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Abstract

While the parallel use of many processors is a major attraction of scalable multiprocessors for large

applications, another important feature of such machines is the large amount of physical memory they

make available. Despite these resources, truly large applications may be limited not only by the amount

of computation they require, but also by the amount of data they must operate on to solve problems of

interest.

In this paper we consider the problem of multiprocessor scheduling of jobs whose memory requirements

place lower bounds on the fraction of the machine required in order to execute. We address three primary

questions in this work:

1. How can a parallel machine be multiprogrammed with minimal overhead when jobs have minimum

memory requirements?

2. To what extent does the inability of an application to repartition its workload during runtime a�ect

the choice of processor allocation policy?

3. How rigid should the system be in attempting to provide equal resource allocation to each runnable

job in order to minimize average response time?

1 Introduction

Much of the work on scheduling policies for multiprogrammed multiprocessors has focused on how many

processors to allocate to each runnable job without considering the memory requirements of those jobs

[7, 14, 15, 6, 17, 18, 13, 8, 2, 9, 16]. In this paper we consider jobs whose memory requirements imply a

lower bound on the amount of machine resource they can be allocated for execution.

The interaction of processor scheduling and job memory usage has been considered in [12]. However,

they examined a paging environment, with the intent of exposing the in
uence that paging tra�c has on

performance. Unlike that work, we make the more conventional assumption that because parallel applications

requiring the use of tightly coupled machines synchronize often, the asynchronous blocking of individual

threads induced by a paging system would lead to unacceptable performance. Thus, to run e�ciently, jobs

must be loaded in physical memory in their entirety.

While most previous work in this area has considered static disciplines, disciplines that do not alter

the number of processors allocated to a job after an initial decision has been made, we consider dynamic

disciplines, meaning that the number of processors allocated to a job may be changed during its execution.

Static disciplines can su�er from signi�cant ine�ciences following job terminations, since the processors

released by the terminating job cannot be assigned to any running job. Even if there are jobs waiting to

execute, the released processors will remain idle if all waiting jobs require more machine resource than has

been freed

1

. Dynamic disciplines avoid this problem, since they can reallocate idle processors to any running

job.

There are two problems associated with dynamic disciplines that have discouraged their use. One is

that changing allocations involves overhead. Because our disciplines change allocations only on job arrival

or departure, relatively rare events, this problem does not seem crucial. We do not consider the impact

of this overhead in detail here, but instead undertake the �rst step of de�ning reasonable dynamic policies

and examining their properties. A next step, left for future work, is to examine in detail the impact of this

overhead, and ways of reducing it.

The other problem associated with dynamic policies is that applications may not be able to respond

to changes in their allocations. In particular, if an application is capable of partitioning of its data and

computation into pieces only at load time (or even earlier), allocation of an incompatible number of processors

can signi�cantly degrade application e�ciency [15, 9]. We do consider this problem in detail in examining

our policies.

1

In fact, static disciplines also face possibly severe problems at job arrivals. For instance, if a job arrives to an idle system

and is allocated the full machine, this will have a negative impact on jobs arriving soon after it. If some portion of the machine

is reserved for such arrivals, that portion goes unused if no arrivals occur.
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In Section 2 we describe the hardware and software we consider, and give a precise statement of the

problem we address. Sections 3 and 4 de�ne members of two classes of dynamic policies, and show some

of them to be optimal within their classes for a measure of the overhead they impose. Section 5 gives

simulation results comparing the policies in terms of policy induced overhead and job average response time,

for jobs that can and jobs that cannot repartition dynamically in response to changes in allocation. Section 6

summarizes our conclusions.

2 Problem Environment and De�nition

2.1 The Hardware and Software Environments

Because we are interested in scalable multiprocessors, we adopt a distributed memory hardware model typical

of current and envisioned parallel machines in that class. Figure 1 depicts such a machine. The important

characteristic of these machines to our work is that associated with each processor is a local memory module

that can be accessed much more e�ciently than any other memory module in the machine. While not all

machines have a one-to-one mapping of memory modules to processors (e.g., [5]), the notion of local and

remote memories is fundamental to nearly all.
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Figure 1: Hardware Environment

Because access to remote memories is ine�cient on shared-memory machines and impossible on message-

passing machines, the association between memory modules and processors implies that a job's memory

requirement can be viewed as a lower bound on the number of processors it may be allocated. Thus, we

phrase our policy decisions in terms of the number of nodes allocated, where a node is a processor-memory

pair.

The workload we consider is representative of scienti�c applications. These applications have high com-

putational requirements, and so run for extended periods (e.g., minutes or hours). For these workloads,

response time is the most important measure of performance. Minimizing response time is the goal of the

policies we consider. Another important class of applications, those representative of transaction processing

systems, is not considered here. It is not unlikely that di�erent disciplines would be appropriate in that

environment.

As with most previous work in this area, we do not consider the in
uence of application IO on scheduling

decisions. Because the proper integration of IO into parallel machine hardware is by no means well under-

stood, it seems premature to consider this aspect of the problem at this time. Also, because we consider

only how many nodes to allocate, and not which to allocate

2

, our policies should be applicable as long as IO

bandwidth is spread reasonably uniformly throughout the machine.

2

Our policies are compatible with the lower level policies in [9], however. Those policies address the question of which nodes

to allocate.
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One assumption we will make about IO hardware, however, is that it is highly parallel. This seems like

a reasonably conservative assumption about successful future multiprocessors.

2.2 Scheduling Principles

Our goal is to design resource allocation policies for distributed memory parallel machines that minimize

average response time

3

. To better identify the promising approaches to scheduling distributed memory

multiprocessors, it is instructive to examine established results on processor scheduling for both sequential

and parallel machines. From the sequential world we take the lessons of Shortest-Job-First scheduling, and

the notion that because reliable information on job duration cannot be obtained a priori, some runtime

approximation must be applied. The overwhelming choice in sequential systems is multi-level feedback

scheduling, which consists of two primary mechanisms. First, all jobs considered likely to have similar times

to completion are allocated equal machine resources. Because there is only a single processor, this is achieved

through time-sharing (i.e., round-robin scheduling). Second, because it has been observed that the remaining

time to completion of a job is very strongly correlated with the processing time it has already consumed [4],

jobs move down in priority level as they consume resources, and round-robin scheduling is applied only to

the set of jobs in the highest non-empty priority level.

Similar results have been obtained for parallel machines, primarily in the context of shared-memory

systems [15, 6]. For parallel machines, however, space-sharing, in which resources are divided equally by

partitioning the processors among the jobs, has proven to be more e�ective than time-sharing the machine

by rotating all resources among the jobs in a round-robin fashion [15, 17]. Among the bene�ts of space-

sharing is that it interacts well with co-scheduling, which requires that either all processes of a single parallel

application be scheduled at once or that none be scheduled. Co-scheduling has long been known to be critical

to parallel machine scheduling [11].

Based on these results, we consider only policies that provide co-scheduling and that use space sharing

as the primary mechanism to approach equal resource allocation. We will also assume that the jobs in the

set to be scheduled have similar remaining execution time characteristics, as far as the kernel can tell. (For

example, they might be the set of jobs currently residing at the highest non-empty priority level in a feedback

scheme.) While there has been interest in how to use job-supplied information on execution characteristics in

making scheduling decisions [7, 14, 2], this approach runs contrary to what has proven successful in sequential

systems, and relies on the user to be both reliable at estimating job characteristics and honest in relating

them to the system.

Because we allow jobs to have minimum node requirements, it is not possible for our policies to avoid

time-sharing altogether, since it may not be possible to schedule all jobs at once. While it is certainly possible

to design run-to-completion policies that load only a subset of the jobs and run each until it completes [2],

this approach violates the principle of equal resource allocation required to approximate shortest-job-�rst,

and there is strong evidence that this results in performance inferior to policies that instead employ some

amount of time-sharing [2, 9].

2.3 Problem De�nition

The system we consider is de�ned by three parameters: N , the number of nodes; J , the number of jobs;

and

~

M � (M

1

;M

2

; :::;M

J

), the vector of job minimum node requirements. We introduce an additional

parameter, T , the length of a scheduling interval. We require acceptable policies to schedule every job

during each interval of length T . In practice, the duration T would be set so that the overhead of time-

sharing the machine would be acceptably low. Because in our model T is the only time related parameter,

we simply let it be the unit of time, i.e., we let T = 1.

Figure 2(a) illustrates the general scheduling problem, which can be pictured as partitioning a Nx1

rectangle into pieces and assigning each piece to a job, under the constraints that no job j is assigned any

3

A secondary issue in designing scheduling disciplines is fairness. While we do not address this issue directly here, the

policies we propose naturally allow fair service among the jobs that are eligible for execution.
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Figure 2: The Scheduling Problem

piece of width less than M

j

and that each job is allocated pieces whose total area is N=J . (The area of

each piece is measured in node-seconds, and represents a resource allocation. Thus, insisting that equal total

areas be allocated to each job meets the goal of equal resouce allocation.)

Because reallocating nodes involves writing the current contents of their local memories to disk and

loading the previously stored contents of the next job to be scheduled there, such reallocations can be fairly

expensive. (Remember, however, that the impact of these reallocations can be made arbitrarily small by

lengthening the scheduling quantum, T , although at the risk of increasing average response time through an

overly FCFS-like policy.) We thus look for policies that minimize this reallocation overhead.

While Figure 2(a) illustrates the general problem, we restrict our attention to policies of the sort shown

in Figure 2(b), which invoke each job only once per scheduling quantum and do not change the allocation

to any job during a quantum. The desirability of these restrictions seems compelling, given the cost of

reallocating nodes and the di�culty that individual jobs may have in dealing with allocations of varying

sizes. Thus, the policies we consider change the allocation to an individual job at most at instants when

some job arrives to or departs from the system.

Let A

j

be the width of the subrectangle assigned to job j, i.e., the number of nodes on which it runs when

in execution. We de�ne the overhead of a schedule to be

P

J

j=1

A

j

, and look for policies that minimize this

overhead. We note that minimizing overhead is equivalent to minimizing the average number of processors

allocated to each job, which should have a bene�cial impact on system utilization (and thus job response

time) because individual jobs nearly always run more e�ciently on smaller numbers of processors than on

larger numbers.

3 The BUDDY Scheduling Policy

This section presents a scheduling policy, called BUDDY, that is optimal for the restricted class of problems

in which the number of nodes and the number of jobs are powers of two, and among the restricted class

of policies that make only allocations that are powers of two. Figure 3(a) gives an example of the kind of

schedule produced by BUDDY. We describe below how such schedules are computed.

BUDDY �lls the Nx1 scheduling rectangle from bottom to top. A partial schedule (see Figure 3(b)) is

the set of assignments made at some intermediate point during the scheduling process. The frontier of a

partial schedule is the set of (horizontal) line segments below which the Nx1 scheduling rectangle is �lled

and above which it is empty.

Crucial to the operation of BUDDY is the observation that the height of each subrectangle is a (non-

positive) power of two. Remembering the restricted problem domain to which BUDDY applies, let N = 2

n

,

J = 2

j

, and the number of processors allocated to job z be a

z

. Since each job is allocated an equal percentage

of the processing resources, it must be given a subrectangle of area N=J = 2

n�j

. Thus, job z will be allocated
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The fact that each individual subrectangle allocated has height equal to a negative power of two implies

that the height of a segment of the frontier (which is the sum of the heights of the subrectangles below it) can

be represented as an irreducible fraction C=2

x

, for C odd (or zero) and x � 0. (By de�nition, the frontier

before any jobs have been allocated subrectangles has height 0=2

0

.) Lemma 1 uses this fact in de�ning a

property of all valid schedule completions that forms the basis for the BUDDY policy.

Lemma 1 For each frontier line segment of height C=2

x

, for some odd C and integer x � 0, at least one

allocation above the line segment must have an allocation of height less than or equal to 1=2

x

.

In e�ect, this property states that for any height of a partial schedule, there is an upper bound on the

shortest subsequent allocation height to be added above that height. Thus, there is a corresponding lower

bound on the largest node allocation to be placed above that point on the graph.

BUDDY assigns subrectangles to jobs in non-increasing order of their minimum node requirements, using

the property expressed in Lemma 1 to decide how many processors to allocate to each . Let the min-seg be

the (provably unique) segment of the current frontier whose height, C=2

x

, has the largest exponent in the

denominator. BUDDY always allocates the next job a subrectangle that is placed above the min-seg, aligned

with its left edge. The width of the allocated piece is the minimum of the smallest power of two no smaller

than the job's minimum node requirement and 2

n�j�x

, the minimum allocation \forced" by the min-seg's

height.

Figure 3(b) shows the partial schedule obtained for its example system after a single job has been

allocated. At this point the min-seg is at height 1=2

2

, and has width 8. The min-seg forces the next

allocation to have height no greater than 1=2

2

, corresponding to a width of 8. In this particular case, the

next job which has minimum requirement 3, is allocated 8 processors, even though it's self-imposed lower

bound is 4. Figure 3(a) shows the �nal schedule.

3.1 Analysis of BUDDY

BUDDY runs in time O(J log J): each of J jobs must be scheduled, and for each the up to J segments of

the current frontier must be searched to �nd the min-seg. Thus, BUDDY executes e�ciently.

The quality of BUDDY's schedules is capture by Theorem 1, which, due to space limitations, we state

here without formal proof. (The reader is referred to [10] for the complete proof.)

Theorem 1 The BUDDY algorithm produces an optimal schedule under the restrictions that N , J , and

allocations A

j

for all jobs j are powers of two, and that all jobs are allocated equal resources.
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While the formal proof that BUDDY is optimal is quite long, its intuitive justi�cation is relatively

simple. BUDDY makes each allocation in a way that minimizes the widths of the pieces forced by the

frontier segments in the current partial schedule. It does so by allocating each new pieces above the min-seg,

and by choosing its width to be the smallest possible width that respects both the job's minimum requirement

and what is forced by the min-seg. The key to the formal proof is to show that when BUDDY is forced to

allocate a piece wider than the job's minimum, so would be any hypothetical optimal schedule. While in

general one would not expect a greedy algorithm like BUDDY to be optimal, the restrictions of the problem

domain to which it applies make the currently most conservative decision the best global strategy.

3.2 Removing the Restrictions of BUDDY

BUDDY requires that N and J be powers of two, and is provably optimal among schedules whose allocation

widths A

j

are powers of two. It is natural to ask if these restrictions are necessary.

1 16

(a) Buddy Schedule

12

12

12

4

(b) Optimal Schedule

12 131 16

12

12

12

4

N = 16, J = 4, M = (4, 12, 12, 12)

Figure 4: Example Showing BUDDY Is Not Optimal When A

j

6= 2

a

j

Figure 4 shows that BUDDY is not optimal if the restriction on allocation widths is removed. Finding

an optimal policy for this situation seems di�cult, and we have not yet pursued that question.

Similarly, the restriction that N be a power of two is deeply embedded in the BUDDY policy, and it

appears di�cult to make any signi�cant extension along that line.

Buddy

Buddy

Buddy

HYBRIDBUDDY*

4 Jobs

2 Jobs

1 Job

4 Jobs

3 Jobs

Buddy

Heuristic

Example: J = 7

Figure 5: Heuristic Extensions to BUDDY For J 6= 2

j

While �nding an optimal policy for general J is also di�cult, BUDDY lends itself naturally to heuristic

extensions in this dimension. Figure 5 shows two approaches we have considered. The �rst, BUDDY*, is

simply to partition the J jobs into subsets such that each subset contains a power of two number of jobs, to

obtain the BUDDY schedule for each subset, and then to concatenate these schedules (after appropriately

rescaling their time dimensions) to form an overall schedule. We place jobs in sorted order by increasing

minimum node requirement into subsets of decreasing numbers of jobs, in an attempt to minimize overhead.
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BUDDY* has the advantage that each subset is scheduled optimally, but it has the signi�cant disadvan-

tage that the number of subsets is determined by J rather than by the memory requirements of the jobs.

Since each subset requires at least N reallocations, this property implies that values of J with many one's

in their binary representations may have unnecessarily high reallocation costs.

To reduce this e�ect, we de�ne the HYBRID policy. A HYBRID schedule is obtained by concatenating

the BUDDY schedule obtained for the largest power of two number of jobs no larger than J with a schedule

obtained using a suboptimal scheme that is applicable to an arbitrary number of jobs. (We de�ne a number

of such policies in the next section.) We place the jobs with the smallest minimum node requirements into

the set scheduled by BUDDY, since BUDDY is relatively more advantageous for them than it is likely to be

for the larger jobs.

Both BUDDY* and HYBRID are equivalent to BUDDY when J is a power of two. We consider all three

disciplines in the performance comparisons of Section 5.

4 Epoch Scheduling

In this section, a restricted class of scheduling policies, called epoch policies, is considered. Figure 6 shows

an example epoch schedule. Under epoch polices, all nodes are reallocated at each reallocation moment.

The time between successive reallocation instants is called an epoch.

1 2 3 4 5

876

9 10

1/2

4/5

T

Nodes

Figure 6: An Example Epoch Schedule for 10 Jobs

It is apparent that an epoch schedule always exists for any values of N , J , and

~

M , since the time-sharing

policy of rotating the entire machine from one job to the next is an epoch policy. Our goal is to �nd good

(and, if possible, optimal) epoch policies. As before, schedule optimality is de�ned as a minimization of

the total number of node reallocations that take place in each scheduling quantum. For the class of epoch

scheduling policies, this is equivalent to minimizing the number of epochs.

We consider a number of di�erent epoch policies. We begin with a policy that e�ciently determines an

optimal epoch schedule under the constraints that N is a power of two and that all jobs are allocated exactly

equal resources each scheduling quantum. We then generalize this policy to remove the restriction on N and

at the same time to allow bounded inequality in allocations. Computing schedules under this (still optimal)

policy requires exponential time in the worst case. Our �nal policy is a heuristic derived by applying the

ideas of the optimal policy in a greedy way.

4.1 The EQUI-EPOCH Policy

EQUI-EPOCH is an epoch policy that allocates equal resources to each job. In the epoch class of policies,

this implies that an equal number of nodes must be allocated to all jobs in any single epoch, although the

numbers of nodes allocated can vary from epoch to epoch.

EQUI-EPOCH is applicable to all problem parameters N and J . It uses a greedy approach to �ll epochs.

Jobs are sorted from to largest minimum node requirement, and then considered in order. As many jobs as

7



possible are placed in the current epoch, under the restrictions that each job is allocated exactly the same

number of nodes. When the epoch is �lled in this way, a new epoch is begun. When all jobs have been

assigned to epochs, each epoch is given a duration that is proportional to the number of jobs it contains.

4.1.1 Analysis of EQUI-EPOCH

EQUI-EPOCH runs in time O(J

p

N ). For each of up to J epochs we must �nd the largest number of jobs

that �t in the epoch with equal allocations. Since that number must divide N , and since we are considering

jobs in strict order of non-decreasing minimum node requirement, there are up to

p

N possibilities to be

tested.

We state here the major result regarding the quality of the schedules produced by EQUI-EPOCH. The

reader is referred to [10] for the details of the proof.

Theorem 2 When N = 2

n

, for some integer n � 0, EQUI-EPOCH is optimal among epoch scheduling

policies that guarantee equal resource allocations.

Informally, EQUI-EPOCH is optimal in this case because it is never advantageous to schedule fewer jobs

in the epoch under consideration than will �t there. This property holds because the set of jobs remaining

to be scheduled under EQUI-EPOCH dominates the sets remaining under any other possible decision, in the

sense that the set corresponding to EQUI-EPOCH can be scheduled in no more epochs than those of any

other possible set.

To help clarify this key property, we present two similar scenarios in which a greedy algorithm is non-

optimal.

4.1.2 EQUI-EPOCH Is Not Optimal When N 6= 2

n

If N is not restricted to a power of two, the EQUI-EPOCH scheduling policy is not optimal. To illustrate

this, consider scheduling N = 140 nodes. Assume there are 10 jobs, each can run with no fewer than 20 nodes

each. Figure 7 shows the EQUI-EPOCH and the optimal schedules in this case. The major fault with the

EQUI-EPOCH scheme in this case is that the three jobs remaining after the �rst epoch is �lled necessarily

require two epochs in order to achieve equal allocation (independently of the minimum node requirements of

the remaining jobs). By leaving a number of jobs unscheduled that evenly divides N , the optimal schedule

is able to place the remaining jobs in a single epoch.

20 20

20 20

20 20 20

70

140

70

28

28 28 28 28 28

28 28 2828

(b) Optimal non-greedy schedule

T T

Nodes Nodes

(a) EQUI-EPOCH schedule

Figure 7: EQUI-EPOCH versus Optimal Epoch Policy When N 6= 2

n

(N = 140, J = 20, M

j

= 10 for all j)

4.1.3 Non-optimal Greedy Algorithm

We note that there is a greedy algorithm similar to EQUI-EPOCH, but starting with the jobs with the

largest minimum node requirements instead of the smallest. However, as shown in Figure 8 such a policy is

8



not optimal. Once again, the problem is that the set of jobs remaining after an epoch is �lled in a greedy

manner may not dominate other possible remaining sets.

8

4 4 4 4

4

8

4

4

4

T

Nodes

(a) EQUI-EPOCH schedule

Nodes

(b) Non-optimal greedy schedule

T

Figure 8: EQUI-EPOCH versus Non-optimal Greedy Epoch Policy (N = 16, J = 5,

~

M = [4; 4; 4; 4;8])

4.2 The OPT-EPOCH(k) Policy

OPT-EPOCH(k) is an optimal epoch policy for general N that allows a limited amount of inequity in

the resource assignments to each job. The inequity is measured as the maximum permissible di�erence in

the number of nodes allocated to any two jobs in a single epoch, and is given by the parameter k of the

policy. For instance, OPT-EPOCH(0) results in schedules with perfectly equal resource allocations, while

OPT-EPOCH(2) would allow epochs with allocation widths of size c, c+ 1, and c+ 2 (for some c > 0).

By varying parameter k we are able to evaluate the extent to which allowing increasing amounts of

inequity improves or degrades performance. Choosing k > 0 has the advantage that the number of jobs

inserted into an epoch need not evenly divide the number of nodes, N , a shortcoming of the exactly equal

allocation policies. For instance, when J = 7 and N is a power of two, any schedule produced by OPT-

EPOCH(0) must contain at least three epochs. In contrast, it is possible that an OPT-EPOCH(1) schedule

could contain only a single epoch. On the other hand, large values of k may lead to very unequal resource

allocations, which could be detrimental to performance.

OPT-EPOCH(k) schedules are constructed by performing a recursive evaluation of all possible schedules.

This procedure is obviously very expensive. In practice, it can be made more e�cient by exploiting a few

properties of the problem at hand.

Consider enumerating all possible vectors of h positive integers whose sum is N , for h = 1; :::;N . To

enumerate all possible schedules, we must recursively try �lling each such partitioning with each possible

subset of the as yet unscheduled jobs. However, it is clear that when �lling a particular partitioning, it

is advantageous to place the largest possible jobs into that partitioning, since this leaves the most easily

scheduled set of remaining jobs. (All possible remaining sets have the same number of jobs in them, and

any set of jobs that is pairwise no smaller than another set of equal size can be scheduled in no more epochs

than that other set.) Thus, the search for the optimal schedule can be narrowed by eliminating choices at

each step that leave remaining sets that are dominated by other possible remaining sets, in the sense of the

pairwise comparisons above.

When k � 1, the same argument can be expanded to avoid examining potential epoch assignments that

contain a subset of an already examined assignment, since the remaining set of jobs to be scheduled would be

a superset of the other assignment's remaining set, and so could not be scheduled in fewer epochs. Combining

these observations leads to a search that considers jobs in largest to smallest order, and possible assignments

for the current epoch from largest to smallest number of jobs.

Our implementation exploits only a subset of the possible early search terminations. In particular, given

a remaining set of jobs to be scheduled, we try possible assignments from those containing the most jobs to

9



the fewest, and allocate the largest jobs possible in each. The search at this level is terminated whenever

the jobs loaded are an uninterrupted, consecutive sequence starting with the largest remaining job.

While this procedure appears to have combinatorial worst-case complexity, it is quite e�cient in practice,

at least for k = 1. In 111 experiments on OPT-EPOCH(1) of 10,000 trials each, the average number of epoch

assignments tested per epoch in the �nal assignment was 1.08, and the worst case average for any one of

the experiments was 2.98. Thus, it appears that OPT-EPOCH(1) schedules can be reasonably computed.

On the other hand, we did not extend our implementation to k > 1, because of the complexity of that

implementation. Additionally, for increasing values of k it is likely that the early search termination criteria

becomes less valuable, while the same time the number of possible epoch assignments increases dramatically.

(Table 1 shows the number of valid partitions of N = 128 for various values of k.) Thus, to compute schedules

that allow greater inequity than is possible under OPT-EPOCH(1), we used the heuristic technique described

in the next subsection.

Allowed Inequality (k) 0 1 2 3 4 5 6

Number of Partitions of N = 128 8 128 2,144 21,527 144,055 692,693 2,560,378

Table 1: Number of Valid Partitions of N = 128 Nodes versus Allowed Inequality

4.3 HEURISTIC-EPOCH(k)

HEURISTIC-EPOCH(k) is a greedy implementation of the OPT-EPOCH(k) policy. Rather than look at

every possible assignment at each level of the search, we simply choose the �rst one encountered in a

speci�ed search order. In particular, we add jobs to epochs from largest minimum requirement to smallest,

while respecting the inequity limit k. If at any point a job is encountered that requires more nodes than

are left unallocated in the epoch, and the number of unallocated nodes is within k of the largest allocation,

that job is skipped and the largest job that will �t is placed in the epoch if one exists. If no such job can

be found, the unallocated nodes are distributed as evenly as possible among the jobs in the epoch, with any

excess allocated to jobs with the smallest total allocation.

HEURISTIC-EPOCH(k) has running time O(J

2

): for each of up to J epochs we must scan the list of

jobs to �nd the maximum number that will �t.

4.4 Policy Summary

Table 2 summarizes the characteristics of the six policies we have de�ned. (The HYBRID(k) policy is formed

by combining BUDDY and HEURISTIC(k), as explained in Section 3.2.) The columns marked \Restricted

to" re
ects the ability of the policy to determine any schedule for a given problem. The column marked

\Optimal?" refers to optimality within the given policy's class.

5 Performance Comparisons

We compared the overhead and response time characteristics of our disciplines using a set of simulation

experiments. For the purpose of these experiments, we de�ne the load factor to be the number of jobs in

the system times the average minimum node requirement of the jobs. We group result showing the e�ect of

varying the basic problem parameters into sets that keep the load factor constant.
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Restricted to

Policy N = 2

n

? J = 2

j

? Equal Allocations? Optimal? E�cient?

BUDDY Yes Yes Yes Yes Yes

BUDDY* Yes No Yes No Yes

HYBRID(k) Yes No Partially No Yes

EQUI-EPOCH No No Yes If N = 2

n

Yes

OPT-EPOCH(k) No No No Yes No

HEURISTIC(k) No No No No Yes

Table 2: Summary of Proposed Scheduling Policies

Quantity Symbol Default Value

Number of Nodes N 128

Number of Jobs J 8

Load Factor L 100%

Min. Node Requirement M

j

Uniform(1 : : :2

L�N

J

� 1)

Allowed Inequity k 1

Table 3: Default Model Parameter Values

Table 3 gives the default parameters used in our experiments. In the results that follow, we vary a single

parameter at a time. To keep the load factor constant when varying the number of jobs or the number of

nodes, the average minimum node requirement was also adjusted as a side-e�ect.

We ran many more experiments than are included here, varying all the parameters above. (For example,

we looked at results obtained when job minimum node requirements are chosen from a binomial distribution,

as well as from the uniform distribution.) We present a subset of these results that we believe convey the

essence of the comparisons of our policies.

In what follows, we use \BUDDY" to mean the BUDDY discipline when it applies, and the BUDDY*

discipline otherwise.

5.1 Overhead

We compared the overhead of the policies, that is, the average number of node reallocations required during

a scheduling quantum of length T , using Monte-Carlo simulation

4

. In each individual experiment, a random

set of job minimum requirements was selected, and the jobs were then scheduled according to each discipline.

We present results in terms of normalized overhead, which is the average number of reallocations each node

experiences during a scheduling quantum.

Figure 9 shows how normalized overhead varies with the number of jobs in the system, for load factors

of 100% and 200%. We see that BUDDY and EQUI-EPOCH react badly to numbers of jobs that must be

broken into many subsets in order to divide N evenly. OPT-EPOCH(1) and HEURISTIC-EPOCH(1), which

have no a priori restrictions on the number of jobs they can assign to a single epoch, are relatively una�ected

by the value of J . HYBRID(1), which combines BUDDY and HEURISTIC-EPOCH(1), falls somewhere in

between.

Figure 10 shows how overhead varies with number of nodes. Here the BUDDY-based algorithms o�er

clearly superior performance, as they enjoy a system with power of two numbers of jobs. The most noticeable

other feature in the �gures is the relatively regular oscillations of EQUI-EPOCH. These are caused by changes

4

All simulations were run to achieve a 90% con�dence interval no greater than 1% of the point estimate.
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Figure 9: Normalized Overhead versus Number of Jobs
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Figure 10: Normalized Overhead versus Number of Nodes
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in the prime factors of the number of nodes, which determine the possible number of jobs in each epoch

under this schedule. For example, the spike at N = 160 for load factor 100% results from sometimes placing

the �ve smallest jobs in the �rst epoch, leaving three to schedule (and so necessarily requiring two more

epochs). In these cases it would be better to allocate only four jobs to the �rst epoch, placing the remaining

jobs in a single epoch. This e�ect illustrates why the optimality of EQUI-EPOCH rests on N being a power

of two: a smaller remaining set of jobs does not necessarily dominate a larger set in the general case. As a

heuristic for general N and J , it is probably better to allocate in a greedy manner starting from the largest

jobs, as does HEURISTIC(k), rather than from the smallest, as does EQUI-EPOCH.
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Figure 11: Normalized Overhead versus Allowed Inequity (k)

Figure 11 illustrates the bene�t of allowing some inequity in allocation. The �gure makes clear that

increasing inequity, which increases the possibility that many jobs may be packed into a single epoch, is

bene�cial. It should be noted, however, that a major advantage in allowing inequity comes at k = 1, the

point at which an arbitrary number of jobs may in theory be loaded into a single epoch. This is illustrated in

the �gures by comparing the performance of policies that insist on equal allocation to those that allow some

inequity when J is not itself a power of two. For example, the large drop in overhead from EQUI-EPOCH to

HEURISTIC(1) for J = 7 and J = 15 results from HEURISTIC's advantage in loading arbitrary numbers

of jobs into epochs.
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5.2 Response Time

To compare the average response time under each of the policies, we used simulations in which there were

a �xed number of jobs: each time a job completed, another was started immediately. We used two job

classes, short jobs (requiring 400 time units of CPU service total) and long jobs (requiring 4000 CPU time

units). In each case, individual CPU service requirements were chosen from exponential distributions with

the appropriate means. A new job had equal probability of being placed in each class. Because the results

were not very sensitive to the length of the scheduling quantum, T , as long as T was smaller than the

duration of the smaller jobs, we used 10 time units for this quantity in all results shown.

We express response times relative to those achieved under the OPT-EPOCH(1) discipline. OPT-

EPOCH(1) was chosen as the basis for normalization because it is applicable to all values of J and N .

We divide our results into two sections, those pertaining to static applications and those pertaining to

dynamic applications. An application is static if it is unable to repartition its data and computation into

an arbitrary number of pieces from time to time during its execution. This is the common case in current

software. An application is dynamic if it can perform this repartitioning function.

This distinction between static and dynamic applications is captured by the speedup functions used

for them. Following [2], for dynamic applications we use a synthetic speedup function (taken from [3])

S

dynamic

(n) = (1 + �)n=(� + n). The jobs in our workloads choose speedup parameter � uniformly from

30 to 300, the range considered in [2]. For static partitioning jobs, we assume that the jobs have been

partitioned into N threads, so that they can make use of the full machine should it become available [9].

When n divides N , these jobs experience speedups equal to S

dynamic

(n). In general, though, their speedup

is degraded by the load imbalance induced by allocating their N threads on an arbitrary number n of nodes,

according to

S

static

(n) = S

dynamic

(n) � (

b

N

n

c

d

N

n

e

(n �N mod n) + (N mod n))=n

Figure 12 shows S

static

(n) and S

dynamic

(n) when N = 128.
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Figure 12: Workload Speedup Functions (N = 128)

5.2.1 Static Workloads

Figures 13-15 show the results obtained when jobs are unable to repartition dynamically. The overall

lesson is that the disciplines that provide equal allocation perform substantially better than those that allow
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inequities. Equal allocation implies that each job is given a number of nodes onto which its N threads can

be equally distributed, leading to high application e�ciency. The penalty of allowing unequal allocations

(and so allocations that do not necessarily evenly divide the number of threads of an individual application)

grows with increases in the allowed inequity, because of the increased possibility of making these unfortunate

decisions.
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Figure 13: Static Workloads: Relative Response Time versus Number of Jobs
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Figure 14: Static Workloads: Relative Response Time versus Number of Nodes

5.2.2 Dynamic Workloads

Figures 16-18 shows the results obtained when jobs can repartition dynamically. For these jobs, smaller

numbers of allocated nodes lead to improved e�ciencies in a monotonic way. In this case, policies that allow

unequal assignment are in general preferable, since they can more nearly allocate each job it's minimum

requirement. We note, however, that the range of di�erences among the policies for dynamic workloads is

much smaller than that observed for static workloads: almost all distinctions for the former are under 10%,

while for the latter the distinctions run as high as 90%.
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Figure 15: Static Workloads: Relative Response Time versus Allowed Inequity (k)
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The other lesson learned from these results is that absolute equality of service allocation is not required

to minimize response times. (See Figure 18.) While it has been shown that extreme inequality (running

only a subset of the jobs to completion) is detrimental to performance [2, 9], the potential disadvantage of

unequal service from our disciplines is outweighed by the smaller allocations (and thus higher e�ciencies)

possible with them. This result is compatible with those of [1], which showed that the penalty of FCFS

scheduling is substantially lower on multiprocessors than on sequential machines.
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Figure 16: Dynamic Workloads: Relative Response Time versus Number of Jobs
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Figure 17: Dynamic Workloads: Relative Response Time versus Number of Nodes

6 Summary

We have considered the problem of scheduling distributed memory parallel machines when jobs have memory

requirements that impose lower bounds on the number of nodes they may be allocated. Because there

is necessarily an element of time-sharing in this situation, we have looked for policies that minimize the

number of node reallocations required. We have proposed a number of speci�c policies that are optimal
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Figure 18: Dynamic Workloads: Relative Response Time versus Allowed Inequity (k)
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under restricted conditions, and a number of heuristics that are more 
exible and are guaranteed to �nd

schedules e�ciently.

In comparing the performance of our disciplines, we consider both jobs that can repartition their work

dynamically in response to changes in their node allocations and those that cannot. We observed that the

choice of discipline is strongly a�ected by this application characteristic.

We have also examined the extent to which equality of service is necessary to achieve good performance.

We found that the additional 
exibility a�orded the scheduler by the possibility of unequal allocations

outweighed the negative impact of the more FCFS-like nature of such allocations. (Although that same


exibility could work against the scheduler if it is unaware of the restrictions required in scheduling static

applications, this is not a comment on the fundamental impact of unequal service, but rather a re
ection of

this other factor involved in scheduling such workloads.)

While we have rejected the use of application supplied information, such as job duration or parallelism, in

making scheduling decisions, motivated in part by the fact that successful schedulers for sequential systems

have made a similar decision because of the di�culty of obtaining reliable information of this sort, it seems

reasonable that a policy implemented in practice should require jobs to classify themselves as static or

dynamic. This characteristic is certainly known to the application, and there would be little inducement to

misrepresent it. The scheduler could then apply di�erent decisions to the two classes, by combining the basic

approaches we have outlined here. Additionally, the advantages that would likely be enjoyed by dynamic

applications in such an environment would be an inducement to future applications to provide this function

(perhaps through the code emitted by the compiler and its runtime support), making dynamic applications

more common in the future. While it requires further work to de�ne precisely how such a hybrid scheduling

policy would operate, we believe that the advantages of dynamic node allocation over run to completion

policies make this a worthwhile endeavor.
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