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1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing functions. Wavelets

allow any function to be described in terms of a coarse overall shape, plus details

that range from broad to narrow. Regardless of whether the function of interest is an

image, a curve, or a surface, wavelets provide an elegant technique for representing

the levels of detail present.

Although wavelets have their roots in approximation theory [6] and signal process-

ing [15], they have recently been applied to many problems in computer graphics.

These graphics applications include image editing [1] and compression [7], automatic

level-of-detail control for editing and rendering curves and surfaces [9, 11, 14], sur-

face reconstruction from contours [16], and fast methods for solving simulation prob-

lems in global illumination [3, 12, 19] and animation [13]. This primer is intended to

provide those working in computer graphics with some intuition for what wavelets

are, as well as to present the mathematical foundations necessary for studying and

using them.

The remainder of the primer is laid out as follows. In Section 2, we set the stage

by presenting the simplest form of wavelets, the Haar basis. We cover both one-

and two-dimensional wavelet transforms and basis functions. Then in Section 3,

we discuss image compression as a �rst application of wavelets. In Section 4, we

present the mathematical theory of wavelets based on Mallat's \multiresolution

analysis" [15], using the Haar wavelets as a running example. The original formu-

lation of multiresolution analysis is applicable to functions de�ned on the in�nite

real line. Following Lounsbery et al. [14], we generalize the theory to functions de-

�ned on a bounded interval by making use of block matrices instead of convolution

�lters. Section 5 introduces smooth wavelets based on bounded-interval B-splines.

We make use of these spline wavelets in a second application of wavelets, which

we present in Section 6: multiresolution editing of curves and surfaces. Finally, we

include as appendices a brief review of linear algebra and a summary of the matrices

required for B-spline wavelets of low degree.
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2 The Haar wavelet basis

The Haar basis is the simplest wavelet basis. We will �rst discuss how a one-

dimensional function can be decomposed using Haar wavelets, and then describe

the actual basis functions. After that, we will extend both the decomposition and

the basis functions to two dimensions, so that we can make use of wavelets for image

compression in Section 3.

2.1 The one-dimensional Haar wavelet transform

To get a sense for how wavelets work, let's start out with a simple example. Suppose

we are given a one-dimensional \image" with a resolution of 4 pixels, having the

following pixel values:

h

8 4 1 3

i

This image can be represented in the Haar basis, the simplest wavelet basis, as

follows. Start by averaging the pixels together, pairwise, to get the new lower-

resolution image with pixel values:

h

6 2

i

Clearly, some information has been lost in this averaging and downsampling process.

In order to be able to recover the original four pixel values from the two averaged

pixels, we need to store some detail coe�cients, which capture that missing infor-

mation. In our example, we will choose 2 for the �rst detail coe�cient, since the

average we computed is 2 less than 8 and 2 more than 4. This single number allows

us to recover the �rst two pixels of our original 4-pixel image. Similarly, the second

detail coe�cient is �1, since 2 + (�1) = 1 and 2� (�1) = 3.

Summarizing, we have so far decomposed the original image into a lower-resolution

2-pixel image version and detail coe�cients as follows:

Resolution Averages Detail coe�cients

4

h

8 4 1 3

i

2

h

6 2

i h

2 �1

i

Repeating this process recursively on the averages gives the full decomposition:
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Resolution Averages Detail coe�cients

4

h

8 4 1 3

i

2

h

6 2

i h

2 �1

i

1

h

4

i h

2

i

Finally, we will de�ne the wavelet transform of the original 4-pixel image to be the

single coe�cient representing the overall average of the original image, followed by

the detail coe�cients in order of increasing resolution. Thus, for the one-dimensional

Haar basis, the wavelet transform of our original 4-pixel image is given by

h

4 2 2 �1

i

:

Note that no information has been gained or lost by this process: The original image

had 4 coe�cients, and so does the transform. Also note that, given the transform, we

can reconstruct the image to any resolution by recursively adding and subtracting

the detail coe�cients from the lower-resolution versions.

Storing the wavelet transform of the image, rather than the image itself, has a

number of advantages. One advantage of storing the wavelet transform of the image

is that often a large number of the detail coe�cients turn out to be very small in

magnitude, as in the larger example of Figure 1. Truncating, or removing, these small

coe�cients from the representation introduces only small errors in the reconstructed

image, giving a form of \lossy" image compression. We will discuss this particular

application of wavelets in Section 3, once we have presented the one- and two-

dimensional Haar basis functions.

2.2 One-dimensional Haar wavelet basis functions

In the previous section we treated one-dimensional images as sequences of coe�-

cients. Alternatively, we can think of images as piecewise-constant functions on the

half-open interval [0; 1). In order to do so, we will use the concept of a vector space

from linear algebra (see Appendix A for a refresher on linear algebra). A one-pixel

image is just a function that is constant over the entire interval [0; 1); we'll let V

0

be

the space of all these functions. A two-pixel image has two constant pieces over the

intervals [0; 1=2) and [1=2; 1). We'll call the space containing all these functions V

1

.

If we continue in this manner, the space V

j

will include all piecewise-constant func-

tions on the interval [0; 1), with the interval divided equally into 2

j

di�erent pieces.

We can now think of every one-dimensional image with 2

j

pixels as being an element,

or vector, in V

j

. Note that because these vectors are all functions de�ned on the unit

interval, every vector in V

j

is also contained in V

j+1

. For example, we can always

3



V

4

approximation

V

3

approximation

W

3

detail coe�cients

V

2

approximation

W

2

detail coe�cients

V

1

approximation

W

1

detail coe�cients

V

0

approximation

W

0

detail coe�cient

Figure 1 A sequence of decreasing-resolution approximations to a function (left),

along with the detail coe�cients required to recapture the �nest approximation

(right). Note that in regions where the true function is close to being at, a

piecewise-constant approximation is a good one, and so the corresponding detail

coe�cients are relatively small.
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describe a piecewise-constant function with two intervals as a piecewise-constant

function with four intervals, with each interval in the �rst function corresponding

to a pair of intervals in the second. Thus, the spaces V

j

are nested; that is,

V

0

� V

1

� V

2

� � � �

This nested set of spaces V

j

is called a multiresolution analysis.

Now we need to de�ne a basis for each vector space V

j

. The basis functions for the

spaces V

j

are called scaling functions, and are usually denoted by the symbol �. A

simple basis for V

j

is given by the set of scaled and translated \box" functions:

�

j

i

(x) := �(2

j

x� i); i = 0; : : : ; 2

j

� 1;

where

�(x) :=

(

1 for 0 � x < 1

0 otherwise.

As an example, the four box functions forming the basis for V

2

are shown in Figure 2.

1

0

0 1

1

2

1

0

0 1

1

2

1

0

0 1

1

2

�

2

1

�

2

2

�

2

3

1

0

0 1

1

2

�

2

0

Figure 2 The box basis for V

2

.

The next step is to choose an inner product de�ned on the vector spaces V

j

. The

standard inner product,

hf j gi :=

Z

1

0

f(x) g(x) dx;

for two elements f; g 2 V

j

will do quite well for our running example. We can now

de�ne a new vector space W

j

as the orthogonal complement of V

j

in V

j+1

. In other

words, we will let W

j

be the space of all functions in V

j+1

that are orthogonal to

all functions in V

j

under the chosen inner product (see Appendix A for more on

inner products and orthogonality).

A collection of functions  

j

i

(x) spanning W

j

are called wavelets. These basis func-

tions have two important properties:

� the basis functions  

j

i

of W

j

, together with the basis functions �

j

i

of V

j

, form

a basis for V

j+1

; and

� every basis function  

j

i

of W

j

is orthogonal to every basis function �

j

i

of V

j

under the chosen inner product.

1

1

This property is convenient, but not strictly necessary for most of our development of wavelets.
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Informally, we can think of the wavelets in W

j

as a means for representing the

parts of a function in V

j+1

that cannot be represented in V

j

. Thus, the \detail

coe�cients" of Section 2.1 are really coe�cients of the wavelet basis functions.

The wavelets corresponding to the box basis are known as the Haar wavelets, given

by

 

j

i

(x) :=  (2

j

x � i); i = 0; : : : ; 2

j

;

where

 (x) :=

8

>

<

>

:

1 for 0 � x < 1=2

�1 for 1=2 � x < 1

0 otherwise.

Figure 3 shows the two Haar wavelets spanning W

1

.

1

0

1

2

1

0

1

-1

1

2

 

1

0

-1

1

 

1

1

Figure 3 The Haar wavelets for W

1

.

Before going on, let's run through our example from Section 2.1 again, but now

applying these more sophisticated ideas.

We begin by expressing our original image I(x) as a linear combination of the box

basis functions in V

2

:

I(x) = c

2

0

�

2

0

(x) + c

2

1

�

2

1

(x) + c

2

2

�

2

2

(x) + c

2

3

�

2

3

(x):

A more graphical representation is

I(x) = 8 �

+ 4 �

+ 1 �

+ 3 �

Note that the coe�cients c

2

0

; : : : ; c

2

3

are just the four original pixel values [8; 4; 1; 3].

We can rewrite the expression for I(x) in terms of basis functions in V

1

and W

1

,
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using pairwise averaging and di�erencing:

I(x) = c

1

0

�

1

0

(x) + c

1

1

�

1

1

(x) + d

1

0

 

1

0

(x) + d

1

1

 

1

1

(x)

= 6 �

+ 2 �

+ 2 �

+ �1 �

These four coe�cients should look familiar as well.

Finally, we'll rewrite I(x) as a sum of basis functions in V

0

, W

0

, and W

1

:

I(x) = c

0

0

�

0

0

(x) + d

0

0

 

0

0

(x) + d

1

0

 

1

0

(x) + d

1

1

 

1

1

(x)

= 4 �

+ 2 �

+ 2 �

+ �1 �

Once again, these four coe�cients are the Haar wavelet transform of the original

image. The four functions shown above constitute the Haar basis for V

2

. Instead

of using the usual four box functions, we can use these four functions representing

the overall average, the broad detail, and the two types of �ner detail possible in a

function in V

2

. The Haar basis for V

j

with j > 2 includes these functions as well

as narrower translates of the wavelet  (x).

Note that for the sake of clarity, we have not normalized the basis functions given

above (see Appendix A for an explanation of normalization). If we normalize the

basis functions, we replace our earlier de�nitions with

�

j

i

(x) := 2

j=2

�(2

j

x� i)

 

j

i

(x) := 2

j=2

 (2

j

x� i):

This normalization also modi�es the wavelet transform somewhat: When consider-

ing two neighboring values, rather than dividing their sum by 2 and their di�erence

by 2, we divide both the sum and the di�erence by

p

2.
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2.3 Two-dimensional Haar wavelet transforms

In preparation for image compression, we need to generalize Haar wavelets to two

dimensions. First, we will consider how to perform a wavelet transform of the pixel

values in a two-dimensional image. Then in the next section we will describe the

scaling functions and wavelets that form a two-dimensional wavelet basis.

There are two ways we can use wavelets to transform or decompose the pixel val-

ues within an image. Each of these is a generalization to two dimensions of the

one-dimensional wavelet transform described in Section 2.1. Note that a multi-

dimensional wavelet transform is frequently referred to in the literature as a wavelet

decomposition.

To obtain the standard decomposition [2] of an image, we �rst apply the one-

dimensional wavelet transform to each row of pixel values. This operation gives us an

average value along with detail coe�cients for each row. Next, we treat these trans-

formed rows as if they were themselves an image, and apply the one-dimensional

transform to each column. The resulting values are all detail coe�cients except for

a single overall average coe�cient. We illustrate each step of the standard decom-

position in Figure 4.

The second type of two-dimensional wavelet transform, called the non-standard de-

composition, alternates between operations on rows and columns. First, we perform

one step of horizontal pairwise averaging and di�erencing on the pixel values in

each row of the image. Next, we apply vertical pairwise averaging and di�erencing

to each column of the result. To complete the transformation, we repeat this process

recursively on the quadrant containing averages in both directions. Figure 5 shows

all the steps involved in the non-standard decomposition of an image.

2.4 Two-dimensional Haar basis functions

The two methods of decomposing a two-dimensional image yield coe�cients that

correspond to two di�erent sets of basis functions. The standard decomposition of

an image gives coe�cients for a basis formed by the standard construction [2] of a

two-dimensional basis. Similarly, the non-standard decomposition gives coe�cients

for the non-standard construction of basis functions.

The standard construction of a two-dimensional wavelet basis consists of all possible

tensor products of one-dimensional basis functions. For example, when we start with

the one-dimensional Haar basis for V

2

, we get the two-dimensional basis for V

2

that

is shown in Figure 6.

The non-standard construction of a two-dimensional basis proceeds by �rst de�ning
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� � �

.

.

.

-

transform rows

?

transform

columns

Figure 4 Standard decomposition of an image.
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.

.

.

-

transform rows

?

transform

columns

Figure 5 Non-standard decomposition of an image.
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0
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1

0

(x) 

1

0

(y) 

0

0

(x) 

1

0

(y)�

0

0

(x) 

1

0

(y)

 

1

1

(x) 

1

1

(y) 

1

0

(x) 

1

1

(y) 

0

0

(x) 

1

1

(y)�

0

0

(x) 

1

1

(y)

Figure 6 The standard construction of a two-dimensional Haar wavelet basis

for V

2

. In the unnormalized case, functions are +1 where plus signs appear,

�1 where minus signs appear, and 0 in gray regions.

a two-dimensional scaling function,

��(x; y) := �(x)�(y);

and three wavelet functions,

� (x; y) := �(x) (y)

 �(x; y) :=  (x)�(y)

  (x; y) :=  (x) (y):

The basis consists of a single coarse scaling function along with all possible scales

and translates of the three wavelet functions. This construction results in the basis

for V

2

shown in Figure 7.

We have presented both the standard and non-standard approaches to wavelet trans-

forms and basis functions because they each have advantages. The standard decom-

position of an image is appealing because it can be accomplished simply by perform-

ing one-dimensional transforms on all the rows and then on all the columns. On the

other hand, it is slightly more e�cient to compute the non-standard decomposition

of an image. Each step of the non-standard decomposition computes one quarter of

the coe�cients that the previous step did, as opposed to one half in the standard

case.

Another consideration is the support of each basis function, meaning the portion

of each function's domain where that function is non-zero. All of the non-standard
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Figure 7 The non-standard construction of a two-dimensional Haar wavelet basis for V

2

.

basis functions have square supports, while some of the standard basis functions

have non-square supports. Depending upon the application, one of these choices

may be more favorable than another.

3 Application I: Image compression

In this section we discuss image compression as an application of wavelets to com-

puter graphics. First we de�ne what we mean by compression, and then we outline a

general method and apply it to images using a two-dimensional Haar wavelet basis.

The approach presented here is only introductory; for a more complete treatment

of wavelet image compression, see the article by DeVore et al. [7].

3.1 Compression

The goal of compression is to express an initial set of data using some smaller set of

data, either with or without a loss of information. For instance, suppose we are given

a function f(x) expressed as a weighted sum of basis functions u

0

(x); : : : ; u

M�1

(x):

f(x) =

M�1

X

i=0

c

i

u

i

(x):

The data set in this case consists of the coe�cients c

0

; : : : ; c

M�1

. We would like

to �nd a function approximating f(x) but requiring fewer coe�cients, perhaps by

using a di�erent basis. That is, given a user-speci�ed error tolerance � (for lossless
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compression, � = 0), we are looking for

e

f(x) =

M

0

�1

X

i=0

e

c

i

e

u

i

(x)

such that M

0

< M and jjf(x)�

e

f (x)jj � � for some norm (see Appendix A for

more on norms). In general, one could attempt to construct a set of basis func-

tions

e

u

0

; : : : ;

e

u

M�1

that would provide a good approximation with few coe�cients.

We will focus instead on the simpler problem of �nding a good approximation in a

�xed basis.

3.2 L

2

compression

One form of the compression problem is to order the coe�cients c

0

; : : : ; c

M�1

so

that for every M

0

< M , the �rst M

0

elements of the sequence give the best approx-

imation

e

f(x) to f(x) as measured in the L

2

norm. As we show here, the solution to

this problem is straightforward if the basis is orthonormal.

Let � be a permutation of 0; : : : ;M � 1, and let

e

f(x) be a function that uses the

coe�cients corresponding to the �rst M

0

numbers of the permutation �:

e

f(x) =

M

0

�1

X

i=0

c

�(i)

u

�(i)

:

The square of the L

2

error in this approximation is given by

�

�

�

�

�

�
f(x)�

e

f(x)

�

�

�

�

�

�

2

2

= hf(x)�

e

f (x) j f(x)�

e

f(x)i

=

*

M�1

X

i=M

0

c

�(i)

u

�(i)

M�1

X

j=M

0

c

�(j)

u

�(j)

+

=

M�1

X

i=M

0

M�1

X

j=M

0

c

�(i)

c

�(j)

hu

�(i)

j u

�(j)

i

=

M�1

X

i=M

0

(c

�(i)

)

2

:

The last step follows from the assumption that the basis is orthonormal.We conclude

that in order to minimize this error for a given M

0

, the best choice for � is the

permutation that sorts the coe�cients in order of decreasing magnitude; that is, �

satis�es jc

�(0)

j � � � � � jc

�(M�1)

j.

Figure 1 demonstrated how a one-dimensional function could be transformed by a

�lter bank operation into coe�cients representing the function's overall average and

various resolutions of detail. Now we repeat the process, this time using normalized

13



Haar basis functions satisfying h�

j

i

(x) j�

j

i

(x)i = 1 and h 

j

i

(x) j 

j

i

(x)i = 1. We can

apply L

2

compression to the resulting coe�cients simply by removing or ignoring

the coe�cients with smallest magnitude. By varying the amount of compression, we

obtain a sequence of approximations to the original function, as shown in Figure 8.

16 out of 16 coe�cients 14 out of 16 coe�cients

12 out of 16 coe�cients 10 out of 16 coe�cients

8 out of 16 coe�cients 6 out of 16 coe�cients

4 out of 16 coe�cients 2 out of 16 coe�cients

Figure 8 Coarse approximations to a function obtained using L

2

compression:

detail coe�cients are removed in order of increasing magnitude.

3.3 Wavelet image compression in the L

2

norm

Wavelet image compression using the L

2

norm can be summarized in three steps:

1. Compute coe�cients representing an image in a normalized two-dimensional

Haar basis.

2. Sort the coe�cients in order of decreasing magnitude to produce the sequence

c

�(0)

; : : : ; c

�(M�1)

.

3. Starting with M

0

=M , �nd the least M

0

for which

P

M�1

i=M

0

(c

�(i)

)

2

� �

2

.

The �rst step is accomplished by applying either of the two-dimensional Haar

wavelet transforms described in Section 2.3, making sure to use normalized basis

functions. Any standard sorting technique will work for the second step; however,

for large images sorting becomes exceedingly slow.

The pseudocode below outlines a more e�cient method that only partitions subsets

of the coe�cients when necessary to achieve the desired level of error. We use � to
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denote a set of coe�cients under consideration (\maybes"), and � to denote a set

of coe�cients that will be used for the compressed image (\keepers"). The square

of the L

2

error is accumulated in s. This method is similar to quicksort in the way

it partitions coe�cients using a pivot element, but the process is only repeated on

one side of the partition.

� ;

� fc

0

; : : : ; c

M�1

g

s 0

repeat

� pivot chosen from �

� fc 2 � : jcj > j�jg

�  fc 2 � : jcj � j�jg

�s 

P

c2�

c

2

if s +�s > �

2

then

� � [ �

� �

else

� �

discard coe�cients in �

s s +�s

end if

until s � �

2

Another e�cient approach to L

2

compression is to repeatedly discard all coe�cients

smaller in magnitude than a threshold, increasing the threshold by a factor of two

in each iteration, until the allowable level of error is achieved. This method was used

to produce the images in Figure 9. These images demonstrate the high compression

ratios wavelets o�er, as well as some of the artifacts they introduce.

(a) (b) (c) (d)

Figure 9 L

2

wavelet image compression: The original image (a) can be represented

using (b) 21% of its wavelet coe�cients, with 5% relative L

2

error; (c) 4% of its

coe�cients, with 10% relative L

2

error; and (d) 1% of its coe�cients, with 15%

relative L

2

error.
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3.4 Wavelet image compression in other L

p

norms

Images that have been compressed using the L

2

norm can exhibit large errors so

long as they are con�ned to small areas. An alternative approach to compression

uses the L

1

norm to ensure that no pixel has error greater than �. Shown below is

the pseudocode for a \greedy" L

1

compression scheme:

for each pixel (x; y) do

�[x][y] 0

end for

for each coe�cient c

i

do

�

0

 � + jerror from eliminating c

i

j

if �

0

< � everywhere then

eliminate coe�cient c

i

�  �

0

end if

end for

Note that this algorithm's results depend on the order in which coe�cients are vis-

ited. One could imagine obtaining very di�erent images (and amounts of compres-

sion) by eliminating �ne-scale wavelet coe�cients �rst, rather than small coe�cients

�rst, for example. One could also imagine running a more sophisticated constrained

optimization procedure whose goal is to select the minimum number of coe�cients

subject to the error bound.

DeVore et al. [7] suggest that the L

1

norm is best suited to the task of image

compression. Rather than repeat their results, we refer the interested reader to

their article. We also note that the algorithm for L

1

compression above can easily

be modi�ed to measure L

1

error: Instead of eliminating coe�cients when �

0

< �

everywhere, do so only when the sum of all entries in �

0

is smaller than �.

4 Multiresolution analysis

The Haar wavelets we have discussed so far are just one among many sets of basis

functions that can be used to treat functions in a hierarchical fashion. In this sec-

tion, we develop a mathematical framework known as multiresolution analysis for

studying wavelets. Our examples will continue to focus on the Haar basis, but the

more general mathematical notation used here will come in handy for discussing

other wavelet bases in later sections. Multiresolution analysis relies on many results

from linear algebra; some readers may wish to consult Appendix A for a brief review.

The starting point for multiresolution analysis is a nested set of vector spaces

V

0

� V

1

� V

2

� � � �
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As j increases, the resolution of functions in V

j

increases. The basis functions for

the space V

j

are known as scaling functions.

The next step in multiresolution analysis is to de�ne wavelet spaces. For each j,

we de�ne W

j

as the orthogonal complement of V

j

in V

j+1

. This means that W

j

includes all the functions in V

j+1

that are orthogonal to all those in V

j

under some

chosen inner product. The functions we choose as a basis forW

j

are called wavelets.

4.1 A matrix formulation for re�nement

It is often convenient to put the di�erent scaling functions �

j

i

(x) for a given level j

together into a single row matrix,

�

j

(x) := [�

j

0

(x) � � � �

j

M�1

(x)];

where M is the dimension of V

j

. We can do the same for the wavelets:

	

j

(x) := [ 

j

0

(x) � � �  

j

N�1

(x)];

where N is the dimension of W

j

.

The condition requiring that the subspaces V

j

be nested is equivalent to requiring

that the scaling functions be re�nable. That is, for all j = 1; 2; : : : there must exist

a constant matrix P

j

such that

�

j�1

(x) = �

j

(x)P

j

: (1)

In other words, each scaling function at level j � 1 must be expressible as a linear

combination of \�ner" scaling functions at level j. Note that if V

j

and V

j�1

have

dimensions M and M

0

, respectively, then P

j

is an M �M

0

matrix.

Since the wavelet spaceW

j�1

is by de�nition also a subspace of V

j

, we can write the

wavelets 	

j�1

(x) as a product of the scaling functions �

j

(x) and another constant

matrix Q

j

:

	

j�1

(x) = �

j

(x)Q

j

: (2)

Thus, each wavelet at level j�1 is also expressible as a linear combination of \�ner"

scaling functions at level j. If V

j

and V

j�1

have dimensionsM andM

0

, respectively,

then W

j�1

has dimension M �M

0

, and Q

j

must be an M � (M �M

0

) matrix.

Example: In the Haar basis, at a particular level j there are M = 2

j

scaling functions and N = 2

j

wavelets. Thus, there must be re�nement

matrices describing how the two scaling functions in V

1

and the two
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wavelets in W

1

can be made from the four scaling functions in V

2

:

P

2

=

2

6

6

6

4

1 0

1 0

0 1

0 1

3

7

7

7

5

and Q

2

=

2

6

6

6

4

1 0

�1 0

0 1

0 �1

3

7

7

7

5

:

Remark: In the case of wavelets constructed on the unbounded real

line, the columns of P

j

are shifted versions of one another, as are the

columns of Q

j

. One column therefore characterizes each matrix, so P

j

and Q

j

are completely determined by sequences (: : : ; p

�1

; p

0

; p

1

; : : :)

and (: : : ; q

�1

; q

0

; q

1

; : : :), which also do not depend on j. Equations (1)

and (2) therefore often appear in the literature as expressions of the

form

�(x) =

X

i

p

i

�(2x� i)

 (x) =

X

i

q

i

�(2x� i):

Note that equations (1) and (2) can be expressed as a single equation using block-

matrix notation:

h

�

j�1

	

j�1

i

= �

j

h

P

j

Q

j

i

: (3)

Example: Substituting the matrices from the previous example into

Equation (3) along with the appropriate basis functions gives

[�

1

0

�

1

1

 

1

0

 

1

1

] = [�

2

0

�

2

1

�

2

2

�

2

3

]

2

6

6

6

4

1 0 1 0

1 0 �1 0

0 1 0 1

0 1 0 �1

3

7

7

7

5

:

It is important to realize that once we have chosen scaling functions and their

synthesis �lters P

j

, the wavelet synthesis �lters Q

j

are somewhat constrained. In

fact, since all functions in �

j�1

(x) must be orthogonal to all functions in 	

j�1

(x),

we know h�

j�1

k

j 

j�1

`

i = 0 for all k and `. We can rewrite this condition using the

compact matrix notation of Appendix A to get

[h�

j�1

j	

j�1

i] = 0: (4)

Substituting Equation (2) into Equation (4) yields

[h�

j�1

j�

j

i]Q

j

= 0: (5)
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The columns of Q

j

must therefore form a basis for the null space of [h�

j�1

j�

j

i] (see

Golub and Van Loan [10] for a discussion of null spaces). There are a multitude of

bases for the null space of a matrix, implying that there are many di�erent wavelet

bases for a given space W

j

. Ordinarily, we impose further constraints in addition to

the orthogonality requirement to uniquely determine the Q

j

matrices. For example,

the Haar wavelet synthesis matrix can be found by requiring the least number of

non-zero entries in each column.

4.2 The �lter bank

The previous section showed how scaling functions and wavelets could be related

by matrices. In this section, we show how matrix notation can also be used for the

decomposition process outlined in Section 2.1.

Consider a function in some scaling function space V

n

. Let's assume we have the

coe�cients of this function in terms of some scaling function basis. We can write

these coe�cients as a column matrix of values C

n

= [c

n

0

� � � c

n

M�1

]

T

. The coe�-

cients c

n

i

could, for example, be thought of as pixel colors, or alternatively, as the

x- or y-coordinates of a curve's control points in IR

2

.

Suppose we wish to create a low-resolution version C

n�1

of C

n

with a smaller

number of coe�cientsM

0

. The standard approach for creating theM

0

values of C

n�1

is to use some form of linear �ltering and downsampling on the M entries of C

n

.

This process can be expressed as a matrix equation

C

n�1

= A

n

C

n

(6)

where A

n

is a constant M

0

�M matrix.

Since C

n�1

contains fewer entries than C

n

, it is intuitively clear that some amount

of detail is lost in this �ltering process. If A

n

is appropriately chosen, it is possible

to capture the lost detail as another column matrix D

n�1

, computed by

D

n�1

= B

n

C

n

(7)

where B

n

is a constant (M�M

0

)�M matrix related to A

n

. The pair of matrices A

n

and B

n

are called analysis �lters. The process of splitting the coe�cients C

n

into a

low-resolution version C

n�1

and detail D

n�1

is called analysis or decomposition.

If A

n

and B

n

are chosen correctly, then the original coe�cients C

n

can be recovered

from C

n�1

and D

n�1

by using the matrices P

n

and Q

n

from the previous section:

C

n

= P

n

C

n�1

+ Q

n

D

n�1

: (8)

Recovering C

n

from C

n�1

and D

n�1

is called synthesis or reconstruction, and in

this context, P

n

and Q

n

are called synthesis �lters.
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Example: In the unnormalized Haar basis, the matrices A

n

and B

n

are given by:

A

n

=

1

2

2

6

6

6

6

6

6

4

1 1

1 1

.

.

.

1 1

1 1

3

7

7

7

7

7

7

5

B

n

=

1

2

2

6

6

6

6

6

6

4

1 �1

1 �1

.

.

.

1 �1

1 �1

3

7

7

7

7

7

7

5

;

where blank entries are taken to be zero, and the dots indicate that the

previous row is repeated, shifted right by two columns each time. In fact,

A

n

= (P

n

)

T

=2 and B

n

= (Q

n

)

T

=2 for the Haar basis.

Remark: Once again, the matrices for wavelets constructed on the

unbounded real line have a simple structure: the rows of A

j

are shifted

versions of each other, as are the rows of B

j

. The analysis Equations (6)

and (7) often appear in the literature as

c

n�1

k

=

X

`

a

`�2k

c

j

`

d

n�1

k

=

X

`

b

`�2k

c

j

`

where the sequences (: : : ; a

�1

; a

0

; a

1

; : : :) and (: : : ; b

�1

; b

0

; b

1

; : : :) are the

entries in a row of A

n

and B

n

, respectively. Similarly, Equation (8) for

reconstruction often appears as

c

n

k

=

X

`

�

p

k�2`

c

n�1

`

+ q

k�2`

d

n�1

`

�

:

Note that the procedure for splitting C

n

into a low-resolution part C

n�1

and a de-

tail part D

n�1

can be applied recursively to the low-resolution version C

n�1

. Thus,

the original coe�cients can be expressed as a hierarchy of lower-resolution versions

C

0

; : : : ; C

n�1

and details D

0

; : : : ; D

n�1

, as shown in Figure 10. This recursive pro-

cess is known as a �lter bank.

Since the original coe�cients C

n

can be recovered from the sequence C

0

,D

0

,D

1

, : : :,

D

n�1

, this sequence can be thought of as a transform of the original coe�cients,
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C

n

H

H

H

H

H

H

Hj

B

n

D

n�1

-

A

n

C

n�1

H

H

H

H

H

H

Hj

B

n�1

D

n�2

� � �

-

A

n�1

C

n�2

� � � C

1

H

H

H

H

H

H

Hj

B

1

D

0

-

A

1

C

0

Figure 10 The �lter bank.

known as a wavelet transform. Note that the total size of the transform C

0

, D

0

, : : :,

D

n�1

is the same as that of the original version C

n

, so no extra storage is required.

2

In general, the analysis �lters A

j

and B

j

are not necessarily multiples of the synthesis

�lters, as was the case for the Haar basis. Rather, A

j

and B

j

are formed by the

matrices satisfying the relation

h

�

j�1

	

j�1

i

2

4

A

j

B

j

3

5

= �

j

: (9)

Note that

h

P

j

Q

j

i

and

2

4

A

j

B

j

3

5

are both square matrices. Thus, combining Equa-

tions (3) and (9) gives

2

4

A

j

B

j

3

5

=

h

P

j

Q

j

i

�1

: (10)

Although we have not been speci�c about how to choose matrices A

j

, B

j

, P

j

,

and Q

j

, it should be clear from Equation (10) that

2

4

A

j

B

j

3

5

and

h

P

j

Q

j

i

must at

least be invertible.

4.3 Designing a multiresolution analysis

The multiresolution analysis framework presented above is very general. In practice

one often has the freedom to design a multiresolution analysis speci�cally suited to

a particular application. The steps involved are:

1. Select the scaling functions �

j

(x) for each j = 0; 1; : : :.

This choice determines the nested vector spaces V

j

, the synthesis �lters P

j

,

and the smoothness | that is, the number of continuous derivatives | of the

analysis.

2

However, the wavelet coe�cients may require more bits to retain the accuracy of the original

values.
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2. Select an inner product de�ned on the functions in V

0

; V

1

; : : : .

This choice determines the L

2

norm and the orthogonal complement spacesW

j

.

Although the standard inner product is the common choice, in general the in-

ner product should be chosen to capture a measure of error that is meaningful

in the context of the application.

3. Select a set of wavelets 	

j

(x) that span W

j

for each j = 0; 1; : : :.

This choice determines the synthesis �lters Q

j

. Together, the synthesis �l-

ters P

j

and Q

j

determine the analysis �lters A

j

and B

j

by Equation (10).

It is generally desirable to construct the wavelets to have small support and to form

an orthonormal basis for W

j

. However, orthonormality often comes at the expense

of increased supports, so a tradeo� must be made. In the case of the spline wavelets

presented in Section 5, the wavelets are constructed to have minimal support, but

they are not orthonormal (except for the piecewise-constant case). Wavelets that are

both locally supported and orthonormal (other than Haar wavelets) were thought to

be impossible until Daubechies' ground-breaking work showing that certain families

of spaces V

j

actually do admit orthonormal wavelets of small support [6].

5 Spline wavelets

Until now, the only speci�c wavelet basis we have considered is the Haar basis. Haar

basis functions have a number of advantages, including:

� simplicity,

� orthogonality,

� very compact supports,

� non-overlapping scaling functions (at a given level), and

� non-overlapping wavelets (at a given level),

which make them useful in many applications. However, despite these advantages,

the Haar basis is a poor choice for applications such as curve editing [9] and anima-

tion [13] because of its lack of continuity.

There are a variety of ways to construct wavelets with k continuous derivatives. One

such class of wavelets can be constructed from piecewise-polynomial splines. These

spline wavelets have been developed to a large extent by Chui and colleagues [4, 5].

The Haar basis is in fact the simplest instance of spline wavelets, resulting when

the polynomial degree is set to zero.

In the following, we briey sketch the ideas behind the construction of endpoint-

interpolating B-spline wavelets. Finkelstein and Salesin [9] have developed a collec-

tion of wavelets for the cubic case, and Chui and Quak [5] present constructions for
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arbitrary degree. Although the derivations for arbitrary degree are too involved to

present here, in Appendix B we give the synthesis �lters for the piecewise-constant

(Haar), linear, quadratic, and cubic cases. The next three sections should paral-

lel the three steps of designing a multiresolution analysis that were described in

Section 4.3.

5.1 B-spline scaling functions

Our �rst step is to de�ne the scaling functions for a nested set of function spaces.

We'll start with the general de�nition of B-splines, and then specify how to make

uniformly spaced, endpoint-interpolating B-splines from these.

Given positive integers d and k, with k � d, and a collection of non-decreasing val-

ues x

0

; : : : ; x

k+d+1

called knots, the non-uniform B-spline basis functions of degree d

are de�ned recursively as follows. For i = 0; : : : ; k, and for r = 1; : : : ; d, let

3

N

0

i

(x) :=

(

1 if x

i

� x < x

i+1

0 otherwise

N

r

i

(x) :=

x� x

i

x

i+r

� x

i

N

r�1

i

(x) +

x

i+r+1

� x

x

i+r+1

� x

i+1

N

r�1

i+1

(x):

The endpoint-interpolating B-splines of degree d on [0; 1] result when the �rst

and last d + 1 knots are set to 0 and 1, respectively. In this case, the functions

N

d

0

(x); : : : ; N

d

k

(x) form a basis for the space of piecewise-polynomials of degree d

with d�1 continuous derivatives and breakpoints at the interior knots x

d+1

; : : : ; x

k

[8].

To make uniformly spaced B-splines that are re�nable, we choose k = 2

j

+ d � 1

and x

d+1

; : : : ; x

k

to produce 2

j

equally-spaced interior intervals. This construction

gives 2

j

+d B-spline basis functions for a particular degree d and level j. We will use

these functions as the endpoint-interpolating B-spline scaling functions. Figure 11

shows examples of these functions at level j = 1 (two interior intervals) for various

degrees d. Note that the basis functions de�ned here are not normalized.

If we denote by V

j

(d) the space spanned by the B-spline scaling functions of degree d

with 2

j

uniform intervals, it is not di�cult to show that the spaces V

0

(d); V

1

(d); : : :

are nested as required by multiresolution analysis.

The rich theory of B-splines can be used to develop expressions for the entries of the

re�nement matrix P

j

(see Chui and Quak [5] for details). The columns of P

j

are

sparse, reecting the fact that the B-spline basis functions are locally supported.

The �rst and last d columns of P

j

are relatively complicated, but the remaining

(interior) columns are shifted versions of column d+1. Moreover, the entries of these

interior columns are, up to a common factor of 1=2

d

, given by binomial coe�cients.

3

The fractions in these equations are taken to be 0 when their denominators are 0.
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N

0

0

N

0

1

degree 0

N

1

0

N

1

1

N

1

2

degree 1

N

2

0

N

2

1

N

2

2

N

2

3

degree 2

N

3

0

N

3

1

N

3

2

N

3

3

N

3

4

degree 3

Figure 11 B-spline scaling functions for V

1

(d) with degree d = 0; 1; 2; and 3.

Example: In the case of cubic splines (d = 3), the matrix P

j

for j � 3

has the form

P

j

=

1

8

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

8

4 4

6 2

3

2

11

2

1

4 4

1 6 1

4 4

1 6

4 �

1 � 1

� 4

6 1

4 4

1

11

2

3

2

2 6

4 4

8

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

where blank entries are taken to be zero, and the dots indicate that the

previous column is repeated, shifted down by two rows each time.
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5.2 Inner product

The second step of designing a multiresolution analysis is the choice of an inner

product. We'll simply use the standard inner product here,

hf j gi :=

Z

1

0

f(x) g(x) dx:

5.3 B-spline wavelets

To complete our development of a B-spline multiresolution analysis, we need to

�nd basis functions for the spaces W

j

that are orthogonal complements to the

spaces V

j

. As shown in Section 4.1, the wavelets are determined by matrices Q

j

satisfying Equation (5), which we repeat here for convenience:

[h�

j�1

j�

j

i]Q

j

= 0: (11)

Since this is a homogeneous system of linear equations, there is not a unique solution.

We must therefore impose additional conditions. We could, for example, require the

columns of Q

j+1

to be sparse, and further require a minimal number of consecutive

non-zeros. This approach is taken by Finkelstein and Salesin [9] in their construction

of cubic spline wavelets. This same approach was used to construct the wavelets

summarized in Appendix B. The basic idea is to construct Q

j+1

a column at a time.

The matrices in Appendix B reveal a simple structure for the locations of non-zero

entries; the values are determined by solving the linear system of constraints implied

by Equation (11). Chui and Quak [5] use a slightly di�erent characterization based

on derivative and interpolation properties of B-splines.

5.4 B-spline �lter bank

At this point, we have completed the steps in designing a multiresolution analysis.

However, in order to use spline wavelets we will need to implement a �lter bank

procedure incorporating the analysis �lters A

j

and B

j

. These matrices allow us to

determine C

j�1

and D

j�1

from C

j

using matrix multiplication as in Equations (6)

and (7). As discussed in Section 4, the analysis �lters are uniquely determined by

the inverse relation in Equation (10):

2

4

A

j

B

j

3

5

=

h

P

j

Q

j

i

�1

:

However, when implementing the �lter bank procedure for spline wavelets, it is

generally not a good idea to form the �lters A

j

and B

j

explicitly. Although P

j

and Q

j

are sparse, having only O(d) entries per column, A

j

and B

j

are in general
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dense, so that matrix{vector multiplication would require quadratic instead of linear

time.

Fortunately, there is a better approach. The idea is to �rst notice that C

j�1

andD

j�1

can be computed from C

j

by solving the sparse linear system

h

P

j

Q

j

i

2

4

C

j�1

D

j�1

3

5

= C

j

:

The matrix

h

P

j

Q

j

i

can then be made into a banded matrix simply by interspers-

ing the columns of P

j

and Q

j

. The resulting banded system can be solved in linear

time using LU decomposition [17].

6 Application II: Multiresolution curves and surfaces

Our second application of wavelets in computer graphics is that of curve design and

editing, as described in detail by Finkelstein and Salesin [9]. Their multiresolution

curves are built from a wavelet basis for endpoint-interpolating cubic B-splines,

which we discussed in the previous section.

Multiresolution curves conveniently support a variety of operations:

� the ability to change the overall \sweep" of a curve while maintaining its �ne

details, or \character" (Figure 12);

� the ability to change a curve's \character" without a�ecting its overall \sweep"

(Figure 14);

� the ability to edit a curve at any continuous level of detail, allowing an arbi-

trary portion of the curve to be a�ected through direct manipulation;

� continuous levels of smoothing, in which undesirable features are removed

from a curve;

� curve approximation, or \�tting," within a guaranteed maximum error toler-

ance, for scan conversion and other applications.

Here we'll describe just the �rst two of these operations, which fall out quite natu-

rally from the multiresolution representation.

6.1 Editing the sweep of the curve

Editing the sweep of a curve at an integer level of the wavelet transform is simple.

Let C

n

be the control points of the original curve f

n

(t), let C

j

be a low-resolution
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version of C

n

, and let

b

C

j

be an edited version of C

j

, given by

b

C

j

= C

j

+�C

j

. The

edited version of the highest-resolution curve

b

C

n

= C

n

+ �C

n

can be computed

through synthesis:

b

C

n

= C

n

+ �C

n

= C

n

+ P

n

P

n�1

� � �P

j+1

�C

j

:

Note that editing the sweep of the curve at lower levels of smoothing j a�ects larger

portions of the high-resolution curve f

n

(t). At the lowest level, when j = 0, the

entire curve is a�ected; at the highest level, when j = n, only the narrow portion

inuenced by one original control point is a�ected. The kind of exibility that this

multiresolution editing allows is suggested in Figures 12 and 13.

(a) (b) (c) (d)

Figure 12 Changing the overall sweep of a curve without a�ecting its character.

Given the original curve (a), the system extracts the overall sweep (b). If the user

modi�es the sweep (c), the system can re-apply the detail (d).

1

2

3
4↓

↓
↓

Figure 13 The middle of the dark curve is pulled, using editing at integer levels

1, 2, 3, and 4.

6.2 Editing the character of the curve

Multiresolution curves also naturally support changes in the character of a curve,

without a�ecting its overall sweep. Let C

n

be the control points of a curve, and

let C

0

, : : :, C

n�1

, D

0

, : : :, D

n�1

denote the components of its multiresolution de-

composition. Editing the character of the curve is simply a matter of replacing the

existing set of detail functions D

j

; : : : ; D

n�1

with some new set

b

D

j

; : : : ;

b

D

n�1

.

Figure 14 demonstrates how the character of curves in an illustration can be modi�ed

with the same (or di�erent) detail styles. (The interactive illustration system used

to create this �gure is described by Salisbury et al. [18].)
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Figure 14 Changing the character of a curve without a�ecting its sweep.

6.3 Multiresolution surfaces

Multiresolution editing can be extended to surfaces by using tensor products of B-

spline scaling functions and wavelets. Either the standard construction or the non-

standard construction from Section 2.4 can be used to form a two-dimensional basis

from a one-dimensional B-spline basis. We can then edit surfaces using the same

operations that were described for curves in the previous sections. For example, in

Figure 15 a bicubic tensor-product B-spline surface is shown after altering its sweep

at di�erent levels of detail.

(a) (b) (c) (d)

Figure 15 Surface manipulation at di�erent levels of detail: The original sur-

face (a) is changed at a narrow scale (b), an intermediate scale (c), and a broad

scale (d).

Multiresolution analysis can be further generalized to surfaces of arbitrary topology

by de�ning wavelets on subdivision surfaces, as described by Lounsbery et al. [14].

This method allows any polyhedral object to be decomposed into scaling function

and wavelet coe�cients. Then a compression scheme similar to that presented for

images in Section 3 can be used to display the object at various levels of detail

simply by leaving out small wavelet coe�cients. An example of this technique is

shown in Figure 16.

28



(a) (b) (c)

Figure 16 Surface approximation using subdivision surface wavelets: The original

surface (a), an intermediate approximation (b), and a coarse approximation (c).
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A Linear algebra review

Multiresolution analysis relies heavily on fundamental ideas from linear algebra.

We've included this appendix to remind you of a few important facts.

A.1 Vector spaces

The starting point for linear algebra is the notion of a vector space, which can be

loosely de�ned as follows: A collection V of things is a vector space (over the reals)

if:

1. For all a; b 2 IR and for all u; v 2 V , au+ bv 2 V .

2. There exists a unique element 0 2 V such that

� for all u 2 V , 0u = 0; and

� for all u 2 V , 0 + u = u.

3. (Remaining axioms omitted; most of these are necessary to guarantee that

multiplication and addition behave as expected.)

The elements of a vector space V are called vectors, and the element 0 is called the

zero vector. The vectors may be geometric vectors, or they may be functions, as is

the case when discussing wavelets and multiresolution analysis.

A.2 Bases and dimension

A collection of vectors u

1

; u

2

; : : : in a vector space V are said to be linearly inde-

pendent if

c

1

u

1

+ c

2

u

2

+ � � � = 0 () c

1

= c

2

= � � � = 0:

A collection u

1

; u

2

; : : : 2 V of linearly independent vectors is a basis for V if every

v 2 V can be written as

v =

X

i

c

i

u

i

for some real numbers c

1

; c

2

; : : : . Intuitively speaking, linear independence means

that the vectors are not redundant, and a basis consists of a minimal set of complete

vectors.

If a basis for V has a �nite number of elements u

1

; : : : ; u

m

, then V is �nite-

dimensional and its dimension is m. Otherwise, V is said to be in�nite-dimensional.

Example: IR

3

is a 3-dimensional space, and e

1

= (1; 0; 0), e

2

= (0; 1; 0),

e

3

= (0; 0; 1) is a basis for it.
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Example: The set of all functions continuous on [0; 1] is an in�nite-

dimensional vector space. We'll call this space C[0; 1].

A.3 Inner products and orthogonality

When dealing with geometric vectors from the vector space IR

3

, the \dot product"

operation has a number of uses. The generalization of the dot product to arbitrary

vector spaces is called an inner product. Formally, an inner product h� j �i on a vector

space V is any map from V � V to IR that is:

� symmetric: hu j vi= hv j ui

� bilinear: hau+ bv jwi = ahu jwi + bhv jwi

� positive de�nite: hu j ui > 0 for all u 6= 0.

A vector space together with an inner product is called, not surprisingly, an inner

product space.

Example: It is straightforward to show that the dot product on IR

3

de�ned by

h(a

1

; a

2

; a

3

) j (b

1

; b

2

; b

3

)i := a

1

b

1

+ a

2

b

2

+ a

3

b

3

(12)

satis�es the requirements of an inner product.

Example: The following \standard" inner product on C[0; 1] plays a

central role in most formulations of multiresolution analysis:

hf j gi :=

Z

1

0

f(x) g(x) dx:

Example: To further emphasize how general an inner product can be,

here is a rather bizarre one on the space of twice-di�erentiable functions

on [0; 1]:

hf j gi :=

Z

1

0

d

2

f(x)

dx

2

d

2

g(x)

dx

2

dx:

One of the most important uses of the inner product is to formalize the idea of

orthogonality: Two vectors u; v in an inner product space are said to be orthogonal

if hu j vi = 0. It is not di�cult to show that a collection u

1

; u

2

; : : : of mutually

orthogonal vectors must be linearly independent, suggesting that orthogonality is a

strong form of linear independence. An orthogonal basis is one consisting of mutually

orthogonal vectors.
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A.4 Norms and normalization

A norm is a function that measures the length of vectors. In a �nite-dimensional

vector space, we typically use the norm jjujj:=hu j ui

1=2

=

p

u � u. If we are working

with a function space such as C[0; 1], we ordinarily use one of the L

p

norms, de�ned

as

jjujj

p

:=

�

Z

1

0

ju(x)j

p

dx

�

1=p

:

In the limit as p tends to in�nity, we get what is known as the max-norm:

jjujj

1

:= max

x2[0;1]

u(x):

Even more frequently used is the L

2

norm, which can also be written as jjujj

2

=

hu j ui

1=2

if we are using the standard inner product.

A vector u with jjujj = 1 is said to be normalized. If we have an orthogonal ba-

sis composed of vectors that are normalized in the L

2

norm, the basis is called

orthonormal. Stated concisely, a basis u

1

; u

2

; : : : is orthonormal if

hu

i

j u

j

i = �

ij

;

where �

ij

is called the Kronecker delta, and is de�ned to be 1 if i = j, and 0

otherwise.

Example: The vectors e

1

= (1; 0; 0), e

2

= (0; 1; 0), e

3

= (0; 0; 1) form

an orthonormal basis for the inner product space IR

3

endowed with the

dot product of Equation (12).

A.5 Duals

With every basis u

1

; u

2

; : : : for an inner product space V , there is a unique associated

basis u

1

; u

2

; : : : called the dual basis, characterized by the relation

hu

i

j u

j

i = �

ij

:

Dual bases are the key to solving the following important problem: Given an arbi-

trary vector v, �nd the coe�cients c

1

; c

2

; : : : such that

v =

X

i

c

i

u

i

: (13)
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To compute the j-th coe�cient c

j

, simply take the inner product of both sides of

Equation (13) with u

j

:

hv j u

j

i =

*

X

i

c

i

u

i

u

j

+

=

X

i

c

i

hu

i

j u

j

i

=

X

i

c

i

�

ij

= c

j

:

In short, the coe�cients in the expansion of v are given by c

j

= hv j u

j

i.

Orthonormal bases are so useful because they are self-dual; that is, they satisfy

u

i

= u

i

for all i.

A.6 Computing the duals

To see how to compute the duals, let's de�ne some new notation. Let A = [a

1

a

2

� � �]

and B = [b

1

b

2

� � �] be two row matrices whose entries are vectors in an inner

product space, and de�ne [hA jBi] as the matrix whose ij-th entry is ha

i

j b

j

i.

Example: If A(x) = [a

1

(x) a

2

(x) � � �] and B(x) = [b

1

(x) b

2

(x) � � �]

have entries in the vector space C[0; 1] endowed with the standard inner

product, then the ij-th entry of [hA jBi] is

[hA jBi]

ij

=

Z

1

0

a

i

(x) b

j

(x) dx:

Armed with this notation, if we gather the elements u

1

; u

2

; : : : of a basis together

into a row matrix U = [u

1

u

2

� � �], it is straightforward to verify that the dual basis

U = [u

1

u

2

� � �] can be computed from

U = U [hU jUi]

�1

:
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B Details on endpoint-interpolating B-spline wavelets

This appendix presents the matrices required to make use of endpoint-interpolating

B-spline wavelets of low degree.

4

These concrete examples should serve to elucidate

the ideas presented in Section 5. In order to emphasize the sparse structure of the

matrices, zeros have been omitted. Diagonal dots indicate that the previous column

is to be repeated the appropriate number of times, shifted down by two rows for

each column. All of the matrix entries given below are exact, except for those in

the last two Q matrices in the cubic case. Finally, note that the matrices given here

correspond to unnormalized basis functions. The P matrices have entries relating

the scaling functions de�ned in Section 5, while the entries of the Q matrices are

scaled to be integers.

B.1 Haar wavelets

The B-spline wavelet basis of degree 0 is simply the Haar basis described in Sec-

tions 2 and 4. Some examples of the Haar basis scaling functions and wavelets are

depicted in Figure 17. The synthesis matrices P

j

and Q

j

are given below.

P

j

=

2

6

6

6

6

4

1

1

1

1 �

�

� 1

1

1

1

3

7

7

7

7

5

Q

j

=

2

6

6

6

6

4

1

�1

1

�1 �

�

� 1

�1

1

�1

3

7

7

7

7

5

Figure 17 The piecewise-constant B-spline (Haar) scaling functions and wavelets

for j = 3.

4

The Matlab code used to generate these matrices is available from the authors upon request.
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B.2 Endpoint-interpolating linear B-spline wavelets

Figure 18 shows a few typical scaling functions and wavelets for linear B-splines. The

synthesis matrices P

j

and Q

j

for endpoint-interpolating linear B-spline wavelets are

given below.

P

1

=

1

2

�

2

1 1

2

�

P

2

=

1

2

2

4

2

1 1

2

1 1

2

3

5

P

j�3

=

1

2

2

6

6

6

6

6

6

4

2

1 1

2

1 1

2

1 �

�

� 1

2

1 1

2

3

7

7

7

7

7

7

5

Q

1

=

�

1

�1

1

�

Q

2

=

2

4

�12

11 1

�6 �6

1 11

�12

3

5

Q

j�3

=

2

6

6

6

6

6

6

6

6

6

4

�12

11 1

�6 �6

1 10 1

�6 �6

1 10

�6 �

1 � 1

� �6

10 1

�6 �6

1 11

�12

3

7

7

7

7

7

7

7

7

7

5

Figure 18 The linear B-spline scaling functions and wavelets for j = 3.
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B.3 Endpoint-interpolating quadratic B-spline wavelets

Figure 19 shows some of the quadratic B-spline scaling functions and wavelets. The

synthesis matrices P

j

and Q

j

for the quadratic case are given below.

P

1

=

1

2

"

2

1 1

1 1

2

#

P

2

=

1

4

2

6

4

4

2 2

3 1

1 3

2 2

4

3

7

5

P

j�3

=

1

4

2

6

6

6

6

6

6

6

6

6

4

4

2 2

3 1

1 3

3 1

1 3

3 �

1 � 1

� 3

3 1

1 3

2 2

4

3

7

7

7

7

7

7

7

7

7

5

Q

1

=

"

2

�3

3

�2

#

Q

2

=

2

6

4

144

�177 �21

109 53

�53 �109

21 177

�144

3

7

5

Q

3

=

2

6

6

6

6

6

4

�75504

91806 10920

�54637 �27286 �154

22913 48734 4466

�4466 �47068 �22652 �154

154 22652 47068 4466

�4466 �48734 �22913

154 27286 54637

�10920 �91806

75504

3

7

7

7

7

7

5

Q

j�4

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�75504

91806 10920

�54637 �27286 �154

22913 48734 4466

�4466 �47068 �22638 �154

154 22652 46662 4466

�4466 �46662 �22638

154 22638 46662 �154

�4466 �46662 � 4466

154 22638 � �22638 �154

�4466 � 46662 4466

154 �46662 �22652 �154

22638 47068 4466

�4466 �48734 �22913

154 27286 54637

�10920 �91806

75504

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 19 The quadratic B-spline scaling functions and wavelets for j = 3.
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B.4 Endpoint-interpolating cubic B-spline wavelets

Some examples of cubic B-spline scaling functions and wavelets are shown in Fig-

ure 20. The synthesis matrices P

j

and Q

j

for endpoint-interpolating cubic B-spline

wavelets are given below. The matrices Q

3

and Q

j�4

are approximate; entries were

rounded after each column was scaled to make its largest entry 1,000,000.

P

1

=

1

2

2

4

2

1 1

1 1

1 1

2

3

5

P

2

=

1

16

2

6

6

4

16

8 8

12 4

3 10 3

4 12

8 8

16

3

7

7

5

P

j�3

=

1

16

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

16

8 8

12 4

3 11 2

8 8

2 12 2

8 8

2 12

8 �

2 � 2

� 8

12 2

8 8

2 11 3

4 12

8 8

16

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Q

1

=

2

4

1

�2

3

�2

1

3

5

Q

2

=

2

6

6

4

�1368

2064 240

�1793 �691

1053 1053

�691 �1793

240 2064

�1368

3

7

7

5

Q

3

�

2

6

6

6

6

6

6

4

�686823

1000000 �254803

�798167 697530 14449

382460 �921763 �78158 17

�138342 1000000 314093 �2088

28284 �720755 �720755 28284

�2088 314093 1000000 �138342

17 �78158 �921763 382460

14449 697530 �798167

�254803 1000000

�686823

3

7

7

7

7

7

7

5

Q

j�4

�

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�686823

1000000 256326

�798167 �701422 �15882

382460 925781 85895 41

�138342 �1000000 �343712 �5110

28284 711467 771597 69115 41

�2088 �297591 �1000000 �325750 �5110

17 62856 758322 761705 69115

�4647 �323843 �1000000 �325750

37 68691 761705 761705 41

�5079 �325750 �1000000 �5110

41 69115 761705 � 69115 41

�5110 �325750 � �325750 �5079

41 69115 � 761705 68691 37

�5110 �1000000 �323843 �4647

41 761705 758322 62856 17

�325750 �1000000 �297591 �2088

69115 771597 711467 28284
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Figure 20 The cubic B-spline scaling functions and wavelets for j = 3.
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