
Integrating Coherency and Recoverability in Distributed Systems

Michael J. Feeley, Je�rey S. Chase, Vivek R. Narasayya, and Henry M. Levy

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

ffeeley,chase,nara,levyg@cs.washington.edu

First published in the \Proceedings of the First Symposium on Operating Systems Design and Implementation,"

Usenix Association, November 1994.

Abstract

We propose a technique for maintaining coherency

of a transactional distributed shared memory, used by

applications accessing a shared persistent store. Our

goal is to improve support for �ne-grained distributed

data sharing in collaborative design applications, such

as CAD systems and software development environ-

ments. In contrast, traditional research in distributed

shared memory has focused on supporting parallel pro-

grams; in this paper, we show how distributed pro-

grams can bene�t from this shared-memory abstrac-

tion as well.

Our approach, called log-based coherency, integrates

coherency support with a standard mechanism for en-

suring recoverability of persistent data. In our sys-

tem, transaction logs are the basis of both recoverabil-

ity and coherency. We have prototyped log-based co-

herency as a set of extensions to RVM [Satyanarayanan

et al. 94], a runtime package supporting recoverable

virtual memory. Our prototype adds coherency sup-

port to RVM in a simple way that does not require

changes to existing RVM applications. We report on

our prototype and its performance, and discuss its re-

lationship to other DSM systems.

1 Introduction

Existing distributed shared memory (DSM) systems

support parallel programming on distributed-memory

multicomputers and workstation networks. Exam-

ples of such systems include IVY [Li & Hudak 89],

Munin [Carter et al. 91], TreadMarks [Keleher et al.

This work is supported in part by the National Science

Foundation (Grants No. CDA-9123308 and CCR-9200832), the

Washington Technology Center, Digital Equipment Corpora-

tion, Boeing Computer Services, Intel Corporation, Hewlett-

Packard Corporation, and Apple Computer. Both Feeley

and Chase have been supported by Intel Foundation Grad-

uate Fellowships. Chase's present address is: Department

of Computer Science, Duke University, Durham, NC 27706

(chase@cs.duke.edu).

94], and Midway [Zekauskas et al. 94]. These DSM

systems maintain the illusion of a single shared mem-

ory by synchronizing data access and moving data be-

tween nodes when required, transparently to the appli-

cation. DSM is useful in this context, because it sim-

pli�es programming of these distributed-parallel pro-

grams.

Parallel programs are not the only applications that

can bene�t from the concept of distributed shared

memory; DSM can be applied to other application do-

mains as well. Our goal is to support coherent virtual

memory for programs that perform transactional up-

dates to their shared memory space. While this style

of programming is not ordinarily seen in parallel pro-

grams, it is standard for applications using a persistent

store, a system that supports storage and retrieval of

virtual memory data structures in disk �les.

Our work explores the interactions between co-

herency and transactions. We describe log-based co-

herency, a simple technique for maintaining consis-

tency of a transactional distributed virtual memory.

The key idea behind log-based coherency is that log

records used to support atomic transactions are also

used as the basic mechanism for updating cached

copies of the data on peer nodes. This uni�cation

of mechanisms allows us to add DSM support to sys-

tems that support persistence, without modifying ex-

isting persistent programs and without adding signi�-

cant software overhead.

1.1 Persistent Stores

Persistent storage systems have evolved to meet the

data management needs of design applications, in-

cluding electronic and mechanical CAD systems and

software development environments. These applica-

tion environments consist of collections of programs

that operate on persistent data structures represent-

ing design artifacts and derived information. Client

programs navigate through the stored data by follow-

ing pointers directly in virtual memory, with the sys-

tem moving data between memory and the persistent

store as needed. A number of persistent stores have

been built; some are research systems [Cockshott et al.

84, Moss 90, Carey et al. 94] and others are commer-

cial object-oriented database (OODB) products (e.g.,

[Butterworth et al. 92, Lamb et al. 91, O. Deux 92]),

augmented with database features such as query pro-

cessors, schema languages, and indexing facilities.

To prevent failures from corrupting persistent struc-

tures, updates to a persistent store are grouped to-

gether and applied \all or nothing" at commit points

designated by the program during its execution. For

our purposes, a transaction is a period of execution

ending in a commit point. The key property of trans-

actions is that each commit point atomically enters

a set of updates that together transform the store

from one durable consistent state to another. Fail-

ures may cause some uncommitted updates to be lost,

but the last committed state can always be recov-

ered. Database systems typically combine these re-

quirements of atomicity and durability with additional

assumptions about how concurrent transactions are

synchronized, but this is not essential to our notion

of a transaction.

Our work explores techniques for extending a per-

sistent store to allow network access. For example,

a persistent store that supports design applications

can be extended to allow a group of collaborating de-

signers to run CAD tools at their workstations, ac-

cessing the shared store through the network. In the

simplest con�guration, updates are written atomically

to a centralized server that maintains the authorita-

tive copy of the data in the store. Clients fetch data

from the server in bulk, cache it locally, and oper-

ate directly on the cached image in virtual memory.

In the database community this architecture is some-

times called a client/server database. We refer to it

as a cached persistent store since the ideas generalize

to persistent virtual memory systems that do not pro-

vide full database features. Note that cached persis-

tent stores are distinct from transactional systems for

reliable distributed programming (e.g., Argus [Liskov

88] and Camelot [Eppinger et al. 91]) in that the

database itself is not distributed; each transaction up-

dates a cached image of a centralized database in vir-

tual memory on a single node. In particular, there is

no need for two-phase commit, since each transaction

commits or aborts within a single process.

1.2 Combining Coherency and Recov-

erability

A key problem for cached persistent stores is main-

taining consistency of the data cached in memory on

each client. While these systems are similar to dis-

tributed �le systems, the caches should be viewed as

a distributed shared memory, since each client process

accesses the cache directly in its virtual address space.

There are other important similarities with DSM sys-

tems. Fine-grained sharing is common in collaborative

design environments, where changes made by one en-

gineer must be quickly integrated into structures that

are readable by the others. The caches of di�erent

clients will overlap considerably when clients access

the same artifacts, more so as physical memories grow

and data remains in client memory for longer periods.

For these reasons, DSM techniques such as �ne-grained

client-client transfers are appropriate for maintaining

coherency for cached persistent stores. In the past, dis-

tributed persistent systems have supported coherency

in a manner similar to most distributed �le systems:

by reading and writing shared data through the server,

usually in �xed-size blocks, and invalidating cached

blocks when another client acquires the �le token or

lock.

In addition, there is commonality between the key

implementation aspects for coherency and recoverabil-

ity. To implement either property, the system must

capture the updates made by the application, and

propagate those updates | either to durable mem-

ory (e.g., disk) or to other memories in the network |

in such a way that all clients see a consistent view of

the data at all times. The key performance factors are

the same: (1) the cost of capturing updates, and (2)

the precision with which those updates are captured,

which determines the amount of tra�c to the disk or

network. This synergy can be exploited when both

properties are supported together, and optimizations

that improve the performance of one may also improve

the performance of the other.

This paper develops a combined approach that in-

tegrates coherency support with a mechanism for en-

suring recoverability of persistent data. It di�ers from

other DSM systems in that it accommodates a trans-

actional programming model and exploits the captur-

ing of updates for a transaction log. Section 2 out-

lines our approach and its variations, discusses some

of the design issues, and sets our work in context with

other systems that support distributed database access

and distributed shared memory. Section 3 describes

our prototype implementation, and Section 4 presents

some performance results. In Section 5 we discuss ad-

ditional related work, and we conclude in Section 6.

2 Log-Based Coherency for a Cached

Persistent Store

Log-based coherency is an extension to write-ahead

redo logging, a common mechanism for implement-

ing atomic and durable transactions. This mechanism

works by recording new values of data items modi-

�ed by a transaction, and writing them to a log on

durable memory when the transaction commits. The

system ensures that commits are atomic by writing

the log before writing the updated objects back to the

permanent database �le. In the event of failure, a re-

covery procedure restores the database to a consistent

state by replaying the committed log records into the

permanent database �le. Many recoverable systems

use write-ahead redo logging; for example, it is funda-

mental to the pin/update/log commit protocol used by

Camelot [Eppinger et al. 91].

When multiple clients are accessing the store

through a network, the log records are written to a

logically centralized storage service that also holds the

permanent database �le. A client failure aborts all

uncommitted transactions executing in that client. A

server failure may abort uncommitted transactions in

all clients and initiate the recovery procedure to bring

the permanent database �le to a consistent state, re-

ecting the committed updates made by all clients.

(Note that the storage service could be transparently

replicated to reduce the probability of a server failure.)

The key to log-based coherency is that the redo log

generated by each client holds exactly the information

needed to maintain consistency of distributed mem-

ory. The system need only transmit the committed log

tails to peer nodes that are sharing the modi�ed ob-

jects; the recipients apply the log records they receive

to update their cached data images. There is no ex-

tra runtime cost for collecting the information needed

to maintain coherency, since it is already collected to

support recoverability. Thus, a common implementa-

tion technique for a recoverable store is extended to

support coherency in a straightforward way. In fact,

our approach can be viewed as transaction logging to

remote memory instead of (or in addition to) the disk.

As an example, suppose that several nodes are shar-

ing a persistent object, X; each has a copy ofX cached

in its primary memory. When one of the nodes exe-

cutes a transaction modifyingX, the updates are per-

formed and logged locally; other nodes are neither up-

dated nor invalidated at that time. When the trans-

action is complete, the generated log record contains

exactly the informationneeded to transition to the cur-

rent state of X from its initial state. Thus, to bring

the other nodes up to date, it is su�cient to propagate

this portion of the log to the peer nodes.

Within this broad framework, systems that use log-

based coherency could vary in a number of details,

including:

� when log records are transmitted to peer nodes,

� which peers receive the log records,

� how updates are applied to a recipient's cache,

� how updates are synchronized with client threads

executing locally, and, in a recipient's cache.

In our prototype, described in Section 3, we have

made choices for ease of implementation and for the

workloads we expect. However, our approach is
ex-

ible enough to accommodate variations. The follow-

ing subsections discuss underlying concepts, the design

choices we made, and some alternative possibilities.

2.1 The Role of Synchronization

In DSM systems, the method and timing of update

propagation is closely tied to synchronization events.

The �rst DSM systems (Monads [Rosenberg & Abram-

son 85] and IVY [Li & Hudak 89]) used virtual page

protections and reference traps to capture updates and

synchronize access to shared pages. In these systems,

page-grain locking and page-grain coherency led to

performance problems caused by false sharing. Newer

high-performance DSM systems based on release con-

sistency [Gharachorloo et al. 90] (e.g., Munin), lazy

release consistency [Keleher et al. 92] (TreadMarks)

and entry consistency (Midway) have reduced this

problem by supplying synchronization primitives that

function independently of the coherency protocol, and

drive the propagation of updates. These systems re-

duce false sharing by allowing concurrent accesses to

a shared page. However, they assume a fully synchro-

nized (properly labeled) application program; that is,

the application must acquire and release the correct

locks at the correct times. For all of these systems, the

coherency algorithm will fail for programs that make

synchronization errors.

Log-based coherency uses a similar approach resting

on similar assumptions. Our prototype supplies stan-

dard mutex primitives that are acquired as a trans-

action executes and released at transaction commit

(we currently assume that transactions use strict two-

phase locking). The system propagates updates only

after a writer has released all relevant locks at commit,

and it ensures that all relevant updates are applied lo-

cally before a reader is permitted to acquire a lock.

Our system di�ers from release consistency, and is sim-

ilar to entry consistency (Midway), in that coherency

operations initiated by a lock operation are restricted

to the data under the scope of that lock. The store

is partitioned into segments, each under the control of

a separate lock. Segments can be large or small, pre-

senting an obvious tradeo� between synchronization

overhead and false lock con
icts. We expect locks to

be relatively coarse-grained; most commercial persis-

tent stores support coarse-grained locking as natural

for collaborative design environments. Regardless of

the locking grain, the updates made while a lock is

held often involve only a small number of the bytes

controlled by that lock. In fact, we expect that most

updates will be �ne-grained (e.g., \change this and to

an or"), but that read operations will consume large

amounts of data for input to functions such as de-

sign analysis or graphical display. For this reason, log-

based coherency separates the coherency grain from

the synchronization grain: the updates sent to peer

nodes are determined not by the locks acquired, but

by the values logged at transaction commit.

Transaction log records include information about

the locks acquired during the transaction. Each lock

has a unique lock number and a sequence number

(timestamp) that is incremented on each acquire.

When a transaction acquires a lock, its log record is

tagged with the sequence number and lock number of

that lock. The synchronization primitives contain em-

bedded calls to logging routines to generate these tags.

The tags are used to determine which nodes must re-

ceive the log records and when they must be applied.

For example, updates for a segment need only be sent

to nodes that have previously acquired the lock for the

segment. The sequence numbers are also used to en-

sure that all relevant data has been rendered coherent

before an acquire can succeed, and to preserve the

global ordering of updates from multiple nodes during

recovery, as described in Section 3.4.

We believe that alternative synchronization models

can be implemented with a modest e�ort, by replacing

the synchronization primitives and the calls they make

to underlying logging and coherency routines. Several

relaxed models have been proposed by researchers ar-

guing that strict serializability is inappropriate for de-

sign transactions (e.g., [Hornick & Zdonik 87]). We

are exploring a read/write model that permits readers

to operate on a previous consistent version of the data

while an update is in progress elsewhere; readers use

an accept primitive to explicitly signal their willing-

ness to move forward to a newer consistent version. In

this scheme, pending log records must be bu�ered in

the recipient until they can be applied. We have used

a similar version-based consistency model in the past

for a range of parallel applications [Feeley & Levy 92].

2.2 Propagating Log Records

Our prototype uses a simple eager policy for propa-

gating updates. At each commit point, after the log

records have been written to the storage server, the

in-memory copies of the log records for each segment

are eagerly propagated to all clients that have recently

acquired the locks for the modi�ed segments. We use

eager updates because they are simple (i.e., no bu�er-

ing of log records), they are tolerant of client failures,

and they reduce the latency of data access on a client.

However, eager updates may increase network tra�c

and cannot scale to large numbers of clients, particu-

larly on networks with point-to-point links that do not

support broadcast or multicast.

We believe that alternative policies could be imple-

mented transparently to the application by replacing

the synchronization primitives and their embedded co-

herency code. For example, the system could propa-

gate segment updates lazily, using an embedded call

in the acquire primitive to fetch and apply pending

log records. Segment updates could be fetched from

the server, where all log records are cached in mem-

ory for a time, or passed with the lock by the last

writer. In Midway, for example, the acquire primi-

tive retrieves current versions of any stale objects in

the requester's cache from the current lock holder. The

acquire request includes a timestamp for the last time

the lock was held by the requester; the lock holder de-

termines which modi�ed objects to return by compar-

ing the timestamp against a modi�cation timestamp

for each object under the lock's scope.

For log-based coherency, lazy update propagation

raises the question of how to determine when pending

log records are no longer needed by peer nodes and

can be discarded. One solution is to pass information

about how many log records to hold for each segment

along with the lock token, as each node acquires the

lock in turn. Each node holds all log records up to

and including the oldest records needed by the most

out-of-date peer. Acquiring a lock brings new records,

as well as an opportunity to discard records held lo-

cally. Note that discarding pending update records is

not a concern with Midway's lazy propagation scheme,

because no log records or captured updates are held;

nodes do not save intermediate versions of objects that

are modi�ed repeatedly. In our case, these log records

must be held in order to support the nonserializable

read/write model described above. That is, a reader

may acquire a previous version even if uncommitted

writes are present in the writer's cache; the reader's

cache must be updated to re
ect the previous com-

mitted version.

2.3 Summary

In this section we presented an overview of log-based

coherency. Built-in synchronization primitives are fun-

damental to our approach. Alternative coherency pro-

tocols | rules for propagating, applying, and releas-

ing log records | can be realized by embedding calls

to logging routines in the synchronization primitives.

The locking routines can collect and maintain infor-

mation about which peers must receive a given set of

updates, and when.

3 Prototype Implementation

To experiment with our approach, we prototyped

a simple implementation of log-based coherency by

adding distribution support to CMU's Recoverable

Virtual Memory (RVM) package [Satyanarayanan

et al. 94]. RVM is a logging facility that supports

transactional update and recovery of virtual-memory

resident data structures. RVM is designed to be a

lightweight and portable package for use with small

databases that easily �t in physical memory: an RVM

client copies the entire database into virtual memory

when it starts up. This avoids the need to pin modi�ed

pages, but for large databases it causes double paging

and unnecessary pageouts of clean pages by the vir-

tual memory system. This limits RVM's usefulness for

the collaborative design environments that interest us;

however, it is an expedient vehicle for experimenting

with log-based coherency.

In keeping with its minimalist philosophy, RVM does

not support or rely upon any particular synchroniza-

tion scheme. Though updates are transactional, multi-

threaded updates may or may not be serializable. In a

similar spirit, our RVM-based prototype separates the

synchronization aspects of coherency and recoverabil-

ity from the mechanisms for collecting, propagating,

and applying redo log records. Our intent is to ac-

commodate various policies for propagating updates

as part of a synchronization scheme \plugged in" to

RVM.

We use RVM as a client/server distributed database

by placing the transaction log �les and the database

�le on a central NFS server. Clients maintain caches of

the central database in their local virtual memories by

reading the entire database into memory at startup (as

in centralized RVM), in this case using the NFS pro-

tocol. As write transactions execute, RVM produces

redo log records that are written to the NFS server.

Log-based coherency is implemented by sending the

log tails to other nodes that have the region mapped,

where they are applied to each recipient's cache. Each

node recording such a transaction produces a separate

log. We added an RVM utility that merges these into

a single log for recovery (see Section 3.4).

Our application interface is summarized in Table 1.

The left-hand column describes the procedures the ap-

plication uses to initialize, begin, and commit a trans-

action; to acquire a segment lock; and to describe the

data that is modi�ed by the transaction. The right-

hand column shows the RVM calls made by each of

these procedures. We added a new procedure, called

rvm setlockid transaction, to the standard RVM

interface. This procedure is called by the acquire

primitive, as described in Section 3.3.

3.1 Capturing Updates

Both DSM and recoverable systems must determine

which bytes are modi�ed by the application using ei-

ther VM write faults, a write barrier inserted by the

compiler, or explicit calls from the application. Like

the RVM system, our prototype assumes explicit run-

time calls to a set range procedure in the runtime

package. A call to this function indicates an intent to

update a particular range of bytes. We expect that

this range corresponds to an object, and that the call

is made by code generated explicitly by the language

compiler (such as the ML compiler that has been used

with RVM [O'Toole et al. 93]). In contrast, most

DSM systems use virtual page access faults to captue

updates, though software-based write detection is also

used in Midway [Zekauskas et al. 94]. This issue is

discussed in more detail in Section 4.

RVM coalesces modi�ed ranges that are adjacent

or overlapping in order to avoid writing redundant

bytes to the disk log. Overlapping ranges, however,

are unlikely when calls to set range are generated by

a compiler, as is anticipated. To improve common-

case performance, we modi�ed set range to coalesce

only when there is an exact match with a previously

added range. Thus, objects that are modi�ed multi-

ple times during a transaction are still coalesced but

with a simpler and more e�cient implementation; this

reduces set range overhead by a factor of �ve. The re-

maining per-update overhead is dominated by search-

ing the binary tree that stores modi�ed ranges (in or-

der by their address). As a second optimization, we

avoid this search in the special case where a sequence

of set range calls is ordered by address.

3.2 Propagating Log Records

In response to set range calls, the RVM runtime li-

brary builds a data structure that describes the modi-

�cations made by a transaction. When the transaction

commits, this data structure is used to build I/O vec-

tors for the Unix writev system call. The writev

causes the new values of all modi�ed objects to be

copied from virtual memory to a system bu�er for writ-

ing to disk. RVM thus avoids building an object log

in virtual memory that contains copies of the modi�ed

objects.

We modi�ed the RVM commit procedure to broad-

cast the same new-value information that is written to

disk. Coherency data is broadcast using TCP/IP by

issuing a writev system call for each node that has the

current region mapped. We use the OSF/1 PThreads

facility [Mueller 93] to create receiver threads for each

communication channel that connects a node to its

peers. These threads block in readv system calls wait-

ing for coherency messages and applying the updates

Log-Based Coherency Operation RVM Routine Called

Trans.Init() tid=rvm malloc tid()

Trans.Begin(rvm mode) rvm begin transaction(tid, rvm mode)

Trans.Commit(rvm mode) rvm end transaction(tid, rvm mode)

Trans.Acquire(lock) rvm setlockid transaction(tid, lock.lockId, lock.sequenceNum)

Trans.SetRange(addr, size) rvm set range(addr, size)

Table 1: Log-based coherency interface.

when they arrive.

The format of the coherency records data di�ers

from the data sent to disk in two respects. First, some

records that are needed only for recovery and log trim-

ming are not included in the broadcast data; i.e., only

new-value range records are needed for coherency. Sec-

ond, the header information for each range record is

compressed from 104 bytes to between 4 and 24 bytes.

The standard RVM header contains �elds that are not

needed for coherency; our header contains only the

range's type, address, and size. The header is further

compressed when ranges are small (less than 4 Kbytes)

or close together (fewer than 256 Kbytes apart) by us-

ing smaller �elds and by replacing the range's address

with its o�set from the preceding range; our modi�ed

set range orders modi�ed ranges by their address.

3.3 Synchronization

We added distributed locks that provide mutually-

exclusive access to non-overlapping portions of an

RVM region. Locks are acquired inside of transactions

in a two-phase manner; all locks are automatically re-

leased when a transaction commits. Applications must

acquire a lock before reading or writing the data pro-

tected by that lock.

The lock implementation is token based with a cen-

tralized lock manager and a distributed waiter queue,

an approach used in many distributed systems includ-

ing TreadMarks. At all times, exactly one node owns

the lock token. The lock can be acquired on that node

without remote communication; nodes hold onto the

token until they are requested to pass it to another

node. Acquire operations at other nodes send a mes-

sage to the lock manager to request the lock. The

node number of the lock manager is determined from

the lock identi�er number. The manager maintains a

distributed queue of nodes waiting to acquire the lock.

It adds the requester to the tail of the queue and for-

wards its request to the previous tail which responds

either by sending the lock token to the requester, if

the lock is available, or by queueing the request until

the lock is released.

Each lock has a unique identi�er and a sequence

number that is incremented on each acquire. The cur-

rent sequence number is passed along with the lock to-

ken when ownership of the lock changes. The acquire

primitive calls RVM to associate the lock with the cur-

rent transaction. We added a new procedure to the

RVM interface, rvm setlockid transaction(tid,

lockId, sequenceNum), for this purpose. Because

locks follow a strict two-phase protocol, each lock is

acquired at most once during a transaction.

3.4 Preserving Ordering

While synchronization is mostly independent of co-

herency and recovery, there is an important interac-

tion. When a transaction commits, the lock informa-

tion provided to RVM is used to generate lock records

that are inserted in the log entry for the transaction.

Lock records contain the lock identi�er and sequence

number. These lock records are used by both the co-

herency and recovery code to preserve the ordering of

updates generated by di�erent nodes.

For coherency, the lock records ensure that log

records applied by a receiver thread are properly in-

terleaved with those sent by other nodes. The lock

records included with a received update are used to

set the receiver's local sequence number for the lock.

If necessary, receiver threads hold log records until

the updates for the immediately preceding sequence

number have been applied. Also, the sequence num-

ber must match the sequence number passed with the

lock token before the lock can be acquired on that

node. An application that tries to acquire the lock

prematurely will wait on a condition variable until sig-

naled by the receiver thread that applies the latest up-

date. This interlock between coherency and synchro-

nization is necessary because updates are broadcast

asynchronously; the lock token could arrive at a node

before all necessary coherency updates have been re-

ceived and applied. For example, if the token passes

in order through nodes A, B, and C, C might receive

the token from B before A's updates arrive at C. The

protocol ensures that, for updates made to data pro-

tected by the same lock, (1) none of B's updates are

applied at C until C has applied A's updates and (2)

C is not allowed to acquire the lock until B's updates

have been applied.

For recovery, lock records are used to merge the in-

dividual RVM redo logs produced by each node. When

applications share a segment, their logs may record in-

terleaving updates to the same data. Thus, before any

of these logs can be used by the standard RVM recov-

ery procedure, they must be merged into a single log.

We built a new RVM utility to do this. Our merge

utility reads input logs from head to tail; transaction

records from di�erent logs are compared by comparing

their lock records. Our current merge utility exploits

the fact that our current synchronization model guar-

antees strictly serializable transactions. When merg-

ing records from di�erent logs, it is su�cient to order

transactions so that if two transactions acquired the

same lock, the transaction with the earlier sequence

number for that lock is ordered �rst.

3.5 Distributed Log Trimming

The current RVM log-trimming algorithm has an un-

fortunate interaction with our distribution implemen-

tation. In the current version of RVM, log records are

trimmed from the head of the log using the standard

recovery procedure to compute a new checkpoint. This

operation, which runs asynchronously with normal

transactions, is triggered when the number of records

in the log reaches a high-water point. In our system, it

is no longer possible to use the log generated by a single

node to compute a new checkpoint; instead, log records

from all nodes must �rst be merged. Our current pro-

totype performs log trimmingo�ine using the recovery

procedure described above. Online trimming could be

implemented using the merging procedure by coordi-

nating checkpointing; one node would checkpoint at a

time, broadcasting to other nodes when done to inform

them of their new log head.

An improved log-trimming scheme for RVM is de-

scribed in [Satyanarayanan et al. 94]. In this scheme,

nodes checkpoint a page at a time by writing the cur-

rent version of a page to the checkpoint �le. Log

records for updates made to a page before it was check-

pointed can be discarded. This checkpointing scheme

could be more easily incorporated into our prototype,

because it does not require logs to be merged.

4 Performance

This section presents performance measurements of

our prototype. While most DSM systems have used

parallel programs for evaluation, our application do-

main | collaborative design applications accessing

a distributed persistent store | requires a di�erent

benchmark. For this reason, we have chosen to use

OO7 [Carey et al. 93], a standard object-oriented

database benchmark. OO7 consists of a number of

di�erent traversals, updates, and queries of a syn-

thetic object-oriented database. The database and the

traversal tests are intended to be suggestive of typical

engineering database applications.

We modi�ed OO7 to run with RVM in standard vir-

tual memory (i.e., no OODB) and integrated it with

our log-based coherency prototype. We report timings

and related overheads for several OO7 traversals us-

ing our prototype. These experiments were conducted

using two Digital 3000-400 Alpha APX (133 Mhz, 74

SPECints) workstations with 8-Kbyte pages and sep-

arate 512-Kbyte direct-mapped instruction and data

caches [Dig 92]. The machines are connected by a

100 Mbit/s AN1 network, an experimental switch-

based network capable of sending message packets of

up to 64 Kbytes [Rodehe�er & Schroeder 91]. Elapsed

time measurements were taken using the Alpha cy-

cle counter. For these experiments, we disabled RVM

disk logging so that we could isolate the costs associ-

ated with coherency from the synchronous disk writes

needed to support recovery. This is important in part

because optimizations using non-volatile RAM can be

used to eliminate synchronous disk writes from the

commit critical path [Hagmann 86].

The �gures also depict estimated lower bounds for

alternative DSM implementations that use page ac-

cess faults to capture updates. For log-based co-

herency, updates are captured by calls to the RVM

set range procedure. These calls are coded explic-

itly in our OO7 benchmarks, although other RVM

applications have used compiler-generated set range

calls [O'Toole et al. 93]. In contrast, most DSM sys-

tems use page access faults to capture updates without

involvement from the compiler or application. Early

page-locking DSM systems, such as Monads and IVY,

use page access faults to grant a writer exclusive access

to a page while updates are in progress, then trans-

mit the entire contents of each modi�ed page to other

nodes accessing the page. In newer multiple-writer

\copy/compare" DSM systems, such as Munin and

TreadMarks, updates are also detected a page at a

time, but multiple nodes are permitted to make con-

current non-con
icting updates to any given page. In

these systems, the �rst store to a unmodi�ed page

on each node delivers a write-access fault to the co-

herency software, which makes a copy of the page be-

fore enabling write access. Updates are collected by

later comparing the modi�ed page with its copy. The

copy/compare technique could improve performance

for some OODBs that use page-grained locking and

updates today.

Our lower-bound estimates for page-locking (labeled

Page) and multiple-writer (labeled Cpy/Cmp) DSM

systems are computed from the measurements listed

in Table 2. We measured the cost of using the OSF/1

Operation Cost Throughput

(�sec/page) (MBytes/s)

page copy (cold cache) 171.9 43

page copy (warm cache) 57.8 135

page compare (cold cache) 281.0 28

page compare (warm cache) 147.3 53

page send (TCP/IP) 677.0 12 (96.8 Mbit/s)

handle signal and change protection 360.1

Table 2: Operation costs (per page) on Alpha/AN1.

mprotect system call to change page protection, by

storing to a read-only page to generate a protection

fault, delivering the signal to a user-level procedure,

calling mprotect again to enable writing, and return-

ing from the signal handler. We also measured the

time to copy and compare pages (we use the cold cache

times in the �gures). For page-grain DSM (Page), up-

dated pages are not copied or scanned, so we assume no

collection overhead. However, network I/O overhead

for Page is greater because entire pages are transmit-

ted instead of just the modi�ed bytes. This time is

estimated from the measured TCP throughput given

in Table 2. Communication overhead for Cpy/Cmp is

assumed to be the same as the measured times for log-

based coherency (labeled Log), since both send only

the modi�ed bytes. Both Log and Cpy/Cmp also in-

cur overhead at the receiver to apply the updates to

the cache; however, this cost is too small to be clearly

distinguished in any of the graphs below.

4.1 The OO7 Benchmark

The OO7 database is composed of a design library

and an assembly hierarchy. The design library, which

makes up the bulk of the database, is a set of 500 com-

posite parts. A composite part corresponds to a design

primitive, such as a register cell in a VLSI CAD ap-

plication or a procedure in a CASE application. Each

composite part is itself made up of a graph of 20 atomic

parts. Composite and atomic part objects are each

roughly 200 bytes long. Each atomic part contains an

index �eld; a part index is maintained using a self-

balancing tree.

Objects in the assembly hierarchy correspond to

higher-level design constructs in the application. The

assembly hierarchy is a tree of assembly objects with

729 leaf nodes. Each leaf node, called a base assem-

bly, points to three composite parts that are chosen at

random from the design library when the database is

constructed.

There are two traversals in OO7 that update the

database, T2 and T3. Both traverse the assembly hi-

erarchy to visit all of the composite parts pointed to

by each base assembly; thus, a total of 2187 compos-

ite parts are visited. When a composite part is vis-

ited, its atomic-part graph is traversed and updates

are performed. There are three variants of the traver-

sals (A, B, and C) that update di�erent numbers of

atomic parts. In A, one atomic part per composite

part is modi�ed; in B, every atomic part is modi�ed;

and in C, every atomic part is modi�ed four times.

An atomic part is updated by changing an eight-byte

�eld. The di�erence between T2 and T3 is that T3

updates the atomic part's index �eld. Each time this

�eld is changed, the part index is updated by deleting

the index entry for the old value and adding an entry

for the new value. This results in an average of seven

index updates for each atomic-part update.

We added a third update traversal, called T12. T12

di�ers from the other update traversals in that it per-

forms a sparse traversal of the database. It is similar to

read-only traversal T6; for each composite part it vis-

its only one atomic part. In T12, a higher percentage

of overall running time is related to updating objects.

This highlights the performance costs associated with

coherency overhead.

In our RVM-based OO7 benchmark, the database

elements are heap-allocated C++ objects and a

threaded AVL-balanced tree is used for the part in-

dex. The atomic parts associated with a particular

composite part tend to be clustered on the same page

while atomic parts from di�erent composite parts are

usually on di�erent pages. We ran each of the OO7

update traversals under our prototype. Each test con-

sists of a single transaction (and a single segment lock)

in which one node performs the traversal and another

receives the log tail and installs the updates, bringing

its copy of the database up to date.

4.2 Results

Figures 1, 2, and 3 show the results of running the

various OO7 traversals, along with the associated co-

herency overhead. Write overhead consists of detect-

ing and collecting updates and the network I/O costs

of transmitting those updates to the other node. Ta-

ble 3 summarizes the characteristics of these traversals,

listing the number of updates performed by each, the

Traversal Updates Bytes Message Pages

Updated Bytes Updated

T12-A 2,187 4,000 6,000 500

T12-C 8,748 4,000 6,000 500

T2-A 2,187 4,000 6,000 500

T2-B 43,740 80,000 120,000 618

T2-C 174,960 80,000 120,000 618

T3-A 16,924 31,300 39,000 552

T3-B 248,632 114,650 163,300 667

T3-C 1,502,708 115,100 163,800 670

Table 3: Summary of OO7 update-traversal characteristics

T
im

e
(m

se
c)

0

200

400

600

800

1000

1200

L
og

C

py
/C

m
p

Pa
ge

L
og

C
py

/C
m

p

Pa
ge

Apply Updates

Network I/O

Collect Updates

Detect Updates

Traversal

T12-CT12-A

Figure 1: OO7 Sparse-update traversals T12-A and

T12-C.

T
im

e
(m

se
c)

0

500

1000

1500

2000

2500

3000

3500

4000

L
og

C

py
/C

m
p

Pa
ge

L
og

C
py

/C
m

p
Pa

ge

L
og

C
py

/C
m

p
Pa

ge

L
og

C
py

/C
m

p
Pa

ge

Apply Updates

Network I/O

Collect Updates

Detect Updates

Traversal

T2-A T2-B T2-C T3-A

Figure 2: OO7 Full-update traversals T2-A, T2-B, and

T2-C, and index-update traversal T3-A.

T
im

e
(s

ec
)

0

5

10

15

20

25

30

35

40

L
og

C

py
/C

m
p

Pa
ge

L
og

C
py

/C
m

p

Pa
ge

Apply Updates

Network I/O

Collect Updates

Detect Updates

Traversal

T3-B T3-C

Figure 3: OO7 Index-update traversals T3-B and

T3-C.

number of unique bytes updated, the number of bytes

sent over the network, and the number of pages up-

dated. (The di�erence between the number of bytes

updated and the number transmitted is due to range-

message overhead; each range is preceded by a header

that describes the address of the range and its size.)

Based on the Alpha-OSF/1 measurements, our

analysis shows that for the anticipated application

workload, in which updates a�ect a large number

of pages, software write detection (e.g., compiler-

generated set range calls) performs better than any

form of hardware-based write detection. Our ap-

proach performs signi�cantly better for traversals T12-

A, T12-C, T2-A, and T3-A because they perform rela-

tively few updates per page. Traversals T2-B and T2-

C perform 71 and 283 update per page respectively; for

these traversals, our approach performs about as well

as Cpy/Cmp. However, the index-update traversals

T3-B and T3-C perform signi�cantly more updates per

page, 373 and 2,243; as a result our approach performs

poorly. This shows that when there are many updates

per page, a page-based systems such as TreadMarks

is preferred to a software-based approach such as log-

based coherency.

4.3 Analysis

There is a performance tradeo� between the three ap-

proaches evaluated above that is a function of (1) the

number of modi�ed bytes per page and (2) the num-

ber of individual updates per page. The overhead of

Log and Cpy/Cmp depends on the number of modi�ed

bytes, Cpy/Cmp and Page depend on the number of

modi�ed pages, and Log alone depends on the num-

ber of updates per page. Which approach works best

depends on the workload. As we have seen, log-based

coherency is preferred when there are few updates per

page; similarly, Page performs best when most of a

page is modi�ed. Figures 4{7 below show where the

breakeven points occur.

Figure 4 shows coherency overhead as a function of

the number of modi�ed bytes per page. This compares

Modified Bytes per Page

T
im

e
(µ

se
c)

0

400

800

1200

1600

2000

0 2000 4000 6000 8000

Log

Cpy/Cmp

Page

Figure 4: Comparison of overhead as the number of

modi�ed bytes per page increases. For log-based co-

herency, per-update overhead is not included.

Number of Updates per Transaction

U
pd

at
e

O
ve

rh
ea

d
(µ

se
c/

up
da

te
)

0

5

10

15

20

0 1000 2000 3000 4000 5000

Unordered

Ordered

Redundant

Figure 5: The overhead associated with a single update

for log-based coherency as the number of updates per

transaction increases.

Number of Updates per Transaction

U
pd

at
e

O
ve

rh
ea

d
(µ

se
c/

up
da

te
)

0

5

10

15

20

25

30

0 100000 200000 300000

Unordered

Ordered

Redundant

Figure 6: Log-based coherency update overhead up to

300,000 updates per transaction.

Cost per Update (µsec)

U
pd

at
es

 p
er

 p
ag

e

0
20
40
60
80

100
120
140
160
180

5 10 15 20 25 30

Standard OSF/1

Hypothetical Fast
Trap (10 µsec)

Figure 7: Breakeven point for log-based coherency. For

di�erent update overheads, the number of updates per

page at which log-based coherency performs better than

Cpy/Cmp.

the per-byte overhead of log-based coherency with the

total overhead of copy/compare and page approaches.

When more than 1037 bytes are modi�ed per page,

Page outperforms Cpy/Cmp. When there are few up-

dates per page, Log outperforms the alternatives no

matter how many bytes are modi�ed. However, this

graph does not include the per-update overhead asso-

ciated with Log; this is shown in Figures 5{7.

Figures 5 and 6 show the log-based coherency over-

head associated with detecting and collecting a single

update as the number of updates per transaction in-

creases. This is a measurement of the performance

of RVM operations set range and rvm commit. The

middle line is the cost for an update in an ordered

sequence of set range calls (taking advantage of the

optimization described in Section 3.1). The lower line

is the cost of detecting an update to a range that was

modi�ed previously in the same transaction.

Figure 7 shows the breakeven point at which log-

based coherency and Cpy/Cmp have equivalent per-

formance. For a given average per-update cost on the

x-axis, the y-axis shows the maximum number of up-

dates per page possible before Cpy/Cmp outperforms

log-based coherency. For example, using Figures 5 and

7, we can determine that if there are 1000 updates per

transaction, log-based coherency performs better when

there are 45 or fewer updates per page (55 if the up-

dates are ordered).

Recent work [Thekkath & Levy 94] has shown an

order-of-magnitude reduction in exception-handling

cost, which would make hardware-based write detec-

tion more attractive. Figure 7 shows how the per-

formance tradeo� would be a�ected if signal handling

overhead were 10 �sec instead of the 340 �sec mea-

sured for Alpha-OSF/1.

4.3.1 Increasing the Number of Nodes

Another important performance concern for log-based

coherency is the e�ect of increasing the number of

nodes using a segment to be kept coherent. In our

prototype the network I/O overhead of the writer in-

creases linearly with the number of peer nodes, be-

cause the writer node issues separate writev system

calls for each peer. Since this overhead is relatively

small, our approach will scale to a moderate number

of nodes. Systems with a very large number of clients

will perform better with multicast hardware or lazy

coherency.

4.3.2 Impact of Coherency on Recoverability

Finally, we wanted to determine the impact of our

modi�cations on the performance of standard RVM.

Figure 8 shows four measurements of the coherency

and recoverability overheads for the T12-A bench-

T
im

e
(m

se
c)

0

20

40

60

80

100

120

140

160

180

Log-Based
Coherency

Log-Based
Coherency

(Disk)

Optimized
RVM

Standard
RVM

Apply Updates

Network I/O

Disk I/O

Collect Updates

Detect Updates

Figure 8: Comparison of log-based coherency, disk log-

ging, and standard RVM. Optimized RVM is standard

RVM with our optimizations to set range.

mark. The �rst column is the overhead for log-based

coherency presented in the previous section. The next

column measures the overhead when disk logging is

enabled; from this we see that the only additional

overhead is due to writing the log tail to disk. The

third and fourth columns were taken using standard

RVM, without our log-based coherency modi�cations;

the third column is standard RVM with our optimized

set range modi�cation. This shows that the over-

head added to RVM by log-based coherency is directly

related to sending the modi�ed bytes to peer nodes.

This validates our assertion that there is a high degree

of overlap between the mechanisms for recoverability

and coherency.

5 Related Work

In the context of RVM, transaction logs have been

used in a similar fashion to propagate updates between

data spaces in a system with concurrent replicating

garbage collection [O'Toole et al. 93]. Our contri-

bution is to use this idea for maintaining coherency of

client database caches. Log propagation has been used

to maintain the consistency of replicas in replicated

database systems. Replicated systems di�er from log-

based coherency in that the replicas are used to ensure

availability of the data. In replicated systems, log

records
ow in one direction: from clients to servers

(or from a client to a server, and then on to other

servers). Servers cooperate to ensure that log records

are applied in a consistent order at all locations. In our

system, the replicas are caches that keep only enough

data to meet the local client's needs; update propa-

gation may be delayed until a client requests the new

data.

Harp [Liskov et al. 92] �le servers log received up-

dates to peer servers in order to remove stable storage

writes from the commit path. Similarly, Naughton and

Li have used log propagation to keep a hot standby of

a main-memory database [Li & Naughton 88]. The

standby keeps a complete copy of the database in its

memory and receives updates from the primary in the

form of log records sent at commit points. Their pur-

pose is to allow checkpointing to take place in the

standby, o�-line, without interfering with clients exe-

cuting on the primary copy of the database. Delis and

Roussopoulos conducted a simulation study of client-

server relational databases using a log-based approach

for updating client caches [Delis & Roussopoulos 92].

Updates are centralized at the server; the server main-

tains a recovery log and a separate update log. Before

a client accesses a data item in its cache, it �rst con-

tacts the server to retrieve log records generated since

the cached copy of the item was last updated. While

several of these systems send log records from clients

to one or more servers, log-based coherency sends log

records from client to client.

Several groups have integrated coherency and re-

coverability by adding checkpointing to page-based

DSM, without using transactions. This allows non-

transactional applications such as parallel programs

to be made recoverable. The main issue is to coordi-

nate individual node checkpoints to attain a consistent

global checkpoint, using a combination of dependency

tracking, message logging, and replication. The �rst

such system is due to Wu and Fuchs [Wu & Fuchs 90].

Stumm and Zhou describe a system that tolerates the

failure of a single node by ensuring that every page

resides in the caches of at least two nodes [Stumm

& Zhou 90]. Richard and Singhal use page logging

[Richard & Singhal 93]; a copy of a page is written to

a local volatile log each time it is acquire for reading

or writing. A node writes its volatile log to disk before

transferring a modi�ed page to another node.

Janssens and Fuchs added checkpointing to relaxed-

consistency DSM [Janssens & Fuchs 93]. Instead of

requiring checkpointing or other recoverability actions

each time an application gains access to a page, their

system checkpoints only when a node releases or ac-

quires a lock.

Neves et al. added checkpointing to an entry-

consistent DSM system similar to Midway, using

object-grain locking [Neves et al. 94]. Their system

tolerates single node failures by keeping old versions of

modi�ed objects in the volatile memory of the nodes

that modify them. Each node checkpoints indepen-

dently; a failed node recovers by replaying its execu-

tion starting with its most recent checkpoint. Infor-

mation recorded at other nodes is su�cient for them

to supply the recovering node with the same version of

objects as it saw during normal execution. The impact

on failure-free execution is minimized by piggy-backing

recoverability information on coherency messages.

6 Conclusion

The key points of this paper are: (1) DSM techniques

such as �ne-grained client-client transfers are appro-

priate for maintaining cache coherency for distributed

persistent stores, (2) there is a commonality between

the implementation techniques for recoverability and

coherency, and (3) this synergy can be exploited when

both properties are supported together.

We have presented a new DSM approach called log-

based coherency that uses recoverability mechanisms

from persistent object systems as the basis for main-

taining coherency of distributed objects. Our work ex-

tends previous work on DSM to exploit the notion of

commit points in which a group of related updates be-

come visible atomically. We extend work on persistent

stores to support the �ne-grained sharing made possi-

ble for parallel applications by DSM systems. In par-

ticular, log-based coherency separates the coherency

grain from the synchronization grain. This is impor-

tant for collaborative-design applications, where large

data regions are shared among engineers at di�erent

nodes, but where updates are sparse and infrequent.

With log-based coherency, locking overhead can be re-

duced by using coarse-grain locks without increasing

coherency overhead; i.e., coarse-grain locks can sup-

port �ne-grain sharing.

While log-based coherency provides an alternative

to other DSM systems, the approaches are not mu-

tually exclusive. Our measurements show that appli-

cation behavior determines the best approach; e.g., if

updates are highly clustered within a page, standard

DSM techniques will perform better, while for sparse

updates, the log-based approach will perform better.

Therefore, adaptive hybrid approaches maybe be pos-

sible where application behavior can be predicted.

Acknowledgments

Special thanks Hank Mashburn, M. Satyanarayanan,

and others at CMU for developing RVM and thanks

to Michael Carey, David DeWitt, and Je� Naughton

at the University of Wisconsin for the OO7 bench-

mark suite. Thanks to Dylan McNamee, Michael Ra-

binovich, and Brian Bershad for their comments on

earlier versions of this paper. Thanks also to Paul

Leach and the anonymous referees for their helpful

comments.

References

[Butterworth et al. 92] Butterworth, P., Otis, A., and

Stein, J. The GemStone object database

management system. Communications of

the ACM, 34(10):64{77, October 1992.

[Carey et al. 93] Carey, M. J., Dewitt, D. J., and

Naughton, J. F. The OO7 benchmark. 1993

ACM SIGMOD. International Conference

on Management of Data, 22(2):12{21, May

1993.

[Carey et al. 94] Carey, M. J., Dewitt, D. J., and

Franklin, M. J. Shoring up persistent ap-

plications. 1994 ACM SIGMOD. Interna-

tional Conference on Management of Data,

May 1994.

[Carter et al. 91]

Carter, J., Bennet, J., and Zwaenepoel, W.

Implementation and performance of Munin.

In Proceedings of the 13th ACM Symposium

on Operating Systems and Principles, pages

152{164, October 1991.

[Cockshott et al. 84] Cockshott, W., Atkinson, M.,

Chisholm, K., Bailey, P., and Morrison, R.

Persistent object management system. Soft-

ware Practice and Experience, 14(1), Jan-

uary 1984.

[Delis & Roussopoulos 92] Delis, A. and Roussopou-

los, N. Performance and scalability of

client-server database architectures. In Pro-

ceedings of the 18th International Confer-

ence on Very Large Databases, pages 610{

623, August 1992.

[Dig 92] Digital Equipment Corporation, Maynard,

MA. Alpha Architecture Handbook, 1992.

[Eppinger et al. 91] Eppinger, J., Mummert, L., and

Spector, A. Camelot and Avalon. Morgan

Kaufmann, 1991.

[Feeley & Levy 92] Feeley, M. J. and Levy, H. M.

Distributed shared memory with versioned

objects. In Proceedings of the Confer-

ence on Object-Oriented Programming Sys-

tems, Languages, and Applications, Octo-

ber 1992.

[Gharachorloo et al. 90] Gharachorloo, K., Lenoski,

D., Laudon, J., Gibbons, P., Gupta, A., and

Hennessy, J. Memory consistency and event

ordering in scalable shared-memory multi-

processors. In Proc. 17th Annual Sympo-

sium on Computer Architecture, Computer

Architecture News, pages 15{26. ACM,

June 1990.

[Hagmann 86] Hagmann, R. B. A crash recovery

scheme for a memory-resident database sys-

tem. IEEE Transactions on Computers, C-

35(9):839{843, September 1986.

[Hornick & Zdonik 87] Hornick, M. F. and Zdonik,

S. B. A shared, segmented memory system

for an object-oriented database. A ACM

Transactions on O�ce Informations Sys-

tems, 5(1), January 1987.

[Hosking & Moss 93] Hosking, A. L. and Moss, J.

E. B. Protection traps and alternatives for

memory managemnt of an object-oriented

language. In Proceedings of the 14th ACM

Symposium on Operating Systems Princi-

ples, December 1993.

[Janssens & Fuchs 93] Janssens, B. and Fuchs, W. K.

Relaxing consistency in recoverable dis-

tributed shared memory. In Proceedings

of the Twenty-Third Annual International

Symposium on Fault-Tolerant Computing:

Digest of Papers, pages 155{163, June 1993.

[Keleher et al. 92]

Keleher, P., Cox, A., and Zwaenepoel, W.

Lazy release consistency for software dis-

tributed shared memory. In Proceedings of

the 19th Annual Symposium on Computer

Architecture, pages 13{21, May 1992.

[Keleher et al. 94] Keleher, P.,

Cox, A. L., Dwarkadas, S., and Zwaenepoel,

W. TreadMarks: Distributed shared mem-

ory on standard workstations and operat-

ing systems. In Proceedings of the Winder

1994 USENIX Conference, pages 115{132,

January 1994.

[Lamb et al. 91] Lamb, C., Landis, G., Orenstein, J.,

and Weinreb, D. The ObjectStore database

system. Communications of the ACM,

34(10):50{63, October 1991.

[Li & Hudak 89] Li, K. and Hudak, P. Memory co-

herence in shared virtual memory systems.

ACM Transactions on Computer Systems,

7(4):321{359, November 1989.

[Li & Naughton 88] Li, L. and Naughton, J. F. Mul-

tiprocessor main memory transaction pro-

cessing. In Proceedings of the International

Symposium on Databases in Parallel and

Distributed Systems, pages 177{187, De-

cember 1988.

[Liskov 88] Liskov, B. Distributed programming in

Argus. Communications of the ACM,

31(3):300{312, March 1988.

[Liskov et al. 92] Liskov, B., Ghemawat, S., Gruber,

R., Johnson, P., and Shrira, L. Replica-

tion in the Harp �le system. In Proceedings

of the Thirteenth ACM Symposium on Op-

erating Systems Principles, pages 226{238,

October 1992.

[Moss 90] Moss, J. E. B. Design of the Mneme per-

sistent object store. ACM Transactions on

Information Systems, 8(2):103{139, April

1990.

[Mueller 93] Mueller, F. A library implementation of

POSIX threads under Unix. In Proceedings

of the Winter 1993 USENIX Conference,

pages 29{41, January 1993.

[Neves et al. 94] Neves, N., Castro, M., and Guedes,

P. A checkpoint protocol for an entry con-

sistent shared memory system. In Pro-

ceedings of the 13th ACM Symposium on

Principles of Distributed Computing, Au-

gust 1994.

[O. Deux 92] O. Deux. The O

2

system. Communi-

cations of the ACM, 34(10):34{48, October

1992.

[O'Toole et al. 93] O'Toole, J., Nettles, S., and Gif-

ford, D. Concurrent compacting garbage

collection of a persistent heap. In Proceed-

ings of the Fourteenth ACM Symposium on

Operating Systems Principles, pages 161{

174, December 1993.

[Richard & Singhal 93] Richard, III, G. G. and Sing-

hal, M. Using logging and asynchronous

checkpointing to implement recoverable dis-

tributed shared memory. In Proceedings of

the 12th Symposium on Reliable Distributed

Systems, pages 58{67, October 1993.

[Rodehe�er & Schroeder 91] Rodehe�er,

T. and Schroeder, M. D. Automatic recon-

�guration in autonet. In Proceedings of the

Thirteenth ACM Symposium on Operating

Systems Principles, pages 183{197, October

1991.

[Rosenberg & Abramson 85] Rosenberg,

J. and Abramson, D. A. MONADS-PC:

A capability-based workstation to support

software engineering. In Proceedings of the

18th Hawaii International Conference on

System Sciences, 1985.

[Satyanarayanan et al. 94] Satyanarayanan,

M., Mashburn, H. H., Kumar, P., Steere,

D. C., and J.Kistler., J. Lightweight recov-

erable virtual memory. ACM Transactions

on Computer Systems, 12(4):33{57, Febru-

ary 1994.

[Stumm & Zhou 90] Stumm, M. and Zhou, S. Fault

tolerant distributed shared memory algo-

rithms. In Proceedings of the Second IEEE

Symposium on Parallel and Distributed

Processing, pages 719{724, December 1990.

[Thekkath & Levy 94] Thekkath, C. and Levy, H.

Hardware and software support for e�cient

exception handling. In Proceedings of the

6th International Conference on Architec-

tural Support for Programming Languages

and Operating Systems, October 1994.

[Wu & Fuchs 90] Wu, K.-L. and Fuchs, W. K. Re-

coverable disributed shared virtual mem-

ory. IEEE Transactions on Computers,

39(4):460{469, April 1990.

[Zekauskas et al. 94] Zekauskas, M. J.,

Sawdon, W. A., and Bershad, B. N. Soft-

ware write detection for distributed shared

memory. In Proceedings of the First Sym-

posium on Operating Systems Design and

Implementation, November 1994.

