
Optimistic Trace-driven Simulation

�

Xiaohan Qin and Jean-Loup Baer

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Wa, 98195

October 14, 1994

Abstract

Parallel simulation of multiprocessor architectures is a promising direction because

a parallel system provides the high computation and storage capabilities that are re-

quired by detailed architectural simulation. Additionally, the behavior of the target

system exhibits natural parallelism. In this paper, we consider the evaluation of the

memory hierarchy of multiprocessor systems via parallel trace-driven simulation. We

present a Time Warp-like parallel trace-driven simulation algorithm and data struc-

tures. The overhead components of the optimistic algorithm as well as a number of

optimization strategies are discussed. The performance of the optimistic parallel simu-

lator as implemented on a KSR-2 is reported. Our results show that signi�cant speedup

can be achieved for applications which have good data locality. As the amount of shared

references misses increases, the frequent communication and synchronization overhead

inherent in the applications limits also the speedup of the parallel trace-driven simula-

tion.

�

This work was supported by the National Science Foundation under Grants CCR-91-23308 and CCR

94-01689

1

1 Introduction

The amount of computational cycles needed to simulate the performance of parallel ar-

chitectures is extremely important. Techniques to improve the speed of the simulation

should be investigated and, in particular, the simulation should take place on parallel sys-

tems. The rationale for the parallel simulation of parallel architectures is twofold: Firstly,

detailed simulation of architectural features, either through a trace-driven or an execution-

driven method, is a very time and space consuming task. Parallel systems provide higher

computation and storage capabilities. Secondly, the functioning of the target system ex-

hibits natural parallelism: instructions from distinct simulated processors may be issued

and carried out independently and concurrently. In this paper, we consider the evaluation

of the memory hierarchy of multiprocessor systems via parallel trace-driven simulation.

Trace-driven simulation is used very often to simulate the e�ects of various cache coher-

ence protocols, cache con�gurations and organizations, and can also take into account the

network topology and its parameters [5].

Parallel simulationmethods can be broadly classi�ed into two categories [8]: conservative

methods and optimistic methods. A fundamental di�erence between the two approaches is

that in a conservative simulation, correct computation is guaranteed at an arbitrary point of

the simulation, while in an optimistic simulation speculative errors may occur, but they will

be corrected before the simulation completes. Chandy-Misra-Bryant methods [6, 4] are the

best-known conservative methods. In this mode, a process needs to frequently synchronize

and exchange \time" information with other processes in order to decide whether it is safe to

execute the next event in its input queue. If there is no safe event in the queue, the process is

blocked. Deadlock happens when all the processes are blocked. In an implementation with

deadlock avoidance this will occur only at the end of the simulation. Other implementations

favor a detection and recovery scheme. The best-known optimistic method is Time Warp

[9]. Processes in the optimistic simulation maintain and advance independently their own

simulated (virtual) time. Processes communicate through timestamped messages. When a

process receives a message anterior to its own (virtual) time that would have a�ected its

state, it rolls back to the time of the message and reexecutes its simulation from thereon.

In [1], we have experimentally studied a conservative parallel trace-driven simulation

algorithm proposed by Lin et al [12]. Each simulation process (processor and cache simu-

lator) receives as input a trace consisting of the private and shared references of a physical

process. The basic idea of the algorithm is to preprocess these input traces by inserting,

for each of them, their shared references into all the other trace �les. Thus all the po-

tential communication points are identi�ed before a simulation starts. Synchronization is

performed e�ciently at the cost of extra inserted references. As a result of the study we

found out that parallel trace-driven simulation of multiprocessor cache memory systems is

viable and can lead to signi�cant speedups. However the insertion approach forces every

process in the simulation to \execute" all the shared references in the application, those

that are germane to the process because they involve cache coherency activities, as well as

those that have no relevance on the cache simulator at that point in time. The speedup of

the algorithm is therefore bounded by the portion of the shared references.

A parallel simulation based on Time Warp simulation may perform better than a con-

servative one in situations where the correctness of the simulation results does not require

2

discrete events to be strongly ordered. The trace-driven simulation of reference strings in

multiprocessor cache systems falls into this category since the states of the cache lines of

a given cache are independent of each other. However, to our knowledge, no experimental

study of optimistic parallel trace-driven simulation has been conducted so far. In this paper,

we describe the design and implementation of such a method and we report the results of

performance evaluations that show that signi�cant speedups can be obtained.

The rest of the paper is organized as follows. In Section 2, we describe how Time

Warp can be applied to trace-driven simulation. Section 3 gives and explains the core data

structures and the simulation algorithm. We discuss optimization considerations in Section

4. In Section 5, we present the performance results of the optimistic trace-driven simulation

that were achieved on a KSR-2 system. Finally, conclusions are given in Section 6.

2 Optimistic Parallel Trace-driven Simulation

The target system of the parallel simulation is a shared memory system in which each

processor has a private cache memory. Processors are connected to each other and to global

memory via an interconnection network. We focus our attention on snoopy shared-bus

systems although the simulation techniques described in this paper can be easily adapted

to systems that are directory-based and use other types of interconnection network. The

input to the simulation, as in [1], is multiprocessor traces { a set of memory address trace

�les. In the multiprocessor traces, memory references can be divided into two types: private

references and shared references with only the shared references having potential e�ects on

the status of other processors' caches. Since in this study our main interest is in the

feasibility and the performance of the method, we restrict ourselves to computing the hit

ratio of each cache as the result of the simulation.

When applying the Time Warp paradigm to trace-driven simulation, we use the natural

mapping of one physical processor and its cache to one logic process. For a given logical

process, there are two types of events: local events (processing of private references and

of shared references that hit in the cache) and messages. A process creates and sends a

message when it encounters a shared reference cache miss or when it needs to reply to

another process' inquiry. These messages simulate the interactions dictated by a given

cache coherence protocol.

The speci�c cache coherency protocol governs the types of the messages that are gen-

erated. For example, consider simulating the Berkeley protocol [3]. When a process C

i

encounters a shared write miss at time t it will generate a message of type Invalidation

and timestamp t, and broadcast it to all the other processes so that the latter can take

appropriate action. C

i

can continue its simulation while the message is broadcast. On the

other hand, if a receiving process C

j

was ahead of C

i

(i.e., C

j

's simulation time was larger

than t), a rollback might be needed. In the case of the Fire
y protocol [3], a message of

type Request would be broadcast and C

i

could not proceed until some (at worst all) other

processes respond. Note that some process C

j

, ahead of C

i

, might need to construct, from

its log, the state of the cache line in request; but no rollback is necessary in this situation.

In order to test the viability of optimistic parallel trace-driven simulation, we have looked

at three cache coherence protocols: Berkeley, Illinois, and Fire
y [3]. They are interesting

because they vary in the type and the amount of communication involved in the target

3

Protocol Shared read miss Shared write miss On request message

Berkeley ReadMiss Invalidation {

Illinois Request Invalidation Reply

Fire
y Request Request Reply

Table 1: Messages used for three cache coherency protocols

Messages Semantics

Invalidation invalidate a cache line

ReadMiss inform of a read miss on simulating a shared reference

Request request the state of a cache line

Reply supply the state of the cache line requested

Waiting a fast process noti�es the slowest one that it is stalled and waiting

CatchUp the slower process reports to the faster process that it has caught up

Table 2: Semantics of the messages

system and henceforth in the performance of parallel simulation. Table 1 lists the messages

and the conditions under which the messages will be generated for the three protocols.

Table 2 gives the semantics of these messages. Among the six messages, the �rst three

are broadcast-based while the others are point-to-point. The �rst four are required for the

correctness of the simulation. The last two messages are used for memory management.

They will be discussed in Section 4.

The basic idea in our adaptation of Time Warp to trace driven simulation is that each

process merges its input trace, or memory reference stream, and its incoming message stream

on the
y and execute them in timestamp order. Processes forge ahead, synchronizing with

(a subset of) other processes only when the references or the messages require to do so.

As indicated above, it is possible that a process receives a message with a timestamp

smaller than that of some of the events that it has already executed. In such a case, a

test is needed to see if rollback is necessary. Rollback calls for recovery of the state vector

and of the simulation environment, sending anti-messages to cancel incorrect messages sent

earlier, and processing anew of the events that had been processed prematurely. To support

rollback and carry on the simulation thereafter, processes need to save the state vector, all

the simulation events (memory references and incoming messages), as well as the outgoing

messages they have generated. Therefore, we are confronted with two major causes of

overhead: (1) the overhead of saving states, simulation events and outgoing messages, and

(2) the overhead of rollback.

The state vector of a cache simulation process consists of the virtual timestamp, the

states of the cache lines, and the number of hits and misses up to the simulated time as

well as possibly other statistics if, for example, we wanted to compute separately hit ratios

for private and shared references. Not only is the state vector very large but it also changes

4

with every memory reference executed. It is of course ine�cient and unnecessary to save

the whole image of the state vector all the time. With a current complete state vector and

a log of all the changes made before, we can reconstruct the state vector at any time in

the past. While saving all the past simulation events (references and incoming messages)

and outgoing messages is necessary, there is a trade-o� between saving the state vector at

each state change and saving it only at important events, say at a cache miss. Logging

for every single change is too expensive: the log has to be maintained and searching for

potential rollback is more costly when more states have been saved. Alternatively, saving

state infrequently will increase the rollback distance, and hence the cost of reprocessing,

since processes can only rollback to points where log entries exist for reconstructing the

state vector. The logging interval is an important tuning parameter of the simulation. We

will discuss in Section 4 how to �nd a good compromise.

Rollback overhead consists of three components: (1) rollback testing, (2) recovering the

state vector and the simulation environment, and (3) re-executing the events that have been

undone. Rollback testing could be as simple as just comparing a message's timestamp t

m

against a process' current virtual time t

C

i

. If t

m

< t

C

i

, i.e., a late message has occurred,

rollback is initiated from t

m

on. A more comprehensive testing checks whether the state

could be changed by the late message in the interval [t

m

; t

C

i

]. If the answer is positive,

a rollback is initiated. Otherwise the late message is ignored. While a simple rollback

testing scheme will invoke more rollbacks, the extra time (restructing the state of a given

line and testing the impact of the late message on it) spent on a comprehensive rollback

testing scheme is bene�cial only when it prevents rollbacks to occur and is redundant in

the case of a necessary rollback. In the simple testing case, the cost of making a wrong

(conservative) decision is the sum of the costs, governed by the rollback distance, of the

second and the third components de�ned above. In the comprehensive testing case, the

overhead is amortized over messages that potentially cause rollbacks, i.e., late messages.

Like in the case of logging state, choosing the right strategy for rollback testing is again a

compromise. Note that if the rollback testing is accurate, the amount of events re-executed

re
ects the inherent synchronization overhead incurred in the parallel simulation. Without

the speculative computation, the process would have had to wait until the critical events

arrive before any subsequent events could be executed.

We close this Section by brie
y contrasting the conservative approach to trace-driven

simulation with the optimistic one. Conservative methods always carry the overhead of

synchronization to make certain that causality constraints [8] are satis�ed. Only correct

states are generated during the simulation. The conservative simulation insists on a total

time order in which events are simulated. In the case of a cache simulation, only partial

orders are required. For example, suppose that there are two messages arriving for one

process, and they carry coherency messages for two di�erent cache lines. Then the order

in which the two messages are processed does not impact the simulation results. The

optimistic simulation paradigm can take advantage of this weak ordering constraint. On

the other hand, the conservative simulation does not carry the overheads of state saving and

rollback. A qualitative and quantitative comparison of the two approaches can be found in

a companion paper [2].

5

STATE

ENVIRONMENT

EVENTS

Cache State Accounting
Data

OMQTBIMQNMQ

LS

NextInMsg

NextRef

Top

NextOutMsg

NMQ: New Message Queue
IMQ: Incoming Message Queue
OMQ: Outgoing Message Queue
TB: Trace Buffer
LS: Log Stack
NextInMsg: the Next Incoming Message
NextOutMsg: the Next Outgoing Message
NextRef: the Next Memory Reference

Figure 1: Data structures of a logic process

3 Data Structures and Algorithm

Figure 1 shows the major components of a logic process in the optimistic trace-driven

simulation. Viewed from a high level, each process consists of three parts: (1) the current

state vector, (2) the events to simulate, and (3) the supporting data structures such as the

new message queue, the outgoing message queue, the log stack , and their current pointers,

e.g., NextRef, NextInMsg, NextOutMsg, etc.

The current state vector includes the process virtual time, the representation of the cache

with the addresses and states of the lines that are currently cached, statistics on hits and

misses, and current pointers to the associated data structures. The events to simulate are

memory references from the input trace (only a \current" portion of it is loaded in memory)

and incoming messages from the incoming message queue (IMQ). IMQ is used to store

\current correct" messages, that is all the positive messages (processed and unprocessed)

that have been received and have not been canceled (positive here means messages that are

not anti-messages). Messages in the IMQ are sorted in ascending timestamp order. Each

process keeps a pointer NextInMsg to the message being or to be simulated next.

Similarly, the outgoing message queue (OMQ) is used to store all the positive messages

being sent out. Like IMQ, OMQ is sorted in timestamp order. NextOutMsg is a pointer to

the message being or to be sent out next. When a process is in normal forward execution,

this pointer will point to the next \null" entry. However, it might point to an entry in the

queue when the process is re-executing because of a rollback. The structure of OMQ is

designed so as to incorporate lazy cancellation into the optimistic simulation (cf. below in

this Section).

6

Another important data structure supporting the rollback mechanism is the log stack

(LS). It is used to incrementally save the changes occurred to the state vector including the

timestamps upon which changes were made. Every change resulting in the modi�cation of

a cache line state is logged whenever it happens. Changes on the simulation accounting

data, however, are accumulated and saved only when the cache state is updated. When a

rollback is required, the process pops entries from the log stack and reconstructs the state

vector of an earlier time based on the recorded changes.

There are two basic mechanisms that can be used to inform a process of new messages:

interrupt and polling. Since in optimistic simulation, processes do not need to busy wait

for speci�c events to happen, polling, which is easier and cheaper to implement in this

application than interrupts, will be our choice. To that e�ect, the new message queue

(NMQ) is used to store incoming messages. That is, when process C

i

generates a message

for process C

j

, C

i

will copy the message into C

j

's NMQ. If the message is positive, it will

also enter process C

i

's OMQ in case of a rollback of C

i

. Every process polls its new message

queue periodically. When the arrival of new messages is detected, these messages are �rst

moved from NMQ to a temporary message queue (TMQ) where they are sorted in ascending

timestamp order. Then positive messages are merged into IMQ while anti-messages are used

to cancel their positive counterparts in IMQ. Finally the messages in the sorted TMQ are

examined, in order, to see whether any of them will initiate a rollback.

Note that in Figure 1 there is no data structure associated with anti-messages. Seman-

tically both IMQ and OMQ are used to store \currently correct", or positive, messages that

are expected to be re-executed or re-generated when a process is rolled back. Anti-messages

di�er from positive messages in the sense that they are created only to delete other orig-

inal messages. Therefore when anti-messages are received, they are not inserted into the

IMQ. Anti-messages are only used for searching through the IMQ to �nd their positive

counterparts and cancel them. When a process needs to send out an anti-message, it does

not store the message in its OMQ either. Instead, the process removes the corresponding

positive counterpart of the anti-message from OMQ before sending the anti-message. In

this manner, a message will not be canceled twice.

When a process examines its TMQ, it tests whether any of the new messages will cause

rollback. If a rollback is in order, the process will recover the simulation state vector and

reset the simulation environment, i.e., reset NextInMsg, NextOutMsg, NextRef , etc.

Also the process may need to send out anti-messages to annihilate the e�ect of incorrect

messages. There are two methods for canceling previous messages in a Time Warp-like

system. One is aggressive cancellation whereby anti-messages are sent immediately after

a rollback is asserted. The other is lazy cancellation whereby anti-messages will not be

sent until the process re-executes the events and �nds that some of the messages that have

been sent before should not have been sent. Lazy cancellation in some cases can reduce

the number of anti-messages and positive messages. On the other hand, postponing anti-

messages may allow erroneous computations of other processes to spread further than they

would under aggressive cancellation. Reiher et al [14] have compared the two cancellation

strategies and found that realistic applications perform reasonably well using either strategy,

but somewhat better with lazy cancellation. An important argument for lazy cancellation in

our context is that the states of cache lines are independent of each other. There is therefore

a high probability that even when some events are executed out of order, the intermediate

7

simulation results are still (partially) correct. Another argument for lazy cancellation is

that it is especially desirable in simulations where state logging is done infrequently. We

therefore chose that method and implemented it in our algorithm as follows.

If the simulation calls for an outgoing message to be generated, this message will be

compared with an existing message (pointed to by NextOutMsg, if any) sent during the

previous execution. If there is a match, the outgoing message is not sent again. Otherwise

it is sent immediately and inserted into the OMQ. After the second (or more precisely

any execution but the �rst) execution completes, it must cancel, with anti-messages, all

messages that were sent during the �rst (previous) execution but not during the second

(current). The cancellation is in fact performed on the
y by comparing the timestamps of

the outgoing message being sent and those in OMQ.

From the description above, it is clear that one characteristic of the algorithm is that

a process does not remember whether it is executing the events for the �rst time or it is

re-executing the events due to rollback. The advantage of this memoryless property is that

it simpli�es the implementation. Execution and re-execution of an event can be treated in

the same way. In either case, the pointer NextInMsg may be in the middle or at the end of

IMQ. The pointer NextOutMsg, on the other hand, may provide us with a hint (if needed,

e.g., for debugging purposes) on whether a process is in rollback or not. If a process is

performing normal forward simulation, its NextOutMsg should be pointing to the end of

OMQ. If a NextOutMsg is in the middle of OMQ, we know that its process must have been

rolled back. Figure 2 sketches the optimistic trace-driven simulation algorithm.

4 Optimization Considerations

4.1 Minimizing Rollback Overhead

Rollback can be very expensive because the three components involved in the process { roll-

back testing, restoring the simulation state vector and environment, and re-simulating parts

of the memory references and messages { can potentially weigh heavily on the simulation

execution time. Rollback overhead can be quanti�ed as:

O

rb

= n

test

� O

test

+ n

rb

�O

reset

+ n

rb

�O

sim

(1)

where n

test

is the number of events that call for a rollback test and O

test

is the cost of such

a test, n

rb

is the actual number of rollbacks, O

reset

is the cost of restoring the state vector

and the environment, and O

sim

is the cost of re-executing the events. Furthermore, O

reset

and O

sim

are approximately linear functions of the average rollback distance d

rb

. Therefore,

O

reset

= d

rb

�O

1

and O

sim

= d

rb

� O

2

, where O

1

and O

2

are the approximate numbers of

instructions to roll back and to simulate one event respectively. Thus Formula (1) can be

written as follows:

O

rb

= n

test

� O

test

+ n

rb

� d

rb

� (O

1

+O

2

) (2)

Although the parameters in Formula (2) are inherently bound to the behavior of the target

systems, they are nonetheless directly a�ected by the rollback testing and recovering policies.

8

while (more references or more messages ?) {

if (new message in NMQ?) {

// yes, there are new messages

. Latch the new messages, i.e., move them from NMQ to TMQ

. Sort the new messages in TMQ in timestamp order

. New messages in TMQ are merged into IMQ

// Anti-messages are not inserted into IMQ

// Those messages that anti-messages mean to cancel will be

// removed from IMQ

. Examine TMQ to see if any of the new messages causes rollback

If rollback is in order:

. set NextRef appropriately

. set NextInMsg appropriately

. set NextOutMsg appropriately

. Restore state vector

}

if (NextRef->timestamp < NextInMsg->timestamp) {

simulate the memory reference

get the next memory reference

}

else {

simulate the incoming message

get the next incoming message

}

if (message generated?) {

// Yes

. If (the message matches with an item in OMQ)

do not send the message

else send it

// some anti-messages may be sent out in the matching process.

// anti-messages do not enter OMQ. they remove their

// positive counterparts from OMQ.

}

}

Figure 2: The optimistic trace-driven simulation algorithm

9

As explained in the previous section, we have chosen to implement lazy cancellation.

Lazy cancellation is intended to prevent correct messages from being canceled and re-sent

again, thus reducing n

test

, n

rb

and message passing overhead.

In addition to lazy cancellation, we have also incorporated lazy re-evaluation in rollback.

The goal of lazy re-evaluation is to avoid the re-execution of events that produce the same

results as before. Lazy re-evaluation relies on a more sophisticated rollback test than simply

comparing a message's timestamp with a process' current virtual time. One may further

test whether a new message does indeed change the state vector. If the message induces no

change, rollback is not necessary. Even if the message does modify the cache state, as long

as the change is not in con
ict with any of the changes made by events after the message,

then the speculative computation of those events is still correct. In such cases, rollback is

also unnecessary.

A more accurate rollback test scheme implies higher rollback test overhead (O

test

). On

the other hand it reduces the number of rollbacks (n

rb

). We want to choose a rollback test

scheme with reasonable complexity, i.e., one whose cost will be outweighted by a signi�-

cant reduction in the number of rollbacks. To that e�ect, in our implementation, we test

whether a new message arriving late will change the cache state vector. This calls for the

reconstruction of the state of the cache line at the time indicated by the message. Since we

only log state at state changes (cf. Section 4.3), this is not overly cumbersome. As long as

\messages arriving late but not changing cache state" are common, and as we shall see in

the next section this is indeed the case, we bene�t from the lazy re-evaluation strategy.

4.2 Message Queues and Optimizing Message Passing

Of the three message queues, IMQ and OMQ are exclusively modi�ed by one process

1

,

while each NMQ is shared by multiple processes. Therefore synchronization is not needed

for IMQ and OMQ. But inserting/removing messages from/to a new message queue requires

locking. To minimize the number of instructions executed during the time that NMQ is

locked, the internal processing of the new messages, such as sorting, is done in a private per

process temporary queue.

Among the four types of messages used in the simulation of the three cache coherency

protocols (the �rst four in Table 2), only \Reply" is transmitted point-to-point. The rest

are broadcast-based messages. Broadcasting a message requires a process to lock the other

processes' new message queues one after another and copy the message into the NMQs. To

reduce the length of the critical section and the overhead of message copy, we only pass the

address of the message to the receiver.

4.3 Tuning the Logging Frequency

The determination of the frequency of state vector logging is guided by two opposite e�ects.

On one hand, the longer the logging interval is, the less the state saving overhead there will

be. On the other hand, long logging intervals tend to increase the rollback distance, hence

the rollback overhead. In a cache simulation, one component of the state vector, the number

1

In fact, the OMQ is accessed by several processes. However the algorithm operates in such a way that

no explicit synchronization is required for the readers and writers of OMQ.

10

of cache hit/miss, changes at every memory reference. Other components, e.g., the LRU

ordering of lines in a set-associative cache, change less frequently. Even less frequent are

line state changes caused by cache misses induced by either the local processor or coherence

e�ects (messages in IMQ). Since saving state after processing every memory reference is

unrealistic, we perform state saving only when a cache line state is updated. Thus, logging

intervals are simply determined by the intervals between two consecutive cache misses. For

traces that exhibit good cache locality, i.e., have high cache hit ratio, such intervals may

be too long. A rollback action may cause a process to go far back in the past (i.e., d

rb

becomes too large). To avoid such a situation, a process which has not been saving state

for some time period, say T

timeout

will timeout to write the accumulated changes of the

simulation accounting data onto the log stack. By a simple model, we can estimate the

e�ect of infrequent state saving on the increase in rollback distance.

Assume that log entries are recorded every L references. Assume process C

i

is forced

to roll back to T

rb

, but there is no log entry at T

rb

. So the process has to roll back further

to some time T

k

. Assume that the distance between the destination of a rollback (T

rb

) and

the nearest log entry T

k

has a uniform distribution between [0, L]. Then, on the average,

the rollback distance will increase by L=2. If the frequency of misses is high enough then L

will be D

miss

, the average distance between two cache misses. But in case of high locality,

misses might be too infrequent and we need to bound L. We therefore introduce a timeout

parameter T

timeout

so that now L is bounded by min(D

miss

; T

timeout

). In other words, for

applications having high miss ratio such as Mp3d and Max
ow, L is con�ned to D

miss

.

For applications exhibiting good data locality such as Water and Locus, L is bounded by

T

timeout

. The timeout parameter T

timeout

is currently selected as 1/2 of Water's average

distance between two cache misses.

4.4 Global Virtual Time and Memory Recollection

An optimistic simulation scheme requires a large amount of main memory. State vectors

and incoming and outgoing messages for each process must be saved in order to be able to

recover from erroneous computations. This memory need could eventually lead to a costly

paging activity. Je�erson [9] observed that at any time during simulation, there exists a

global virtual time (GV T) such that all saved events and states with timestamps earlier than

GV T will no longer be used. Such memory, called fossil, can therefore be reclaimed. The

computation ofGV T in a shared memory system is easier than in a distributed environment.

There is no transient message

2

problem [13] because, in a shared memory environment, as

soon as a process �nishes sending a message (write to memory), this message is immediately

accessible in another process's new message queue. Furthermore, processes are not allowed

to advance their local clock when the signal for computing GV T is asserted. This eliminates

the simultaneous report problem [13].

If state were recorded after each event, GV T would be the minimum over all processes

of:

� the virtual simulation time

2

A transient message is a message that has been sent from a source process but that has not yet arrived

at his destination.

11

� the minimum timestamp of the messages in NMQ

However, in our case, since state is not changed at every memory reference, we must subtract

from GV T the maximum interval between state savings, i.e., T

timeout

de�ned previously.

Hence, we have:

SGV T (t) = GV T (t)� T

timeout

where SGV T stands for Safe GV T .

In practice, fossil recollection is complicated by the fact that messages are shared via

pointers. Initially, a certain amount of memory is allocated to each logic process. (The

reason for doing so rather than using a global memory pool is to enhance data locality.)

Later fossil recollection is invoked individually by each logic process, i.e., at di�erent times

for di�erent processes. If SGV T were directly used to reclaim the memory storing the

content of messages, there could be dangling pointers since the IMQ stores pointers to

messages rather than messages. To solve this problem, we have to make certain that the

storage used for saving the content of messages is not reclaimed before all the pointers to

the messages are recollected. So we maintain an array of last computed SGVT (LCSGV T)

for all the processes. In reclaiming the storage used for saving the content of messages, the

minimum value of LCSGV T is calculated and used.

4.5 Memory Management

Memory management in Time Warp simulation involves two levels of allocation. At the

beginning, each process is pre-allocated a certain amount of memory to be used as a bu�er

pool. Later, when a process needs to save messages or states, it will fetch bu�ers from its

own memory pool. In the worst case, it is possible that a fast process consumes all of its

memory bu�er while no memory space is safe to reclaim due to a large discrepancy among

the local clocks. Je�erson [10] proposed a cancelback protocol as a complementary method

for memory recollection. The gist of the protocol is that, when a process runs out of memory

and fossil collection fails to release any memory, the process will cause itself to rollback.

This protocol guarantees that the simulation will run to completion successfully given the

minimum amount of memory required by the simulation. There are two disadvantages to

the cancelback protocol. Firstly, processes may have to undo some correct computation.

Secondly, when a process rolls itself back, it is likely that the process will further cause

other processes to roll back.

Our memory management protocol is di�erent. When a process runs out of memory and

fossil collection fails to reclaim any memory, the process is stalled, i.e., its virtual time is not

advanced and it cannot process new references. A Waiting message carrying the timestamp

of the process is sent to the slowest process to notify the latter that some process is waiting

for it to catch up. Later, when the \slowest" process executes the message, it replies with

a CatchUp message to wake up the stalled process. Note that the stalled process is still

active in receiving messages and performing rollback testing on the new messages. If one

of the new messages causes a rollback, the stalled process will be released and go back into

operation immediately. The two messages Waiting and CatchUp are designed for memory

management only. They will not be re-executed or canceled.

12

Application/ Number of Shared Read Shared Read Shared Write Shared Write

Protocol References Misses Misses

Water/Berkeley 2997321 39711 1570 6982 1511

Water/Illinois 2997321 39711 1572 6982 1038

Water/Fire
y 2997321 39711 1258 6982 4494

Locus/Berkeley 2997195 101242 3806 20380 2891

Locus/Illinois 2997195 101242 3914 20380 2359

Locus/Fire
y 2997195 101242 2274 20380 10540

Mp3d/Berkeley 2949858 131306 6507 107395 14997

Mp3d/Illinois 2949858 131306 6513 107395 12838

Mp3d/Fire
y 2949858 131306 3015 107395 82896

Max
ow/Berkeley 4209327 374545 26417 84409 18469

Max
ow/Illinois 4209327 374545 26537 84409 18456

Max
ow/Fire
y 4209327 374545 2880 84409 84135

Table 3: Memory access characteristics of the applications: Columns give the name of the

application and the cache coherence protocol, the total number of references (including

instruction fetches), the number of shared read references, the number of shared read cache

misses, the number of share write references and the number of shared write cache misses.

5 Performance Results

5.1 Applications and Traces

Four applications were chosen to measure the performance of the parallel simulator. They

are Water, Locus, Mp3D and Max
ow. The �rst three are in the Splash benchmark suite

[15]. Water is a scienti�c application which simulates the evolution of a system of water

molecules in the liquid state. Locus is a commercial quality VLSI standard cell router.

Mp3d solves problem in rare�ed
uid
ow simulation. The last application, Max
ow, is a

parallel algorithm to compute the maximum
ow of a network.

These applications were selected because they are \real applications", the proportion of

shared references misses varies from application to application so that we can examine the

performance of optimistic trace-driven simulation as a function of the overhead of commu-

nication and synchronization, and the traces were already collected on the Sequent system

using MPTrace [7]. Table 3 shows the memory access characteristics of the four applica-

tions. All of the above applications have 12 input trace �les. The data given in Table 3 are

average numbers for the multiple trace streams of one application. The caches that were

simulated were 256KB, 2-way set associative with a block size of 32 bytes.

13

APPL Speedup (12 processors)

Berkeley Illinois Fire
y

Water 8.5 8.9 8.7

Locus 8.1 6.9 6.5

Mp3d 6.3 5.1 3.1

Max
ow 5.5 4.4 3.7

Table 4: Performance of the optimistic parallel simulation

5.2 Experiment Results

5.2.1 General results

Table 4 displays the speedups obtained when running the optimistic simulation on 12 pro-

cessors of a KSR-2 system. As can be seen, the results are good with speedups ranging

from almost 9 in the best case to a little over 3 in the worst case. This range of speedups

can be explained by several factors, some of which depend on the application being traced,

and some that are an artifact of the simulation method.

The �rst observation is that the simulation speedups of the four applications decrease

(look at Table 4 in a column-wise fashion) as the shared reference miss ratios increase (cf.

Table 3). This is consistent with the results obtained (for the 3 Splash benchmarks) on a real

bus-based machine [15] although the di�erences in the simulation are more pronounced. A

possible reason for this larger di�erence is that the simulation must \pay" more for messages

such as Invalidation that are broadcast in a bus-based machine and readily discarded when

the recipients do not have the corresponding line in their cache, while in the simulation the

message is inserted in each process' IMQ, sorted, and processed even if it has no impact on

the recipient's cache state.

The second observation is that in three cases out of four, the exception being Water, the

speedups decrease with the communication requirements of the protocol (look at Table 4

in a row-wise fashion). While in the conservative approach [1] the speedups always show a

monotonic decrease from the protocol with the least communication (Berkeley) to the one

with the most (Fire
y), this is no longer the case in the optimistic simulation. There are

several factors that account for this behavior such as the number and types of messages

which depend highly on the read/write miss ratio and the protocol, and the number and

distances of rollbacks. In contrast with the conservative approach, we cannot �nd metrics

that can yield either an upper bound on the speedup or a ranking among protocols.

5.2.2 Impact of number and types of messages

The amount and the types of messages play an important role in the performance of the

parallel simulation. Given an application, messages required to simulate the cache coher-

ence e�ects depend on the shared read/write miss ratio as well as on the cache protocol

being simulated. Evidently, each shared reference miss generates at least a message but

the overall situation is more complex. For example, a simulation process in the Berkeley

14

Application/ References Messages Number of Rollback

Protocol Executed Received Rollbacks Distance

Water/Berkeley 3495289 37176 356 1430

Water/Illinois 3177643 46786 386 476

Water/Fire
y 3033988 126592 100 368

Locus/Berkeley 3476559 83042 1107 466

Locus/Illinois 3676484 115218 1643 428

Locus/Fire
y 3188808 282306 247 788

Mp3d/Berkeley 4274450 260076 5755 264

Mp3d/Illinois 4100421 294916 6264 204

Mp3d/Fire
y 2954986 1890176 115 68

Max
ow/Berkeley 6179143 533940 15718 155

Max
ow/Illinois 6090350 803875 17580 126

Max
ow/Fire
y 4213948 1914363 99 72

Table 5: Statistics of the optimistic trace-driven simulation: Columns give the number

of references that are actually executed, the number of messages received, the number of

rollbacks, and the rollback distance (in terms of the amount of memory references being

rolled back).

protocol receives less messages than one in the Illinois protocol although the Berkeley pro-

tocol induces a slightly higher miss ratio (cf. Tables 3 and 5). This is because in resolving

a shared read miss under the Berkeley protocol, the cache where the miss occurred can

simply set its own state while under the Illinois protocol it has to consult the states of other

caches before it can decide its cache state. As a result, a shared read miss under the Illinois

protocol induces two messages (Request and Reply) and requires synchronization. The same

is true of shared read or write misses in the Fire
y protocol. By contrast, a shared read

miss in the Berkeley protocol as well as a shared write miss in the Berkeley or the Illinois

protocol will generate only one message and no synchronization is required.

When examining more carefully the e�ects of the messages, we can see that both Read-

Miss and Request will change only the exclusive owner's state (at most one) of the cache

line in question, while Invalidation will change the state of any cache that is caching the line

being invalidated. Consequently, the probability that an Invalidation causes a rollback is

higher than that of a ReadMiss or a Request. Therefore, of the three types of the messages,

ReadMiss has the lowest cost, while Invalidation may induce more rollbacks, and Request

carries the synchronization overhead and demands an additional message (Reply).

As shown in Table 5, for all applications, simulating Fire
y generates the largest number

of messages among the three cache coherence protocols because, as a write-update rather

than a write-invalidate protocol, it incurs the highest shared reference misses (Table 3) and

every shared reference miss needs two messages. The communication and synchronization

overhead in simulating the Illinois protocol falls between the Berkeley protocol and the

Fire
y protocol for the reason that only shared read misses generate Request messages.

15

Appl/Ptcl ReadMiss(%) Request(%) Invalidation(%) AntiMsgs LateMsgs

Water/B 18084 (48.6) - 17404 (46.8) 4.5% 44.8%

Water/I - 17751 (37.4) 11568 (24.7) 0.3% 39.7%

Water/F - 63272 (49.9) - 0 46.2%

Locus/B 44984 (54.1) - 34619 (41.0) 4.8% 45.0%

Locus/I - 43938 (38.1) 26482 (22.9) 0.7% 44.0%

Locus/F - 140954 (49.9) - 0 46.7%

Mp3d/B 75199 (28.8) - 173315 (66.6) 4.5% 40.5%

Mp3d/I - 74175 (25.0) 146209 (49.4) 0.4% 36.6%

Mp3d/F - 945021 (49.9) - 0 47.9%

Max
ow/B 303481 (56.8) - 212173 (39.6) 3.5% 41.1%

Max
ow/I - 296975 (36.9) 206541 (25.7) 0.4% 39.7%

Max
ow/F - 857165 (49.9) - 0% 52.3%

Table 6: Message components: Columns give the name of the applications and the cache

coherence protocol, the amount (percentage) of ReadMiss, Request, Invalidation, late mes-

sages (i.e. messages whose timestamps are smaller than the simulated time of the receivers),

and anti-messages per process. Column1, Column2 � 2, Column3, and Column4 add up

to close to 100%.

Simulating the Berkeley protocol, which requires no explicit synchronization overhead and

thus the least amount of communication, is the most economical message-wise.

5.2.3 Impact of number and distance of rollbacks

In contrast with the fact that the simulation of the Fire
y protocol generates the largest

volume of the messages, its number of rollbacks is the smallest of the three protocols. This

is because almost all the messages generated by simulating Fire
y are Request or Reply,

which are unlikely to cause other processes to rollback in a write-update protocol. Moreover,

since synchronization is enforced frequently through Requests, the average rollback distance

of Fire
y is relatively small. These facts explain why the level of re-execution, i.e., the

di�erence between the total number of references and the number of those that are actually

processed (compare columns 2 of Table 3 and 5) in the Fire
y simulation, is much lower

than in the other two protocols. Although, in general, the Illinois protocol has less shared

write misses, hence less rollbacks due to Invalidation, than the Berkeley protocol its Request

message when encountering a shared read miss triggers rollbacks more easily than Berkeley's

ReadMiss because of the valid exclusive state. The net e�ect is that the Illinois simulation

invoked slightly more rollbacks in the four traces under study. Nevertheless, for three

applications (Water, Mp3D and Max
ow), the amount of the references re-simulated in

Illinois is (slightly) less than that in Berkeley because the former has a (marginally) smaller

average rollback distance.

16

5.2.4 Summary

The speedup of the optimistic simulation is mainly governed by a number of counteracting

forces:

� the communication overhead (processing of messages), which is determined by the

total amount of messages.

� the explicit synchronization overhead, which is determined by the amount of Request

messages.

� the rollback overhead, which is determined by the amount and the types of the mes-

sages.

Combining the above three types of overhead accounts for the overall performance of the

optimistic simulation. The simulation of the Berkeley protocol and of the Illinois protocol

often have comparable rollback overhead. But, in general, the latter generates more mes-

sages and bears a higher synchronization overhead; its speedup will tend to be lower. The

speedup when simulating the Fire
y protocol will be even lower in cases where the com-

munication and synchronization overhead outweighs the rollback overhead. The simulation

based on the Locus and Max
ow traces basically match this pattern.

For Mp3d, the speedup of the Fire
y simulation is signi�cantly worse than that of the

other two protocols because of a substantial increase in the number of shared write misses.

The amount of messages generated in Fire
y is about 6 times that needed in Berkeley (or

Illinois). The very high communication and synchronization overhead dominates, resulting

in the poor speedup. In fact, the large amount of explicit synchronization imposed by

the Request messages prevents the optimistic simulation from exploiting the weak ordering

constraints in the trace-driven simulation. In such cases, an optimistic approach performs

somewhat like a conservative scheme.

The situation with the Water traces is a little di�erent. Water has the best data locality,

which allows a large discrepancy in processes' local simulation time in the case of the

Berkeley simulation where no synchronization is required. For that reason, when a process

is rolled back, it needs to go far back in the past, which suggests a large rollback distance.

It can be computed (from Tables 3 and 5) that about 16% of the memory references are

re-executed when simulating the Berkeley protocol contrasted with only 6% and 1% when

simulating Illinois and Fire
y respectively. On the other hand, the Illinois or the Fire
y

simulations need to process more messages and have higher synchronization overhead. But

none of the three factors dominates. As a consequence, the speedups of the simulation of

the three cache protocols are very close for this application.

Columns 5 and 6 of Table 6 reveal some other interesting statistics con�rming our

choice of optimizations for Time Warp in the context of trace-driven simulation. About

35%-50% of the messages received are late messages, i.e. messages with timestamps smaller

than the simulation time of the receiving processes. However only a small portion of the

late messages (up to 8%) actually cause rollbacks. This suggests that lazy re-evaluation is

e�ective in reducing the number of rollbacks in the trace-driven simulation. In addition,

among all the messages generated, only a small portion (up to 5%) is canceled, which implies

that most of the messages, including those sent prematurely, are correct. Therefore lazy

cancellation is the right choice for the implementation.

17

The overhead of state saving is omitted in our discussion since in trace-driven simulation,

especially for a big cache, it is negligible compared to the other three factors. In addition, we

measured the time that each process spent waiting for others due to memory management

as explained in Section 4.5, we found out that it never exceeded 5% of the execution time.

Thus the overhead does not slow down the parallel simulation in a signi�cant way.

6 Conclusion

In this paper, we have described the design and optimization of a Time Warp-like optimistic

parallel trace-driven simulation method. The simulator has been implemented on a KSR-

2 system and exercised with 4 traces of real applications. Our performance results show

that the optimistic trace-driven simulation of multiprocessor traces can achieve signi�cant

speedups for applications exhibiting good data locality. The speedups are application and

protocol dependent with no single metric measuring the potential gains that can be achieved.

The two main factors that prevent ideal simulation speedups are the communication

and synchronization inherent in the application itself and the overhead that is speci�c to

the optimistic simulation method, namely rollback and state saving. When partitioning

a simulation into parallel tasks, the communication existing in the applications inevitably

introduces interprocess communication among the logical simulation processes. The e�ect

of communication between logical processes in the simulator is magni�ed compared to that

of the target system and therefore the speedup of the simulation will in general be less than

that of the application itself. Moreover, as could be expected, increased communication

and synchronization in the protocol, as measured by a combination of miss ratio on shared

references and messages sent and received, is detrimental to speedup. In our experiments,

we have observed that the communication and synchronization overhead often dominates

the rollback overhead. The latter was lessened by some optimization techniques such as

state saving at signi�cant events only (cache misses or timeouts), lazy cancellation, and

lazy re-evaluation (mildly complex rollback testing). These optimizations are particularly

well suited to trace-driven simulation of cache memories where most events need not be

totally ordered since they in
uence the states of cache lines that are independent.

References

[1] Anonymous. A Parallel Trace-driven Simulator: Implementation and Performance.

Proceedings of International Conference on Parallel Processing, August 1994, 314-

318.

[2] Anonymous. A Comparative Study of Conservative and Optimistic Trace-driven Sim-

ulation. Submitted for publication.

[3] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a Multi-

processor Simulation Model. ACM Transactions on Computer Systems, Vol.4, No.4,

November 1986, 273-298.

[4] R.E. Bryant. Simulation of Packet Communications Architecture Computer Systems.

MIT-LCS-TR-188, MIT, 1977.

18

[5] D. Chaiken, C. Fields, K. Kurihara and A. Agarwal. Directory-Based Cache Coherence

in Large-Scale Multiprocessors. Computer, Vol.23, No.6, June 1990, 49-58.

[6] K.M. Chandy and J. Misra. A Case Study in Design and Veri�cation of Distributed

Programs. IEEE Trans. on Software and Engineering, Vol. 5, No.9, September 1979,

440-452.

[7] S.J. Eggers, D.R. Keppel, E.J. Koldinger and H.M. Levy. Techniques for E�cient

Inline Tracing on a Shared-Memory Multiprocessor. 1990 ACM Sigmetrics conference

on Measurement and Modeling of Computer Systems, 1990, 37-47.

[8] R. Fujimoto. Parallel Discrete Event Simulation. Communication of the ACM, Vol.

33, No. 10, Oct. 1990, 30-53.

[9] D. Je�erson. Virtual Time. ACM Transactions on Programming Languages and Sys-

tems, Vol. 7, No. 3, July 1985, 404-425.

[10] David Je�erson. Virtual Time II: Storage Management in Distributed Simulation.

Proceedings of 9th Annual ACM Symposium on Principles of Distributed Computing,

August 1990, 75-90.

[11] Kendall Square Research. Technical Summary. 1992.

[12] Y-B Lin, E. D. Lazowska and J-L Baer. Parallel Trace-Driven Simulation of Multipro-

cessor Cache Performance: Algorithms and Analysis. Progress in Simulation, Vol.1

No.1, Ablex Publishing, 1992, 44-80.

[13] Y-B. Lin and E. D. Lazowska. Determining the Global Virtual Time in a Distributed

Simulation. Tech Report 90-01-02. Dept. of Computer Science. University of Wash-

ington, 1990.

[14] P. Reiher, R Fujimoto, S. Bellenot and D. Je�son Cancellation Strategies in Optimistic

Execution Systems. SCS Multiconference on Distributed Simulation, 1990, 112-121.

[15] J. P. Singh, W. D. Weber and A. Gupta. SPLASH: Stanford Parallel Applications for

Shared-Memory. Computer Architecture News, Vol.20, No.1, March 1992, 5-44.

19

