronization operationsto preserveinter-node
data dependencies, thisis the sixth communication primitive.

Each of the six primitivesis implemented in a machine-specific library function. For
example, the shared-memory implementation of get uses processor load instructions to
access data; the remote-memory implementati on uses active messages. Fromthecompiler’'s
point of view, the barrier primitive is the only one that performs any synchronization
between nodes.’

Our run-time libraries implement the broadcast, reduce and barrier primitives
using fanin/fanout tree algorithms. We arrange the machine's processing nodes in a k-ary
tree, as shown in Figure 4.3 for £ = 2. In abroadcast, the node owning the data to be
broadcast sends the data to the root (node 0) of the tree. Starting at the root, each node
forwardsthe datato itschildren. Inareduce operation, each node sends its contribution to
its parent node. The parent computes the local reduction of its data and the data obtained

> When areduce isfollowed by abarrier, the compiler merges the two, since both already use the
same communication pattern.

37

from the children, and sends the result to its parent. Once the reduction reaches the root of
the tree, thefinal result isbroadcast to al nodes. Broadcasts, reductionsand barriers can
therefore be performed in O(logp) operations on p processors. Note that the tree structure
need not be physically implemented in the interconnection network; we ssmply impose it
logicaly.

Each step in the fanin/fanout tree requires data transfer as well as synchronization — a
node cannot, for example, forward broadcast datatoits childrenuntil it hasreceived the data
fromits parent node, as well as notification that the data has arrived. Our run-timelibraries
combine the two functions, data transfer and synchronization, into a single communication
operation wherever the underlying communication architecture allows this.

Thequality of the code generated by our compiler could easily beimproved, for example,
we could inline most of the communication in the shared-memory architecture, eliminate
some data copying inherent in therun-timelibraries, or reduce the cost of index calculation,
e.g., by applying strength reduction. However, as mentioned at the end of Section 4.2.1,
our experiments do not measure the cost of local computation, so this does not affect our
results.

4.2.3 Synchronization

Asoutlined above, our compiler insertsexplicit synchronization operationsto preserveinter-
node data dependencies, even on distributed-memory machines. (Notethat when compiling
for a shared-memory machine, this step is aways necessary.) The overal approach is
rather simple. The compiler uses data-flow analysis to determine where inter-node data
dependencies may arise, and inserts synchronization operations to cut the dependencies.

Figure4.4(a) showsa C* code fragment that has inter-node data dependencies between
statements 1 and 3, and 2 and 4: the parallel variablesx and y are written by one processor
beforethey areread by another processor. Figure4.4(b) showsthat asingle synchronization
barrier isenough to properly synchronizethe generated code, since it cuts both dependence
arcsl — 3and2 — 4.

The minimal set of barriers can be found in linear time for sequentia code, but for
genera control flow graphs, thisis an NP-hard problem [Hatcher et al. 91]. Our compiler
uses a set of heuristics to achieve near-optimal barrier placement in practice, e.g., it places
barriers before rather than inside loops whenever possible.

As aside-effect of inserting explicit synchronization operations to preserve inter-node

38

int:S x,y;
[.-1]lx = ...;
[.+1]y = ...;

use(x);

A wDbhPE o

use(y);
(a) original C* code.

int x[1], y[1];
remote-write(remote-addr(self-1, "x[0]"), ..
remote-write(remote-addr(self+1, "y[0]"), ..
BARRIER;

use(x[0]);

use(y[0]);

(b) properly synchronized remote-memory model code

Figure4.4. Preserving inter-node data dependecies.

D
D

39

data dependencies, the run-time system can use asynchronous messages to implement the
remote read and write operations— the communi cation operations do not need to compl ete
until the next barrier synchronization point. In effect, thisis a software implementation of
a relaxed memory consistency model, similar to release consistency [Gharachorloo et al.
90].

Several optimizations can further reduce the cost of synchronization. First, for some
communication patternsthat are amenabl e to static analysis, point-to-point synchronization
can be used instead of barrier synchronization. For example, when data is exchanged
between neighbors in a linear array, global barrier synchronization is too “strong;” syn-
chronization between pairs of neighboring nodes is sufficient. If the required number of
point-to-point synchronizationsis small enough, this approach achieves|ower synchroniza-
tion latencies than barriers. However, when each node needs to synchronize with morethan
two other nodes, the number of messages sent for synchronization increases, since barrier
synchronization only sends two messages per node.

Second, the compiler could recombine separate data transfer and synchronization op-
erations, which may improve performance if the underlying communication system can
support it.

While our compiler does not perform the above optimizations, the run-time communi-
cation libraries offer many opportunitiesfor combining data transfer and synchronization,
and our run-timelibrariesfor the message-passing architecture do in fact take advantage of
this optimization.

43 Summary

We have outlined the compilation of C* for shared-memory and distributed-memory archi-
tectures. When compiling for a distributed-memory target, we express communication in
terms of remote memory accesses instead of message exchanges. This approach, similar
to Hatcher and Quinn’s compilation strategy for shared-memory machines [Hatcher et al.
91], avoids most of the overheads associated with traditional message-passing.

The more significant advantage of our approach isthat communication is performed by
asmall set of well-defined primitives which are much less genera than message-passing.
In Chapter 6, we will see how this alows us us to provide simple and efficient hardware
support for C* communication.

Chapter 5

ARCHITECTURAL COMPARISON

In this chapter, we study communication architectures for data-parallel programs by
comparing three existing models. message-passing, remote-memory and cache-coherent
shared-memory. Our goal is to gain a better understanding of how well these architec-
tures support data-paralel programs, and to evaluate the underlying communication costs
inherent in each of the three architectures.

A fair evaluation of such fundamentally different architectures has so far been difficult
to produce for severa reasons. First, the communication model greatly influences the
programming model (and vice-versa). Programs are typically hand tailored for different
communication architectures, often resulting in vastly different algorithms for the same
application. Second, while program execution time can be measured on different multi-
processors, such measurements are difficult to compare, since the many implementation
differences between machines — such as processor architecture and cycle time, memory
system details, and bus technology — tend to obscure the architecture-inherent differences
that we areinterested in.

We avoid this problem by a two-pronged approach: first, we begin with a single suite
of benchmarkswritten in C*, which are compiled to the architectures under consideration.
We thus measure the work required by each architecture to execute the same data-parallel
programs. Second, we examine metrics that are mainly technology-independent. For
example, we eval uate the dataand control traffic that flows over theinterconnect for various
benchmarks, the traffic due to synchronization, and the number of network round-trip
latencies incurred.

Our methodology is as follows. We compile each of our C* benchmarks using a C*
compiler. Our compiler generates code that is more or less machine independent, and
includes calls to a runtime library that manages al inter-processor communication. We
have written an optimized runtime library for each architecture. For example, the library
simply executes 1oad and store instructionsfor a shared-memory machine (smulating the
cache and bus as necessary), while ssimulating message sends and receives for a message

41

passing machine. More details of our methodology are presented in Section 5.3.

This approach has three advantages. First, the benchmarks represent a compiler-
generated workload, which as outlined earlier, we believeisindicative of future workloads.
Second, and perhaps more importantly, this allows us to make meaningful comparisons
across a range of machines, as all execute the same source program. Third, our measure-
ments are concerned with more abstract metrics such as traffic and network round-trips, not
cycle time, and are thus independent of many implementation details.

Our results quantify the relative interconnect work (e.g., bandwidth consumed, number
of messagesinjected, number of round-triplatenciesincurred) requiredto execute these data
parallel programs on different architectures. Those measurements do not by themselves
trandate directly into performance figures, however they are a key factor, and also point
out some relative strengths and weaknesses of the architectures. Given technol ogy-specific
parameters, such as message startup cost, bandwidth available, etc., one can derive afirst
approximation of actual communication cost from our measurements. The resultsin this
chapter should therefore be considered more as a guideline for determining architectura
tradeoffs rather than a direct indicator of which of the models is “best.” For example,
the results show that a significant fraction of the total traffic used by the shared-memory
architectures for these benchmarks is explicit synchronization. We argue that those ma-
chines would benefit greatly from architectural support, such as adaptive or user-selectable
cache coherence protocols [Carter et al. 91, Bennett et a. 92], full/empty bits on memory
words [Agarwal et a. 91, Alverson et a. 90], a network or network interface dedicated
to barrier synchronization and reduction (e.g., the control network on the CM-5 [TMC
91hb]), or direct access to message-passing primitives as implemented on the Alewife ma-
chine[Agarwal et a. 91].

Asfar asour latency measurements are concerned, we find that even the basic message-
passing machine can easily hide network latencies by using asynchronous message ex-
changes. To achieve similar results, ashared memory machine needs architectural enhance-
ments such as lockup-free caches, hardware support for prefetching, selective write-update
(instead of write-invalidate), relaxed memory consistency, or asynchronous propagation of
writes. Without these enhancements (which may require substantial changes in hardware
and software), the shared-memory architecture can incur up to an order of magnitude more
network latency than the message-passing mode!.

Thischapter isorganized asfollows. In Section 5.1, we define the baseline architectures

42

Abbreviation Description

MSG_32 Baseline message-passing model with maximum packet of
32 data bytes.

MSG_inf Message passing with a maximum packet of 64 Kbytes.

MSG_blk M essage passing that attemptsto aggregate multiple requests
into one message, provided they exhibit constant stride.

NUMA The remote-memory model, with awordsize of 8 bytes.

CACHE n Write-invalidate cache-coherent model, cache line size of n
bytes, broadcast-capable interconnect.

CACHE_n_wu Cache-coherent model with selective use of write-update.

CACHE n_dash_xxx || Uses a point-to-point interconnect and a DASH-like co-
herency protocol.

Figure5.1: Summary of architectural models.

we usein our studies, and in Section 5.2, we outline how the C* communication primitives
are implemented on these different architectures. Section 5.3 describes our simulation
methodology and Section 5.4 discusses the benchmarkswe use. In sections 5.5 and 5.6, we
present our measurements of interconnect traffic and latency, respectively, and point out the
strengths and weaknesses of the different communication architectures. We discussrelated
work in Section 5.7 and give asummary of this chapter in Section 5.8.

5.1 Architectural Models

We consider three baseline architectures. message-passing, remote-memory and cache-
coherent shared memory. All architectures use 64-bit addresses and 16-bit processor IDs.
Table 5.1 summarizes the models used in our study, which are described in more detall
bel ow.

Message-Passing Model

In the message-passing model (MSG in the rest of this dissertation), all interprocessor
communication occurs through explicit message passing. All messages contain a standard

43

header that includes the destination processor 1D and a message type. No fixed format is
defined for the body of a message.

We make no assumptions about how messages are injected by the sending processor
(operating system calls, user-level calls, or specia processor instructions) or received
(interrupt, polling by the CPU, or handling entirely in hardware). However, some messages
do require the active participation of the receiving processor in order to exploit implicit
synchronization information present in the arrival of a message.

We implemented three variations of the message-passing model: MSG_32, which has
a maximum packet size of 32 bytes, and MSG_inf, which alows messages of arbitrary
size. Another model, MSG_blk, is based on MSG_inf but attempts (at runtime) to aggregate
multiple per-V P requests into a single message.

Remote-Memory Model

Our remote-memory (NUMA) mode is based on architectures such as the BBN Butterfly
[Crowther et a. 85] or the Cray T3D [Cray 93]. Memory is statically distributed among
processors and there are no caches. Processors access memory through 1, 2, 4, or 8-byte
load and store instructions. When a processor issues a memory reference, the hardware
decides whether that referenceisto local or remote memory. Local accesses are completed
in processor-local memory. For a remote access, the processor creates a request message
and injects it into the network. Request messages contain enough information for the
remote node to create a reply message.

Cache-Coherent Mode

For the cache-coherent shared-memory model (CACHE), we examine several different
variants. For most of our results in this chapter, we show measurements for a COMA
(cache-only memory architecture [Hagersten 92b]) roughly based on the KSR-1 [KSR 92],
which assumes an interconnect capable of broadcast.! We also simulate an interconnect
similar to the DASH [Lenoski et a. 92], where, based on its address, a memory block
is assigned a “home” processor that handles all requests for that memory block. The
coherency protocol used by the DASH does not require a broadcast-capabl e interconnect

! The KSR-1 uses ahierarchical interconnect consisting of up to two levels of rings. Our model issimplified
in that we assume asingle-level ring interconnect.

and only sends point-to-point messages, an important consideration for scalability.

We consider both write-invalidate (CACHE) and write-update (CACHE_wu) coherence
protocols. Inthewrite-invalidateprotocol, anodewishing to writeacachelinefirst acquires
an exclusive copy of the cache line by invalidating all other copies. In the write-update
protocol several nodes may hold writable copies, whenever a node writes (part of) a cache
line, the changed words are forwarded to all other nodes holding a copy. We assume that
awrite-cache [Jouppi 93] is used, i.e., successive writes to the same cache line generate
asingle forwarding message. For both the write-invalidate and write-update versions, we
assume that data is always fetched in cache line units.

5.2 Implementation of C* Communication Primitives

As noted before, the C* communication primitives are implemented in machine-specific
runtime libraries. In this section, we describe how the C* communication primitives
are mapped onto the alternative architectures and point out any mismatches between the
language’'s needs and the different communication architectures. For a more detailed
description of the C* communication primitives, the reader is referred back to sections 3.1
and4.1.

get and send Inthe message-passing model, one messageis created for each VP in order
to send or request data. The NUMA and cache-coherent modelssimply use 1oad and
store instructions to access remote data and the hardware initiates any necessary
communication. If the per-VP data is large, multiple messages are sent, or multiple
load/store instructions are issued.

combining send Combining sends are easy to implement in a message-passing model,
with the combining operation performed by the receiving node. The other models
need to perform the combining operation on the sending nodes, which requires the
use of locks to ensure proper serialization among multiple senders.

reduce and barrier Reductionsand barriersareimplemented using afanin/fanout tree.
The message-passing model implements the tree operations directly in terms of
sending messages, whereas the NUMA and CACHE implementations are based on
the lock-free barriers described in [Mellor-Crummey & Scott 91], which achieve the
theoretical minimum of (2p — 2) remote accesses on p Processors.

45

msg_send(...)

node 1

node 2
msg_recv(&data) use(data)

(@) Combined data transfer and synchronization in MSG.

data=... flag=!flag ode 1
node 2
test(flag) use(data)

(b) Separate data transfer and synchronizationin NUMA.

Figure 5.2: Implicit versus explicit synchronization.

broadcast Broadcasts are implemented using a fanout tree (essentially the second half
of areduction): the node owning the data sendsit to theroot of the fanout tree, which
then distributesit to all nodes. Notethat even though the interconnect inthe CACHE
model has a broadcast capability, thisfacility is not available to the user, and hence

cannot be used to implement the C* broadcast operation.

I mplementing fanin/fanout treeson NUMA and cache-coherent machinesismore costly
than on message-passing machines. Each step in the combining tree requires synchroniza-
tion, e.g. aparent node needsto know when datafromitschildrenisavailableand vice-versa
In amessage-passing environment, this synchronization informationis conveyed implicitly
with the datatransfer, whereasthe other modelsrequire a separate, explicit synchronization

step.

46

flag=!fl
— L - node 1

inv ack req

— [X] test(flag) I node

Figure5.3: Traffic for synchronization under write-invalidate protocol.

Figure 5.2 demonstrates implicit vs. explicit synchronization for two nodes, where
node 1 produces data which is to be consumed by node 2. Obvioudy, this operation
requires synchronization in addition to the data transfer, since node 2 must be able to
determine when the data has arrived. In the message-passing model (Figure 5.2d), data
transfer and synchronization are achieved by sending asingle message: the receiver postsa
msg_recv operation that matches the sender’'smsg_send operation, and the completion of
themsg_recv call servesto indicate arrival of the data.

IntheNUMA model, thereisno operation corresponding to explicit recei pt of amessage,
and datatransfer cannot be combined with synchronization. Instead, synchronization needs
to be performed as a separate operation. InFigure5.2b, datais“sent” by smply assigning it
to avariable, data, innode 2’smemory. To implement the synchronization, node 1 toggles
the f1ag variable, and node 2 busy-waitsfor £1ag to change beforeit reads data.?

The CACHE model uses the same approach as the NUMA model, however the write-
invalidate protocol interacts badly with the synchronization operations. Figure 5.3 shows
the sequence of operations that take place in the CACHE model for synchronization. The
boxes represent copies of the cache line containing the f1ag variable. Before node 1 can
writeflag, it first needsto invalidate node 2's copy of the cacheline. Thisoperation results
intwo messages, oneinvalidation request and one acknowledgement message.> When later,
node 2 needs to read the f1lag, another two messages are sent, one request for the cache

Z Note that this approach relies on FIFO delivery of messages through the network.

3 Under a wesker memory consistency model, the acknowledgement message could possibly be omitted or
executed asynchronoudly.

a7

line and one reply carrying a copy of the cache line. The same operation that took asingle
message in the NUMA model now requires four messages, one of which carries a copy of
an entire cache line. Thisresultsin significantly higher synchronization traffic. Note that
by using a write-update protocol for synchronization operations, the number of messages
can be reduced to one, asin the NUMA model.

In most benchmarks, the get and send operations access little data per VP (eg., a
single word), which prevents the message-passing runtime library from taking advantage
of large packets. For the MSG_blk model, we implemented arun-timelibrary that attempts
to combine multiple small per-VP requests into one large request, provided the accesses
exhibit constant stride. This mimics compiler optimizations that aggregate messages for
fixed communication patterns. We will see in Figure 5.5 that message aggregation can
significantly reduce traffic in the message-passing model, for some benchmarks.

Recall that, as discussed in Section 4.1, we assume that only barrier operations carry
synchronizationinformation. For example, when the compiler generatesasend call, it does
not require the library to ensure that data dependencies are preserved, or to perform any
kind of synchronization between the sender and receiver. This allows an arbitrary number
of get, send, Or broadcast operations to be outstanding at any time, and lets us amortize
synchronization operations over multiple data transfers.

5.3 Simulation Methodology

As discussed in Chapter 4, the C* source is compiled into mostly machine-independent C
code, with communication primitives provided by machine-specific run-time libraries. To
simulate the message-passing architectures, weinstrument the run-timelibrariesto capture
the communication and synchronization operations, since these are the only points where
inter-processor communication occurs.

In contrast, the cache-coherent and NUMA models require that all memory references
betraced. To thisend, our compiler instrumentsthe generated code and tracksall references
to parallel variables. References to scalars are always local since they are replicated on
every node, therefore weignorethem. Inour smulationsof the cache-coherent models, we
assume fully-associative, infinite-size caches, thus eliminating conflict and capacity misses.
We also detect al cold misses and exclude them from the results as well. Thus, al inter-
node traffic is due to active sharing of data. In our benchmarks, the data layout was chosen
(by programmer and/or compiler) such as to reduce false sharing as well. Note that these

48

are very optimistic assumptions but they aso isolate the results from more implementation
details, such as cache size or organization. For the results presented in this chapter, keepin
mind that in reality, the CACHE model would generate significantly more traffic.

Statistics are gathered through execution of the benchmarks on a KSR-1; we drive
several simulation models at once to amortize the cost of program execution. Traffic is
divided into three categories:

e Traffic due to get and send operations, in essence point-to-point communication
between pairs of nodes.

e Traffic due to broadcast and reduce operations, which are examples of collective
communication operations.

o Trafficentirely dueto synchronization, such asbarriersor the explicit synchronization
in CACHE and NUMA fanin/fanout tree operations.

Thefirst two categories are further subdivided into data sent and control information, such
as message headers or invalidation messages. All measurements in this dissertation were
performed on simulations of 8-node machines. We have simulated selected benchmarks
for up to 64 nodes and verified that our conclusions remain essentially the same.

5.4 Benchmarks

For our experiments, we utilized six benchmarks: jacobi, gauss, matrix, ocean,
shallow, and misra. Jacobi implements 18 passes of a Jacobi iteration on a 128 x 128
grid, using atwo-dimensional block partitioning of the grid. Remote datais accessed with
get operations, and a reduction is performed at the end of every iteration to determine an
error term.

Gauss performs Gaussian elimination with pivoting on a 128 x 128 matrix which is
distributed by rows. Matrix multipliestwo 128 x 128 matrices which are distributed by
columns. Bothmatrix and gauss broadcast matrix columns or rows, respectively. Gauss
also uses reduction operations to determine pivot rows.

Ocean isamodel of ocean circulation using a one-dimensional data partitioning. Data
is accessed exclusively through get operations accessing 8- and 16-byte quantities. The

49

original Fortran code came from the Ocean Engineering department at Oregon State Uni-
versity.

Shallow is based on Fortran from NCAR. It is an aimosphere model based upon the
shallow-water equations. A 64 x 64 grid is distributed by columns and data is accessed
using both fine-grain (one double at atime) get and coarse-grain (one column at a time)
send operations.

Finaly,misraisanevent-drivenlogic smulator. Essentially all trafficinthisapplication
is due to reduction and combining send operations. The combining send communication
patterns are highly irregular and fine-grained.

55 Traffic Measurements

In this section, we discuss the results of our traffic measurements. To ssimplify the presen-
tation, Section 5.5.1 starts by selecting, for detailed examination in the rest of the chapter, a
line size for the cache-coherent model and one version of the message-passing architecture.

In the rest of this section, we present our measurements of interconnect traffic. As
mentioned earlier, we divide traffic into three major categories: traffic from get and
send operations, trafficfrom reduce and broadcast operations, and pure synchronization
traffic. In sections 5.5.2 through 5.5.4, we examine each traffic component separately and
then, in Section 5.5.5, compare the rel ative importance of the individual traffic components.
We al so contrast trafficin the KSR-likeand DA SH-like model sand examine how increasing
the number of processors affects our results, in sections 5.5.7 and 5.5.8, respectively.

Inthischapter, wefocusexclusively on theinterconnect traffic generated by the different
communication architectures. While traffic is an important metric, it obviously does not
trandate directly into performance. The amount of work to send a message also varies
drastically between models — in the CACHE and NUMA models, asingle load or store
instruction suffices to have the hardware generate a message, whereasin existing message-
passing machines, the cost is significantly higher. We will address the issue of message
handling overheads in more detail in the next chapter.

55.1 Sdlecting Smulation Parameters

While we have abstracted awvay many implementation detail s such astiming, cache size and
organization, bus technology, etc., our baseline models still require some parameterization.

50

Total traffic, in MB

Cachelinesize, in bytes

Figure5.4: Total trafficin CACHE model, as function of cacheline size.

Presenting all possible variationswould beimpractical; in thissection we select, for detailed
examination in the rest of the chapter, a line size for the cache-coherent model and one
version of the message-passing architecture.

Choosing a Cache Line Sze

Obvioudly, the performance of a cache-coherent architecture depends to a high degree on
the cache line size chosen. Longer cache lines take better advantage of spatial locality, but
may result in higher levels of false sharing or inefficient use of the interconnect when only
parts of a cache line are actually used.

Figure 5.4 shows total traffic for the invalidation-based cache coherent model as a
function of cache line size. From these results, we choose a cache line size of 32 bytes as
the basis of our comparisons throughout the rest of this chapter.*

Observe that ocean is not very well optimized for spatial locality. We include this

4 Further measurements indicate that thisis a good line size for the other variants (write-update, or DASH-
style protocol) of the cache-coherent model as well.

51

MSG_blk

00 05 10 15 20
Trafficin MB

Figure 5.5: Message-passing models: total traffic.

benchmark as an indication of what happens when a compiler fails to arrange memory
accesses for optimum cache utilization.

Choosing a Message-Passing | mplementation

Figure 5.5 shows the total message traffic for our three message-passing models. The
baseline model, MSG_32, alows a maximum of 32 data bytes per packet and thus uses
the same granularity as the CACHE model. Larger messages must be split into individual
packets, each carrying its own copy of control information. Two variants of the baseline
model attempt to reduce this overhead. The MSG_inf model allows packets up to 64 KB,
and can therefore communicate large per-VP data structures in a single message. Since
get and send operations often generate many small requests (one per VP), the MSG_blk
model attempts to aggregate at runtime multiple per-VP requests of constant stride into
one large packet. Both of these optimizations come at a cost: the MSG_inf model needs a
larger “size” field in the message header, and the MSG_blk model needs to send count and
stride information.

We see in Figure 5.5 how these changes affect total traffic. In the case of jacobi, each
physical processor holds a subgrid of VPs, and each of the VPs on the subgrid’s boundary
issues arequest for asmall dataitem. Therefore, aggregating messages (M SG_blk) reduces

52

traffic by amortizing the message header over more useful data. However asingle per-VP
request fits perfectly into asmall packet and hence ssmply increasing the maximum packet
size (MSG._inf) only adds control information — the packet header in MSG_inf contains 2-
bytesizefield whereasin MSG_32, 1 byteissufficient. Inthecase of shallow, whichusesa
coarser data decomposition, only one VP per physical processor sends data off-node. Each
item represents an entire column of data, therefore it helps to send larger packets. Since
only one VP per physical processor sends data, aggregation does not improve performance
beyond that, however. Finaly, inocean only one VP sends data per physical processor, and
dataitems are small. Therefore, neither larger packets nor aggregation can reduce control
traffic.

Throughout the rest of this chapter, we use the smpler MSG_32 model as the basis of
our comparisons, although for some regular communication patterns or coarse-grained data
decompositions, its performance may be improved considerably.

5.5.2 Traffic fromget and send Operations

We now turn to eval uating the traffic generated by the various communication architectures.

CACHE_32

CACHE_32
NUMA
MSG_32

NUMA
MSG %2
CACHE 32 ' CACHE_32
L NUMA

NUMA
MSG_32

shallow

CACHE 32 CACHE_32

§ NUMA § NUMA
S MSG 32 S MSG_32
=17 I T I UL L L T 1T 71T 7717 I T I T I T I T
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
TrafficinMB TrafficinMB
(a) Datatraffic (b) Control traffic

Figure 5.6: Comparison of get/send traffic.

Figures 5.6a and 5.6b show the data and control traffic, respectively, generated by the
C* get and send operationsfor aset of representative benchmarks. Control trafficincludes

53

packet headers and “pure” control messages, such as requests for data or invalidation
messages. As our CACHE model sends much less control information per message (i.e.,
CACHE uses much smaller message headers) than the other models, we also show the
number of messages dueto get and send operationsin Figure 5.7.

All datatransfersin the CACHE model occur in cache lineunits. Inthe caseof jacobi,
which uses a two-dimensional block decomposition, half of the remote accesses have unit-
stride and touch all the data in a cache line, while half use only one data item per cache
linefetched. Thisresultsin amore than threefold increasein data traffic over the MSG and
NUMA models. ocean also suffersfrom this problem.

CACHE_32,

CACHE 32 :
NUMA :

CACHE_32
NUMA
MSG 32

1 1 1+ 1T 1 1
0O 20 40 60 8 100 120

messages x1000

Figure 5.7: Number of messages for get/send operations.

A different effect is responsible for higher data trafficin shallow. Some variablesin
thisapplication areaternately written locally and fromaremotenode, viaasend operation.
Thetwo write operationstogether requirefour messagesin the CACHE model, two of which
carry control information only, and two of which carry acopy of the cacheline.® The MSG
and NUMA models only require one message for the remote write, and none for the loca
write. This explains why despite good cache line utilization, the CACHE model generates
nearly twice the data traffic of the MSG and NUMA modelsfor shallow.

Figure 5.6b shows that the CACHE model generates 30% less control traffic than the

% 1f it isknown in advance that the entire cache lineis going to be overwritten, then the first transfer of data
can be omitted. However, thisinformation is not aways easy to infer.

others for jacobi, athough it actually sends a larger number of messages — about 30%
more than the MSG model, as shown in Figure5.7. Asanode attemptsto write grid values
locally, it must first invalidate the copies of boundary elements that have been accessed by
remote nodes, causing extra control messages. However, because the CACHE model sends
very little control information per 1oad or invalidate request, the actua trafficislower.
The behavior of ocean issimilar, and in the case of shallow, extra control messages are
needed to implement the send operation, as discussed above.

In summary, the CACHE model relies heavily on spatial and temporal locality to
amortize the cost of the cache coherence protocol. The former is needed to make full
use of all datain a cache line, and can often be achieved through careful optimization of
datalayout. However, many scientific applications, especially iterative algorithms, tend to
update most if not all of their data set on each iteration; therefore, little temporal locality
exists between iterations, which renders caching less useful. For example, in jacobi, a
processor accesses each neighboring grid point exactly once per iteration; the values for
those grid points will be overwritten by the remote processor before the next iteration. In
other words, datafrom remote nodes are not reused and hence caching of remote data does
not pay off — however, the system till incursthe overhead of the cache coherence protocol.
Asaresult, the CACHE model generates 2 to 3 timesthe data traffic of the MSG model for
the applications shown in Figure 5.6.

The NUMA model often suffersfrom the fact that it can only access one word (64 bits)
per request and therefore may require large amounts of control traffic — about 45% to
150% morethan MSG on the ocean and shallow applications, respectively.

5.5.3 Trafficfrombroadcast and reduce Operations

To illustrate performance on broadcast and reduce operations, we choose the matrix,
gauss and misra benchmarks. Matrix broadcasts columns of a matrix (128 words),
whereas misra performs many reduction operations on small (4-byte) data items. In
gauss, both broadcasts of matrix rows and reductions of small data items are used, so its
behavior lies between the other two benchmarks. Figures 5.8a and 5.8b show data and
control traffic, respectively, for these benchmarks. Sincethe basic CACHE model performs
rather badly on the communication patterns in the fanin/fanout tree, we also consider the
CACHE_wu model, which allowsthe library to request awrite update protocol for selected
store ingructions.

55

,CACHE 32,
CACHE_32 wu !
NUMA !
MSG_32

misra

CACHE_32
CACHE_32 wu

matrix

MSG_32

OI.O ' OI.2 ' OI.4 ' OI.G ' OI.8 ' 1|.0 ' 1|.2 ' 1!4 ' 1|.6 '
Trafficin MB
(a) Datatraffic

misra

matrix

CACHE 32
CACHE_32 wu'
NUMA !

CACHE_32
CACHE_32_wu ! ‘

NUMA - NUMA
MSG_32
J CACHE 32 CACHE 32
CACHE_32 wu - CACHE. 32_wu S
NUMA NUMA

MSG_32

0!0 ' OI.2 ' 0!4 ' OI.G ' OI.8 ' 1|.0 ' 1|.2 ' 1|.4 ' 1|.6 '
Trafficin MB
(b) Control traffic

Figure5.8: Comparison of bcast/reduce traffic.

As matrix transfers large contiguous chunks of data, the CACHE model can fully
utilize the cache line, and all three models transfer about the same amount of data.

At the other extreme, misra does not use broadcasts and al data traffic shown hereis
due to reductions of small data. Since the CACHE model transfersdatain cache line units,
thisresultsin an eightfold increase in data traffic over the MSG and NUMA models, which
only transfer the actual amount of data needed. Note that the write-update cache-coherent
model, CACHE_wu, does not havethisproblem,; it performsaswell astheM SG and NUMA
models.

Control trafficisalso strongly influenced by granularity and sharing patterns. Inmatrix,
entire columns of the matrix (128 elements) are broadcast at once. The CACHE and MSG
modelstransfer 32 bytes at atime, whereasthe NUMA model isrestricted to one word per
request and thus needs to send more requests than the other models. While the CACHE
model makes good use of the entire cache line, the write-invalidate protocol aso interacts
badly with the fanout-tree communication pattern, which explains why CACHE sends over
three times as much control traffic as the MSG model. However, due to the large number
of small requestsit requires, the NUMA model produces even more control traffic than the
CACHE model. The same drawback of the write-invalidate protocol is responsible for the
CACHE model’s tenfold increase in control traffic over MSG on the misra benchmark.
Note that overall, the CACHE_wu model performs significantly better than CACHE, with

56

CACHE_32,
CACHE 32 wu |
NUMA !
MSG 32

misra

CACHE_32

CACHE_32_ wu '

CACHE 32
CACHE. 32_wui S

NUMA !

matrix

MSG_32
T T T T T N T | T T T T
20 40 60 80 100 120 140 160
messages x1000

Figure5.9: Number of messages for bcast/reduce operations.

performance comparable to the MSG model on the matrix and gauss benchmarks.

Some of the differences between models are caused by different message header sizes,
S0 we also show the total number of messages sent for broadcast and reduce operations
in Figure 5.9. While the ratios between the different models are dightly different than for
number of bytes sent, our conclusions remain the same.

In summary, we see that implementations of combining tree operationsare significantly
moreexpensive in the CACHE model than in either theNUMA or MSG models. Whenever
fanin/fanout tree operations are performed, the CACHE models generate excess traffic
as cache lines ping-pong between nodes. Considering how important combining tree
operations are for scalability purposes, this can be considered a severe drawback of the
CACHE model. The CACHE_wu model allows the communication library to request a
write-update protocol for selected store operations, which improves the performance of
the cache-coherent model to the level of the message-passing architecture — at the cost of
extra hardware, including the write-cache as described on page 44.

The NUMA model again shows that the lack of a block transfer mechanism drastically
increases the amount of control information sent, to over four timesthat in the MSG model
onthematrix and gauss benchmarks. Both of these benchmarks broadcast data structures
significantly larger than aword, namely entire rows or columns of a matrix.

57

CACHE_32

CACHE 32 wu
NUMA @
MSG_32:

misra

CACHE_32

CAGHE_32 wu |
NUMA

GACHE_32

CACHE 32_wu ‘
NUMA
MSG_32

shallow

T —r—1Tr1rTTrT T T
00 02 04 06 08 10 12 14 16
Trafficin MB

(@) Amount of data sent

misra

CACHE_32

CACHE_32_ wu
NUMA ‘

CACHE 32
CACHE _32 wu !
NUMA

CACHE 32
CACHE_32 wui ‘
NUMA

shallow
o

T — 1 1
20 40 60 80 100
messages x1000

(b) Number of messages sent

Figure 5.10: Comparison of synchronization traffic.

5.5.4 Synchronization Traffic

Figure 5.10 shows the amount of data and number of messages that are used solely for
internode synchronization. Synchronization operations occur primarily in the fanin/fanout
trees used to implement barriers, reductions and broadcasts.

A major advantage of the MSG model is that it can combine data transfer and syn-
chronization in a single message, as discussed in Section 5.2. In our benchmarks, the
opportunity to combine data transfer and synchronization arises frequently, specificaly in
all fanin/fanout tree operations. Since the NUMA and CACHE models need to implement
the synchronization as a separate operation, it is therefore not surprising that the MSG
model generates far less synchronization traffic than the other models.

The CACHE model suffersfrom additional drawbacks. First, thewrite-invalidate cache
coherence mechanism requiresfour message exchanges for each synchronization operation.
Second, all data is transferred in units of entire cache lines, whereas theoretically, the
exchange of a single bit is sufficient to implement the synchronization. As a result, the
CACHE model generates between 25 and 30 times the amount of synchronization traffic of
the MSG model.

In addition to the CACHE model, we again consider the CACHE wu model, which
allows the library to select a write update protocol for stores that are use to implement
synchronization operations. The CACHE_wu model reducesthe cost of each steptoasingle

58

message, and transferswritten data at a granularity finer than a cache line. Performance of
CACHE_wu is about equa to that of NUMA, with a small difference due to handling of
locksin send operations, which we will not discuss here.

TheNUMA modé offersbetter control over datamovement thanthe CACHE model, and
allows data transfers in small units more appropriate for the synchronization operations.
While both NUMA and CACHE_wu perform noticeably better than the basic CACHE
model, they till generate 5 to 10 times as much synchronization traffic as the MSG model.

Figure 5.10b shows the number of messages sent for synchronization, which abstracts
from the size of message headers and the fact that the CACHE models have to send entire
cachelinesfor synchronization when asingle bit would suffice. Aswe see, the graphs|ook
essentially the same as Figure 5.10a, hence our above conclusions remain the same.

In summary, we re-emphasize that, as noted in the previous section, write-invalidate
protocols exhibit significant degradation when faced with a sharing pattern that exhibits no
temporal locality. A write-update model fares much better aslong as data can be forwarded
at a fine enough granularity, i.e., less than a cache line® Combining synchronization
with data transfer, as done in the MSG moddl, is a useful technique for further reducing
synchronization traffic.

5.5.5 Contribution of Traffic Categories

To visualize the importance of each traffic category, Figure 5.11 shows the individual
traffic componentsfor each model. Clearly, synchronization traffic (shown as the rightmost
striped bar in the figure) can represent amajor fraction of total traffic for the CACHE and
NUMA models. In the case of ocean and misra, the CACHE model even generates more
traffic for synchronization than for transfer of actual data. The NUMA model performs
synchronization operations more efficiently, since no cache coherence mechanism can get
in the way, and data can be transferred in units smaller than a cache line.

In the NUMA model, control traffic is a very prominent component, due mainly to
the lack of a block-transfer mechanism: many individua messages, each carrying a full
message header, are required to transfer large data structures (e.g. arow of a matrix).

Not surprisingly, the amount of synchronization traffic is negligible in the message-

5 Notethat awrite-updatemode!, indiscriminately applied to all remote accesses, can result in hugeincreases
in traffic, depending on the access pattern. This is borne out by simulations we performed. In general,
therefore, the user should have control over the cache coherence protocol.

59

CACHE_32

© CACHE_32_wu
o NUMA :
€ [MSG 32 ;
CACHE_32
3 'CACHE_32_wu 3
NUMA ; [get/send DATA
8 MSG_32 : 0
; ; [] get/send CONTROL
p \\\\‘_ CACHE_32 I icast/reduce DATA
— Wwu .)
= \\\\\\\\\\— NUM A beast/reduce CONTROL
=) AN] 5ynChrONiZELION
X :
B \\\\\\\\\ NUMA
S ANY ‘
= ‘ 1CACHE_32
5 CACHE 32.wu !
© NUMA :
o MSG_32 } }
T ‘ ; = CACHE_32
§ | % CACHE_32_WU !
o) [NUMA ! :
o [EEMSG3 3 3 !
TrTTTTTTT | | | FrrTTTTe rrTTTTT |
0 1 2 3 4 5 6

Trafficin MB

Figure5.11: Overdl traffic.

60

CACHE_32

@© CACHE_32_wu
o NUMA
€ MSG_32 !

CACHE 32
o} CACHE 32 wu
§ NUMA ; ‘
8 MSG_32 : ‘

L : : o |[[__Jget/send DATA

9 T — CACHE_32 ! |[C_Jiget/send CONTROL
2 D ‘ ! -ibcast/reduce
o

. 5y/ChrONI Zati ON

GACHE_ 32 !

Ral CACHE 32 wu ‘
IS NUMA
S SG_ ! !
z ‘ 5 CACHE_32
o CACHE_32 wu |
= NUMA !
5 MSG_32 } } :
| N : — CACHE_32
§ [CACHE 32_wu ‘
o [NUMA !
o) MSG_32
T L L e e e
0 50 100 150 200 250 300 350
M essages x1000

Figure 5.12: Overall traffic: number of messages.

passing model. This shows the advantage of exploiting the synchronization information
implicit in the arrival of a message.

Note that no spatial or temporal locality is present in the synchronization operations
(only onebit of synchronizationinformationistransmitted, and nothingisgained by caching
that bit), therefore large cache lineswill drastically increase the amount of synchronization
traffic in the cache-coherent models.

We argue that since synchronization traffic can comprise such alarge fraction of total
trafficin the NUMA and CACHE models, alternative synchronization mechanisms need to
be explored for these models. In addition, the NUMA model would benefit greatly from
ablock transfer mechanism.

5.5.6 Total Number of Messages Sent

So far, we have concentrated on the amount of traffic sent over the interconnect. However,
processors aso incur some fixed overhead for each message sent or received. Figure 5.12

61

shows the number of messages sent in each traffic category. The CACHE model sends
between 30% to 500% more messages than the M SG model, though the CACHE_wu model
performs much better, generating between 6% to 70% more messages than the M SG model
(with the exception of shallow, where CACHE wu still sends about three times as many
messages as MSG.)

While this difference is significant, recall that the amount of work the CPU performs
to handle each message also varies drastically between models — in the CACHE and
NUMA models, asingle 1load or store instruction suffices to have the hardware generate
amessage, whereas in existing message-passing machines, the cost is significantly higher.
We will examine these per-message overheads in more detail in the next chapter.

Figure 5.12 dso yields another insight — in the results shown in Figure 5.11, the
CACHE model is penalized for being unable to send data at a smaller granularity than an
entire cache line. By just counting the number of messages sent, we can abstract away the
effects of cache line size. However, even under such optimistic assumptions, the CACHE
model till generates more traffic than either the NUMA or the MSG model.

5.5.7 Broadcast versus Point-to-Point | nterconnect

In this section, we briefly compare the CACHE model based on the KSR and the one
based on the DASH. Recall that the KSR’s coherence protocol relies on the interconnect’s
broadcast capabilities, and that cache lines have no fixed “home” node. In contrast, the
DASH'’s coherence protocol only sends point-to-point messages and each cache line has a
home node which handles all requests for that cache line. The latter approach may require
more messages to be sent. For example, the KSR aways handles a read miss in two
messages — oneto broadcast the read request and another to broadcast the reply containing
the cache line. On the DASH, aread miss may generate three messages if the home node
does not have avalid copy of the requested cacheline. In that scenario, the requester sends
amessage to the cache line's home node, the home node forwards the request to some node
that currently holds a copy of the cache line, and that node sends a reply message back to
the requester.

Similarly, the KSR can invalidate multiple copies of acache linewith asingle broadcast
message, whereas the DASH must invalidate each copy with a separate message.

Figure 5.13 shows that the DASH-like model generates only about 10%—20% more
traffic than the KSR-likemodel. There are threereasonsfor this. First, in most of the cases

CACHE _32 dash

o ‘ : :
o) CACHE 32 : : | [get/send DATA
= CAGHE_32_dash wu : : : : :
CACHE 32.wu : : : [get/send CONTROL
_ CACHE 32 dash : : I bosstireduce DATA
.g CACHE_32 ; ; 3 | AN\ beast/reduce CONTROL
CACHE_32 dash_wu . . [nchronization
= PCACHE_32 wu ; ; | ‘Esy]
AANONNNNNNNNY) CACHE_32 dash ‘

NNNNNN CACHE 32 |
NN\ CACHE 32 _dash wu :
NN\ CACHE_32 wu !

\\\\\\\‘_ ‘CACHE 32 dash

gauss

= ENNNNNY CACHE 32
g NN CACHE 32_dash:wu
AN CACHE 32 wu
= CACHE: 32_dash
o 'CACHE 327
e CACHE_32_dash wu ! ! :
'z CACHE 32 wu | ; ; ; ;
§ I CACHE_32
o I = CACHE_32_dash wu ! !
o | CACHE _ 32 wu :
T | | R [rrrrTTTTpTTT T T Ty | | |
0 1 2 3 2 5 6 7

Trafficin MB

Figure5.13: Traffic in DASH-like and KSR-like models.

63

where the DASH sends more messages than the KSR, the extra messages are small control
messages (read requests, invalidations, acknowledgements, etc.) that do not carry a copy
of acacheline. Second, in our benchmarks the number of nodes sharing a given cache line
isusually low, so the DASH does not require substantially moreinvalidation messages than
the KSR. Third, the datalayouts used in our benchmarksusually allow the DASH to handle
read or write misses in two messages, just like the KSR.

In addition, keep in mind that messages in DASH are point-to-point, whereas they must
be broadcast in the KSR model. For a given size machine, and assuming equal technology
parameters for the interconnect, one would expect the DASH-like machine to perform
better, as the aggregate bandwidth required, taking into account number of nodes visited
by each message, should actualy be lower.

5.5.8 Scaling of Benchmarks

Figure 5.14 shows how traffic for the shallow and gauss benchmarks increases with
the number of processors. As we can see, the relative importance of the different traffic
categories remains essentially the same. The scaling behavior of these two benchmarksis
representative of our other benchmarks and we therefore expect our conclusionsto remain
valid for larger numbers of processors as well.

5.6 Latency Measurements

Oneimportant aspect of communication performancethat we haveignored so far islatency,
the amount of time that el apses between theinitiation and completion of a communication
operation. Communication latency can severely limit the performanceof parallel machines,
as processors may have to busy-wait or stall until a communication operation compl etes.
For example, when accessing data on a remote node, the requesting processor may have to
wait one round-trip through the network until the desired data is available. Thisissimilar
to the latency problem that uniprocessors face as the ratio of processor speed to memory
speed increases, except that network latencies are generally an order of magnitude higher
than memory latencies.

Most parallel architectures try to reduce the impact of communication latency by pro-
viding some form of asynchronous (or non-blocking) communication primitives. The idea
is that a processor can initiate the communication and perform some other work while the

(a) Trafficin shallo

W.

|\l | p=64
o p=32
™ 0 d
Lul p=16 : :
T
g
o |
s :
2 [—po
& | === z
o B =16 3
5 | Hp=8
p=4
SMv2 ‘ ‘
—Ra
32 | | |
‘ [Jget/send DATA
<
s [] get/send CONTROL
=)
z : I beast/reduce DATA
TR =64 beast/reduce CONTROL
: e 5yNChroNiZAtiON
%I
o)
E
T | T T T | | T T T T
0 2 4 6 8 10 12 14
Trafficin MB

p=64

|:| get/send DATA

[get/send CONTROL
— bcast/reduce DATA
RN\ beast/reduce CONTROL

femm] synchronization

26
Trafficin MB
(b) Trafficin gauss.

Figure5.14: Traffic as function of number of processors.

65

communication is in progress. Depending on how much “other work” is available, this
approach can partially or completely hide the latency of the communication operation.

Itiseasy to implement this approach on amessage-passing architecture, wherethebasic
communication primitives— injecting a message into the network, or recelving a message
— areinherently asynchronous. For example, the processor can proceed immediately after
sending a message.” Hence, to retrieve data from another node, a processor can inject
a request for that data into the network and proceed with other work before attempting
to use that data. Note aso the message-passing communication model does not have an
architecture-inherent limit on the number of outstanding asynchronous messages. This
makes it easier to pipeline large numbers of communication operations, which can help to
hide communication latency.

Thesituationis somewhat different on cache-coherent shared-memory machines, where
the basic communication primitives, i.e.,, load and store instructions, are not as suited
to asynchronous communication as the message-passing model’s primitives. Even when
load and store are not outright blocking (where the processor always stalls until the
instruction completes), the number of outstanding requests is usually limited, e.g., to the
number of registers available in the processor. Also, allowing fully asynchronous writes
may affect thetype of memory consistency model that the system provides. Cache-coherent
architectures therefore provide latency hiding either through separate mechanisms such as
data prefetching or by modifying the cache coherence mechanism. For example, the cache
coherence protocol could be made adaptive [Archibald 88, Stenstrom et al. 93, Bennett
et a. 90, Carter et a. 91], or it could implement a weaker memory consistency model
[Hutto & Ahamad 90, Gharachorloo et a. 90].

In this section, we evaluate our three communication architectures with respect to the
amount of communication latency they incur. We begin by describing, in Section 5.6.1, the
tradeoffs we had to make in our smulations to obtain results that are largely independent
of implementation details, and comparable across different architectures. In Section 5.6.2,
we examine the effects of augmenting the basic CACHE model with variouslatency hiding
mechanisms and we select the best variation of the CACHE model for further study in
the rest of this chapter. As we did before, we divide traffic into three major categories:

7 1f the network is busy, some buffering would have to be performed by the sender to keep the processor from
gtalling. The key point isthat in principle, barring congestion, the fundamental communi cation primitives
in the message-passing architecture are naturally non-blocking.

66

traffic from get and send operations, traffic from reduce and broadcast operations,
and pure synchronization traffic. In sections 5.6.3 through 5.6.5, we examine each traffic
component separately and then, in Section 5.6.6, compare the relative importance of the
individual traffic components. We also contrast communication latency in the KSR-like
and DA SH-like cache-coherent models, in Section 5.6.7.

5.6.1 Assumptions and Limitations

As in our traffic studies, our goa is to examine the technol ogy-independent differences
between the architectures, meaning we are interested in metrics that are unaffected by
details such as network topology, routing strategy, or the ratio of processor to interconnect
Speed.

For example, communication latency is largely determined by the time it takes for
a message to traverse the interconnection network, which is a function of the network’s
topology, its routing strategy, and the technology used to build the routers. Another factor
that contributes to latency is the amount of time is takes to process a message — for
example, the time taken to receive arequest for data, access the data, form areply message
and inject the reply into the network.

To allow reasonable comparison of our results across architectures, we again focus on
implementation-independent metrics. Specificaly, we gauge communication latency by
simply counting the number of message round-trips during which processors are stalled.
This is areasonable ssimplification, since we can expect the gap between processing speed
and network latency to grow larger in the future, hence the latter is bound to become the
dominant factor. Furthermore, we do address the issue of message processing overheadsin
the next chapter.

Also, as mentioned above, realistic architectures use varioustechniquesfor hiding com-
munication latencies, using some form of asynchronous communication, such as prefetch-
ing. The extent to which these techniques are successful depends critically on how much
computation can be performed between the initiation of the communication operation, and
the time that the result of the communication is needed. Specifically, thework used to hide
the communication must take time greater than or equal to the communication latency. But,
to smulate this effect correctly, we would need to know (at least) the ratio of processor
to interconnect speed — which is exactly the kind of implementation detail that we wish
to avoid. We therefore make some tradeoffs that sacrifice simulation detail in favor of

67

implementation independence:

¢ Redlistically, the latency for a given message can vary depending on the distance the
message travels, or the amount of network contention it encounters along the way.
Both distance and contention depend on, for example, the network topology, speed,
and routing strategy — implementation detail sthat we wish to ignore. For our study,
we assume that network latency is a constant, sO we can express communication
latencies in terms of the number of message round-trips taken. Essentialy, our
studies assume a contention-free network with afully interconnected topol ogy.

e Our programs make frequent use of barrier synchronization. It is clear that the
processor stall timeinbarriersisvery sensitiveto load balancing— a single processor
reaching the barrier “late” can hold up al others. For our studies, we assume that the
benchmarks are perfectly load balanced, meaning all processors reach the barrier at
the sametime. Note that for most of the benchmarkswe study, thisis actually agood
approximation. If there was a high degree of load imbalance, our approach would
overestimate the importance of communication latency relative to load imbalance.

e Asoutlined above, to fully smulate latency hiding, we would need to know the ratio
of processor tointerconnect speed. Thisisbecause the effectiveness of latency hiding
depends on the amount of computation that can be done while the communication
operation is in progress. However, we can make a conservative approximation.
When avariableis written by one processor and read by another processor later, the
C* compiler inserts a synchronization point between the two accesses, in order to
prevent races. When simulating asynchronous writes, we assume that the issuing
processor has to wait for one message round-trip at the next synchronization point,
i.e., until the last write has been acknowledged. Thisis aworst-case assumption, but
it isreasonable for our benchmarks, where the inter-processor data-dependenciesare
relatively “tight”, i.e., thereisgenerally not much computation between the last write
operation and the following synchronization point.

¢ In fanin/fanout tree operations, the individua nodes do not perform much computa-
tion, hence there is not enough work to hide communication latencies. Hence, for
the communication in fanin/fanout trees, our ssmulations charge a one-way network
latency to model the propagation of data from the source to the destination.

68

We are confident that despite these simplifications, our results are still useful for quali-
tatively comparing the relative performance of the different communication architectures.
This is because all our simplifications should have a similar impact on all architectures
studied. For example, on agiven benchmark, the sharing pattern between nodesisthe same
regardless of thetarget architecture, hencefor example the effect of changing the network’s
topology or routing strategy should affect all architecturesin the same way.

Finally, note that the results for each of the architectures could be improved further,
either by adding more hardware for latency hiding, or by using more aggressive compiler
optimizations that hoist communication operations “up” from their use, thus increasing
the potential for latency hiding. In that sense, our results indicate how effective these
additional techniques must be for the different architecturesin order to attain a given level
of performance.

5.6.2 Selecting Smulation Parameters

As we mentioned before, the message-passing model aready supports latency hiding
through asynchronous message exchanges. The cache-coherent architecture can use many
different, more specialized, mechanisms. In this section, we explore the effects of three
mechanisms to reduce or hide latency in cache-coherent shared-memory machines. selec-
tively using awrite-update protocol, automatically prefetching datafor sequential accesses,
and asynchronoudly propagating write operations. For the latter technique, we assume
a relaxed memory consistency model, similar to release consistency [Gharachorloo et al.
90]. Figure 5.15 summarizes the different models. Note that the study of latency reducing
techniquesfor cache-coherent shared-memory machinesis beyond the scope of this disser-
tation, so our list is necessarily incomplete. However, note that few existing commercial
(or even research) shared-memory machines provide all the techniques we examine here.

Figure 5.16 demonstrates the effectiveness of the different latency hiding techniques,
the figure shows the number of message round-trips during which processors are stalled
in the different cache-coherent models. As we can see, the cache-coherent architecture
benefits greatly from these relatively ssmple enhancements — there is atwofold to tenfold
differencein latency between the best and worst models.

We have already seen that selective write-update improves the performance of the
fanin/fanout tree operations (broadcast, reduce and synchronization) with respect to the
amount of traffic generated. As we can see in Figure 5.16, write-update also drastically

69

Abbreviation | Description

MSG_32 Uses asynchronous writes, but reads block until data arrives.
NUMA Uses asynchronous writes, but reads block until data arrives.
CACHE_32 Both readsand writesblock. Usesawrite-invalidate protocol

and implements sequentia consistency.

CACHE 32 wu || AsCACHE_32, but can selectively use awrite-update proto-
col where beneficial.

CACHE_32_aw || Uses asynchronous propagation of writes, and implementsa
relaxed memory consistency model similar to release consis-
tency [Gharachorloo et a. 90].

CACHE 32 pre || Uses sequentia prefetching of data for reads. only the first
of aseriesof sequentia cache line accesses incurs latency.

Figure 5.15: Summary of models.

lowers the latency of those operations. For example, for a producer/consumer sharing
pattern, the write-update protocol forwards data written by the producer to the consumer
in asingle message. In comparison, under awrite-invalidate protocol the producer would
have to invalidate the consumer’s copy of the cache line, and then the consumer would have
to request the cache line again. Clearly, the second approach incurs much higher latency.

Asynchronous propagation of writesis especialy effective in the gauss, matrix and
shallow benchmarks, which perform many writesin arow to transfer large blocks of data.
The individual write operations are effectively pipelined; the processor only has to wait at
the next synchronization point for the last write to be acknowledged. Thisis similar to the
release consistency protocol described in [Gharachorloo et a. 90]. Note that CACHE_aw
still uses an invalidation-based protocol, so a consumer of newly written data still incurs
the latency of requesting the data from the producer. This can be seen in the misra
benchmark, where CACHE _aw does not significantly improve synchronization latency
beyond CACHE_wu. However, when the two techniques are combined (CACHE_wu_aw),
the benefits are significant.

Finaly, sequential prefetching hel psreduce the latency of block transfers: only thefirst
of asequence of sequential cache line accesses incurs latency. We see noticeable improve-

70

.CACHE 32
CACHE_32_wu :
CACHE 32 aw

misra

CACHE 32 wu_aw : : :
CACHE_ 32 wu_aw_pre : [] get/send latencies
CACHE 32 : : ! I beastireduce latencies
CACHE_32 wu = 5ynchronization latencies
CACHE_32.aw ! ! ‘ ‘

CACHE_32 wu_aw
CACHE_32 wu_aw_pre

CACHE_32

CACHE_32 wu

| CACHE_32_aw:
CACHE_32 wu_aw :
CACHE_32 wu_aw_pre

‘CACHE_32
CACHE_32 wu
'CACHE_32_aw !

CACHE 32 wu aw
CACHE_32 wu_aw_pre

matrix

CACHE_32
CACHE_32 wu
CACHE_32 aw :
CACHE_32_wu_aw
CACHE_32 wu_aw_pre

shallow

message round-trips (x1000)

Figure5.16: Choosing a shared-memory implementation.

ments for the matrix and gauss benchmarks, which broadcast entire rows and columns
of a matrix; each row or column occupies several cache lines. The other benchmarks do
not usually transfer dataitems occupying more than one cache line, so prefetching does not
noticeably improve their performance.

We select the best of the cache-coherent models, CACHE wu_aw_pre, for detailed
examination in the rest of this chapter. For brevity, we will refer to it as “CACHE+”
throughout the rest of this chapter. Note that the cache-coherent architecture could be
improved further, for example, by using more sophisticated hardware prefetching mecha-
nisms [Baer & Chen 91, Dahigren et a. 94, Fuet a. 92], or through software-controlled
prefetching [Callahan et al. 91, Klaiber & Levy 91, Mowry & Gupta 91]. Similarly, the
NUMA and MSG models could be improved by adding asynchronous messages for read
accesses, thusachieving an effect smilar to prefetching. However, the architectural models
as summarized in Figure 5.15 give us sufficient insight into the issue of communication
latency.

71

CACHE_32 wu_aw_pre

NUMA

jacobi

MSG_32:

CACHE_32_wu_aw_pre
S
oz

| MSG_32

shallow

CACHE_32_wu_aw_pre

| NUMA!

ocean

0 10 20 30 40 50 60
message round-trips (x1000)

Figure 5.17: Communication latency in get and send operations.

5.6.3 Latencyinget and send Operations

We now turn to eval uating the communication latency incurred by thedifferent architectures.
Figure 5.17 shows the number of network round-trip latencies incurred by the different
architectures for C* get and send operations. We examine the representative ocean,
shallow and jacobi benchmarks.

Note that despite its hardware enhancements, the CACHE+ model still incurs more
latency than the other model s, with the exception of the jacobi benchmark where CACHE+
incursonly about 75% of MSG'slatency. Themainreason NUMA and M SG do not perform
as well as the cache-coherent model is that the former two do not prefetch data for get
operations, whereas the CACHE+ model performs sequential prefetching.

CACHE+ incurs 380% of MSG's latency on shallow, and 200% of MSG’s latency
on ocean. Theincrease in latency is largely due to the actions of the cache coherence
mechanism, which, as noted before, sometimesintroduces unnecessary migrationsof cache
lines, which in turn results in more cache misses. Also, afundamental difference between
the cache-coherent shared-memory and message-passing architecturesis that to move data
from one node to another, a message-passing machine can smply send a message to the
destination, whereas on a shared-memory machine, the destination node needs to request
the data from the source node. This approach inherently incurs higher latency (a network
round-trip as opposed to a one-way trip), and it is not aways possible to hide the extra

72

CACHE_32_wu_aw_pre
NUMA: :
MSG_32

misra

CACHE_32 wu_aw_pre

| NUMA
| MsG_32

gauss

CACHE_32_wu_aw_pre
NUMA ‘ ‘

matrix

message round-trips (x1000)

Figure5.18: Communication latency in broadcast and reduce operations.

latency by prefetching or other techniques.

5.6.4 Latencyinbroadcast and reduce Operations

Figure 5.18 shows the number of network round-trip latenciesincurred for broadcast and
reduce operations. Weexaminethematrix, gauss and misra benchmarks which execute
significant numbers of these operations.

For the misra benchmark, the CACHE+ model incurs only about 15% more network
latency thanthe M SG or NUMA model, indicating that itslatency hiding techniquesarevery
effective. Its performance on the other benchmarks is not as good, however — CACHE+
incurs 50% more latency than MSG on gauss, and over 100% moreonmatrix. Wetraced
most of the increase to the change in sharing patterns that occurs when one node stops
broadcasting and another one takesover.® If the CACHE+ model gave the application more
control over how and when data moves between nodes, most of this difference could be
eliminated.

® Thereason isthat in the current libraries, the broadcasting node sends its datato the root of the fanout tree,
by writing to a shared memory area. Normally, that memory area is shared between the broadcasting node
and the root of the tree, but when a new node starts broadcasting, the memory is temporarily shared by
three nodes. Thisinteracts badly with the write-update protocol used by the fanout tree.

73

| CACHE_32_ wu_aw_pre
@
o |NUMA
I= | MsG_32
| CACHE 32 wu_aw_pre
@ | NUMA ‘
g8 MSG 32
= CACHE_32_wu_aw_pre
o NUMA !
B ‘ :
% MSG_32 !
--------- R e B
0 10 20 30

message round-trips (x1000)

Figure 5.19: Communication latency for synchronization operations.

5.6.5 Synchronization Latency

Figure 5.19 shows the number of network round-trip latencies incurred for synchronization
operations. We present results for the shallow, gauss and misra benchmarks; the other
benchmarks have similar characteristics.

As we can see, the performance for the CACHE+ model is comparable to the perfor-
mance of the NUMA model. Thisisnot surprising, since the write-update protocol gives
the cache-coherent model almost the same degree of control over data movement as the
NUMA model.

At the same time, both CACHE+ and NUMA incur from 20% to over 50% more
communication latency than the MSG model. The reason for this is that, as discussed
before, the MSG model can sometimes combine data transfer and synchronization, hence
there are fewer synchronization operations to perform in the first place.

Note that our compiler does not currently use “fuzzy” barriers [Gupta 89]. Doing so
has the potential for reducing the overall synchronization latency, though we do not expect
thisto give either of the architectures alarger benefit than the others.

74

misra

CACHE, 32_wu_aw_pre
NUMA | .
MSG_32 ! !

‘5 CACHE_32_WU_aN _pre

o | NUMA .

§ 'MSG_32

Q 'CACHE_32_wu_aw_pre | [getfsend latencies
= NUMA f f I cast/reduce latencies
(o)) : : ‘ ‘ ‘

"MSG_32

: = synchronization laténcies
CACHE_32 wu_aw_pre : : :

% NUMA ' '
€ s MSG 32 : :
2 CACHE. 32 wu_aw_pre ; 3 3 3
= NUMA 3 3 3 3 3 3
w MSG_32 3 3 3 3 3 1
CACHE_32 wu_aw_pre
% NUMA
o] MSG_32 :
T T T T T T T T I T I T T
0 20 40 60 80 100 120 140
message round-trips (x1000)

Figure 5.20: Contribution of traffic categories.

5.6.6 Contribution of Traffic Categories

To summarize the results from the previous sections, we see that the CACHE+ model
generally incurs higher communication latency than the MSG model; the NUMA model’s
performanceliesbetween thetwo. Theincrease can betraced to two fundamental drawbacks
of the cache-coherent shared-memory architecture:

¢ Incases where the communication pattern isknown, such asin fanin/fanout trees, the
MSG and NUMA modelsallow the compiler to carefully coordinate the movement of
data between nodes to provide the best feasible match. 1n the CACHE model, thisis
not possible — most cache coherence mechanisms are oblivious to the application’s
communication patterns, and even adaptive protocols [Carter et a. 91, Stenstrom
et al. 93] may take some time to recognize a pattern; there is generally no way for
the application to inform the hardware ahead of time of an upcoming communication
pattern. Moreover, adaptive protocol shaveto basetheir decisionson observed sharing
patterns, they cannot exploit a priori knowledge about the application program.

75

CACHE_32 _dash_ wu .

CACHE_ 32 wu
CACHE_32_dash aw
CACHE_32_aw !
CACHE_32_dash_wu_aw
CACHE 32 wu_aw

jacobi

CACHE 32 _dash wu

CACHE_32 wu
|CACHE_32_dash_aw
'CACHE_32_aw
CACHE_32_dash_wu_aw : :
CACHE_32 wu_aw . : :
CACHE_32_dash wu [get/send latencies
CACHE_ 32 wu | I beast/reduce |atencies
'CACHE_32_dash_aw . E synchronization latencies

‘CACHE_32_aw

CACHE_32 dash wu_aw :
CACHE_32_wu_aw ‘

CACHE_32 dash wu'
CACHE 32 wu !

matrix

= CACHE_32 dash_aw
oS CACHE_32 aw
E CACHE_32_dash wu'aw
CACHE_32 wu_aw
R D D D D
0 50 100 150 200 250 300
message round-trips (x1000)

Figure5.21: Broadcast versus point-to-point | nterconnect.

e Another fundamental difference between the cache-coherent shared-memory and
message-passing architectures is that to move data from one node to another, a
message-passing machine can simply send a message to the destination, whereas
on a shared-memory machine, the destination node needs to request the data from
the source node. This approach inherently incurs higher latency — for example, a
network round-trip as opposed to a one-way trip.

Figure5.20 showsthelatency contribution of the different C* traffic categories. Overall,
the CACHE+ model, despite its many (and expensive) latency-hiding hardware enhance-
ments described in Section 5.6.2, incurs more communi cation latency than the M SG model;
results for the NUMA architecture lie in between CACHE+ and MSG.

5.6.7 Broadcast versus Point-to-Point | nterconnect

In this section, we briefly compare the cache-coherent model based on the KSR and the
one based on the DASH. Figure 5.21 shows that on some benchmarks (e.g., shallow), the

76

DASH model performs better than the KSR model. This is somewhat surprising, since
remote accesses in the DASH model may require up to three network hops if the desired
data is not present at the home node. However, in the KSR model al communication
involves at least one network round-trip, as the KSR’s network is aring, and the coherency
protocol relies on the ring's broadcast capability. On the DASH model, a given cache
line's home node can, under certain circumstances, start awrite operation to that cache line
without having to wait for invalidations to complete. Due to the good data partitioning in
our benchmarks, this case occurs relatively frequently, which can give the DASH model a
dight advantage.

This is only a minor difference between the models, and it fades as more latency
hiding techniques are employed. Note, however, that messages in DASH are point-to-
point, whereas they must be broadcast in the KSR model. For a given size machine, and
assuming equal technology parameters for the interconnect, one would expect message
round-trip latencies to be lower in the DASH.

5.7 Related Work

Several studies have examined the performanceimpact of shared-memory versus message-
passing programming styles, e.g. [Lin & Snyder 90] and [Ngo & Snyder 92]. Their
experiments, performed on different shared-memory machines, show that frequently the
message-passing version of aprogram outperformsthe shared-memory version, dueto better
locality. Similar research comparing the performance of shared-memory and message-
passing implementations of a standard cell router was performed by [Martonos & Gupta
89]. Thisstudy, too, focused on the programming style, not onthe architectural mechanisms.

In[Kranz et a. 93], the authors argue that traditional shared-memory machines suffer
from the limitations of shared memory as the only communication mechanism available.
They identify several scenarios where a compiler or programmer could implement opera-
tions more cheaply through message passing than through shared memory. By selectively
using messages rather than shared memory for some communication operations, they
achieved significant performance gains for runtime system primitives and one application.
The results of the experiments are expressed in terms of execution time on the Alewife,
and are therefore somewhat specific to that implementation, though their conclusions agree
with ours.

A related approach [Frank & Vernon 93] integrates message passing and shared memory

77

by introducing a new cache line state, possibly-stale, into a conventional cache coherence
protocol. The proposed architecture permits data to be moved between nodes without
the overhead of cache coherence operations. At the same time, caches are kept coherent
to provide a traditional shared memory model. The current studies do not yet include
guantitative results.

There adso is alarge body of work aimed at improving the performance of the cache-
coherent shared-memory architecture without changing the programming model. For
example, researchers have studied adaptive or user/compiler selectable cache coherence
mechanisms that use different coherency protocols for different sharing patterns [Carter
eta. 91, Bennett et a. 92, Stenstrom et al. 93].

Oneway of combining synchronization and data transfer in the framework of a shared-
memory architectureisthrough the use of full/empty bits on memory words[Agarwal et al.
91, Alverson et a. 90], though we would argue that this approach can be very costly, and
certainly is overkill for the needs of the C* compiler.

Performance of fanin/fanout tree operations can of course be improved dramatically by
providing dedicated hardware, even dedicated networks, as is done on the CM-5 [TMC
91b]. However, we know of no shared-memory machine that incorporates such hardware.

58 Summary

We have compiled a suite of scientific C* applications for message-passing, NUMA and
cache-coherent architectures. We have simulated execution of the benchmarks and the
respective architectures and measured technol ogy-independent information about intercon-
nect traffic and latency. These measurements permit evaluation of the underlying costs
inherent in each of the three communication architectures. Most of our observations on
traffic and communication latency can be traced back to a small number of fundamental
differences between the architectures:

e Messages in a message-passing architecture carry data and synchronization infor-
mation due to the fact that both sender and receiver can be explicitly involved in
the communication operation. In contrast, messages inaNUMA or shared-memory
model only carry data, therefore, those machines may have to synchronize explicitly
where needed.

78

¢ In cache-coherent shared-memory architectures, data moves through the system ac-

cording to a (fixed) cache coherency protocol, which isobliviousto the application’s
sharing pattern. For example, write-invalidate protocols perform badly on synchro-
nization operations. Even adaptive protocols [Carter et al. 91, Stenstrom et al. 93]
may take some time to recognize a pattern; there is generally no way for the appli-
cation to inform the hardware ahead of time of an upcoming communication pattern.
Moreover, adaptive protocols can misinterpret sharing patterns and make suboptimal
decisions that a compiler could avoid.

e To move data from one node to another, the message-passing and remote-memory

architectures can smply send the data to its destination, whereas in most cache-
coherent architectures, the destination model needs to request the data from the
source node. This approach inherently incurs higher latency (anetwork round-trip as
opposed to aone-way trip).

Message-passing machines can generally send data in whatever granularity is re-
quired by the application, whereas most current cache-coherent machines transfer
data in units of cache lines. Especially for synchronization operations, where the
“information” content of a message is theoreticaly a single bit, this can lead to
inefficient use of the interconnect.

In particular, our experiments have shown that

e The cache-coherent models rely on spatia and temporal locality to amortize costs

of the cache-coherence protocol, such as data migration or invalidation messages.
Many scientific applications, especially ones employing iterative algorithms, do not
exhibit much temporal locality, asal or most of the application’sdata set isrewritten
on each iteration of the algorithm. A common example of a communication pattern
that exhibits neither spatial nor temporal locality occurs when two nodes synchronize
through memory operations. Again, cache-coherent models will perform badly.

e When imperfect data layout results in only part of a cache line being touched,

bandwidth is wasted due to the fact that cache-coherent machines transfer data in
units of entire cache lines. Unless datais rearranged dynamically (i.e., at the cost of
copying), such situations cannot always be avoided.

79

e Message-passing architecturesbenefit greatly from being ableto exploit synchroniza-
tion implicit in the arrival of amessage. Significant amounts of traffic are generated
in the other models in order to effect synchronization explicitly. Thisis exacerbated
by the above observation that synchronization operations exhibit no locality.

e The cache-coherent architecture incurs more network round-trip latencies than the
other two architectures. Moreover, it requires hardware additions such as support
for prefetching, selective write-update, asynchronous write propagation or relaxed
memory consistency to approach performance of the message-passing architecture.
The latter can use asynchronous messages as a latency hiding technique, without
requiring extra hardware.

e For the benchmarks examined, the NUMA model suffersprimarily from its “narrow
path” to the interconnect, which often requires more control information to be sent
over theinterconnect. For regular traffic and tree-based algorithms, the NUMA model
has an advantage over the cache-coherent model in that it affords the programmer or
compiler much better control over data movement.

Although measurements of interconnect bandwidth consumed, number of messages
sent and amount of network latencies incurred do not by themselves trandate directly into
performancefigures, they are akey factor, and al so point out some strengths and weaknesses
of the architectures. Given technology-specific parameters such as message startup cost,
bandwidth avail able, etc., we can derive afirst approximation of actual communication cost
from our measurements. Our results should therefore be considered more of a guideline
for determining architectural tradeoffsrather than a direct indicator of which of the models
is“best.”

That said, we have demonstrated that for important regular and synchronization-
intensive sharing patterns, there is a significant gap between the cache-coherent and
message-passing architectures. To close this gap, cache-coherent architectures should
be augmented with mechanisms that address the specific weaknesses describe above.

The Alewife machine's approach of providing both a shared-memory and a low-level
message-passing interfaceto theinterconnect may be apossible solution. Other approaches,
such as user-sel ectable coherence protocolss, fine-grain data transfer mechanisms, dedicated
synchronization networks, or full/empty bits should be considered as well. As we have
seen, hardware support for prefetching, asynchronous propagation of writes, or relaxed

80

memory consistency all help hide communication latencies. We discuss the approach of
augmenting shared-memory machinesin more detail in our section on future work.

However, note that most of these enhancements add significantly to the already high
hardware cost and complexity of the shared-memory architecture. In comparison, the
message-passing architecture achieves its advantages with minima communication hard-
ware.

The NUMA architecture suffers primarily from being limited to transferring at most
one word per request. An efficient block transfer mechanism is essential for competitive
performance (as was already noted in [Cox & Fowler 89]).

Chapter 6

IMPROVING MESSAGE-PASSING

The previous chapter has focused on the amount of interconnect traffic generated by
the different architectures. In this chapter, we study a different metric, namely the CPU
overhead required to send a message. Communication-related CPU overhead affects per-
formance in two ways. First, as CPU overhead increases, so does the communication
latency as seen by the application program. Second, the more time the CPU spends on
communication, the less time it can spend on useful computation.

Clearly, CPU overhead is aready minimal in shared-memory and NUMA architectures,
since the CPU need only reference remote data using conventional 1oad or store instruc-
tions. The NI hardware performs all the communication work and (assuming nonblocking
caches) the CPU can proceed with loca computations while the communication is in
progress. In contrast, CPU overhead is very high in traditional message-passing machines,
often over an order of magnitude higher than the interconnect latency [Felten 93b].

However, we have seen in the previous chapter that the message-passing model has
many desirable features. Our goal in this chapter is to design a network interface for
distributed-memory architectures that achieves low CPU overhead comparable to shared-
memory machines, while at the same time retaining the advantages of the message-passing
architecture that we have demonstrated in the previous chapter.

We use alanguage-oriented design approach. We first identify asmall set of low-level
communication and synchronization primitives that are well matched to the needs of C*
(and, we argue, other data-parallel languages as well). We then design a network interface
that implements these primitives efficiently and with minimal CPU overhead. Our network
interface is derived from a conventional message-passing interface, and includes hardware
for remote read/write requests plus counter-based synchronization support.

This chapter is organized as follows. In Section 6.1, we briefly review the sources of
CPU overhead intraditional message-passing hardwareand software. Section 6.2 describes
the design of atraditional message-passing network interface; we show how to implement
the C* communication primitives on that hardware base, and we discuss the disadvantages

82

of the design. In Section 6.3, we present our improved network interface design. We
describe the implementation of C* communication on the new NI design, and show how
the new design addresses the drawbacks of the conventional interface. In Section 6.4, we
describe our experimental methodology for comparing the two designs. Our simulation
results in Section 6.5 show the effectiveness of our new design at reducing per-message
CPU overhead. We discuss related work in Section 6.6 and give a summary of this chapter
in Section 6.7.

6.1 Problemsof Traditional Message Passing

Asmentioned above, traditiona message-passing systemsincur significant communication-
related CPU overheads. A study by Felten of several scientific message-passing applications
running on an iPSC/860 under NX/2 showed that these programs spend between 20% to
70% communicating, and an average of 33% of that time is communication overhead
[Felten 933]. Clearly, communication overhead can dramatically degrade the performance
of parallel programs.

We distinguish two types of CPU overhead, protocol and NI management overhead.
The former isaresult of the semantics of message-passing; it islargely independent of the
design of the NI hardware. NI management overhead encompasses all work that the CPU
must do in order to interface with the NI, and hence is highly dependent on how the NI is
designed. We briefly review both kinds of CPU overhead.

6.1.1 Protocol Overhead

Protocol overhead is an inevitable result of any form on inter-node communication [Felten
93a]. For example, nodes executing a parallel program must synchronize their actionsin
order to avoid race conditions; following [Felten 93a], we consider the associated work a
form of protocol overhead. A major source of CPU overhead in traditional message-passing
librariesis due to buffer management: receiving nodes must dynamically allocate buffer
gpace for messages that arrive before the receiver has issued a matching msg_recv call.
Sincethe available buffer space isfinite, the nodes must execute a protocol which manages
the buffers, in order to avoid deadlock. Between buffer management and other overheads
dueto therich semanticsof most message-passing libraries(e.g., message matching, implicit
synchronization, etc.), the CPU overhead can be significant.

83

Felten [Felten 93a] has proposed a compiler-based approach for reducing the protocol
overhead in data-parallel programs. The compiler analyzes the source program (which
makes conventional message-passing calls) and extracts information about the program’s
communication pattern. The compiler then creates a custom message-passing protocol that
givestheuser theillusion of traditional message-passing semantics, yet reducesthe protocol
overhead by exploiting the program-specific information previoudly extracted.

As outlined in section 4.1.3, our compiler uses a different approach to reduce the
protocol overhead. Instead of generating code for a message-passing communication
model, it compiles code for a remote memory access model which does not require any
buffer management. Our run-timelibrariesfor distributed-memory architecturesimplement
the C* communication primitives using active messages [von Eicken et a. 92], a very
lightweight data transport mechanism. The residual protocol overhead exists in the form
of synchronization between nodes, though as long as synchronization and datatransfer can
be combined in the same operation, thisis a very low overhead.! Our approach is more
ad-hoc than Felten’s, yet it is very effective.

6.1.2 NI Management Overhead

Even if all protocol overhead were removed, one source of CPU overhead remains. the
CPU and NI must exchange information in order to coordinate their actions. Traditionally,
the NI isa passive device and, aswe shall seein the next section, the CPU incurs significant
overhead in managing that device. This generaly involves reading and writing data and
control words from and into memory-mapped NI registers, moving data between memory
andthe NI, fieldinginterrupts, etc. Since our compiler largely eliminates protocol overhead,
the NI management overhead becomes more important.

In older message-passing machines, such asthelntel Delta[lntel 91b], only theoperating
system can access the NI. With such a design, most message-passing operations therefore
incur the additional cost of a system call [Anderson et al. 91]. More modern machines,
such as the CM-5 [TMC 91b], use a network interface that can be safely accessed from
user-mode. We assume that all network interfaces used in our study have this property as
well.

Note that unlike protocol overhead, the amount of NI management overhead is highly

! The amount of synchronization is guaranteed to be no more than what a shared-memory or NUMA
architecture would require.

dependent on the details of the NI design. Also, software techniques alone cannot reduce
the NI management overhead; we must also change the design of the NI.

6.2 Traditional Network Interface Design

To make the discussion of NI management overhead more concrete, we describe how
to implement the C* communication primitives on a traditional NI. Figure 6.1 shows a
traditional design for a message-passing architecture; machines like the Intel Delta [Intel
91b] or Thinking Machines CM-5 [TMC 91b] use this basic network interface design.

TheNI itself consists of little morethan two FIFOs (oneto receive datafrom the network
and oneto hold datathat isto beinjected into the network) and ssmple control circuitry. The
NI isaccessible through aset of NI registersthat are mapped into the CPU’ s address space.
For example, the CPU can read successive words from the receive FIFO by reading one of
the NI registers, or start composing a message by writing message header information into
another register. Other registers may provide NI status information to the CPU, such asthe
space left in the send FIFO, or the number or words waiting in the receive FIFO.

The NI is a passive device; all movement of data to and from the CPU or the node's
memory is initiated by the CPU. For example, to send a message, the CPU deposits the
message header in one NI register and the message body in another NI register. The CPU
must also check a NI status register to determine how much space is left in the send FIFO,
and whether the last message was injected successfully. If the network imposes an upper
limit on the size of a packet in the network, the CPU must also packetize large messages,
i.e., split them into individual packets and send those one at atime.

To receive a message, the CPU extracts the message header from the receive FIFO,
interpretsthe header to determine how the message isto be processed, and thenretrievesthe
message body itself. Note that until the CPU starts emptying the receive FIFO, incoming
data just accumulates there. To prevent traffic from backing up in the network, the NI
typically interrupts the CPU when the receive FIFO fills up (or is about to fill up). The NI
may also provide a mechanism to interrupt the CPU whenever a message with a specified
tag arrives. The run-time system can use such a facility to force the CPU to receive and
process a message immediately rather than waiting for the next time the receive FIFO fills
up.

Some machines, such astheiPSC/2 [Arlauskas 88], include DMA hardwareto facilitate
transferring databetween memory and the NI. However, the CPU must still initiateall DMA

85

memory CPU

network interface

Figure6.1: A generic message-passing network interface.

transfers. More precisely, to send a message, the CPU first creates and injects the message
header, then it instructs the DMA to move the message body from memory into the NI's
send FIFO. If the message is larger than the network’s maximum packet size, the CPU
also packetizes the message and initiates the DMA transfer for each packet. To receive
a message, the CPU must at least extract enough information from the receive FIFO in
order to start the DMA transfer, again for each packet. Thisis because messages are avery
general communication mechanism; smple DMA hardware cannot decide what actions to
take for a given incoming packet. Therefore, the CPU needs to actively participate in the
sending and receiving of each network packet. We can see that smple DMA hardware
cannot eliminate all CPU overhead; in fact, DMA hardwareis not very attractive when the
network’s packet size is small, since the CPU overhead is proportional to the number of
packets sent and received.

We now discuss how the C* communication primitives can be implemented on such an
interface. Several of the primitivesdescribed bel ow useafanin/fanout tree of nodes; thistree
structure isimposed logically, and need not be represented physically in the interconnect.

Recall that our compiler generates code for a remote memory access model of com-
munication. Almost all communication thereforeis expressed interms of read and write
messages that access memory on remote nodes.

e send The sending processor injects a write message that contains data and a
destination address on the remote processor. The CPU on the receiving node extracts
the message from the FIFO, examines the header and moves the data from the FIFO
into memory. If the size of the message exceeds the network’s maximum packet size,

86

the CPU must split the message into smaller packets and send each of the packets
Separately.

get The reguesting processor injects a read message that contains the address of
the desired data and alocal address wherethe result isto be stored. On the receiving
node, the CPU extracts the message from the FIFO, examines the header, reads the
memory, and injects awrite messagein reply.

combining send The sending processor injects a message containing the data and
information describing the desired combining operation. Note that the combining
operation is executed by the receiving node; since the node processes one message at
atime, thisautomatically serializes multiple combining operations.

broadcast The node owning the data to be broadcast first sends the data to the
root of the fanout tree. Then, starting at the root, each node forwards the message
to its children. To reduce the overal latency of the broadcast operation, the arrival
of a broadcast message generates an interrupt that causes the CPU to forward the
message immediately instead of waiting until the next time the receive FIFO fills up.
Our implementation of broadcast generates a total of p interrupts in a system of
p processors. |If the network supports broadcasts directly, no interrupts are needed
to speed up forwarding, but each CPU must still extract the message from the NI's
receive FIFO. Note that message-passing alows us to combine data transfer and
synchronization: when anode receives datafrom its parent, it can also set aflag that
indicates that fact to the application program.

reduce Each node in the fanin-tree sends a contribution to its parent node. Once
the parent has received datafrom al of its children, it computesthe local sum andin
turn sendsit to its parent. When the reduction is complete, the root of the fanout tree
initiates abroadcast of the final result. Again, the run-time library uses interrupts
to minimize the overall latency of the reduction phase; a reduction requires a tota
of p interruptsin a system of p processors, plus another p interruptsto broadcast the
result.

barrier Barriersareimplemented like reductions, but since barriersonly occur at
the end of compute phases where the CPU has no other work to do, the nodes can

87

poll for the barrier messages and thus avoid interrupts.

Recall that our compiler has aready eliminated most of the overhead present in tradi-
tional message-passing libraries. Our run-time libraries use active messages [von Eicken
et al. 92] to implement the remote read and write operations; they do not need to perform
any buffer management.

With most protocol overhead eliminated, asignificant amount of CPU overhead remains,
namely the NI management overhead discussed earlier. Aswe have seen, the CPU hasto
actively participate in the sending and receipt of all messages. Specificaly, it must send
data and control information to the NI, read data and status information from the NI and
move the data in message bodies to and from main memory. Since message receipt is
inherently asynchronous, the CPU incurs an interrupt every time the receive FIFO fills up,
or amessage requiring immediate processing arrives. Alternatively, the CPU may poll for
incoming messages, but this can also consume significant amounts of CPU time.

Asynchronousmessagesare another source of CPU overhead. Weoverlap asynchronous
read and write messages with computation in order to hide network latencies. The run-
time system must keep track of all pending asynchronousrequests so it can determinewhen
they have completed. For example, the program may transfer data from a remote node to
local memory by issuing a series of asynchronous read requests — the local copy must not
be accessed until al replies have been received. Similarly, to preserve inter-processor data
dependencies, nodes may not enter abarrier until all of their messages have been delivered.
Therefore, the CPU must keep a count of all outstanding asynchronous messages and also
send acknowledgements for asynchronous write messages.

In summary, we find that the CPU performs a significant amount of work for every
network packet sent and received. For example, the CPU sends dataand control information
to the NI, reads data and status information from the NI, moves data to and from main
memory and handles interrupts from the NI. Simple DMA hardware cannot completely
eliminate this overhead, since the CPU must still process the header of each network
packet, and explicitly initiate the DMA transfer for each packet.

As our experiments in Section 6.5 will show, relying on the CPU to perform al of
these operations can result in significant overhead. This is particularly noticeable when
the compiler has already eliminated the protocol overhead of traditional message-passing
libraries.

88

6.3 New Network Interface Design

In this section, we present a design that significantly reduces the CPU overhead for man-
aging the NI. The key insight is that the compiler uses only a small set of well-defined
communication primitives. almost all datatransfer occurs through remoteread andwrite
operations and almost al synchronization involves counting messages. Our NI design is
language-oriented, i.e., it istuned to efficiently execute the most common operations with-
out CPU intervention. We derive our design from atraditional message-passing interfaceby
adding hardware support for remote read and write operations, and for message counting.
The new NI retains all the advantages of the MSG model studied in the previous chapter;
the only differenceis that the per-message CPU overhead is much lower.

Wefirst present thedetail s of our design and then demonstrate how it efficiently supports
the C* communication primitives. Figure 6.2 shows our language-oriented network inter-
face design. The NI has direct access to the node’s memory, and handles read and write
messages in hardware. This includes sending acknowledgement messages for writes, if
requested by the application. Since the application program can only specify virtual ad-
dresses in read/write messages, atrandation lookaside buffer (TLB) in the NI trandates
and checks al of the NI's memory accesses. When a TLB miss occurs, the NI interrupts
the CPU, which can then supply a valid mapping or signal an error. The TLB is entirely
under software control by the CPU, and the CPU must keep it consistent with itsown virtual
memory maps. However, since each NI TLB only maps data local to its node, we need not
keep TLBs consistent across nodes.

The NI contains two banks of counters that are used for various synchronization oper-
ations. The CPU can read and write the counters and the NI can increment or decrement
them as messages are sent and received; bits in the message header can specify a counter
number and a counter operation. Another bit in the header controls whether the NI should
interrupt the CPU when the counter reaches zero. The remote countersareintended to count
messages arriving from other nodes, whereasthelocal counters keep track of pending asyn-
chronous messages originated from the local node. The compiler uses register-allocation
techniques to assign counters to communication operations.

For exampl e, to implement acommunication patternwhere each nodereceivesfour mes-
sages from other nodes, the compiler alocates one remote counter for the communication
operation and initializes it to the value 4. All messages sent as part of the communication
operation specify that the NI should decrement that counter upon receipt. When a node’'s

89

1 receive FIFO buffer
N — =—— from net
memory
—{ local counters }—
B E— -
| 5
: —{ remote counters }— g
o
CPU
| LB] buffer

network interface

Figure 6.2: Language-oriented network interface.

counter reaches zero, thisindicates that all expected messages have been received, and the
communication operation is complete. Our run-time libraries use the same approach in all
fanin/fanout tree operations, and our compiler could use it to combine C* data transfers
with synchronization operationsin order to reduce network traffic.

Thelocal counters are designed to be used in conjunction with asynchronous messages.
For example, whentransferring datato aremote node using asynchronouswrite operations,
the compiler allocates alocal counter for the transfer. Each time the node sendsawrite
message, the NI increments the counter. The NI decrements the counter when it receives
an acknowledgement message from the remote node. When the counter reaches zero, this
indicates that all writes have been received by the remote node.

Finaly, atraditional receive FIFO provides message passing functionality as an escape
mechanism for operations that do not fit well into a remote memory access model. Small
buffers provide some amount of decoupling of the interface from the network.

C* on Improved Hardware

We now describe the implementation of the C* communication primitives on our improved
hardware.

90

e send The sending CPU packetizes the write message, and injects the packets,

including their headers, into the network. At the receiving node, the NI interpretsthe
message header and stores the message body at the address indicated in the message
header. For asynchronous operations, the message header specifies alocal counter
that the NI increments as the message is sent, and that it decrements when it receives
an acknowledgement.

get The requesting CPU injects a read message that contains the address of the
desired data and a local address where the result is to be stored. On the receiving
node, the NI receives the message, reads the requested memory area and creates and
injectsawrite message in reply. The NI at the requesting node handlesthe write
message. Likefor send operations, the CPU can specify alocal counter, so the CPU
can detect when a series of asynchronous get operations has completed. We require
the requesting CPU to perform packetization, i.e., it has to split large requests into
separate requests such that the response fits into a single network packet. This way,
the NI need not perform packetization when replying to read requests. We later
study a version of the NI that can perform packetization as well.

combining send To implement this operation using remote read and write op-
erations, the run-time library would have to use locks to ensure that combining
operations from different processors are properly seridlized. Instead, we fall back
on the message-passing implementation described in Section 6.2, which naturally
provides serialization at the receiving node.

broadcast Weimplement datatransfer for abroadcast intermsof write messages;
the compiler ensuresthat the destination of the broadcast islocated at the same virtual
address on each node. The compiler also allocates aremote counter and initializes it
to “1”; the NI interrupts the CPU when the counter reaches zero (i.e., when the data
from the parent node has arrived) and the CPU forwardsthe datato the children. This
is only a dight improvement over the traditional NI design, but when the network
has broadcast capabilities (i.e., the nodes need not forward data to their children),
our design can perform the C* broadcast without any CPU intervention. With a
traditional network interface, the CPU must at |east extract and examine the message
header, set a flag to indicate the message arrival, and initiate DMA to store the

91

message body in memory.

e reduce Forak-ary fanintree, the compiler preallocates & + 1 memory locationson
each non-leaf node in the fanin treein order to hold the contributions from the node
itself and the £ children. The compiler also allocates aremote counter and initializes
it to the value & + 1. Every time data arrives from a child, the NI decrements the
counter. For the local contribution, the node’s CPU itself decrements the counter.
Once the counter reaches zero, the NI interrupts the CPU, which can then perform
the local reduction step and send the result to the parent node. On the traditional
hardware, each non-leaf CPU isinterrupted & times, whereas our design only requires
asingle interrupt. In the case where the CPU makes the local contribution after all
the children’s contributions have arrived, the CPU can even avoid interruptsentirely.

The remote counter scheme as described above requires nodes to initialize the re-
mote counters before any other node can send a message using that counter. A purely
compiler-based solution must therefore initialize all counters in the preceding compute
phase. However, each phase may have several control flow predecessors and/or successors,
with possibly different uses of the counters in each. To prevent conflicts, the compiler
would either have to use more countersor el se insert additional synchronization operations.
Instead, we alow the message header to specify, along with a remote counter number, an
initial valuefor that counter. If the counter’svalueis still zero upon message receipt, then it
is loaded with the value from the message. Thisway, nodes can initialize aremote counter
during the phase in which it is used: al messages will include the initial value, but only
the first to arrive will actually be used to initialize the counter. Thistechnique allows usto
get by with only afew remote counters — none of our ssmulations requires more than 16
remote counters.

We can a so use remote synchronization counters to perform synchronization at the end
of acompute phase. When nodes can determine a priori the number of messages they are
to receive in a given phase, the compiler can allocate a remote counter to detect when all
messages have been received. The compiler can then replace the barrier at the end of the
phase with atest of the remote counter.

92

Network Considerations

Our decision to provide node-to-node remote memory access while allowing arbitrary
numbers of outstanding asynchronous messages complicates the issue of deadlock in the
network. In our design, we avoid deadlock by classifying messages into requests and
replies. Replies can alwaysbe sunk, i.e., the NI can consume them immediately, regardless
of how congested the network is or what other resources are currently in use. We assume
that the network provides two separate (virtual or physical) channels, by using one for
requests and the other for replies we prevent cycles and hence deadlock. This approach to
deadlock avoidance is similar to the one used in the DASH [Lenoski et al. 92] and FLASH
[Kuskin et a. 94] multiprocessors.

An interesting property of our design isthat it can be readily used with a network that
delivers messages out of order. Our compilation strategy guarantees that messages need
only be ordered with respect to the synchronization points. Therefore, read and write
messages sent within the same phase can be processed in any order.

Faster Message Injection

The CPU injects a message into the network by storing the message header and body into
aset of NI control registers that are mapped into user space. For example, our NI requires
three control words for a write message, one more than the traditional design. Both
designs require additional work for packetization, for constructing the control words, and
for checking whether the NI has successfully sent the message.

We can reducethe cost of message injectionin several ways. First, we can add hardware
to the NI that can send large messages directly out of the node’s memory. The CPU only
indicatesthe start addressand si ze of the message, and theNI performsall memory readsand
takes care of packetization. Second, the compiler can usually precompute the bit patterns
for some of the control words. Even when some fields are not known at compile-time, the
compiler can precompute a header template, such that fewer fields need to be filled in at
runtime. Third, we expect programs to send sequences of messages with the same type
and options; the NI can provide a way to initialize the type and option word once, and
send several messages using that control word. Finally, by using extra mapping hardware
as on the Cray T3D [MacDonald & Barrusio 94] or Typhoon [Reinhardt et al. 94] we can
implement NUMA-style access to remote memory though conventional 1oad and store
instructions.

93

6.4 Experimental Methodology

We evaluate severa variants of the two base architectures. The “traditiona” NI design is
the one shown in Figure 6.1 on page 85. In our smulations, the FIFO can receive 4 KB of
messages before interrupting the CPU .2

send | send | recv | recv
model header | body || header | body || packetize | broadcast

OLD CPU | CPU | CPU | CPU CPU -

NEW CPU | CPU NI NI CPU -
OLD+bcast CPU | CPU | CPU | CPU CPU yes
NEW+bcast CPU | CPU NI NI CPU yes
OLD+bcast+dma || CPU NI CPU NI NI yes
NEW+bcast+dma | CPU NI NI NI NI yes

Figure 6.3: Architectural models evaluated.

I mplementation details of our language-oriented NI design are asfollows. The TLB in
the NI is fully associative with 64 entries; each entry maps a 4 KB page. The size of the
receive FIFO is 512 bytes — since the FIFO is an escape mechanism, we expect to use it
less than in the old design, so it can be smaller. Note that in this baseline model, the CPU
must still perform packetization and inject the packet headers for get and send operations.
For send operations, the CPU must also inject the message body itself.

We also evaluate severa variations of the two base architectures by adding hardware
support for broadcast and DMA capabilitiesto the NI. With anetwork that directly supports
broadcasting, nodes need no longer forward broadcast data to their children, and the
CPU does not incur an interrupt. In the designs with DMA support, we assume that
the NI can send directly from the node’'s memory and packetize messages as required by
the network. When recelving messages through the old NI the CPU must still examine
each packet’s header before it can initiate the DMA transfer. All the models studied use
small (32-byte) network packets; we discuss the effect of larger packets in section 6.5.5.
Table 6.3 summarizes the different architectural models, the columns indicate whether

2 By way of comparison, the receive FIFO on the Intel Deltais2 KB in size.

94

CPU or NI/DMA areresponsible for sending and receiving packet headers and bodies, and
whether the interconnect provides broadcasting.

Asinthe previous chapter, we instrument the machine-specific communication libraries
to capture the communication performed by the CPU in each of the the aternative network
architectures. We gather statistics by executing the benchmarks on the KSR-1; we drive
several simulation models at once to amortize the cost of program execution. For each ar-
chitectural model, the instrumentation codein therun-timelibrariescomputesthefollowing
metrics:

e Number of packets sent and received by the CPU
¢ Amount of data exchanged between CPU and NI
¢ Communication-related memory references by the CPU

e Number of communication interruptsincurred by the CPU.

These metrics summarize the CPU’s communication overhead in alargely implementation-
independent manner; given machine-specific timing information we can derive cycle counts
from these measurements.

95

© NEVY :]cont(ol bytes sent © _I NEVY ‘:]ge\‘zjsend :

%’ o [detabytes sent : %’ oD bossthedcalbar
control bytes received : sendCombine
| st | e

— NEW ‘ - NEW ‘ ‘ ‘

S : ‘ ‘ : S : :

8 NN o= 8

x NEW x NEW

: -

00 05 10 15 20 25 00 05 10 15 20 25
CPU-NI trafficin MB CPU-NI trafficin MB
(a) by traffic class (b) by message type
Figure 6.4: Total traffic between CPU and NI.
6.5 Results

In this section, we present the results of our smulations. As discussed in the previous
section, we measure communication-related work performed by the CPU. We show graphs
for the matrix, jacobi and misra benchmarks running on 8 nodes. Unless indicated in
the text, our findings are qualitatively the same for the other benchmarks, and likewise for
execution on up to 64 nodes.

6.5.1 Traffic between CPU and NI

Figure 6.4a shows the amount of data, including message headers and NI commands,
exchanged between the CPU and the NI. Figure 6.4b shows a breakdown of the traffic by
language-level messagetypes. Sincethenew NI handlesall read and write messages, the
CPU need not receive and processthese, aswe can seeinin Figure6.4a. In all benchmarks,
this effect alone reduces traffic between CPU and NI in the new design to about half that of
the old design. In jacobi, which uses mainly get operations, the differenceis even larger
since in the new design, the NI also sends the repliesto the get requests; in the old design
this must be done by the CPU. On average, our improved design reduces traffic between
CPU and NI by 50% to 75% compared to the old NI design.

96

["] get/send

[packets sent [beast/redcefbarr
I packets received sendCombine

© NEW ‘ ‘ ‘ . I NEW . | == acknowledge

& & Joo

_ NEW _ NEW |

8 — 8 N\

: T o

x x NEW

E E o

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Packets x1000 Packets x1000
(a) by traffic class (b) by message type

Figure 6.5: Number of packets sent and received by CPU.

Figure 6.5a shows the number of packets the CPU receives from or injectsinto the NI.
Thisisan important metric, since the CPU incurs per-packet startup costs, such as checking
for successful message injection or dispatching on message type for message receipt.
The results here parallel those for message traffic — our improved design consistently
outperformsthe traditional hardware by a factor of two to three.

6.5.2 Communication-related Memory Accesses

Figure 6.6 shows the CPU’s communication-related memory traffic. In jacobi, almost al
messages are read requests and write repliesfor get operations. Since the new design
handles these in the NI, the CPU does not need to touch memory at al. In the old design,
the CPUs are responsible both for creating and receiving the reply messages. Therefore,
while the CPUs in the old model must access about 300 KB of memory, virtually no
communication-related memory trafficisrequired in our model. (Theresidual trafficisdue
to reduce operations.)

For matrix, both NI designs need to forward broadcast messages. However, in our
design theincoming datais stored in memory by the NI, whereasin theold design thisisthe
CPU’s responsibility. We later show how these results change when the network directly

97

NEW : : ‘
| [Joevsend
[| bcast/redce/barr
Salddombi né
== bookkeeping|

misra

oLD

jacobi

oLb

NEW

OLD

matrix

T T T T T T T T T T
00 02 04 06 08 10 12 14 16 18 20
CPU-memory trafficin MB

Figure 6.6: CPU memory accesses by message type.

supports broadcasting.

The misra benchmark shows a different source of overhead. Almost all messages are
part of reduction or barrier operations (see Figure 6.5b). Very little datais carried by these
messages, but nodes must count the number of contributionsthey have received from child
nodes. Inour design, the compiler allocates aremote counter and the NI does the counting.
In the old design, the CPU must update a set of counters in memory. This resultsin a
significant overhead, shown under the category of “bookkeeping” in Figure 6.6. Note that
combining send messages are implemented the same way on both models, hence thereis
no differencein memory traffic.

Overal, wefind that in our designthe CPU performssignificantly fewer communication-
related memory accesses than with a traditional NI design — usually about 50% of the
memory traffic of the old design, and as little as 2% for jacobi.

6.5.3 Communication-related Interrupts

Figure 6.7 shows the number of communication-related interrupts incurred by the CPU,
broken down by the reason for the interrupt. A synchronization interrupt occurs when the
sender of amessage requests an interrupt upon message delivery, or when asynchronization
counter reaches zero. Recall that our run-time libraries generate interruptsfor broadcast

98

NEW .

OLD

misra

1 T T T R R B | oo
MW | e
L | e LB

jacobi

oD |

NEW !

oD :

matrix

T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Interrupts

Figure 6.7: Number of CPU interrupts, by reason.

and reduce operations, to reduce the overall latency of the operation. When a memory
access by the NI misses in the TLB, the NI generates a TLB interrupt. Finaly, when the
receive FIFO fillsup, the NI sends a buffer-full interrupt to the CPU.

As mentioned before, all communication in matrix is due to broadcasts. To keep the
latency of broadcasts low, our runtime system ensures that a broadcast message generates
an interrupt on the receiver, such that the recelving node can forward the message to its
children immediately — as opposed to at the end of the current compute phase, or the next
time the receive FIFO fillsup. Our synchronization counters cannot improve performance
here; only direct hardware support for broadcasts eliminates these interrupts.

The jacobi benchmark shows again the advantage of supporting remoteread and write
in hardware. In the old NI, all communication flows through the receive FIFO, which
causes an interrupt whenever the FIFO fills up. This does not happen with the new design,
which storesincoming data directly into memory. jacobi also uses reductions, which can
take advantage of the remote synchronization counters, as discussed below. The new NI
incurs a noticeable number of TLB interrupts, but al of them are due to cold misses, and
their number does not increase for longer running times of the benchmark. 1f theNI’'sTLB
were warm-started, these interrupts would be eliminated. Alternatively, doubling the size
of the pages mapped by the TLB halves the number of cold misses while also increasing

99

the maximum amount of memory the TLB can map at once. Including the TLB interrupts,
the new NI generates about 25% fewer interrupts than the old NI, or 50% fewer interrupts
than the old NI if we do not count cold TLB misses.

Both misra and jacobi make frequent use of reduce operations. As for broadcasts,
the run-timelibraries use interruptsto reduce the overall latency of the reduction operation.
With the old NI, each message from a child to its parent in the reduction tree causes an
interrupt at the parent. This allows the parent to count the contributions and start the local
reduction as soon as all children have sent their contribution. Our new NI uses the remote
synchronization countersto count the children’s contributions and only interrupts the CPU
when all contributions have arrived. Note that in our ssimulations, we use binary reduction
trees; our technique is much more efficient for higher-arity trees. Also, in some cases we
could avoid the interrupt entirely, though we do not exploit this feature in the simulations.
The resultsin the figure therefore show the worst-cast for the improved design. Even under
these conservative assumptions, the use of synchronization counters can reduce the number
of interrupts in reductions or broadcasts by up to 20% compared to the traditional network
interface.

6.5.4 Broadcast and DMA Capabilities

We now present the results for variants of the baseline models that have hardware support
for broadcast and augmented DMA capabilities. Refer back to Figure 6.3 on page 93 for a
quick summary of the different models.

When the network supports broadcast, the nodes do not have to forward data to their
children any more, and the NI does not need to interrupt the CPU. This reduces the number
of messages the CPU hasto inject, and the number of interruptsit has to handle. Note that
the data being broadcast must still be stored in the receiving nodes memory.

We also add DMA capabilities to the old design, and augment our new design’s capa-
bilitiesto match. To send awrite message, the CPU need only pass to the NI the message
header and the start address and size of the datato be sent. The NI reads, packetizes and
sends the data without further intervention by the CPU.

There remains one crucia difference between the old and new NI designs. when
receiving a message, the new NI design interprets the message header and handles read
and write messages without CPU intervention. With the old design the CPU needs to
interpret the message header and initiatethe DMA transfer. Thisisbecause the old NI itself

100

NEW-+bcast+dma, ‘ ‘
: [] control bytes sent
\ OLD+bcast+dma [] daabytessent
: : control bytes received
. . . : : I data bytes received
NEV\{"'bCGSt []DMA command bytes

OLD#hcast

NEW

OLD

00 05 10 15 20 25
CPU-NI trafficin MB

Figure 6.8: CPU-NI traffic with broadcast and DMA, matrix benchmark.

does not handle read and write messages directly. The impact of thisminor differenceis
significant: recall that nodes receive large messages one packet at a time and the CPU on
the receiving node must read and examine the header and initiate DMA transfer for every
packet.

Figure 6.8 shows the control and data traffic between CPU and NI for the different
variations of the old and new NI. A new traffic category, “DMA commands,” represents
the control information the CPU sends to the NI in order to initiate DMA transfers. Only
the old NI design generates such traffic. The matrix benchmark broadcasts large blocks
of data; the resultsfor gauss are similar since it shares the same characteristics.

The basic new design generates about half as much traffic as the old design. Adding
a broadcast-capabl e interconnect reduces the traffic for both designs, since the nodes need
no longer forward broadcast data to their children in the fanout tree. We aso see that the
relative difference between thetwo designshasincreased. Inthenew design, the NI on each
node deposits the incoming broadcast data directly into memory without CPU intervention.
In the old design, the CPUs must still receive the data and store it in memory; the figure
shows that hardware broadcast reduces the number of bytes sent by the CPU, but not the
number of bytes received.

With DMA support the CPUs needs no longer send data to the NI. However, with the
old NI, the CPU mugt still examine the header of every network packet it receives, and

101

NEW+bcast+dma :] get/send ;
00 | boastiredeetbart
OLD+beast+dma 1 | RN seidCombine

Lo [booKkeeping |
w7

OLD#beast

NEW |

OLD

T T T T Tt
00 02 04 06 08 10 12 14 16 18 20
CPU-memory trafficin MB

Figure 6.9: Memory traffic with broadcast and DMA, matrix benchmark.

initiate the DMA transfers. In the new design, thisis handled entirely by the NI. Thefigure
shows that in the new design with broadcast and DMA, the CPU hardly sends any data at
al. In contrast, with the old design the CPUs receive about 500 KB of message headers
and send over 300 KB of commands to the DMA hardware. Note that this overhead is
particularly noticeable with the small packet size we have chosen. Aswe will see later in
Figure 6.11, larger packets aleviate this problem somewhat.

Figure 6.9 shows the CPU’s communication-related memory traffic. As we can see,
the augmented designs perform substantially better than the baseline models. Note the
performance difference between the old and new NI designs when broadcast but not DMA
support isadded — with new NI, the CPU accesses 100 KB of memory comparedto 1.1 MB
with the old NI. The reason for thisis that the new NI handles the receipt of the broadcast
message, whereas with the old NI, every node must receive the broadcast data through
the CPU. Both models perform equally well when both broadcast and DMA support are
available.

Results for the gauss and shallow benchmarks resemble those of the matrix bench-
mark, and we have seen some performance improvement for the misra benchmark. For
jacobi, neither hardware broadcast nor DMA support reduces traffic between the CPU
and memory or the NI. Thisisbecause jacobi transfersdataat a granularity of 8 bytes per
message, which makes DMA unattractive. We later discuss aversion of jacobi that takes

102

nc
NEW-+bcast+dma ¥) NEW-+bcast+dma)
I buffer_full ; : : 1
OLD+hcast+dma =s | OLD-+bcast+dma
NEW-+bcast NEN+bW
OLD+bcast OLD+bcast!

]
NEW — N\ E\\/
]

OLD OLD

0 500 1000 0 100 200 300 400
Interrupts Interrupts

(8) matrix benchmark (b) jacobi benchmark

Figure 6.10: Interruptswith broadcast and DMA.

advantage of large messages.

Figure 6.10 shows how adding broadcast and DMA support affects the number of
communication-related CPU interrupts. In matrix, shown in Figure 6.10a, almost all
interruptsare caused by broadcast operations; implementing broadcasting in the network
completely eliminates these interrupts, with both the new and old NI. Note also that with
DMA (i.e. sending out of memory), the new NI performs a larger fraction of the memory
accesses, which explains why the number of TLB misses increases dightly. On the other
hand, all TLB interrupts shown in the figure are caused by cold misses. Warm-starting the
NI’s TLB would eliminate all TLB interrupts.

In jacobi, shown in Figure 6.10b, broadcasts are used infrequently, to distribute the
result of reductions. Asformatrizx, addingdirect broadcast support €liminatestheinterrupts
for that operation, but adding DMA has no effect. The remaining “synchronization”
interrupts are caused by reduction operations.

6.5.5 Large Packet Szes

We also simulate our benchmarks for a network that supports arbitrarily large messages.
For this experiment, we modified the jacobi benchmark to aggregate the small per-VP
requests into asingle large message. Thisis easy for acompiler, since the communication
pattern in jacobi is static and very regular. Figure 6.11 shows the traffic between CPU

103

[] control bytes sent
[]databytessent
N control byt ived]
NEW-+hcast+DMA ‘ controrbytes récav NEW-+bcast+DMA
: : I data bytes received
Hl OL D+bcast+DMA [___]DMA command bytes OLD+bcast+DMA
| | | | N\
NEW+bcfast NEW-+bcast
OLD+hicast N OLD+hast
NEW NEW
L S AL WL S i i i
0.0 05 1.0 15 20 0.0
CPU-NI trafficin MB CPU-NI trafficin MB
(8) matrix benchmark (b) jacobi benchmark

Figure 6.11: Total traffic between CPU and NI, large packets.

and NI for anetwork using large packets. Asexpected from larger packets, theratio of data
payload to packet header (control) information increases drastically, except in misra (not
shown) which ssimply cannot exploit large packets.

Comparing theresultsin Figure 6.11 to those obtained on anetwork with small packets
(Figure 6.4 on page 95), we find a significant reduction in traffic, for both the old and new
NI designs.

However, the relative difference between the old and new designs is now much higher
than it was for small packets. We conclude that while larger packets improve absolute
performance of all NI designs, the new design can take better advantage of the larger
packets.

6.6 Related Work

Several researchers have proposed software techniques to reduce message-passing over-
head. Active messages [von Eicken et al. 92] are a low-level transport mechanism that
achieves low latency by efficiently dispatching to a message handler on the receiving node.
Felten [Felten 93a] proposes using aprotocol compiler to custom-generate message-passing
protocols for a given program and thus reduce protocol overhead. Neither approach can

104

completely overcome inadequacies of existing network interface hardware.

The Intel Paragon [Intel 91a] uses asecond 1860 microprocessor on each nodeto handle
communication operations. However, the network interfaceisnot accessibleat theuser level
and all communication must pass through the coprocessor. This requires synchronization
between the two processors, which for small messages may be more costly than allowing
either processor to directly access the network interface, as is done on the CM-5 [TMC
91b]. Given that the coprocessor is identical to the compute processor, it may be more
efficient to use it for general computation, performing communication through the kernel
on both processors.

The Shrimp architecture[Blumrich et a. 94] implementsalow-overhead datatransport
mechanism by marking memory pages as “mapped out”; store operations to those pages
cause the written data to be automatically forwarded to the memory of another node. The
mapping, established by the OS kernel, specifies destination node and address. Our work
focuses more specifically on the needs of a paralel compiler, and on the separation of data
transport and synchronization.

[Thekkath et al. 93] propose a remote memory access model instead of traditional
message-passing for streamlining data and control transfer between workstations on a
local area network. Though our approach is similar in nature, our emphasis lies on user-
level communication and compiler support for parallel programming; their emphasisison
distributed applications.

In [Henry & Joerg 92b], the authors propose a network interface design that provides
specia support for 1d [Nikhil 90] programsthat have been compiled to Berkeley’s Threaded
Abstract Machine [Culler et . 91a]. They reduce communication overhead by imple-
menting message dispatching, forwarding and replying in hardware, and by mapping the
network interface into the processor’s general-purpose registers. Compared to our work,
they target a much more fine-grained computation model, yet reach similar conclusions,

The FLASH multiprocessor [Kuskin et al. 94] and Typhoon [Reinhardt et al. 94] use
very flexible network interfaces built around a fully programmable microprocessor core.
While the aim of these architectures is to support shared-memory systems, it should be
possible to implement our communication primitives on their network interfaces. They
would therefore provide an ideal testbed for the communication architecture proposed in
this chapter.

105

6.7 Summary

In the previous chapter, we have seen that message passing architectures do have several
inherent advantages. However, the software cost of sending and receiving datain amessage-
passing machine is generally high, negating any possible performance advantages [Felten
93b].

Our goal is to reduce the overhead of data transfer and synchronization in message-
passing distributed-memory architectures. We leverage off of the assumption that in the
future, fewer programmerswill use message passing primitives directly; instead, programs
will be written in high-level parallel languages or generated from sequential code using
parallelizing compilers. By using a high-level parallel compiler, it is possible to exploit
information about communication patterns and perform at compile-time many of the tasks
traditionally provided by acommunication library. Specifically, the compiler can eliminate
most of the protocol overhead of traditional message-passing libraries [Felten 933].

However, the communication primitivesoffered by traditional message-passing network
interfacesdo not match well the needsof compilers. We have found that implementations of
C* on traditional message-passing hardware require significant CPU overhead for commu-
nication. Specifically, since those network interfaces are typically passive, the CPU must
participate in the receipt of all messages; al communication traffic flows through the CPU.
As message receipt is inherently asynchronous, the CPU must either poll for incoming
messages, or incur interrupts.

We observe that in our benchmarks, nearly all data transfer is done by reading and
writing remote memories. Similarly, nearly all synchronization is performed by counting
messages sent or received. Both of these operations are smple enough to be provided
by the hardware, and the compiler can use them as building blocks to implement C*
communication operations.

Based on these observations, we have proposed an improved network interface design
that supports remote read and write operations in hardware, and provides a set of syn-
chronization counters that the NI manipulates as part of message handling. The user is
given full control over how counters are used by the NI and the compiler can thus combine
data transfer and synchronization where appropriate. The NI counters can also be used to
provide efficient support for asynchronous messages, reducing the amount of bookkeeping
the CPU must do.

Compiler support is essential in order to best make use of our design. For example,

106

register-allocation techniques are used to choose synchronization counters. The compiler
must also infer the destination addresses for remote memory accesses, allocate buffer space,
and insert synchronization operationsin order to preserve inter-node data dependencies.

To compare our language-oriented design against traditional network interfaces, we
simulated the execution of a set of C* benchmarks on both architectures. We measured
the traffic between the CPU and the NI, the amount of communication-related memory
traffic, and the number of interruptsincurred by the CPU. For our C* implementation, these
measurements capture the dominant sources of CPU overhead in atiming- and technology-
independent manner.

Our results demonstrate the effectiveness of our design at reducing communication-
related CPU overhead. Traffic between CPU and NI isreduced by at least 50%, and even
as much as 90% in some cases. We find similar reductions in traffic between CPU and
memory. For some benchmarks, our design also achieves a substantial reduction in the
number of communication-related interrupts.

We concludethat as high-level parallel languages become more common and fewer pro-
gramsdirectly usetraditional message passing primitives, integrated compiler and hardware
design approaches are essential for achieving good communication and synchronization
performance.

Chapter 7

CONCLUSIONS

The work described in this dissertation is motivated by a growing trend towards using
high-level parallel languages to program parallel computers. To date, existing communi-
cation architectures, such as message passing, remote-memory access and shared memory,
have been primarily used (and designed to be used) directly by the programmer. This bias
has influenced their design, much as assembly language programming has influenced the
design of CISC instruction sets. For example, one commonly cited argument in favor of
shared-memory machinesisthat they are easier to use than message-passing — a statement
that clearly reveals a design bias towards simplifying the communication architecture for
the benefit of the programmer.

In the future, programs will be compiled to the specific parallel target; the compiler
will hide the details of the underlying communication architecture from the programmer.
Hence, the programmer’ sconvenienceisnolonger amajor concernin thedesign of thecom-
munication architecture, since the programming language aready provides a convenient
programming model. Instead, performance becomes a driving concern, and the communi-
cation architecture must provide interfaces that best suit the needs of the compiler. This
approach is similar to the RISC philosophy in processor design.

In this dissertation, we have focused on the class of data-parallel languages and have
picked the C* language as one representative for our experiments. We have compared
three communi cation architectures— message-passing, remote-memory access and shared-
memory — for a set of scientific benchmarks written in C* and compiled to the respective
architectures.

A fair evaluation of such fundamentally different architectures has so far been difficult
to produce for several reasons. First, programs were typicaly hand tailored for different
architectures, often resulting in vastly different algorithms for the same application. Sec-
ond, while program execution time can be measured on different multiprocessors, such
measurements are difficult to compare, since the many implementation differences between
machines — such as processor architecture and cycle time, memory system details, and

108

bus technology — tend to obscure the architecture-inherent differences in which we are
interested.

We avoid the first problem by using a single suite of benchmarks written in C*, which
are compiled to the architectures under consideration. We thus measure the work required
by each architecture to execute the same data-parallel programs.

To address the second problem, our simulations abstract implementation details and
instead focus on metrics that are not affected by implementation details like processor or
network speed. We have measured the number of messages sent, the total interconnect
control and data traffic, and the number of round-trip communication latencies incurred.
We have deliberately rejected overall execution time as a metric, since it cannot yield the
same kind of fundamental insight as our implementation-independent metrics.

The drawback of our approach is that our results do not by themselves trandate into
absolute performance; we would need to know machine-specific data such as processor
speed, timeto send a message, network latency, etc., in order to derive afirst-order estimate
of execution time. On the other hand, our method can point out differencesthat are inherent
in the architectures, rather than any specific implementations of the architectures.

Our results have shown that message-passing has several important advantages over
the competing architectures. The shared-memory model sends between 6% to 500% more
messages than the message-passing model and requires 25% to 250% more bandwidth.
Even with aggressive hardware support for latency hiding, the shared-memory model incurs
from 20% to 100% more network round-trip latencies than the message-passing model on
all benchmarks except jacobi, where it incurs 15% fewer round-trip latencies than the
message-passing model.

We haveidentified three architectural differencesthat account for these results. First, in
a message-passing model, the compiler has full control over when datais moved between
nodes and at what granularity. In shared-memory, data movement is largely under the
control of the cache-coherence mechanism, and usually occurs at a granularity of entire
cache lines. Second, message-passing alows the compiler to combine data transfer and
synchronization in a single message, whereas two separate operations are required in a
shared-memory model. Third, to move datafrom one node to another, the message-passing
and remote-memory architectures can smply send the data to its destination, whereas in
most cache-coherent architectures, the destination model needsto request the datafrom the
source node, an approach that inherently requiresmore tripsthrough the network and hence

109

incurs higher latency.

However, traditional message-passing implementationsal so have amajor drawback: the
amount of work the CPU must perform for each message (the communication overhead)
is very high, which hurts performance — especialy when programs send many small
messages. The shared-memory and remote-memory access architectures do not have this
problem. Anideal communication architecture for C* would unite the above advantages
of the message-passing architecture with the low communication overhead of the shared-
memory architecture.

As one possible solution, we have proposed alanguage-oriented design that retainsthe
advantages of the message-passing model, yet in cooperation with the compiler significantly
reduces the per-message overhead. To do so, we have identified a small set of low-level
communication and synchronization primitives that are well matched to the needs of C*
and then designed a network interface that efficiently supports these primitives.

Our network interfaceincludes hardwarefor remote read/write operations plus counter-
based synchronization support. These primitivesareagood match for C* (aswell assimilar
data-paralel languages, such as HPF), since amost all communication operations in C*
read or write variables (i.e., memory) on remote nodes. Similarly, the communication
libraries can easily perform inter-node synchronization by counting messages.

To evaluatethe eff ectiveness of our approach, we have ssmulated and measured our com-
piled C* benchmarks on a traditional message-passing interface as well as our language-
oriented design. These measurements have demonstrated that our design is effective at re-
ducing communication-related CPU overhead. Compared to atraditional message-passing
NI design, the CPUs in our improved design exchange 50% to 75% less data with our NI,
perform 50% to 90% fewer communi cation-rel ated memory accesses on average, and incur
up to 20% fewer interruptsfor broadcast and reduction operations. Our design isalso better
able to exploit networks with broadcast capabilities.

7.1 FutureWork

Our work could be extended in several ways. First, we could improve the compiler,
especially for the message-passing architecture. Second, in this dissertation we have
proposed a language-oriented design derived from message passing; an alternative would
beto design anetwork interface based on ashared-memory model. Finaly, we could extend
our study to programming modelsthat are not data-parallel.

110

7.1.1 Improved Compiler

Though the message-passing model already compares favorably to the other architectures,
we could significantly improve its performance by using more aggressive communication
optimizations. For example, our compiler does not currently perform message vectorization
or message aggregation.

Our compiler also does not fully exploit the capabilities of our new NI design; we only
use the synchronization counters for synchronization internal to broadcast, reduce or
barrier operations. For regular communication patterns, the compiler could precompute
the number of messages expected by each node and use the countersto synchronize, instead
of abarrier operation.

We could also improve the shared memory model’s performanceon jacobi by copying
non-contiguousdatainto acontiguous memory areabeforethe neighboring node accessesit;
thiswould improvethe utilization of the cache lines. Note that thisoptimization presumesa
fairly static and regular communication pattern that is amenable to detailed analysis by the
compiler. Itislikely that the same compile-timeanalysiswould yield an even more efficient
implementation on a message-passing machine, where the compiler has better control over
data movement.

7.1.2 Enhancing Shared-Memory Architectures

In this dissertation, we have proposed a language-oriented network interface design that
was derived from a traditional message-passing network interface. The goal was to attack
the drawback of traditional message-passing, namely the high communication overhead,
while retaining the advantages of the message-passing model.

A different approach would beto start with ashared-memory architecture and modify the
design to address its specific shortcomings, e.g., by giving the compiler better control over
data movement, or providing communication mechanisms that can combine data transfer
and synchronization in asingle operation. We have already mentioned enhancements such
as prefetching, compiler-selected coherence protocols, asynchronous write propagation,
relaxed consistency models or full/empty bits. Machines like FLASH [Kuskin et a. 94]
or Typhoon [Reinhardt et al. 94] would be ideal testbeds for such an approach, since their
network interfaceis fully programmable.

Another promising approach is to build hybrid architectures that support both shared-
memory and message-passing, such asthe Alewife[Agarwal et a. 91]. The chalenge here

111

isto carefully integrate the different communication models in the compiler.

The guiding force behind any such effort should the the principle that whenever the
compiler can identify a particularly efficient approach to communication, the hardware
must not stand in the way or hide too many details of the communication architectures.

7.1.3 Extending to Wider Class of Programs

Our work has so far focused on data-parallel high-level programming languages. While
this is an important class of languages, not all algorithms can be expressed efficiently in
adata-paralel form. It would be useful to examine how the communication requirements
for other programming models differ from those of data-parallel languages. For example,
Henry and Joerg designed aNI for use withthe TAM [Culler et a. 91b] model of execution
and reached conclusionsthat are somewhat different from ours[Henry & Joerg 92a). While
thisisafairly extreme example, inthat their programming model isradically different from
the data-parallel model, it shows the tight connection between the choice of a programming
model and the design of the communication architecture.

7.2 Conclusions

We have identified architecture-inherent advantages and disadvantages of the message-
passing, remote-memory access and shared-memory communication architectures, and
have shown a way to remedy the deficiencies of the message-passing model. Thus, the
reports of the demise of message passing have been greatly exaggerated. We believe that
the shared-memory model is also amenable to enhancements that address its shortcomings.
Future work may tell which of the two architectures, message-passing or shared-memory,
provides the better starting point for high-performance, low-overhead communication ar-
chitectures.

Bibliography

[Adve & Hill 90] S. Adveand M. Hill. Weak ordering— anew definition. In Proceedings
of 17th International Symposium on Computer Architecture, pages 2—14, 1990.

[Agarwal et d. 88] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation
of directory schemes for cache coherence. In Proceedings of 15th International
Symposium on Computer Architecture, pages 280—289, 1988.

[Agarwal et a. 91] A. Agarwal, D. Chaiken, G. D’ Souza, K. Johnson, D. Kranz, J. Kubia-
towicz, K. Kurihara, B.-H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung.
TheMIT Alewifemachine: A large-scaledistributed-memory multiprocessor. In
Proceedings of Workshop on Scalable Shared Memory Multiprocessors. Kluwer
Academic Publishers, 1991.

[Alverson et al. 90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,
and B. Smith. The Tera computer system. In Proceedings of International
Conference on Supercomputing, pages 1-6, 1990.

[Anderson et a. 91] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska. Per-
formance measurements on a 128-node Butterfly parallel processor. In Proceed-
ings of 4th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 108-120, 1991.

[Archibald 88] J. K. Archibald. A cache coherence approach for large multiprocessor
systems. In 1988 International Conference on Supercomputing, pages 337-345,
1988.

[Arlauskas 88] R. Arlauskas. iPSC/2 System: A Second Generation Hypercube, January
1988.

113

[Baer & Chen 91] J. L. Baer and T. F. Chen. An effective on-chip preloading scheme to
reduce data access penalty. In Proceedings Supercomputing’ 91, pages 176—186,
1991.

[Barrusio 94] R. Barrusio, 1994. Usenet Communication on comp . sys . super.

[Bennett et al. 90] J. K. Bennett, J. B. Carter, and W. Zwaenepoel . Adaptive softwarecache
management. In Proceedings of 17th International Symposium on Computer
Architecture, pages 125-134, 1990.

[Bennett et al. 92] J. K. Bennett, S. Dwarkadas, J. Greenwood, and E. Speight. Willow: a
scalable shared memory multiprocessor. In Proceedings. Supercomputing ' 92,
pages 336-345, November 1992.

[Blumrich et a. 94] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg.
Virtua memory mapped network interface for the SHRIMP multicomputer. To
appear in Proceedings of 1994 International Symposium on Computer Architec-
ture, 1994.

[Bokhari 90] S. Bokhari. Communication overhead on the intel iPSC-860 hypercube.
Technical Report Interim Report 10, ICASE, May 1990.

[Brustoloni & Bershad 92] J. C. Brustoloni and B. N. Bershad. Simple protocol processing
for high-bandwidthlow-latency networking. Technical Report CMU-CS-93-132,
School of Computer Science, Carnegie Mellon University, March 1992.

[Calahan et al. 91] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching.
In Proceedings of 4th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 40-52, 1991.

[Carter et d. 91] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and
performance of Munin. In Proceedingsof the 13th ACM Symposiumon Operating
Systems Principles, pages 152-164, October 1991.

114

[Censier & Feautrier 78] L. M. Censier and P. Feautrier. A new solution to coherence
problemsin multicache systems. | EEE Transactions on Computers, pages 1112—
1118, December 1978.

[Chapman et a. 92] B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran — a Fortran
language extension for distributed memory systems. In J. Saltz and P. Mehro-
tra, editors, Languages, Compilers, and Run-time Environments for Distributed
Memory Machines. Elsevier Press, 1992.

[Clark et al. 92] T. W. Clark, R. von Hanxleden, K. Kennedy, C. Koelbel, and L. Scott.
Evauating paralel languages for molecular dynamics computations. In Pro-
ceedings. Scalable High Performance Computing Conference SHPCC-92, pages
98-105, April 1992.

[Cox & Fowler 89] A. Cox and R. Fowler. The implementation of a coherent memory
abstraction on aNUMA multiprocessor. experiences with PLATINUM. In Pro-
ceedings of the 12th ACM Symposium on Operating Systems Principles, pages
3244, December 1989.

[Cray 93] Cray Research, Inc., 2360 Pilot Knob Road, MendotaHeights, MN 55120. CRAY
T3D System Architecture Overview Manual (HR-04033), 1993.

[Crowther et a. 85] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and
T. Blackadar. Performance measurements on a 128-node Butterfly parallel pro-
cessor. In Proceedings of the 1985 International Conference on Parallel Pro-
cessing, pages 531-540, 1985.

[Culler et d. 91a] D. Culler, A. Sah, K. Schauser, T. von Eicken, and J. Wawrzynek.
Fine grain parallelism with minimal hardware support: A compiler-controlled
treaded abstract machine. In Proceedings of 4th International Conference on
Architectural Support for Programming Languagesand Operating Systems, April
1991.

[Culler et d. 91b] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek.
Fine-grain parallelism with minimal hardware support: A compiler-controlled

115

threaded abstract machine. In Proceedings of 4th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 164-175, April 1991.

[Cypher et d. 93] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural
requirements of parallel scientific applications with explicit communication. In
Proceedings of 20th International Symposium on Computer Architecture, pages
2-13,1993.

[Dahigren et al. 94] F. Dahlgren, M. Dubois, and P. Stenstrom. Combined performance
gains of smple cache protocol extensios. In Proceedings of 21st International
Symposium on Computer Architecture, pages 187-197, 1994.

[Dally 90] W. J. Dally. The Jmachine system. In P. Winston and S. Shellard, editors,
Artificial Intelligence at MIT: Expanding Frontiers, volume 1. MIT Press, 1990.

[Eggers & Jeremiassen 91] S. Eggers and T. Jeremiassen. Eliminating false sharing. In
Proceedings of the 1991 International Conference on Parallel Processing, pages
1:377-381, August 1991.

[Felten 93a] E. W. Felten. Protocol Compilation: High-Performance Communication for
Parallel Programs. PhD dissertation, Department of Computer Science and
Engineering, University of Washington, Seattle, WA 98195, September 1993.
Available as technical report 93-09-09.

[Felten 93b] E. W. Felten. Protocol Compilation: High-Performance Communication for
Parallel Programs. PhD dissertation, Department of Computer Science and
Engineering, University of Washington, Seattle, WA 98195, September 1993.
Available as technical report 93-09-09.

[Felten 94] E. W. Felten, 1994. Persona Communication.

[Fox 88] G. C. Fox. What have we learnt from using real parallel machines to solve
real problems. In Proceedings of Third Conference on Hypercube Concurrent
Computers and Applications, pages 897—955, 1988.

116

[Frank & Vernon 93] M. I. Frank and M. K. Vernon. A hybrid shared memory / message
passing parallel machine. In Proceedings of the 1993 International Conference
on Parallel Processing, pages 1:232-237, August 1993.

[Fuetal.92] J W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching in
scalar processors. 1n 25th Annual I nternational Symposiumon Microarchitecture,
pages 102-110, 1992.

[Gharachorloo et a. 90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy. Memory consistency and event ordering in scalable shared-
memory multiprocessors. In Proceedings of 17th International Symposium on
Computer Architecture, pages 15-26, 1990.

[Gupta89] R. Gupta. Thefuzzy barrier: A mechanism for the high speed synchronization
of processors. In Proceedings of 3rd International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 54-63,
1989.

[Hagersten 92a] E. Hagersten. DDM — a cache-only memory architecture. Computer,
pages 44-54, September 1992.

[Hagersten 92b] E. Hagersten. Toward Scalable Cache Only Memory Architectures. PhD
dissertation, Swedish Ingtitute of Computer Science, October 1992. SICS Dis-
sertation Series 08.

[Hatcher & Quinn91] P. J. Hatcher and M. J. Quinn. Data-Parallel Programming on
MIMD Computers. MIT Press, 1991.

[Hatcher et al. 91] P. J. Hatcher, M. J. Quinn, and B. K. Seevers. Implementing a data-
parallel language on a tightly coupled multiprocessor. In Proc. 3rd Workshop
Programming Languages Compilers Parallel Computers, 1991.

[Henry & Joerg 92a] D. S. Henry and C. F. Joerg. A tightly-coupled processor-network in-
terface. In Proceedings of 5th I nternational Conference on Architectural Support
for Programming Languages and Operating Systems, pages 111-122, October
1992.

117

[Henry & Joerg 92b] D. S. Henry and C. F. Joerg. A tightly-coupled processor-network in-
terface. In Proceedings of 5th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 111-122, October
1992.

[HPFF 93] High Performance Fortran Forum. High Performance Fortran Language Spec-
ification, Version 1.0, May 1993.

[Hutto & Ahamad 90] P.W. Hutto and M. Ahamad. Slow memory: Weakening consi stency
to enhance concurrency in distributed shared memories. In Proceedings of 10th
International Conference on Distributed Computing Systems, pages 302—-309,
1990.

[Intel 91a] Intel Supercomputer SystemsDivision. Paragon XP/SProduct Overview, 1991.

[Intel 91b] Intel Supercomputer Systems Division. A Touchstone DELTA System Descrip-
tion, February 1991.

[Jordan 87] H. Jordan. The Force. Technical Report ECE 87-1-1, Dept. of Electrical and
Computer Engineering University of Colorado, January 1987.

[Jouppi 93] N. P. Jouppi. Cache write policies and performance. In Proceedings of 20th
International Symposium on Computer Architecture, pages 191-201, 1993.

[Ju & Dietz91] Y. Ju and H. Dietz. Reduction of cache coherence overhead by compiler
datalayout andloop transformation. InU. Banerjee, D. Gelernter, A. Nicolau, and
D. Padua, editors, Fourth Workshop on Languagesand Compilersfor Parallelism.
Springer Verlag, August 1991.

[Klaiber & Frankel 93] A. C. Klaiber and J. L. Frankel. Comparing data-paralel and
message-passing paragigms. In Proceedings of the 1993 International Confer-
ence on Parallel Processing, pages 11:11-11:20, 1993.

[Klaiber & Levy 91] A.C.KlaberandH. M. Levy. Anarchitecturefor software-controlled
data prefetching. In Proceedings of 18th International Symposium on Computer
Architecture, pages 43-53, May 1991.

118

[Koelbel & Mehrotra9l] C. Koelbel and P. Mehrotra. Compiling global name-space paral-
lel loopsfor distributed execution. | EEE Transactionson Parallel and Distributed
Systems, 2(4):440-451, October 1991.

[Konstantinidou & Snyder 91] S. Konstantinidou and L. Snyder. Chaos router: Archi-
tecture and performance. In Proceedings of 18th International Symposium on
Computer Architecture, pages 212-221, May 1991.

[Kranz et al. 93] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.-H. Lim. Inte-
grating message-passing and shared-memory: Early experience. In Proceedings
of Fourth S GPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 54-63, 1993.

[KSR 92] Kendall Square Research. KSR-1 Technical Summary, 1992.

[Kuskinet a. 94] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachor-
loo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy. The Stanford FL ASH multiprocessor. To appear in Proceedings
of 1994 International Symposium on Computer Architecture, 1994.

[Lenoski et al. 92] D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam. The Stanford DA SH multiprocessor. |EEE Computer,
25(3):63-79, March 1992.

[Leung & Zahorjan 93] S. Leung and J. Zahorjan. Improving the performance of runtime
parallelization. In Fourth ACM S GPLAN Symposiumon Principlesand Practice
of Parallel Programming, pages 83-91, July 1993.

[Lin & Snyder 90] C.LinandL. Snyder. A comparison of programming modelsfor shared
memory multiprocessors. In Proceedings of the 1990 International Conference
on Parallel Processing, pages11:163-170, August 1990.

[MacDonald & Barrusio 94] T. MacDonad and R. Barrusio, 1994. Persona Communica-
tion.

119

[Martonos & Gupta89] M. Martonos and A. Gupta. Tradeoffs in message-passing and
shared-memory implementations of a standard cell router. In Proceedings of the
1989 International Conference on Parallel Processing, pages I11:88-96, August
1989.

[McCreight 84] E. McCreight. Thedragon computer system: Anearly overview. Technical
report, Xerox Corp., September 1984.

[Méellor-Crummey & Scott 91] J. M. Méllor-Crummey and M. L. Scott. Algorithms for
scal able synchroni zation on shared-memory multiprocessors. ACM Transactions
on Computer Systems, pages 21-65, February 1991.

[Minzer 89] S. E. Minzer. Broadband ISDN and Asynchronous Transfer Mode (ATM).
| EEE Communications Magazine, 27(9):17-24,57, September 1989.

[Mowry & Gupta9l] T. Mowry and A. Gupta. Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors. Journal of Parallel
and Distributed Computing, pages 87—-106, June 1991.

[Ngai & Seitz89] J. Y. Nga and C. L. Seitz. A framework for adaptive routing in mul-
ticomputer networks. In Proceedings of the 1989 ACM Symposium on Parallel
Algorithms and Architectures, pages 1-9, 1989.

[Ngo & Snyder 92] T. Ngo and L. Snyder. On the influence of programming models on
shared memory computer performance. In Scalable High Performance Comput-
ing Conference, pages 284-291, 1992.

[Nikhil 90] R. S. Nikhil. Id version 90.0 reference manual. Technical Report CSG Memo
284-1, MIT Laboratory for Computer Science, September 1990.

[Pierce88] P. Pierce. The NX/2 operating system. In Proceedings of Third Conference
on Hypercube Concurrent Computers and Applications, pages 384-390. ACM
Press, 1988.

120

[Quinnet a. 88] M.J. Quinn, P.J. Hatcher, and K. C. Jourdenais. Compiling C* programs
for a hypercube multicomputer. In Proc ACM/S GPLAN PPEALS, pages 5765,
1988.

[Reinhardt et al. 94] S. Reinhardt, J. Larus, and D. Wood. Typhoon: A user-level shared-
memory system. To appear in Proceedings of 1994 I nternational Symposiumon
Computer Architecture, 1994.

[Rose & Steele Jr. 87] J. R.Roseand G. L. Steele Jr. C*: Anextended C language for data
parallel programming. In Proceedings of the Second International Conference
on Supercomputing, volumeii, pages 2-16, 1987.

[Rosing et a. 90] M. Rosing, R. Schnabel, and R. Weaver. The Dino parallel program-
ming language. Technical Report CU-CS-457-90, Dept. of Computer Science,
University of Colorado, April 1990.

[Sequent 87] Sequent Computer Systems Incorporated. Symmetry Technical Summary,
rev. 1.5 edition, 1987.

[Snyder 92] L. Snyder. Chaos router: finally, a practical adaptive router? In Parallel Ar-
chitecturesand Their Efficient Use. First Heinz Nixdorf Symposium Proceedings,
pages 146155, November 1992.

[Stenstrom et d. 93] P. Stenstrom, M. Brorsson, and L. Sandberg. An adaptive cache
coherence protocol optimized for migratory sharing. In Proceedings of 20th
International Symposium on Computer Architecture, pages 109-118, 1993.

[Suetal. 93] E. Su, D. J. Palermo, and P. Banerjee. Automating parallelization of regular
computationsfor distributed-memory multicomputersin the Paradigm compiler.
In Proceedings of the 1993 International Conference on Parallel Processing,
pages 11:39-46, 1993.

[Thapar et al. 93] M. Thapar, B. Delagi, and M. J. Flynn. Linked list cache coherence for
scalabe shared memory. In Proceedings of the Seventh International Parallel
Processing Symposium, pages 3443, 1993.

121

[Thekkath et a. 93] C. A. Thekkath, H. M. Levy, and E. D. Lazowska. Efficient support
for multicomputing on ATM networks. Technical Report 93-04-03, University
of Washington, Department of Computer Science & Engineering, Seattle, WA
98195, 1993.

[TMC 90] Thinking Machines Corp., 245 First St., Cambridge MA 02142. C* Program-
ming Guide, Version 6.0, November 1990.

[TMC 91a] J. Frankel. C* language reference manual. Technical report, Thinking Ma-
chines Corp., 245 First St., Cambridge MA 02142, 1991.

[TMC 91b] Thinking Machines Corporation. CM-5 Technical Summary, 1991.
[TMC 92] Thinking Machines Corp. CMMD 2.0 Reference Manual, 1992.

[von Eickenet a. 92] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active messages. a mechanism for integrated communication and computation.
In Proceedings of 19th International Symposium on Computer Architecture,
pages 256—266, May 1992.

[von Hanxleden et al. 92] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz.
Compiler analysis for irregular problemsin Fortran D. In Languages and Com-
pilers for Parallel Computing. 5th International Workshop Proceedings, pages
97-111, August 1992.

[Wuetd.91] J Wu, J. Sdtz, S. Hiranandani, and H. Berryman. Runtime compilation
methods for multicomputers. In Proceedings of the 1991 International Confer-
ence on Parallel Processing, 1991.

