
A Comparative Study of Conservative and Optimistic

Trace-driven Simulations

�

Xiaohan Qin and Jean-Loup Baer

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Wa, 98195

e-mail: fbaer,xqing@cs.washington.edu

phone: (206)-685-1376(baer), (206)-685-4087(xqin)

Abstract

In this paper, we consider the evaluation of the memory hierarchy of multiprocessor

systems via parallel trace-driven simulation. We study two parallel simulation schemes:

a conservative one using an algorithm proposed by Lin et al. [10], whose main char-

acteristic is to insert the shared references from every trace in all other traces, and

an optimistic one using a Time Warp-like [9] algorithm. We compare, qualitatively

and quantitatively, the major causes of overhead and the overall performance of the

two methods. In addition, we discuss the trade-o�s in terms of implementation and

debugging e�ort and of application to more general architectural simulation. The opti-

mistic scheme is more complex but, in general, has slightly better performance, is more

general, and does not require preprocessing.

�

This work was supported in part by NSF Grants CCR-91-01541, CCR-91-23308 and CCR-94-01689

1

1 Introduction

The amount of computational cycles needed to simulate the performance of parallel archi-

tectures is extremely important. One would expect that the existing parallel systems could

be exploited to predict the performance of their successors by taking advantage of their own

ability to perform various tasks concurrently. In other words, parallel architectures should

be simulated using parallel simulation. Although simulation of parallel architectures and

parallel simulation sound similar, they designate two distinct entities. The former refers

to the system that is the target of the simulation while the latter de�nes the medium on

which the simulation is performed. The main reason why we would like to use parallel ma-

chines for simulation is that the detailed simulation of architectural features, either through

a trace-driven or an execution-driven method, is a very time and space consuming task.

Parallel systems can provide us with higher computation and storage capabilities. More-

over, an additional motivation is that the functioning of the target system exhibits natural

parallelism: instructions from distinct simulated processors may be issued and carried out

independently and concurrently.

State of the art simulators of parallel architectures such as Proteus[2] and Tango[8] run

on single processor workstations. Recently execution-driven parallel simulators for parallel

architectures [13, 3] have been implemented on speci�c parallel architectures (the TMI CM-

5 and BBN Butter
y respectively). The challenge in these parallel simulators is to provide

e�ective means to simulate the communication among processors. To elaborate on this

point, assume that one processor of the simulation system is used to simulate one processor

of the target system. During the simulation, interprocessor communication will consist not

only of the explicit communication between two nodes in the simulated system but also of

many operations that involve parts of the target system such as the interconnection network

or the cache coherence mechanism. Since the simulation is software-based, the slow-down

due to the simulation of communication can erase, or even outweigh, the bene�ts of having

simulation processes running in parallel. It is therefore critical to keep the amount and cost

of communication as low as possible if we want to achieve good performance.

Parallel simulationmethods can be broadly classi�ed into two categories [7]: conservative

methods and optimistic methods. A fundamental di�erence between the two approaches

is that in a conservative scheme, correct computation is guaranteed at an arbitrary point

of the simulation, while in an optimistic scheme speculative errors may occur, but they

will be corrected before the simulation completes. Chandy-Misra-Bryant methods [5, 4]

are the best-known conservative simulation methods. In this mode, a process needs to

frequently synchronize and exchange \time" information with other processes in order to

decide whether it is safe to execute the next event in its input queue. If there is no safe

event in the queue, the process is blocked. Deadlock happens when all the processes are

blocked. In an implementation with deadlock avoidance this will occur only at the end of the

simulation. Other implementations favor a detection and recovery scheme. The best-known

optimistic method is Time Warp [9]. Processes in the optimistic simulation maintain and

advance independently their own simulated (virtual) time. Processes communicate through

timestamped messages. When a process receives a message anterior to its own (virtual) time

that would have a�ected its state, it rolls back to the time of the message and reexecutes

its simulation from thereon.

2

Shared Inserted

Protocol Read Write Read Write

hit miss hit miss

Berkeley

Illinois Y X

Fire
y Y Y X X

Table 1: Communication requirements for di�erent protocols in the conservative simulation.

An entry with \Y" means that synchronization is required. An entry with X means that

communication might be necessary but detection is impossible using only local information.

In this paper, we consider the evaluation of the memory hierarchy of multiprocessor

systems via parallel trace-driven simulation. We have designed and implemented a con-

servative simulator based on a method proposed by Lin et al. [10, 11], and an optimistic

simulator based on the Time Warp algorithm [12]. In Section 2, we describe the ideas,

algorithms and important data structures for the conservative and the optimistic simula-

tions respectively. A qualitative comparison between the two schemes is then presented in

Section 3. In Section 4, we report on the performance of these two simulators running on

a KSR system and using traces of real applications. We further compare quantitatively

the overall speedups and the major causes of overhead that contribute to less than ideal

speedups. Finally we give conclusion in Section 5.

2 Parallel Trace-driven Simulation

Our goal is parallel trace-driven simulation of shared-memory multiprocessors. Each pro-

cessor of the target system has a private cache memory. Processors are connected to each

other and to global memory via an interconnection network. We simulate three di�erent

protocols { Berkeley, Illinois, and Fire
y [1] { that vary in the type and amount of com-

munication involved in the target system and henceforth will impact the performance of

the parallel simulations. We focus our attention on snoopy shared-bus systems although

the techniques we describe can be adapted to directory-based systems with other types of

interconnection network. The input to the simulation is a multiprocess trace { a set of

memory address trace �les, each of which consists of two types of references: private refer-

ences and shared references with only the shared references having potential e�ects on the

status of other processors' caches. Since our main interest is in comparing the feasibility

and performance of the methods, we restrict ourselves to computing the hit ratio of each

cache as the output of the simulations. In both methods, we used the natural mapping of

one physical processor and its cache to one logic process. Each simulation process receives

as input a memory trace of a physical processor.

2.1 The Conservative Trace-driven Simulation

Figure 1 shows a conservative parallel simulation diagram proposed by Lin et al. [10].

The basic idea of the algorithm is to preprocess input traces by inserting, for each of

3

T 1 T 2 T 3

P 1,3

S 1,4

P
1,5

P 1,6

P2,1

P2,4

S 2,5

P 3,1

P 3,4

P 3,5

P 3,6

P1,1 P1,1

S 1,2

P 1,3

S 1,4

P
1,5

P 1,6

P2,1

P2,2

S 2,3

P2,2

P2,4

S 2,5

P 3,1

P3,2

S 3,3
S 3,3

P 3,4

P 3,6

P 3,5

S 1,2 S 1,2 S 1,2

S 3,3 S 3,3

S 2,3
S 1,4
S 2,3

S 2,5 S 2,5

T 1 T 2 T 3

S 1,4 S 2,3

Before preprocessing After preprocessing

P3,2

Figure 1: Preprocessing a multiprocessor trace. P and S stand for private and shared

reference respectively.

them, their shared references into all the other trace �les. The bene�ts of preprocessing are

twofold. Firstly, all the points where interactions are potentially needed are identi�ed before

a simulation starts. As a result, communication and synchronization can be performed at

very low cost. Secondly, after the preprocessing, part of the cache coherence events, i.e.,

actions that involve the interconnection network in target systems, can be treated locally

by the simulation of the inserted references. How many of these events are local and

how many require communication is protocol dependent. For example, in simulating the

Berkeley protocol, suppose R

i

is a shared write miss, meaning it should invalidate the

cache line corresponding to R

i

in other processors' caches. With preprocessing, R

i

will

appear in every trace �le. Other processes can perform locally the invalidation when they

encounter the inserted R

i

. As a second example, let R

i

be a shared miss in cache C

m

in

the Illinois protocol. The state of the line where R

i

is mapped depends on the states of the

corresponding line in the other caches. Thus the simulation of C

m

is at a synchronization

point and must wait for messages from other caches. The other caches upon processing

the inserted reference corresponding to R

i

will send a message to C

m

independently of

whether or not their own clock is ahead or behind C

m

's and whether the message is useful

or not (e.g., redundant). To facilitate fast message passing and processing, we assigned

a dedicated message queue M

ij

to each pair of simulation processes C

i

(sender) and C

j

(receiver) and placedM

ij

on C

i

's processor since it is used more often by the sender. Further

communication optimization can be found in [11]. Table 1 displays where communication

might be necessary in simulating various cache coherence protocols. Figure 2 sketches the

conservative simulation algorithm.

4

paralleldo i from 1..N

while (not end of trace input i)

read in a memory reference event R ;

simulate R ;

case (R.type)

private: noop;

shared : if (R is a synchronous point)

then wait until it receives a message about

the corresponding inserted reference

from each other cache simulation process ;

inserted: if (R is a synchronous point)

then send a message to the simulation process

whose input trace contains the

corresponding shared reference;

endcase ;

update the status of cache i ;

endwhile

endparalleldo

Figure 2: The conservative simulation algorithm for N traces.

5

Protocol Shared read miss Shared write miss On request message

Berkeley ReadMiss Invalidation {

Illinois Request Invalidation Reply

Fire
y Request Request Reply

Table 2: Messages used in optimistic simulation.

2.2 The Optimistic Trace-driven Simulation

For a given logical process in the optimistic simulation, there are two types of events: local

events (processing of private references and of shared references that hit in the cache) and

messages. A process creates and sends a message when it encounters a shared reference

cache miss or when it needs to reply to another process' inquiry. These messages simulate

the interactions dictated by a given cache coherence protocol. Table 2 lists the messages

generated for the three cache coherence protocols.

The basic idea of adapting Time Warp to trace driven simulation is that each process

merges its input trace, or memory reference stream, and its incoming message stream on the

y and execute them in timestamp order. Processes advance their local simulation clocks

separately, synchronizing with (a subset of) other processes only when the references or the

messages require to do so. It is possible that a process receives a message with a timestamp

smaller than that of some of the events that it has already executed. In such a case, a test

of whether the message will cause a rollback is needed. Rollback calls for recovery of the

simulation state vector and of the simulation environment, sending anti-messages to cancel

incorrect messages sent earlier, and processing anew of the events that had been processed

prematurely. To support rollback and carry on the simulation thereafter, processes need to

save the state vector, all the simulation events (memory references and incoming messages),

as well as the outgoing messages they have generated.

Figure 3 displays the major components of a logic process in the optimistic trace-driven

simulation. Viewed from a high level, each process consists of three parts: (1) the current

state vector, (2) the events to simulate, and (3) the supporting data structures such as the

new message queue, the outgoing message queue, the log stack , and their current pointers,

e.g. NextRef, NextInMsg, NextOutMsg, etc.

The state vector of a cache simulation process consists of the virtual timestamp, the

states of the cache lines, and the number of hits and misses up to the simulated time as well

as possibly other statistics if, for example, we wanted to compute separately hit ratios for

private and shared references. While saving all the past simulation events (references and

incoming messages) and outgoing messages is necessary, the state vector can be saved only

at important events, say at a cache miss. The negative side e�ect of this strategy is that the

rollback distance may be increased signi�cantly due to sparse state saving for applications

exhibiting good data locality. The augmentation in the rollback distance can be regulated

by a timeout parameter T

timeout

which forces state saving if cache states have not changed

for T

timeout

.

One of the important data structures supporting the state saving is the log stack (LS).

6

STATE

ENVIRONMENT

EVENTS

Cache State Accounting
Data

OMQTBIMQNMQ

LS

NextInMsg

NextRef

Top

NextOutMsg

NMQ: New Message Queue
IMQ: Incoming Message Queue
OMQ: Outgoing Message Queue
TB: Trace Buffer
LS: Log Stack
NextInMsg: the Next Incoming Message
NextOutMsg: the Next Outgoing Message
NextRef: the Next Memory Reference

Figure 3: The data structures of a logic process in optimistic trace-driven simulation.

Every change on the state of a cache line is logged whenever it happens. Changes on the

simulation accounting data, however, are accumulated and saved only when the cache state

is updated. When a rollback is invoked, the process pops entries from the log stack and

reconstructs the state vector of an earlier time based on the recorded changes.

The events to simulate are memory references from the input trace and incoming mes-

sages from the incoming message queue (IMQ). IMQ is used to store in timestamp order

\current correct" messages, that is all the positive messages (processed and unprocessed)

that have been received and have not been canceled (positive here means messages that are

not anti-messages). Similarly, the outgoing message queue (OMQ) is used to store all the

positive messages being sent out.

Figure 4 sketches the optimistic trace-driven simulation algorithm. The algorithm in-

corporates a lazy re-evaluation test for rollback and lazy cancellation during rollback. Lazy

re-evaluation relies on a more sophisticated test than the simple comparison of timestamps.

The test determines not only that there is a late message but also whether this late message

will change the state of the cache line that it refers to. Lazy cancellation, during rollback,

prevents the sending of unnecessary anti-messages.

3 Qualitative Comparison of the Conservative and the Op-

timistic Methods

A major di�erence between the conservative and optimistic approaches to trace-driven sim-

ulation is that a fair amount of the communication burden is avoided in the conservative

7

while (more references or more messages ?) {

if (new message in NMQ?) {

// yes, there are new messages

. Insert new messages in timestamp order in IMQ.

// Anti-messages are not inserted into IMQ

// Those messages that anti-messages mean to cancel will be

// removed from IMQ

. Examine new messages in timestamp order to see if any of

the new messages causes rollback. If rollback is in order:

. Restore state vector and environment to the time

of the late message.

}

if (timestamp of next reference < timestamp of next message) {

simulate the memory reference

get the next memory reference

}

else {

simulate the incoming message

get the next incoming message

}

if (message generated?) {

// Yes

. If (the message matches with an item already in OMQ)

do not send the message

else send it

// some anti-messages may be sent out in the matching process.

// anti-message do not enter OMQ. They remove their

// positive counterparts from OMQ.

}

}

Figure 4: The optimistic simulation algorithm.

8

method by use of preprocessing. Although preprocessing is time consuming since all shared

references have to be gathered and sorted in time-stamp order, it has to be done only once

and its cost can be amortized over subsequent simulations. There is also a space issue since

it appears that all traces are becoming longer but in fact this can be mitigated to a great

extent by sharing the shared reference �le (implementation details can be found in [11]).

Preprocessing adds a signi�cant advantage to the conservative method and makes it

unique in a number of ways. In typical Chandy-Misra-Bryant conservative methods, fre-

quent synchronizations are required to decide when it is safe for a process to proceed. In the

conservative approach here, these decisions are made statically since the insertion of shared

references mandates when messages will be sent. Consequently the communication and

synchronization costs during the actual simulation become very cheap. Moreover, some of

the cache coherence activities that involve the interconnection network in the target system

are now converted to local simulation actions. This is most striking in the simulation of the

Berkeley protocol where no communication between logical processes is required.

However, there are drawbacks to the preprocessing. Since every shared reference is

inserted in every trace, there is a large amount of processing of irrelevant references and, in

the case of the simulation of the Illinois and Fire
y protocols, of sending either extraneous

or redundant messages.

This preprocessing and additional reference processing is not necessary in the optimistic

approach. Processes forge ahead, communicating or synchronizing only when necessary.

However, since the simulation is speculative, state must be saved, tests for rollback are nec-

essary, and rollback themselves do occur. The overhead of state saving, rollback detection,

and rollback processing can be tuned by balancing the frequency of state saving versus the

rollback distance, and the complexity of rollback testing versus the number of rollbacks.

These optimizations are not possible in the straightforward conservative simulation.

The bene�t obtained by paying the price of the overhead of state saving and rollback

processing is that the logical processes can exploit speculation and lookahead [7]. This is

particularly applicable to cache simulations where most events are only partially ordered

(cache line states are independent of each other). Often events are processed out of (time)

order but still lead to correct states; for example coherence messages for two di�erent lines

are completely independent and can be treated in any order.

In terms of implementation, it is obvious that choosing the most e�cient data structures,

managing the memory, and optimizing the code is much more di�cult in the optimistic

approach. Preprocessing in the conservative approach is trivial. The simulation itself (recall

Section 2) presents no real challenge. On the contrary, the dynamic data structures for

the optimistic approach are not as simple, their management is quite elaborate (speci�c

messages in the simulation are devoted to the reclaiming of memory and synchronization

of logical processes that might be running \too fast" [12]) and, for example, procedures

to restore state, test for rollback and cancel messages only when necessary require care.

Furthermore, as in any speculative paradigm, the optimistic simulation is hard to debug.

A de�nite advantage of the optimistic approach over the conservative one is that it is

more
exible and more general. The Time Warp-like simulation can be used to simulate

detailed memory behavior including the semantics of atomic reference instructions such as

locking. Also it can be more readily adapted to comprehensive instruction-level execution

driven simulation.

9

Application/ Number of Shared Read Shared Read Shared Write Shared Write

Protocol References Misses Misses

Water/Berkeley 2997321 39711 1570 6982 1511

Water/Illinois 2997321 39711 1572 6982 1038

Water/Fire
y 2997321 39711 1258 6982 4494

Locus/Berkeley 2997195 101242 3806 20380 2891

Locus/Illinois 2997195 101242 3914 20380 2359

Locus/Fire
y 2997195 101242 2274 20380 10540

Mp3d/Berkeley 2949858 131306 6507 107395 14997

Mp3d/Illinois 2949858 131306 6513 107395 12838

Mp3d/Fire
y 2949858 131306 3015 107395 82896

Max
ow/Berkeley 4209327 374545 26417 84409 18469

Max
ow/Illinois 4209327 374545 26537 84409 18456

Max
ow/Fire
y 4209327 374545 2880 84409 84135

Table 3: Memory access characteristics of the applications: Columns give the name of the

application and the cache coherence protocol, the total number of references (including

instruction fetches), the number of shared read references, the number of shared read cache

misses, the number of share write references and the number of shared write cache misses.

Cache miss numbers are based on the optimistic simulation

1

.

4 Performance Results

4.1 Applications and Traces

Four applications were chosen to measure the performance of the parallel simulators. They

are Water, Locus, Mp3D and Max
ow. The �rst three are in the Splash benchmark suite

[14]. Water is a scienti�c application which simulates the evolution of a system of water

molecules in the liquid state. Locus is a commercial quality VLSI standard cell router.

Mp3d solves problem in rare�ed
uid
ow simulation. The last application, Max
ow, is a

parallel algorithm to compute the maximum
ow of a network.

These applications were selected because they are \real applications", the proportion

of shared references misses varies from application to application so that we can examine

the performance of trace-driven simulation as a function of the overhead of communication

and synchronization, and the traces were already collected on the Sequent system using

MPTrace [6].

Table 3 shows the memory access characteristics of the four applications. All of the

above applications have 12 input trace �les. The data given in Table 3 are average numbers

for the multiple trace streams of one application. The caches that were simulated were

256KB, 2-way set associative with a block size of 32 bytes.

1

Each trace-driven simulation correspond to a (not \the") possible execution. Thus there might be slight

di�erence in misses between the conservative and optimistic simulations.

10

4.2 Experiment Results of the Conservative Simulation

4.2.1 A simple performance Model

The overhead of the parallel simulation consists of the overhead of processing the inserted

references and the overhead of communication and synchronization. For the Berkeley proto-

col, there is no communication and synchronization overhead at all. De�ne N , L and f

share

as the number of input trace �les (i.e., the number of processors involved in an application),

average length of each trace, and the portion of shared references respectively. Then in the

conservative parallel simulation, the (average) number of references to be processed by a

single process will be L+L� f

share

� (N � 1). Assume that it takes a time unit to simulate

one memory reference. The sequential simulation time is:

T

seq

= N � L

The parallel simulation time, without communication, is:

T

para

= L+ L� f

share

� (N � 1)

The speedup upper bound is therefore:

MAXSpeedup =

T

seq

T

para

=

N � L

L+ L� f

share

� (N � 1)

=

N

1 + f

share

� (N � 1)

(1)

4.2.2 Experiment results

Application Speedup (12 processors)

Berkeley Illinois Fire
y Upper bound

Water 9.2 8.2 7.7 10.2

Locus 7.2 6.3 6.2 8.3

Mp3d 5.9 5.1 5.0 6.4

Max
ow 5.0 4.1 3.8 5.5

Table 4: Speedups of the conservative parallel simulation.

Table 4 displays the performance of the conservative simulation and its upper bound.

For any given application, the speedups decrease from the Berkeley simulation to the Fire
y

simulation because the communication and the synchronization required in the simulation

(cf. Table 1) increases monotonically from Berkeley to Fire
y while each simulation executes

the same amount of references.

When reading Table 4 column-wise, we see that the speedups decrease from Water to

Max
ow for each of the three cache protocols. This is due to the increase in the portion of

11

Application/ References Messages Synchro

Protocol Executed Received Points

Water/Berkeley 3510945 0 0

Water/Illinois 3510945 413062 1554

Water/Fire
y 3510945 471893 6951

Locus/Berkeley 4335038 0 0

Locus/Illinois 4335038 1027604 3864

Locus/Fire
y 4335038 1274616 12735

Mp3d/Berkeley 5575601 0 0

Mp3d/Illinois 5575601 1241451 5584

Mp3d/Fire
y 5575601 2546271 84618

Max
ow/Berkeley 9257321 0 0

Max
ow/Illinois 9257321 3946269 26147

Max
ow/Fire
y 9257321 4420917 86992

Table 5: Statistics of the conservative parallel simulation: Columns give the application/the

cache coherence protocol, the number of references processed, the number of messages

received and the number of synchronization points.

the shared references, from Water with only 1:56% to Max
ow with almost 10:90%. The

portion of the shared references (read/write) determines the amount of inserted references

to be executed as well as the amount of messages to be received. The more shared refer-

ences there are, the more extra references to be simulated, and the more message passing

there will be. As shown in [11], with careful design in data placement and communica-

tion optimization, message passing can be conducted e�ciently. As for the synchronization

overhead, we measured the time that each process waited in execution. It turns out that

the synchronization overhead is a small fraction of total execution time (at most 7%).

If we look at the maximum speed in the conservative framework, it is quite clear that

when the level of sharing becomes signi�cant the processing of the inserted references is the

major factor that limits the performance of the parallel simulation (a 2:1 factor from Water

to Max
ow).

4.3 Experiment Results of the Optimistic Simulation

The overall performance (cf. Table 6) of the optimistic simulation depends on many

factors. In contrast with the conservative approach, we cannot �nd metrics that yield

either an upper bound on the speedup or a ranking among protocols. The speedup of

the optimistic simulation is mainly governed by three countering forces, emanating from a

combination of miss ratio (application) and protocol:

� the communication overhead (processing of messages), which is determined by the

total amount of messages.

12

Application Speedup (12 processors)

Berkeley Illinois Fire
y

Water 8.5 8.9 8.7

Locus 8.1 6.9 6.5

Mp3d 6.3 5.1 3.1

Max
ow 5.5 4.4 3.7

Table 6: Speedups of the optimistic parallel simulation.

Application/ References Messages Synchro

Protocol Executed Received Points

Water/Berkeley 3495289 37176 0

Water/Illinois 3177643 46786 1572

Water/Fire
y 3033988 126592 5762

Locus/Berkeley 3476559 83042 0

Locus/Illinois 3676484 115218 3914

Locus/Fire
y 3188808 282306 12814

Mp3d/Berkeley 4274450 260076 0

Mp3d/Illinois 4100421 294916 6513

Mp3d/Fire
y 2954986 1890176 85911

Max
ow/Berkeley 6179143 533940 0

Max
ow/Illinois 6090350 803875 26537

Max
ow/Fire
y 4213948 1914363 87015

Table 7: Statistics of the optimistic trace-driven simulation: Columns give the number of

references that are actually executed, the number of messages received and the number of

synchronization points, e.g., places where Request messages are issued.

� the explicit synchronization overhead, which is determined by the amount of Request

messages.

� the rollback overhead, which is determined by the amount and the types of the mes-

sages.

The simulation of the Berkeley and of the Illinois protocols often have comparable

rollback overhead which can be estimated by looking at the number of extra references

simulated (compare the �rst columns of Tables 3 and 7). In general, the Illinois simula-

tion generates more messages and bears a higher synchronization overhead; its speedup will

therefore tend to be lower than Berkeley's. (For detailed analysis on the amount and the

types of the messages generated by a particular cache coherence protocol and their impact

on the performance, see [12]). The speedup when simulating the Fire
y protocol will be

even lower in cases where the communication and synchronization overhead outweighs the

rollback overhead. The simulations of the Locus and Max
ow traces basically match this

13

pattern. For Mp3d, the speedup of the Fire
y simulation is signi�cantly worse than that

of the other two protocols because of a substantial increase in the number of shared write

misses. The amount of messages generated in Fire
y's is about 6 times that needed in

Berkeley's (or Illinois'). The very high communication and synchronization overhead dom-

inates, resulting in the poor speedup. In fact, the large amount of explicit synchronization

imposed by the Request messages prevents the optimistic simulation from exploiting the

weak ordering constraints in the trace-driven simulation and thus the optimistic approach

performs somewhat like the conservative scheme. The situation with Water traces is a little

di�erent. Water has the best data locality, which allows a large discrepancy in processes'

local simulation time in the case of the Berkeley simulation where no synchronization is

required. For that reason, when a process is rolled back, it needs to go far back in the

past, i.e., generating a large rollback distance. It can be computed (from Tables 3 and 7)

that about 16% of the memory references are re-executed when simulating the Berkeley

protocol contrasted with only 6% and 1% when simulating Illinois and Fire
y respectively.

On the other hand, the Illinois or the Fire
y simulation need to process more messages

and have higher synchronization overhead. But none of the three factors dominates. As a

consequence, the speedups of the simulation of the three cache protocols are very close for

Water.

4.4 Quantitative Comparison of the Two Simulation Methods

Both approaches yield signi�cant speedups (cf. Tables 4 and 6). There is no de�nite trend

on which approach performs better than the other either by application or by protocol.

Data in Tables 5 and 7 allow us to elaborate more on the various trade-o�s but we cannot

reach a de�nite conclusion.

By comparing the �rst column of Table 3 that gives the number of references in the

original traces with the �rst columns of Tables 5 and 7, we can see the amount of extra ref-

erence processed in each method. When the level of shared references is high in applications

such as Max
ow, the conservative simulation processed substantially more references than

the optimistic one. However, the extra references processed in the optimistic simulation

are most costly since they correspond to rollbacks and hence a cost for rollback testing

and state recovery had to be incurred. Thus basing our comparison only on the number of

references processed would be erroneous.

Now consider the amount of messages transmitted in parallel simulations. In the conser-

vative framework, as mentioned earlier, communication due to the cache coherence activities

in target systems is partially (or totally in the Berkeley simulation) taken care of by the

simulation of the inserted references. In the cases where communication is needed in both

methods, i.e., the Illinois and the Fire
y simulations, the conservative method always trans-

mits more messages than the optimistic one. However the processing of the messages in the

conservative simulation is much cheaper for two reasons. First, messages in the conservative

simulation must be arriving in ascending timestamp order. They can enter message queues

and be processed in a FIFO manner, while new messages in the optimistic simulation need

to be sorted and inserted into the message queue at appropriate positions. Second, most

of the messages sent in the conservative simulation are not needed. The recipients can

quickly skip over such messages by using an e�cient search scheme such as binary search

14

[11]. In fact the amount of messages that are actually processed after the communication

optimization in the conservative simulation is nearly the same as the amount of messages

in the optimistic simulation. Thus, despite the larger number of messages transmitted, the

overall message passing overhead incurred in the conservative simulation is not necessarily

higher than it is in the optimistic simulation.

Finally, the last columns of Tables 5 and 7 show that the two simulation paradigms

encounter approximately the same amount of synchronization points. But, again, synchro-

nization in the optimistic framework has a larger negative e�ect performance-wise because

in addition to waiting for others to supply cache state information, processes are limited,

by synchronization, in their capability to exploit the weak ordering constraints.

In summary, when the two methods execute roughly the same amount of references, e.g.

in simulating Water under the Berkeley protocol, the conservative simulation will perform

better. In most cases, the conservative simulation executes far more references than the

optimistic simulation, but each extra reference, message, and synchronization cost less.

The essential reason for the optimistic simulation to perform well is that the trace-driven

simulation does not require a total order on the events to be simulated. With a fair amount

of sharing but not too many misses and not too much synchronization (e.g., Water and Locus

under Illinois), the optimistic simulation is advantageous. However as the synchronization

becomes more and more frequent (e.g. Mp3d under Fire
y), the capability of exploiting

the partial event order is weakened. Accordingly, the performance of the optimistic parallel

simulation in this case is worse than that of the conservative simulation.

5 Conclusion

In this paper, we have studied and compared two parallel simulation schemes. Performance-

wise, both methods yield signi�cant speedups. The conservative approach relies on prepro-

cessing to identify all the interaction points statically by inserting shared references in every

trace. The overhead of processing the inserted references is traded-o� against a low cost in

communication operations. The performance is bounded by the portion of shared references

in the applications. By contrast, the optimistic approach allows processes to exploit weak

ordering rather than total ordering constraints, communicating and synchronizing with each

other only when necessary. Despite the fact that each extra reference, message and syn-

chronization cost more in the optimistic simulation, in most cases, the overall performance

of the optimistic simulation is slightly better since far fewer references are processed than in

the conservative simulation. However as synchronization becomes more and more frequent,

the optimistic simulation eventually loses its performance advantage. The major sources of

overhead in the optimistic simulation { rollback and communication and { are inherently

determined by the shared reference miss ratio. For the four applications used in our ex-

periments, the shared reference miss ratio rises as the level of sharing increases. Thus the

two simulation schemes present similar patterns of performance degradation with increased

sharing.

In terms of implementation, the optimistic simulation requires considerably more e�ort

in re�ning the algorithm { choosing appropriate optimizations, designing e�cient data struc-

tures and managing memory. On the other hand, the optimistic approach has the de�nite

advantage over the conservative one that it can be adapted to comprehensive instruction-

15

level simulation as well as detailed simulation of memory behavior including the semantics

of atomic reference instructions such as locking.

References

[1] James Archibald and Jean-Loup Baer. \Cache Coherence Protocols: Evaluation Using

a Multiprocessor Simulation Model". ACMTransactions on Computer Systems, Vol.4,

No.4, November 1986, 273-298.

[2] Eric A. Brewer, Chrysanthos N.Dellarocas, Adrian Colbrook and William E.Weihl.

\PROTEUS: A High-Performance Parallel-Architecture Simulator". Technical Report

MIT/LCS/TR-516, Laboratory for Computer Science, MIT.

[3] Eugene D. Brooks III, Timothy S. Axelrod, Gregory A. Darmohray. \ The Cerberus

Multiprocessor Simulator". Parallel Processing for Scienti�c Computing, 384-390,

SIAM, 1989.

[4] R.E. Bryant. \Simulation of Packet Communications Architecture Computer Sys-

tems". MIT-LCS-TR-188, MIT, 1977.

[5] K.M. Chandy and J. Misra. \A Case Study in Design and Veri�cation of Distributed

Programs". IEEE Trans. on Software and Engineering, Sept 1979, 440-452.

[6] S.J. Eggers, D.R. Keppel, E.J. Koldinger and H.M. Levy. \Techniques for E�cient

Inline Tracing on a Shared-Memory Multiprocessor". 1990 ACM Sigmetrics conference

on Measurement and Modeling of Computer Systems, pp37-47, 1990.

[7] R. Fujimoto. \Parallel Discrete Event Simulation". Communication of the ACM, Vol.

33, No. 10, Oct. 1990, 30-53.

[8] H.Davis, S. Goldschmidt and J.L. Hennessy. \Multiprocessor simulation and tracing

using Tango". Proceedings of the 1991 International Conference on Parallel Process-

ing, Vol. I, pp.99-107, 1991

[9] D. Je�erson. \Virtual Time". ACM Transactions on Programming Languages and

Systems, Vol. 7, No. 3, July 1985, 404-425.

[10] Y-B Lin, E. D. Lazowska and Jean-Loup Baer. \Parallel Trace-Driven Simulation of

Multiprocessor Cache Performance: Algorithms and Analysis". Progress in Simula-

tion, Vol.1 No.1, Ablex Publishing, 1992, 44-80.

[11] X. Qin and J.-L. Baer. \A Parallel Trace-driven Simulator: Implementation and Per-

formance". Proceedings of International Conference on Parallel Processing, August,

1994 II314-II318.

[12] X. Qin and J.-L. Baer. \Optimistic Trace-driven Simulation". Submitted for publica-

tion.

16

[13] Steven Reinhardt, Mark Hill and James Larus. \ TheWisconsinWind Tunnel: Virtual

Prototyping of Parallel Computers". 1993 ACM Sigmetrics Conference on Measure-

ment and Modeling of Computer Systems, pp48-60, 1993.

[14] Jaswinder Pal Singh, Wolf Dietrich Weber and Anoop Gupta. \SPLASH: Stanford

Parallel Applications for Shared-Memory". Computer Architecture News, Vol.20,

No.1, pp5-44, March 1992.

17

