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Abstract

We show how importance-driven re�nement and a wavelet basis can be com-

bined to provide an e�cient solution to the global illumination problem

with glossy and di�use re
ections. Importance is used to focus the compu-

tation on the interactions having the greatest impact on the visible solution.

Wavelets are used to provide an e�cient representation of radiance, impor-

tance, and the transport operator. We discuss a number of choices that

must be made when constructing an algorithm for a �nite-element solution

method for glossy global illumination. The main contributions of this paper

are a four-dimensional wavelet representation for spatially- and angularly-

varying radiance distributions (which allows for sparse representation and

fast evaluation), the use of the standard wavelet decomposition of the trans-

port operator, and the formulation of a type of importance suited for light

transports using a �nite element radiance representation. Our implementa-

tion supports curved surfaces and spatially-varying anisotropic BRDFs. We

use a �nal gathering step to improve the visual quality of the solution.
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1 Introduction

Radiosity algorithms assume that all re
ection in a scene is ideally di�use. This assumption,

while making the computation of global illumination more tractable, ignores important e�ects

such as glossy highlights whose intensity varies smoothly with direction. Though more expensive,

the simulation of directional re
ection is essential for realistic image synthesis. In this paper, we

consider the glossy global illumination problem, whose goal is to �nd the equilibrium distribution

of light in a scene with surfaces that are glossy re
ectors. The glossy global illumination problem

includes radiosity as a special case.

One promising approach to solving the glossy global illumination problem is to extend the �nite-

element method used in radiosity algorithms. Designing a �nite-element algorithm for glossy global

illumination involves a number of choices, summarized below. The result is an e�cient algorithm,

which we demonstrate using both simple and complex scenes.

The �rst choice is in the parameterization of the unknown light distribution. One possibility

is to use radiance distributions, which are functions of surface position and direction [23, 34]. The

alternative is to use two-point transport intensities, which are functions of two surface positions [2,

32]. We describe our motivation for using radiance distributions.

A second area of choice in designing a glossy global illumination algorithm is that of basis func-

tions. One can use a single �xed resolution or a hierarchy of multiresolution basis functions. The

bene�ts of a multiresolution representation are apparent from the radiosity algorithms presented

by Hanrahan et al. [21] and Gortler et al. [20, 31]. If we choose a multiresolution basis for glossy

global illumination, there are further choices as well: we can use scaling functions or wavelets; we

can choose from many types of wavelets; we can construct \standard" or \non-standard" tensor

products of basis functions; and we can use the standard or the non-standard operator decomposi-

tion. We have chosen to represent radiance in a basis consisting of four-dimensional non-standard

tensor products of Haar wavelets. These basis functions interact to simulate light transport through

a standard decomposition of the light transport operator.

As a third area of choice, one must decide whether or not a view-independent solution is

necessary. A view-dependent solution can be computed more e�ciently using importance, as shown

by Smits et al. [37] for radiosity. Assuming we are interested in accelerating our solution procedure

using importance, we must choose between two types of importance. We introduce a type of

importance whose angular distributions are in general continuous functions, and therefore can

be e�ciently represented with �nite elements such as wavelets. We use this type of importance

since it satis�es the same transport equation as radiance, and can be represented and transported

identically.

The last area of choice is in the rendering of the solution. A complete solution to the global

illumination problem should be both physically accurate and visually pleasing. However, certain

good approximations may have artifacts that are very obvious to the human eye. We therefore use

a �nal gathering step [25, 30, 36] to improve the visual quality of the solution.

We have implemented an algorithm based on these choices. Adaptive numerical integration is

used to compute accurate light transports where needed. The implementation also supports curved

surfaces and spatially-varying anisotropic bidirectional re
ectance distribution functions (BRDFs).

Both emission and re
ection can be described by texture maps.

A preliminary version of this paper was presented at the Eurographics Workshop on Render-

ing [8]. In this article, we give motivations for the choices we made, as well as comparisons with

alternative approaches. New theoretical results here include a proof concerning exitant directional
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importance, a di�erent adaptive numerical integration method, and a more e�cient �nal gathering

step. New practical contributions are descriptions of our data structures, tests of convergence and

convergence rates, and a comparison of the standard and non-standard matrix decompositions of

the light transport matrix.

The remainder of this paper is organized as follows: Section 2 motivates the use of radiance,

gives a formal description of radiance and light transport, and shows how radiance and the light

transport equation can be projected into a �nite-element basis. Section 3 introduces a wavelet

basis for radiance distributions. Section 4 introduces a type of importance that is convenient

for a �nite-element represention of radiance. Section 5 describes our importance-driven global

illumination algorithm, using a wavelet basis for directional radiance and importance distributions,

and Section 6 provides signi�cant details of our implementation. Finally, Section 7 describes our

results, and Section 8 contains a conclusion and suggestions for future work. Appendix A contains

comparisons of operator decompositions in 
atland.

2 Finite elements for radiance

To determine the unknown light distribution in the scene exactly, we would have to �nd the amount

of light leaving all points in all directions. For non-trivial scenes, computing an exact solution is

impossible, so we instead compute an approximate solution represented by a weighted sum of a

�nite number of basis functions.

In this section, we �rst contrast two-point transport intensities against radiance distributions,

then give a formal description of radiance, and describe how the continuous radiance function and

transport operator can be discretized to facilitate representation and e�cient transport.

2.1 Radiance distributions vs. two-point transport intensities

Two fundamentally di�erent representations of the transported light have been used for glossy global

illumination. Immel et al. [23] and Sillion et al. [34] represent the light in the scene as radiance

distributions, a function of two spatial and two angular variables on each surface patch. By contrast,

Aupperle and Hanrahan [2], Pattanaik and Bouatouch [28], and Schr�oder and Hanrahan [32] use a

\two-point transport intensity," a function of four spatial variables, which represents the amount

of light traveling from a point on a patch to a point on another.

We choose to represent light as a radiance distribution, like Immel et al. and Sillion et al.,

for the following reasons: Assume that the scene is initially split into n patches. The coarsest

possible representation of radiance requires only one basis function per patch for radiance distribu-

tions, as opposed to n basis functions per patch for two-point transport intensities. Therefore, the

initial, very rough, solution of the light transport equation requires O(n

2

) interactions between ra-

diance distributions on patches, as opposed to O(n

3

) interactions for matching two-point transport

intensities.

1

1

With a clustering technique to group patches (similar to Sillion [33] and Smits et al. [35] for purely di�use

re
ection), the initial number of clusters could potentially be very small even in a complex scene, and the reduction

to O(n

2

) might not make much di�erence. However, such clustering methods have yet to emerge for scenes with

glossy re
ections.
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2.2 Radiance

We now give a formal description of radiance and light transport. Let x and y be points in space, and

let ! and !

xy

be directions (!

xy

is the direction from x to y, thus !

xy

= �!

yx

). The radiance L(y; !)

is de�ned as the power emanating from y, per unit solid angle in the direction !, per unit projected

area perpendicular to that direction. Radiance L is measured in [watt �meter

�2

� steradian

�1

].

The equilibrium distribution of radiance satis�es the following light transport equation [12]:

L(y; !) = L

e

(y; !) +

Z

x

f

r

(!

xy

; y; !)G(x; y)L(x;!

xy

) dx : (1)

This equation states that the radiance L from a point y in direction ! is the sum of two terms:

emitted radiance L

e

and radiance re
ected from all other points x. An in�nitesimal area around

point x is written dx. The term f

r

(!

xy

; x; !) is the bidirectional re
ectance distribution function,

or BRDF, and describes the ratio of re
ected radiance (in direction !) to the di�erential irradiance

(from direction !

xy

) that causes it. The BRDF has units [steradian

�1

]. As a consequence of

Helmholtz reciprocity, the BRDF satis�es f

r

(�!

0

; x; !) = f

r

(�!; x; !

0

). Finally, the geometric

term G(x; y) is given by

G(x; y) � V (x; y) �

cos�

x

cos�

y

jjx� yjj

2

;

where V (x; y) is a visibility term that is 1 or 0, depending on whether or not x and y are visible to

one another, and �

x

and �

y

are the angles between the line segment xy and the respective normals

of di�erential areas at x and y. The geometric term describes how radiance leaving a di�erential

area at x in direction towards y arrives at y. The geometric term has units [steradian �meter

�2

], and

is symmetric in its arguments, G(x; y) = G(y; x). Some of these terms are illustrated in Figure 1.

x

L(x;!)

!

xy

y

L(y; !)

Figure 1 Light transport from point x to point y.

The light transport equation (1) can be rewritten in operator form as

L = L

e

+ T L : (2)

Here the transport operator T is de�ned by

(T L)(y; !) �

Z

x

f

r

(!

xy

; y; !)G(x; y)L(x;!

xy

) dx ;

where (T L)(y; !) denotes the result of T operating on L(x; !) to produce a function whose argument

is (y; !).
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2.3 Discretization of radiance

LetB(x; !) = [b

1

(x; !) b

2

(x; !) � � � ] be a basis for the space of radiance distributions. The unknown

radiance distribution L can be projected onto the basis B by writing L as a series expansion,

L(x; !) =

1

X

i=1

`

i

b

i

(x; !) :

This equation can be written in matrix form as L(x; !) = B(x; !)L, where L is an in�nite column

matrix whose i-th entry is `

i

. When no confusion can arise, we suppress the arguments and simply

write

L = BL :

In the original formulation of radiosity, piecewise-constant functions were used as a basis for

spatial variation [19]. In subsequent work on radiosity, Heckbert [22], Zatz [40], and Troutman and

Max [38] used orthogonal polynomials, and Gortler et al. [20] used wavelets. In the more general

context of radiance, the distribution of light leaving a patch has both spatial and angular variation.

Immel et al. [23] used piecewise-constant basis functions for both spatial and angular variation.

Later, Sillion et al. [34] used spherical harmonics for the angular variation and piecewise-constant

basis functions for the spatial variation. In Section 3 we motivate and introduce our choice of basis,

a hierarchical wavelet basis for both spatial and angular variation.

In order to project a radiance distribution onto the basis, we need an inner product and a dual

basis. Let hf j gi denote the standard inner product, hf j gi �

R

!y

f(y; !) g(y; !) dyd!. Let [hF jGi]

be the outer product of F and G, where each element of the outer product is the inner product of

elements of F and G. For example, if F = [f

1

f

2

� � � ] and G = [g

1

g

2

� � � ] are two row matrices

of functions, then [hF jGi] is the matrix whose ij-th entry is hf

i

j g

j

i. Likewise, [hF j gi] is the row

matrix consisting of elements hf

1

j gi, hf

2

j gi, : : : .

Let the dual basis associated with B be denoted B = [b

1

(x; !) b

2

(x; !) � � � ]; each b is a linear

combination of b's. The dual basis is characterized by the relation hb

i

j b

j

i = �

ij

, or in matrix

form [hB jBi] = I, where I is the identity matrix. Orthonormal bases are a special case: they are

self-dual, meaning that B = B.

2.4 Discrete light transport

Regardless of the choice of basis functions, we can obtain a system of equations for the unknown

entries of L by substituting L = BL and L

e

= BL

e

into the light transport equation (2), and using

linearity of the operator T to yield

BL = BL

e

+ T (BL) = BL

e

+ (TB)L :

By applying the linear operator [hB j �i] to both sides of this equation, we get

[hB jBLi] = [hB jBL

e

i] + [hB j (TB)Li] :

Using linearity and the duality relation, we arrive at the discrete light transport equation,

L = L

e

+ TL : (3)
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In this in�nite system of linear equations, T � [hB j TBi] is an in�nite matrix representing the

transport operator T . The rs-th entry of T is a transport coe�cient, representing the in
uence of

the coe�cient of b

s

on the coe�cient of b

r

. It can be written explicitly as

T

r s

= hb

r

j T b

s

i

= hb

r

j

R

x

f

r

(!

xy

; y; !)G(x; y) b

s

(x; !

xy

) dxi

=

Z

!y

b

r

(y; !)

Z

x

f

r

(!

xy

; y; !)G(x; y) b

s

(x; !

xy

) dx dyd! ; (4)

where the notation r  s is to emphasize that T

r s

represents the in
uence of the sender s on the

receiver r. In this integral, the domain of x is the spatial support of the sending basis function b

s

,

the domain of y is the spatial support of the receiving basis function b

r

, and the domain of ! is the

angular support of b

r

(directions on a hemisphere above y).

3 A wavelet basis for radiance

In this section we construct a multiresolution basis for e�ciently representing radiance distributions.

Results by Beylkin et al. [4, 5], Alpert [1], Gortler et al. [20], Hanrahan et al. [21] and others indicate

that signi�cant performance gains can be achieved by using a multiresolution basis.

By contrast, Immel et al. [23] used a single-resolution representation of radiance distributions us-

ing piecewise-constant basis functions. Sillion et al. [34] used spherical harmonics as basis functions

for the angular variation of radiance. Their implementation also used a single-resolution represen-

tation: a �xed number of spherical harmonics interact at each light transport. One could envision

multiresolution light transport using spherical harmonics, by only evaluating the most signi�cant

spherical harmonics (with largest coe�cients). However, spherical harmonics have global support;

that is, they are supported on the entire sphere, so all spherical harmonics interact throught light

transports (except for occlusion). In contrast, the wavelets we will consider have compact support;

a sending wavelet b

s

will only interact with receiving wavelets b

r

that have spatial support within

the directional support of b

s

. So for a wavelet basis, the compact directional support means that

many of the transport coe�cients are known a priori to be zero. Said di�erently, the transport

matrix T is sparse in a wavelet basis, but dense in a spherical harmonics basis.

In the following, we �rst present some background on multiresolution analysis, and then de-

scribe one-dimensional wavelet bases and how they can be extended to the four-dimensional bases

necessary for representing radiance distributions.

3.1 Multiresolution analysis

A straightforward method for solving the discrete light transport equation (3) approximately would

represent the solution with a �xed, large number of basis functions, and transport light between all

basis functions to compute the solution. If m is the number of basis functions, this method would

require O(m

2

) interactions to compute a solution.

Instead, we use a hierarchical, or multiresolution, method, which results in only O(m) or

O(m logm) interactions (depending on the speci�c multiresolution method chosen). With this

method, we �rst compute a very rough solution and then re�ne the representation and interactions

based on that solution. After the re�nement, an improved solution can be computed, new re�ne-

ments can be performed, and so on. The multiresolution method exploits the facts that in some

parts of the scene radiance distributions can be represented with su�cient accuracy using only a
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few basis functions, and that even where the radiance distribution is represented with many basis

functions, only few of these basis functions need to interact with most other basis functions.

Multiresolution analysis as formulated by Mallat [26] provides a convenient framework for

studying multiresolution bases. More elaborate explanations of multiresolution bases are given

by Chui [9], Daubechies [14], and DeRose et al. [15].

There are two basic ingredients for a multiresolution analysis: an in�nite chain of nested linear

function spaces V

0

� V

1

� V

2

� � � �, and an inner product hf j gi de�ned on any pair of functions

f; g 2 V

j

. The space V

j

contains functions of resolution j, with resolution increasing as j increases.

Scaling functions refer to bases for the spaces V

j

.

A function can be approximated by a weighted sum of scaling functions. Alternatively, we

can represent the same approximation as coarse scaling functions in V

0

along with detail at �ner

and �ner resolution. Detail is accounted for by functions in the orthogonal complement spaces W

j

de�ned by

W

j

� ff 2 V

j+1

j hf j gi = 0 8g 2 V

j

g:

Wavelets refer to bases for the orthogonal complement spacesW

j

, and the spacesW

j

are sometimes

called wavelet spaces.

Orthogonal complements are often written as V

j+1

= V

j

� W

j

since, intuitively, wavelet

space W

j

includes the functions that are in V

j+1

but \missing" from V

j

. More formally, any

function f

j+1

2 V

j+1

can be written uniquely as an orthogonal decomposition f

j+1

= f

j

+ f

j

?

,

where f

j

2 V

j

and f

j

?

2 W

j

. The space V

j

can be fully decomposed as

V

j

= V

0

�W

0

� � � � �W

j�1

:

Therefore, a multiresolution basis for V

j

can be formed by selecting a scaling function basis for

V

0

together with wavelet bases for the spaces W

0

; :::;W

j�1

. The scaling functions spanning V

0

represent coarse variation, while the wavelets provide detail at increasing resolutions.

3.2 Choice of wavelet basis

The simplest multiresolution basis is the Haar basis in one dimension. The space V

j

consists of

piecewise-constant functions on [0; 1] with discontinuities at f0; 1=2

j

; 2=2

j

; :::; 1g. The space V

j

is spanned by piecewise-constant scaling functions �

j

i

(u), known as the Haar functions or \box"

functions. The wavelet spaces W

j

are spanned by piecewise-constant wavelets  

j

i

(u). A few Haar

scaling functions and wavelets are shown in Figure 2.

-

6

0 1

1

x

�

0

0

(x) :

-

6

0 1

1

x

�

1

0

(x) :

-

6

0 1

1

x

�

1

1

(x) :

-

6

1

-1

1

x

 

0

0

(x) :

-

6

1

-1

1

x

 

1

0

(x) :

-

6

1

-1

1

x

 

1

1

(x) :

� � �

� � �

Figure 2 Haar scaling functions �

j

i

and wavelets  

j

i

.

There are many alternatives to the Haar basis, each with advantages and disadvantages. Schr�oder

and Hanrahan [32] have presented a comparison of wavelet bases for radiance, in which they exam-
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ined rates of convergence, integration expense and accuracy, and the amount of work required to

obtain a solution of a given accuracy.

The following list summarizes the properties desirable in a wavelet basis for global illumination:

� Bounded domain. Multiresolution analysis is usually formulated for functions on the un-

bounded real line, while we wish to represent radiance distributions de�ned on bounded

domains. Unbounded wavelets could be used on a bounded interval by arti�cially extend-

ing the functions of interest [14], but it is unclear how radiance would be extended beyond

the geometric extent of surface patches without introducing a number of artifacts. We have

found it more convenient to use wavelets de�ned on a bounded interval, such as 
atlets,

multiwavelets [20], or B-spline wavelets adapted to a bounded interval [10, 15].

� A single scaling function in V

0

. Some wavelet bases have more than one scaling function in

space V

0

. The high dimensionality of the radiance transport problem makes it advantageous

to have only one scaling function in space V

0

: A single scaling function leads to a single

interaction between two patches at the coarsest level, while (as shown in Section 3.4) having

two one-dimensional scaling functions leads to 16 four-dimensional scaling functions, requiring

256 interactions between two patches at the coarsest level.

� E�cient numerical integration. The �nite-element method requires that we integrate the

transport operator against scaling functions and wavelets (and their duals, if the basis is not

orthonormal) to compute transport coe�cients. It is advantageous to use basis functions for

which we can develop inexpensive numerical integration formulas.

Among the wavelet bases that have bounded domains, there are both continuous and dis-

continuous choices. There are two families of bounded-interval continuous wavelets in the liter-

ature: Daubechies wavelets adapted to the bounded interval [11], and bounded-interval B-spline

wavelets [10]. Having continuous basis functions on each patch is not su�cient to ensure a con-

tinuous solution; continuity must also be enforced across boundaries between adjacent patches, or

the basis functions must be de�ned over complex shapes with arbitrary topology (for example, the


oor in Figure 21). Both approaches seem unnecessarily complicated compared to the alternative,

a discontinuous basis. Discontinuous wavelet bases that have been used for radiosity include the

Haar basis, multiwavelets, and 
atlets [20]. A �nal gathering step [25, 30, 36] can be used to smooth

out discontinuities in the basis and at patch boundaries.

We have experimented with bounded-interval B-spline wavelets [7], Daubechies wavelets, and

the Haar basis. As a result of these experiments, we have chosen to implement our glossy global

illumination algorithm using the Haar basis. The Haar basis has many advantages, including a

single scaling function in V

0

, orthonormality (and therefore self-duality), compact support, and

simple integration formulas. Flatlets, as an alternative, have more vanishing moments than the

Haar basis, which increases the sparsity of a discretized smooth operator [1, 20]. But at the same

time, 
atlets have wider support and more costly integration formulas. Similarly, multiwavelets

(which are constructed from higher-order polynomials) also require costly integration formulas.

The main disadvantage of the Haar basis, its discontinuities, can be ameliorated by performing a

�nal gathering step during rendering.
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3.3 A convenient domain for radiance

Four-dimensional basis functions are required to represent radiance distributions: two variables

describe spatial variation across a surface, and two variables describe angular variation. As is

common, we split the surfaces into patches such that the spatial variables on each patch can be

parameterized on the unit square [0; 1]

2

; see Figure 3. The domain of the radiance distribution on

each path is then [0; 1]

2

�H

2

, where H

2

is the unit hemisphere. By mapping H

2

onto [0; 1]

2

, we

can use tensor products of one-dimensional basis functions for both angular and spatial variations.

This process is described below.

-

-

6

u

1

u

2

3D surface patch 2D parameter space

Figure 3 Spatial projection: mapping between 3D surface patch and 2D parameter space.

We use gnomonic projection to map between points in H

2

and points on a disc with radius �=2.

As shown in Figure 4, gnomonic projection maps great circles through the pole of H

2

to radial

lines, and preserves arc length along these curves. We use this map because it is easily computed

and introduces only mild distortion. An alternative would be \
at" projection of H

2

onto a unit

disc by simply ignoring the height component, but this projection results in points near the equator

being mapped very densely near the circumference of the circle.

The gnomonic projection is followed by a radial \stretch" of the disc to exactly cover the unit

square, also shown in Figure 4. The composition of these mappings is an invertible mapping between

H

2

and the unit square.

Unit hemisphere

-

gnomonic

projection

Disc with radius �=2

-

radial

\stretch"

Unit square

-

u

3

�

��

u

4

Figure 4 Angular projection: gnomonic projection and radial \stretch."

Figure 5 shows a typical radiance distribution (resulting from glossy re
ection of light from a

single point) before and after the angular projection. After the projection, the distribution is still

continuous, but has a �rst-derivative discontinuity along the diagonals of the unit square.

3.4 A four-dimensional wavelet basis

We want to construct basis functions on the four-dimensional hypercube [0; 1]

4

using tensor products

of univariate basis functions. There are two alternative methods, the so-called \standard" and

\non-standard" constructions [4]. The standard construction forms a basis from all possible tensor

products of univariate basis functions. In the non-standard construction, on the other hand, each

tensor product consists of univariate basis functions in the same space j (restricting the supports of
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0

1

0

1
0

1

2

u

3

u

4

Figure 5 Radiance distribution before and after angular projection.

multivariate basis functions to be square for the Haar basis). The standard and non-standard basis

constructions are illustrated in Figure 6 for the simpler case of two-dimensional basis functions.

We choose the non-standard basis construction primarily because the required data structures are

simpler (see Section 6.4).
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Figure 6 The standard and non-standard construction of a two-dimensional Haar wavelet basis

for V

2

. In the unnormalized case, functions are +1 where plus signs appear, �1 where minus

signs appear, and 0 in gray regions.

Let u = (u

1

; u

2

; u

3

; u

4

) denote a point in [0; 1]

4

, and let i = (i

1

; i

2

; i

3

; i

4

) denote a four-component

multi-index of integers. The four-dimensional scaling functions for V

j

take the form

����

j

i

(u) � �

j

i

1

(u

1

)�

j

i

2

(u

2

)�

j

i

3

(u

3

)�

j

i

4

(u

4

) :

That is, the scaling functions for resolution j consist of all possible products of the one-dimensional

scaling functions for resolution j. The four-dimensional wavelets spanning the orthogonal comple-

ment W

j

are formed by taking all other products of scaling functions and wavelets for resolution j.

These wavelets consist of 15 types:

��� 

j

i

(u); �� �

j

i

(u); ��  

j

i

(u); : : : ;     

j

i

(u) :
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We take as our basis B the set of basis functions spanning V

0

;W

0

;W

1

; : : : for each patch in the

scene.

The duals to each of the scaling functions and wavelets follow from the univariate duals since

duals of products are products of duals. For example, ��  

j

i

(u) = �

j

i

1

(u

1

)�

j

i

2

(u

2

) 

j

i

3

(u

3

) 

j

i

4

(u

4

):

Gortler et al. [20] use a scaling function representation at all levels for radiosity. Their approach

therefore requires \pushing" and \pulling" to distribute transported radiance to other levels of the

hierarchy before the next transport iteration. By contrast, we use a wavelet representation, in

which all basis functions are orthogonal to basis functions at other levels.

3.5 Transport matrix decomposition

Just as there are two di�erent tensor-product constructions for multidimensional bases, so are there

two ways to decompose a matrix: the so-called \standard" and \non-standard" decompositions [4].

Gortler et al. [20] and Schr�oder and Hanrahan [32] use the non-standard decomposition of the

transport matrix, in which each transport coe�cient relates two basis functions at the same level

of the hierarchy. These transports are followed by \pushing" and \pulling" operations [20]. By

contrast, we use the standard decomposition of the operator matrix, in which transport coe�cients

include interactions between basis functions at di�erent levels of the hierarchy. Note that a single

such interaction would require many transports in the non-standard decomposition, all of which

are between basis functions at a single level of the hierarchy. Since we use a wavelet basis and a

standard transport matrix decomposition, \pushing" and \pulling" procedures are unnecessary.

For a smooth operator, the non-standard operator decomposition has a theoretical growth

of O(m), while a standard operator decomposition has theoretical growth O(m logm), where m

is the number of basis functions. However, because of occlusion, the radiance transport operator

is only piecewise-smooth. Our experiments (described in Appendix A) show that the 
exibility

of the standard decomposition can in some cases cause a signi�cant reduction in the number of

interactions. These results indicate that in practice the standard decomposition is often more sparse

than the non-standard decomposition. Similar conclusions were reached by Schr�oder et al. [31] for

radiosity, and by Ja�ard and Lauren�cot [24] for more general operators. For these reasons, we use

the standard decomposition of the operator matrix.

4 Importance for glossy scenes

In order to maintain a tractably small problem for complex scenes, we use importance-driven

re�nement to compute a view-dependent solution. In this section, we introduce a type of importance

that satis�es the same equilibrium equation as radiance. Radiance and importance can be used

together to compute a solution, as described in Section 5.

Smits et al. [37] showed that di�use importance gives a substantial speed-up for a complex

di�use scene. For glossy re
ections, the gain in speed is even greater, due to the directionality of

radiance and importance: a directional interaction is re�ned only if the radiance in that direction

is su�ciently large, inaccurate, and important.

4.1 Incident and exitant directional importance

Smits et al. [37] de�ne the \importance" at a point to be the fraction of light leaving that point

that reaches the eye. Here we show that a slightly di�erent de�nition is advantageous for the

�nite-element solution of glossy global illumination, since it allows importance to be represented in
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the same manner as radiance, and makes importance satisfy the same transport equation as light.

The form of di�use importance de�ned by Smits et al. [37] for radiosity is an incident quantity

similar to irradiance. For radiosity, storing and transporting incident importance is equivalent (up

to a constant) to storing and transporting exitant importance, since the radiosity leaving a point

is proportional to the irradiance received at that point.

The most direct generalization of this quantity to radiance is an incident type of directional

importance. Incident directional importance can be de�ned as the fraction of radiance that reaches

the eye. This type of importance was used by Pattanaik and Mudur [27] for a Monte Carlo solution

method and Aupperle et al. [3] for a �nite-element solution method. Incident directional importance

is represented and transported like di�erential irradiance.

One problem with incident directional importance is that it cannot always be represented e�-

ciently, since its directional distribution at a point may have discontinuities, as in the case of light

coming from a silhouette edge. Such discontinuities are di�cult to represent with �nite elements,

resulting in slow convergence rates for adaptive re�nement. For this reason, we de�ne a type of

exitant directional importance (which we will call importance for short). For glossy re
ection, this

exitant type of importance is a continuous function of direction at any surface point. In addition,

as preliminary results in Christensen et al. [6] showed, using an exitant formulation for importance

also makes it simple to develop an importance-driven glossy global illumination algorithm, since it

allows light and importance to be transported identically.

4.2 Importance transport

Christensen et al. [6] showed that importance can be considered an exitant quantity like radiance

and can be transported like light, thus simplifying a �nite element representation. That presentation

was based on adjoints. Here we present a simpler and more intuitive (but equivalent) de�nition

and proof. With foresight, we de�ne importance and emitted importance as follows:

De�nition Importance � (y; !

yx

) is the fraction of G(x; y)L(x;!

xy

) that reaches the eye.

x

y

L(x;!

xy

)

G(x; y)

� (y; !

yx

)

Light contributes directly to the image if it reaches the eye from one of the directions in the

viewing pyramid. We can weight the light by a distribution of emitted importance �

e

at the eye:

De�nition

�

e

(y; !) �

(

1; if y is on the eye patch and ! is a direction within the viewing pyramid

0; elsewhere

Lemma (T

n

�

e

)(y; !

yx

) is the fraction of G(x; y)L(x; !

xy

) that reaches the eye through exactly

n bounces.

Proof By induction over the number of bounces the radiance goes through before reaching the

eye.
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Basis: �

e

(y; !

yx

) is the fraction of G(x; y)L(x;!

xy

) that reaches the eye directly; the fraction

is zero if y is not on the eye patch or !

yx

is not within the viewing pyramid.

Inductive step: By the inductive hypothesis, (T

n�1

�

e

)(z; !

zy

) is the fraction of G(y; z)L(y; !

yz

)

that reaches the eye through exactly n� 1 bounces. A single bounce of radiance L(x; !

xy

) results

in a radiance distribution f

r

(!

xy

; y; �)G(x; y)L(x;!

xy

) at y; see the left illustration in Figure 7.

The amount of L(x; !

xy

) that reaches the eye through exactly n bounces is the integral over all

possible paths involving (n� 1) + 1 bounces:

Z

z

h

(T

n�1

�

e

)(z; !

zy

)

i

G(y; z)

h

f

r

(!

xy

; y; !

yz

)G(x; y)L(x; !

xy

)

i

dz

=

�

Z

z

(T

n�1

�

e

)(z; !

zy

)G(y; z) f

r

(!

xy

; y; !

yz

) dz

�

G(x; y)L(x; !

xy

)

=

�

Z

z

f

r

(!

zy

; y; !

yx

)G(z; y) (T

n�1

�

e

)(z; !

zy

) dz

�

G(x; y)L(x; !

xy

)

= (T T

n�1

�

e

)(y; !

yx

)G(x; y)L(x;!

xy

)

= (T

n

�

e

)(y; !

yx

)G(x; y)L(x;!

xy

)

The last expression is illustrated in the right part of Figure 7. The conclusion of these manipulations

is that (T

n

�

e

)(y; !

yx

) is the fraction of G(x; y)L(x; !

xy

) that reaches the eye through exactly

n bounces.

2

y

f

r

(!

xy

; y; �)G(x; y)L(x;!

xy

)

x

L(x;!

xy

)

z

z

z

T

n�1

�

e

y

(T

n

�

e

)(y; !

yx

)

x

L(x;!

xy

)

Figure 7 Two ways of computing the amount of radiance L(x; !

xy

) that reaches the eye through

exactly n bounces: The integral over all points z on the left is equivalent to the simple product

on the right.

Lemma The sum

P

1

i=0

T

i

�

e

satis�es our de�nition of importance � .

Proof The total fraction of G(x; y)L(x;!

xy

) that reaches the eye (through any number of bounces)

is

P

1

i=0

(T

i

�

e

)(y; !

yx

).

2

Theorem Importance � satis�es an equilibrium equation with the same transport operator as

radiance, namely

� = �

e

+ T � :

Proof Assuming that re
ections are energy dissipating, the norm of T is less than one and therefore

I � T is invertible (here I is the identity operator). The importance can then be rewritten using

the Neumann series as � =

P

1

i=0

T

i

�

e

= (I � T )

�1

�

e

. Operating on both sides with I � T gives

(I � T )� = �

e

; the theorem follows directly.

2
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Since (exitant directional) importance satis�es the same transport equation as radiance, it can

be discretized like radiance and transported using the same transport coe�cients. The discrete

importance transport equation is

� = �

e

+T� :

The only di�erence from radiance is that while radiance is emitted by light sources, importance is

emitted by the eye.

5 Algorithm

Our solution method for radiance transport makes use of a wavelet representation and importance-

driven re�nement. The algorithm computes a view-dependent solution to the radiance equation;

that is, the solution is re�ned most in the areas that contribute most to the image. In some respects,

our algorithm is similar to the approach described by Gortler et al. [20] for wavelet radiosity.

However, there are a number of areas, in addition to the higher dimensionality, in which our

algorithm di�ers signi�cantly from this previous work.

In this section, we �rst present the main algorithm and then discuss transport coe�cients: how

they are computed, which ones are computed as the re�nement proceeds, and how their accuracy

can be adaptively increased at small cost. Last, we describe our use of a �nal gathering step to

generate smooth solutions with accurate shadows and textures.

5.1 Main algorithm

The primary task is to solve two systems of linear equations, one for radiance and one for impor-

tance:

L = L

e

+TL and � = �

e

+T� :

We �rst compute a small number of entries of the matrix T and solve the equations, then compute

more entries of T and solve again, and so on. The high dimensionality of the global illumination

problem makes the entries of T very expensive to compute, so we strive to compute as few of

these entries as possible while generating a good approximation to the solution. Put brie
y, only

entries of T that are estimated to be large | and that connect large and important basis function

coe�cients | are computed.

The main part of the algorithm alternates between computing approximate radiance and im-

portance solutions

e

L and

e

� and improving the �nite representation of the transport operator

e

T.

Quantities with a tilde are approximate, both because they are computed numerically and because

they are truncated versions of in�nite matrices. Initially, we project L

e

and �

e

into space V

0

, the

space spanned by the coarsest-level scaling functions, to give

e

L

e

and

e

�

e

. We also compute the

entries of T corresponding to interactions of scaling functions in V

0

with one another (as described

in Section 5.2), giving

e

T. The algorithm is given in pseudocode below:
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procedure GlossyGlobalIllumination (

e

T;

e

L

e

;

e

�

e

):

e

L  

e

L

e

e

�  

e

�

e

repeat

e

L  Solve(

e

T;

e

L;

e

L

e

)

e

�  Solve(

e

T;

e

�;

e

�

e

)

e

T  Re�ne (

e

T;

e

L;

e

�)

until visual convergence of

e

L

end procedure

The radiance and importance systems are solved simultaneously, with the solution in one system

determining the re�nements in the other system. Importance is used to re�ne the radiance solution

only in areas that are signi�cant to the �nal image. Likewise, radiance is used to re�ne the

importance solution only in bright parts of the scene. The main loop iterates until visual convergence

is achieved, that is, until further re�nement does not signi�cantly change the computed image. We

use Gauss-Seidel iteration [18] to solve the approximate transport equations

e

L =

e

L

e

+

e

T

e

L and

e

� =

e

�

e

+

e

T

e

�. Re�nement is determined by an \oracle," described in Section 5.3.

5.2 Computing transport coe�cients

The algorithm above requires computation of transport coe�cients between basis functions. Each

transport coe�cient is de�ned in Equation (4) as a six-dimensional integral, which we approximate

using numerical integration. Four-dimensional numerical integration formulas for wavelet radiosity

are discussed by Gortler et al. [20].

The transport coe�cients T

r s

are computed as inner products. For example, the in
uence of

wavelet  � �

j

i

(u

s

) on wavelet  ���

j

0

i

0

(u

r

) is T

r s

= h ���

j

0

i

0 j T  � �

j

i

i. The domain of radiance is

position and direction, for example x and !, while the domain of our tensor-product basis functions

is the four-dimensional hypercube [0; 1]

4

. For convenience, we will make the spatial and angular

transformations implicit, and write the basis functions as functions of points and directions: let the

sending position x correspond to the two parameters u

1

and u

2

, and let the direction !

xy

correspond

to parameters u

3

and u

4

(and similarly for the parameters y and ! of the receiving basis function).

Then the inner product in our example takes the form

T

r s

= h ���

j

0

i

0 j T  � �

j

i

i

=

Z

!y

 ���

j

0

i

0 (y; !)

Z

x

f

r

(!

xy

; y; !)G(x; y) � �

j

i

(x; !

xy

) dx dyd!

=

Z

xy

�

Z

!

 ���

j

0

i

0 (y; !) f

r

(!

xy

; y; !) d!

�

G(x; y) � �

j

i

(x; !

xy

) dy dx : (5)

Note that only the BRDF and the receiving basis function depend on !. Our numerical integra-

tion routine samples these two functions in its innermost loop, while the remaining functions are

evaluated only as the positional variables change.

We approximate integrals such as (5) using slightly jittered uniform sampling of the integrand.

More accurate rules such as Gauss-Legendre or Gauss-Kronrod quadrature could be employed

instead [20, 29, 40].
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5.3 Re�nement

In the algorithm, the approximate transport matrix

e

T is progressively re�ned. Here we describe

how entries of

e

T are selected for computation.

In many applications of wavelets in numerical analysis [4], the goal is to obtain a sparse rep-

resentation of a given matrix, thereby making repeated matrix{vector multiplications much faster.

The wavelet decomposition of the matrix is done once and for all as a preprocess, so the cost of com-

puting all the matrix elements is amortized by many fast matrix multiplications. In wavelet-based

approaches to global illumination, the cost of explicitly constructing an entire transport matrix far

outweighs the expense of any matrix{vector multiplications that follow. Therefore, it is essential

to restrict the number of computed transport coe�cients.

The goal of the re�nement oracle is to determine which of the entries of T missing from

e

T

should be computed to reduce the visible error in the current radiance solution. The two most

important sources of error are:

� truncation error due to signi�cant entries missing from

e

T, and

� integration error in computing the entries of

e

T.

In this section we describe how our oracle reduces truncation error. Section 5.4 outlines a method

for simultaneously reducing integration errors.

The re�nement oracle uses concepts from the brightness re�nement criterion for hierarchical

radiosity [21], the oracle used by Gortler et al. for wavelet radiosity [20], and the importance-based

re�nement strategy used by Smits et al. [37]. The idea is to estimate the in
uence on the visible

image that would result if a new transport coe�cient were to be added to

e

T. If this quantity

falls below some threshold, the expensive computation of the transport coe�cient can be avoided

without resulting in signi�cant error in the solution.

Consider two basis functions b

s

and b

r

with no transport coe�cient between them (yet), see

Figure 8. We compute a new transport coe�cient

e

T

r s

if a su�ciently large value results from the

product of

� radiance: the magnitude of the sending basis function coe�cient

e

`

s

,

� estimated transport coe�cient : the estimated new transport coe�cient

e

T

r s

between the

basis functions, and

� importance: the fraction G

e

� of the receiving basis function that reaches the eye.

The product of the �rst two quantities estimates the amount of light transported between the two

basis functions. Multiplying by the importance shining onto the receiving basis function (and the

geometric term) gives the contribution to the �nal image. The sending basis function coe�cient

and approximate importance of the receiving basis function are known from the interim solution.

Our estimate of the transport coe�cient uses kernel variation, as explained shortly.

There are in�nitely many new transport coe�cients to be considered for computation. We need

a scheme for considering only some of them in each iteration, while making it possible to eventually

consider all. Associate with each basis function b (except for the basis functions in V

0

and W

0

) a

unique \parent" basis function b

0

that overlaps b and is in a space one level coarser. Also, let the

parent of the wavelets in space W

0

be the scaling function in V

0

. (For example, for the simple case
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of the one-dimensional Haar wavelet basis, the parent of  

j

i

is  

j�1

bi=2c

and the parent of  

0

0

is �

0

0

.)

In our implementation, we only consider computing a new transport coe�cient

e

T

r s

if there is

already a transport coe�cient

e

T

r s

0

or

e

T

r

0

 s

. The kernel variation encountered when computing

e

T

r s

0

or

e

T

r

0

 s

is used as a rough estimate of the transport coe�cient

e

T

r s

for deciding whether

to actually compute that transport coe�cient. (The kernel variation is stored along with each

transport coe�cient.)

b

s

b

r

e

�

Figure 8 Sending and receiving basis functions

Since the kernel variation is the same for all �fteen transport coe�cients from a given basis

function to the �fteen wavelets sharing the same support, the estimated contribution to the image

will be the same for all these �fteen wavelets. We therefore compute all �fteen transport coe�cients

at once. This approach saves many kernel-evaluations since the same kernel-evaluations can be re-

used in computing all 15 transport coe�cients. (At the same time, the transport coe�cient between

the two scaling functions that share support with the sending and receiving basis functions is

computed. This transport coe�cient is not used for light transports, but for adaptive improvements

of other transport coe�cients, as described in Section 5.4.)

For each call to the re�nement procedure, the maximum product of radiance, kernel variation,

and importance for all potential new transport coe�cients is computed. Then all new transport

coe�cients with a product larger than some fraction (for example, 10%) of the maximum product

are computed. This method requires two passes through all potential new transport coe�cients.

5.4 Adaptive numerical integration

If we always use a numerical integration rule of high accuracy to compute transport coe�cients,

time is wasted evaluating the kernel for many interactions that have little e�ect on the �nal image.

On the other hand, the signi�cant transport coe�cients must be computed to high precision;

otherwise, the solution will not converge to the correct value. It is therefore advantageous to use an

adaptive numerical integration technique that reduces error in transport coe�cients, particularly

on transport coe�cients that are re�ned by the oracle. We have implemented such an adaptive

integration as part of the re�nement procedure.

At the time a transport coe�cient is computed, a numerical integration method as described in

Section 5.2 is used. Later, if more detailed transport coe�cients are computed between the same

supports, the kernel is sampled more densely. These samples are re-used to recompute the coarse

transport coe�cient more accurately.

As described in Section 5.3, the transport coe�cient between two scaling functions is computed

at the same time as the transport coe�cients between other basis functions with the same sup-
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port (at practically no extra cost, since the necessary kernel-evaluations have been done already).

Since wavelets in a certain space can be expressed as a linear combination of scaling functions in

higher spaces, coarse-level transport coe�cients between wavelets can be recomputed by taking

linear combinations of the transport coe�cients between �ner-level scaling functions. In this way,

transport coe�cients are adaptively recomputed where the kernel is sampled densely.

5.5 Final gather

For rendering the solution, we can evaluate the �nite-element representation of the solution, or we

can perform a rendering step that improves the visual quality of the solution. Following the ideas

that Reichert [30], Lischinski et al. [25], and Smits [36] used for radiosity, we have implemented

a �nal radiance gathering step. For each pixel in the �nal image, we perform a �nal gathering of

light to the surface point that corresponds to the midpoint of the pixel. Call this point y.

We have tried three di�erent �nal gathering methods. A complete �nal gather method gathers

light from all basis functions in the solution. A faster �nal gather method gathers light from all basis

functions that have transport coe�cients to a basis function with support at the point y and in the

direction of the eye e. This method only excludes light transports that have not been considered

important in the solution. An even faster method gathers light only from basis functions that have

a transport coe�cient to the scaling function on the patch that point y is on. This fast method

is nearly as accurate since if a transport coe�cient is computed between two �ne-level wavelets,

there is a high probability that there is also a transport coe�cient from the sending wavelet to the

scaling function (since the scaling function has large support, and the kernel variation is usually

high across large geometric extents). We have tried all three methods and have found no signi�cant

degradation in the �nal image from using the fastest �nal gather method.

For each basis function that we want to do a �nal gather from, we evaluate a simpli�ed version

of the integral in Equation (5). For example, the �nal gather from the wavelet  � �

j

i

(x; !) requires

evaluating

Z

x

f

r

(!

xy

; y; !

ye

)G(x; y) � �

j

i

(x; !

xy

) dx :

Since the receiving position y is �xed and the radiance is re
ected towards the eye e, the integration

is only over sending positions x.

Formally, this �nal gather corresponds to changing to a piecewise-constant basis, where the

support of each basis function is the projection of a pixel onto a surface in the scene. Intuitively,

this basis is tailored to be visually pleasing. The �nal gather smooths the discontinuities in the

wavelet representation, and makes highlights, textures, and shadows crisper. The improvement

brought about by the �nal gather can be seen by comparing Figures 21(e) and (f). The convergence

improvement from �nal gather is described in Section 7.1.

Another way of thinking about the �nal gathering step is in the context of distribution ray

tracing [13]. When a ray cast from the eye intersects a surface in the scene, a group of re
ected

rays are traced from the intersection point to points on other surfaces in the scene. A constant

number of rays are cast to the support of each selected basis function in the radiance solution. In

this way, the directions of the rays are guided by the solution. Thus, the most re�ned areas of the

radiance solution are sampled the most by the distribution of re
ected rays. Note that the costly

\explosion" of the number of recursive bounces used in distribution ray tracing is avoided, since

only a single bounce is followed. Once a �nite element radiance solution has been computed, the

�nal gather requires no additional memory.
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6 Implementation

In this section, we describe features of our implementation, including the data structures for basis

function coe�cients and transport coe�cients.

6.1 Surface geometry

To represent a given complex curved object, fewer spline patches are required than quadrilaterals.

Since our method is independent of the geometry of the patches, as long as they can be param-

eterized on a unit square, it is natural to incorporate curved surfaces. In our implementation, a

patch can be either a B�ezier surface or a quadrilateral. It would also be straightforward to add

non-uniform rational B-spline surfaces [16]. In fact, the only requirements are that we need to be

able to quickly compute a position, surface normal, and di�erential area associated with a given

parametric point (u

1

; u

2

), and be able to determine the intersection of a ray with the surface. The

images in Figure 18 show a teapot consisting of 28 B�ezier patches.

6.2 Re
ection models and texture maps

We use the Ward isotropic and anisotropic re
ection models [39] since they are physically valid and

fast to evaluate. Examples of this re
ection model can be seen in Figure 18. In addition to angular

variation in re
ectance, we use spatially varying re
ectances to simulate details of the materials

in the scene. We take the BRDF to be the tensor product of a spatially varying texture and the

angular variation of the Ward model. Figure 21 demonstrates both texture (on the 
oor, walls,

and pedestal) and an anisotropic re
ectance function (on the teapot).

In the course of numerically approximating a transport coe�cient, the geometric term and the

BRDF are sampled at a number of quadrature points. The re
ectance for each quadrature point

is determined by a look-up in a texture map, multiplied by the angular variation given by Ward's

model. Multiresolution textures could be incorporated in our method by using a pyramid of texture

averages instead of sampling. This approach would eliminate sampling errors from sampling the

texture. Gershbein et al. [17] present an alternative approach, using wavelet decompositions of

textures for radiosity.

6.3 Light sources

By storing the wavelet decomposition of an image as the initial coe�cients on a patch, we can model

a light source that emits a spatially-varying radiance (such as a television screen). In general, not

all coe�cients of the emitting image will have links from them, but the coe�cients are ready to be

transported into the scene if the re�nement procedure so decides. This technique allows a complex

environment to be displayed using simple geometry.

A simple approach to angular variation is to let the emission depend on direction. For example,

we model \spotlights" using a Phong-like function, in which emission depends on some power of

the cosine of the angle between the emission direction and the surface normal of the patch. The

spotlights appear dark from most directions because of the very narrow distribution of light they

emit.

We demonstrate the use of spotlights and a spatially-varying emitter (the outdoor environment

seen through the window) in Figure 21. More complex e�ects such as a slide projector or sunlight

through a stained-glass window could be modeled by combining spatial and angular variations in

an emitter.
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6.4 Data structure for basis function coe�cients

As in previous hierarchical radiosity algorithms [12], the matrices

e

T,

e

L,

e

L

e

,

e

�, and

e

�

e

are never

formed explicitly. Entries of

e

L,

e

L

e

,

e

�, and

e

�

e

are associated with the surface patches, while entries

of

e

T are stored as \links" between radiance (and importance) coe�cients. The coe�cients and

links are allocated dynamically as the solution is re�ned.

A hierarchy of basis function coe�cients is associated with each patch. We have implemented

the hierarchy as a tree where each node contains all coe�cients ` with the same indices (space j and

translations i

1

; : : : ; i

4

). Each node contains the 15 wavelet coe�cients for each of six \color bands":

red, green, and blue radiance and red, green, and blue importance. In addition, there is a scaling

function coe�cient within each root node (root nodes correspond to spaces V

0

and W

0

). Each

node contains 16 pointers to child nodes that contain the coe�cients in the next (more re�ned)

space, nodes corresponding to coe�cients with all 16 combinations of indices 2i

1

or 2i

1

+ 1, : : : ,

2i

4

or 2i

4

+ 1. The pointers between nodes are illustrated in Figure 9. Initially, each patch only

has a single node, containing a scaling function coe�cient in space V

0

for each color band.
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2
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j+1
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Figure 9 Tree of basis function coe�cients on a patch (simpli�ed to 2D 
atland, where each

node only has 4 children). Each node contains all coe�cients of wavelets with the same support,

and the root node also contains scaling function coe�cients.

6.5 Data structure for transport coe�cients

The transport coe�cients that describe the interaction between radiance and importance basis

functions at di�erent patches are stored on links . As described in Section 5.3, the transport

coe�cients from a sending basis function to all 15 wavelets sharing support (and the single scaling

function) are computed at the same time. In our implementation, these 16 transport coe�cients

are stored on the same link. Alternatively, each transport coe�cient could be stored on a separate

link, but the extra storage overhead makes this slightly infeasible, since each link needs to point

to the two basis functions between which it is transporting light. As another alternative, the

transport coe�cients between all 15

2

possible combinations of wavelets on sender and receiver

could be stored on the same link. This method also wastes memory, since it sets up links with

room for many transport coe�cients that are never computed, for example, because the sending

coe�cient is too low.

Each link contains a pointer to the node from which it is transporting radiance (and importance),

information about what type of basis function it is transporting from, 15 entries of

e

T for each of the

three color bands, the sample variation encountered while computing those transport coe�cients

(used for re�nement as described in Section 5.3), a scaling function to scaling function transport

coe�cient for each of the three color bands (used for adaptive improvement of transport coe�cients

as described in Section 5.4), and a pointer to the next link to the same receiving basis functions.

Note that there can be several links between the same pair of nodes, each connecting di�erent basis

functions with the same support, as illustrated in Figure 10. All links pointing to a given node
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are organized in a linked list of links. Initially links are set up between root nodes for all pairs of

patches that are mutually visible.
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Figure 10 Example of links between basis functions (in 
atland).

We only consider creating new links between basis functions b

s

and b

r

where there is a link

from b

s

to b

r

's parent, or there is a link from b

s

's parent to b

r

; see Figure 11. This restriction

reduces the number of new links that have to be considered for re�nement at one time, while still

allowing all possible links to be created eventually. The existing link contains information about

the kernel variation encountered while computing that transport coe�cient; this variation is used

as an estimate of the (yet uncomputed) transport coe�cient to or from a child basis function. The

one exception to this scheme is root nodes, since they have no parent. Here the link between the

two scaling functions is used for information about kernel variation for the wavelets in W

0

.
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Figure 11 New links to be considered (in 
atland).

Links are never destroyed in our algorithm. By contrast, the approach described by Gortler et al.

[20] removes a link at one level of the hierarchy and replaces it with multiple links at a �ner level

of detail (because they use a scaling function representation at all levels of detail).

The adaptive numerical integration takes place after new links have been set up. It is a bottom-

up traversal of all links. For each link, it is checked whether the two nodes it connects have

children, and if so, whether there are links between some of the children. If there are links between

the children, the transport coe�cients on the link are recomputed by linear combination of the

scaling function to scaling function transport coe�cients on links between the children.

7 Results

Here we present results from tests of our algorithm on two scenes, one simple and one complex.

For the simple scene, a reference solution is easy to obtain, so convergence and convergence rates

can be tested. For the complex scene, computing a reference solution is infeasible. However, the

goal of our algorithm is to be able to generate realistic images of complex glossy scenes, so we have

included an example of such a scene.

7.1 Simple scene

To test convergence and convergence rates, we tried a simple scene consisting of two tiny patches

and a large patch. The geometry is shown in Figure 12. Patch 1 is emitting radiance L

e

, and this

light is re
ected by patch 2 according to Ward's glossy re
ection model [39] with � = 0:2. This

glossy re
ection results in a directional radiance distribution on patch 2. The light from patch 2 is

received at patch 3, which is a di�use re
ector.
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Figure 12 Simple scene geometry seen from the side and from above.

The angular variation of the radiance distribution on patch 2 is shown in the rightmost image

in Figure 19. This reference solution was computed as

L

2

(y; !) = f

r

(!

xy

; y; !)G(x; y)L

e

(x; !

xy

)A

1

;

where x is the midpoint of patch 1, y is the midpoint of patch 2, and A

1

is the area of patch 1, for

directions ! on the hemisphere (transformed from the unit square by the transformation described

in Section 3.3). Converging �nite element approximations of this angular variation are shown in

Figure 19, along with di�erence images illustrating the di�erence between the approximations and

the reference image. The corresponding convergence is shown in the graph in Figure 13(a).

The spatial variation of the radiance on the large di�use receiver is shown in the rightmost

image of Figure 20. This reference solution was computed as

L

3

(z; !) = f

r

(!

yz

; z; !)G(y; z)L

2

(y; !

yz

)A

2

;

for points z on patch 3, where A

2

is the area of patch 2. Here the direction ! is unimportant since

patch 3 is a purely di�use re
ector. The top row of images shows the convergence of the wavelet

representation. The �rst four images are identical, because all re�nements take place between

patches 1 and 2 (since larger radiance is involved in that transport, and importance is not taken

into account). From the �fth image on, the interactions to patch 3 are also re�ned. Di�erence

images are shown directly below each wavelet solution.

The middle pair of rows shows converging solutions (and di�erence images) when there is

importance at the receiving patch. The interactions are re�ned more at the receiver than in the

preceeding test.

The bottom pair of rows of images in Figure 20 shows the solution with a �nal gathering step,

but without importance. Here the rendering takes advantage of the re�nements of the interactions

to patch 2 even before the interactions to patch 3 are re�ned. The convergence of the radiance

distribution on patch 3, with and without importance, and with �nal gathering, is shown in the

graph in Figure 13(b).

As these results show, a �nal gather improves the solution, and gives a better solution in the

same amount of CPU time. However, the �nal gathering step does not appear to improve the

convergence rate signi�cantly. The �nal gather is only useful for display, since the result is an

image and not a set of basis functions useful for further re�nement and solution. Future research

could examine how far the solution would have to proceed before the �nal gather is performed, if

a given accuracy in the solution is required.

Faster convergence can be obtained by several means:

1. Selecting wavelets with more vanishing moments (but with acceptable numerical integration

complexity) would make the transport matrix more sparse.
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Figure 13 (a) Convergence of the radiance distribution on patch 2. (b) Convergence of the

radiance distribution on patch 3: The top curve is the solution without importance, the middle

curve is the solution with importance, and the bottom curve is the solution with �nal gather

(without importance). The CPU times were measured on a DEC 3000/400 \Alpha" computer.

2. In this case, a standard construction of the basis would eliminate some basis functions and

transports, since patch 2 has little spatial variation, and patch 3 has no angular variation.

7.2 Complex scene

As a more complex test scene, we used a maze of hallways with a glossy B�ezier-patch teapot in

the center (see Figure 21). The scene consists of 152 patches, including 28 B�ezier patches, and has

12,603 mutually visible pairs of patches. The teapot's re
ectance function uses Ward's re
ection

model [39], and is anisotropic with specularities �

u

= 0:2 and �

v

= 0:5, specular re
ectivity �

s

=

(0:1; 0:1; 0:1) and di�use re
ectivity �

d

= (0:2; 0:15; 0). The illumination consists of 24 \spotlights,"

patches that emit directional radiance. There is a patch outside the window that emits light

according to a scanned image of an outdoor scene, giving the appearance of a full environment

beyond the window. The radiance emitted by the lights and re
ected in the scene is shown in

Figure 21(a). The objective is to generate an image of this complex environment as seen from

the eye, a small patch in the hallway in front of the teapot. All back faces, where no radiance is

computed, are rendered gray.

Importance is emitted from the eye (just like a spotlight emits light) and re
ected to the impor-

tant parts of the scene, as shown in Figure 21(b). This picture demonstrates how small a fraction

of the model signi�cantly in
uences the solution visible from the eye. Figure 21(c) is a gray-scale

encoding of the number of links between the basis functions on each surface patch. This \re�nement

image" veri�es that most work is performed in areas that are bright and important. Note that we

could get arbitrarily large speed-ups, compared to a solution obtained without using importance,

by choosing a su�ciently complex scene where many parts do not contribute signi�cantly to the

�nal image.

The program begins by creating 12,603 links between scaling functions, and then solves for the

equilibrium distribution. This initial solution can be seen in Figure 21(d). After six iterations of

re�nement and solution, there are 126 scaling functions in V

0

, 1,518 wavelets inW

0

, 18,852 wavelets
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in W

1

, 160,248 wavelets in W

2

, 165,495 wavelets in W

3

, and approximately 1.73 million links.

This solution can be seen in Figure 21(e). In some re�nements, new links are only created within

already existing spaces, so the solution space reaches V

4

after six iterations. Running times on

a DEC 3000/400 \Alpha" machine were approximately 5 minutes to compute the initial solution,

then 100 minutes to iterate the main algorithm and re�ne as far as V

4

in important parts of the

scene. Given this solution, an image of it needs to be created, either by evaluating the solution

directly or using a �nal gather step. It takes 15 minutes to render a 600 � 600 image using ray

casting and evaluation of the solution (see Figure 21(e)). Alternatively, using a �nal gathering step

for the rendering takes approximately two hours, making it comparable to the solution process

itself, and the result is shown in Figure 21(f). Note the signi�cant color bleeding from the brick

walls to the dim ceiling. Also note the glossy highlights on the teapot.

8 Conclusion

We have presented an e�cient method for simulating light transport in an environment with di�use

and glossy re
ections. The e�ciency comes from using a wavelet representation of radiance along

with importance-driven re�nement for a view-dependent solution.

We use a �nite-element representation of the four-dimensional radiance distributions associated

with surfaces in a scene, since this representation has a lower initial cost than representation of two-

point transport intensities. We outlined the criteria used for selecting a wavelet basis, and discussed

reasons why the simplest wavelet basis, the Haar basis, is a good choice for our implementation.

Wavelets adapt to the solution, so in areas with little spatial or angular variation a coarse solution

is computed, and in areas with greater detail a more re�ned solution is found.

In contrast to previous algorithms for wavelet radiosity, we use a standard decomposition of

the operator, which has the 
exibility of being able to let detail at di�erent resolutions interact

directly. Since we use a wavelet representation rather than scaling functions at all levels, our algo-

rithm does not require \pushing" and \pulling" procedures. In order to obtain accurate numerical

integration without the expense of extraneous samples, we developed adaptive integration rules for

the transport coe�cients.

We use importance to focus the computations where their impact on the �nal image is highest.

We showed that importance has a very intuitive meaning, and can be considered an exitant quantity

similar to radiance.

Since light transport is formulated as a multidimensional Fredholm integral equation of the

second kind, our approach may bene�t other �elds in which such equations arise | numerical

analysis, �nite-element analysis, computational heat transfer, and particle transport simulation,

for example.

There are many possible extensions of the present algorithm. Wavelet bases, like all �nite-

element bases, are not suited to the representation of ideal specular re
ections. Instead, a ray trac-

ing step for ideal specular re
ection could be incorporated in the same fashion as in Sillion et al. [34].

Surfaces that transmit light in addition to re
ecting it could be incorporated into our algorithm

by using wavelet basis functions de�ned for the entire sphere of directions. It may also be possible

to extend the clustering algorithms developed for radiosity by Sillion [33] and Smits et al. [35] to

handle glossy re
ections, for example by storing radiance distributions representing radiance from

entire clusters of patches.
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A Transport matrix decompositions

In this appendix, we compare di�erent decompositions of the transport matrix T for a simple

geometry. Our goal is to see how many interactions (transport coe�cients relating sending and

receiving basis function coe�cients) are necessary in each decomposition.

Similar comparisons have been conducted for one-dimensional basis-functions and a smooth

dense two-dimensional kernel by Ja�ard and Lauren�cot [24] and Schr�oder et al. [31]. However, due

to occlusion, the light transport operator is not smooth, and due to the directionality of radiance,

the light transport matrix T is not dense. We have conducted tests in 
atland, where the basis

functions are two-dimensional and the kernel is three-dimensional. We have included experiments

with occlusion to test a non-smooth kernel.

Theory indicates that for a smooth operator and a univariate wavelet basis with m basis func-

tions, the standard decomposition results in a matrix with O(m logm) non-zero entries, while the

non-standard decomposition has only O(m) non-zero entries [24]. In practice, however, the stan-

dard decomposition has an advantage in some cases. For example, consider a uniformly emitting

sender near one end of a receiving patch: the sender's distribution is uniform while the receiver's

distribution is less regular. The standard decomposition allows an interaction between a coarse

basis function at the sender and �ne-scale basis functions at the receiver, while the non-standard

decomposition would require interactions between �ne-scale basis functions at both sender and re-

ceiver. In this example, the standard decomposition would generate fewer non-zero matrix entries

than the non-standard decomposition.

We have conducted experiments in 
atland to compare various matrix decompositions for the

Haar basis. We consider two lines (corresponding to patches in 3D) of unit length. They are either

parallel, with a separation of 1 unit, or perpendicular, meeting in a corner (see the illustration in

Figure 14). The sending line s does not re
ect light, so the radiance reaches equilibrium after a

single re
ection at the receiver r. The receiver re
ects light according to Ward's model [39], with

parameters �

s

= �

d

= 0:5 and � = 0:2. The specular peak of this BRDF is about 10 times as bright

as the di�use portion.

s

r

s

r

Figure 14 Geometry in 
atland: Parallel and perpendicular lines. The dashed lines indicate

occluding patches in the last set of experiments.

Radiance distributions in 
atland are two-dimensional; one parameter corresponds to position

and the other to direction. We discretize each patch into 16 positional scaling functions, and
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divide the semicircle of directions into 16 angular scaling functions. Radiance distributions can be

represented using tensor products of these scaling functions, or using a standard or non-standard

two-dimensional wavelet basis.

We consider four representations of the transport matrix in our experiments:

2 the \direct" matrix, representing the in
uence of scaling functions on scaling functions;

4 the non-standard matrix decomposition with the non-standard construction of a tensor prod-

uct basis;

� the standard matrix decomposition with the non-standard basis construction (this is what

we have used in our implementation); and

� the standard matrix decomposition with the standard basis construction.

(It is not possible to use a non-standard matrix decomposition with a standard basis construction.)

Standard and non-standard bases were discussed in Section 3.4 and standard and non-standard

matrix decomposition were discussed in Section 3.5.

As a �rst test, we consider the special case when the sender has no detail at all: the sending

distribution is set to have unit radiance at all points and in all directions. For each matrix de-

composition, we evaluate the accuracy of the radiance distribution at the receiving patch r as the

number of interactions increases. The interactions are included in order of decreasing magnitude of

transport coe�cient times sending basis coe�cient. The error is computed as L

2

distance between

the computed distribution and a reference solution (computed using a direct matrix and a larger

number of scaling functions). Figure 15 shows the results. As expected, this experiment is signi�-

cantly in favor of the standard matrix decomposition: if less than 1% error is desired, 10 times as

many matrix entries are required for the non-standard matrix decomposition as for the standard.

The reason for this di�erence is that there is detail at the receiving patch, but no detail at the

sending patch. The standard matrix decomposition can represent this kind of interaction directly,

whereas the non-standard decomposition forces the interactions to take place between �ne-level

basis-functions. In other words, the non-standard matrix decomposition forces the basis functions

at the sender to be at the same �ne level as at the receiver, even though a single basis function

is su�cient to represent the sending radiance distribution. All these extra basis functions need to

interact, creating many more interactions than for a standard matrix decomposition.

For a second comparison, the sending patch emits directional radiance. The emitted radiance

distribution is computed according to Ward's re
ection model (as if re
ecting light from a single

point). The results are shown in Figure 16. For both parallel and perpendicular geometries, the

three wavelet matrix decompositions require a much smaller number of interactions than the direct

matrix to achieve a given level of accuracy. The three decompositions are comparable in the parallel

con�guration, while the non-standard decomposition has an advantage in the perpendicular case

(perhaps because the signi�cant interactions near the singularity tend to be between detail at the

same level).

When surfaces are partially occluded from one another, the transport operator is no longer

smooth, and the theory for the cost of decomposing a smooth operator no longer applies. To test

this case, a line of length 0.2 is inserted between the sending and receiving lines (the dashed lines in

Figure 14), resulting in a non-smooth radiance distribution at the receiver. The results are shown in

Figure 17. For parallel lines with occlusion, the standard decomposition requires the least number
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Figure 15 Error vs. number of coe�cients for uniform emitted radiance and glossy re
ection.
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Figure 16 Error vs. number of interactions for directional emitted radiance and glossy re
ection.

of interactions for a given level of error. In the perpendicular case, the non-standard decomposition

is still best.

Note that for most of our tests, the standard matrix decomposition performed equally well with

both standard and non-standard basis function constructions. However, we can construct situations

in which we expect the standard construction of basis functions to be advantageous. For example,

a di�usely re
ecting surface with spatially varying illumination would bene�t from having separate

hierarchy levels for spatial and angular detail. A glossy surface with much angular variation but

little spatial variation is another example.

Comparisons similar to ours [24, 31] support the conclusion we draw for radiance transport:

in practice, the standard operator decomposition often requires fewer interactions (matrix elements)

than other decompositions to obtain a given accuracy.
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Figure 17 Error vs. number of coe�cients for partial occlusion (with directional emitted radiance

and glossy re
ection).

Figure 18 teapots

Figure 19 re�nement1
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Figure 20 re�nement2

Figure 21 scene
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