
ZPL Language Reference Manual

�

Calvin Lin

Department of Computer Science and Engr., FR-35

University of Washington

Seattle, WA 98195

Version 0.2

January 16, 1995

�

This research was supported in part by ARPA Grant N00014-92-J-1824 and NSF Contract CDA-9211095

1

Contents

1 Introduction 5

2 Lexical Issues 5

2.1 Comments : 5

2.2 White Space : 5

2.3 Case-Sensitivity : 5

2.4 Tokens : 5

2.4.1 Identi�ers : 5

2.4.2 Keywords : 5

2.4.3 Constants : 5

2.4.4 Operators : 7

2.4.5 Separators : 7

3 Data Types 7

3.1 Base Types : 7

3.2 Enumerated Types : 7

3.3 Derived Types : 8

3.3.1 Records : 9

3.3.2 Parallel Arrays : 9

3.3.3 Indexed Arrays : 10

3.3.4 Unions : 10

3.4 Directions : 10

3.5 Regions : 10

3.5.1 Of Regions : 11

3.5.2 Region Scope Rules : 11

3.5.3 Restrictions on Regions : 12

3.5.4 Regions Lists : 12

3.5.5 Dynamic Regions : 14

3.6 Type Conversion : 15

3.7 Sequential vs. Parallel Variables : 15

4 Variables 15

4.1 Special Variables : 15

4.1.1 Con�g Variables : 15

4.1.2 \Index" Arrays : 16

4.2 Declarations : 16

4.2.1 Scope Rules : 16

4.2.2 Declaring Degenerate Dimensions : 17

4.2.3 Rank De�ned Arrays : 17

4.2.4 Implicit Storage for Parallel Variables : : : : : : : : : : : : : : : : : 18

4.2.5 Procedure Prototypes : 18

2

4.3 Initializing Variables : 19

5 Expressions and Operators 19

5.1 Logical Operators : 19

5.1.1 The At Operator : 19

5.2 Unary Operators : 19

5.2.1 Unary Plus and Minus : 19

5.2.2 Logical Negation : 21

5.2.3 Bitwise Complement : 21

5.3 Reductions and Scans : 21

5.4 Binary Operators : 22

5.4.1 Arithmetic Operators : 22

5.4.2 Shift Operators : 22

5.4.3 Relational Operators : 22

5.4.4 Bitwise Operators : 22

5.4.5 Logical Operators : 22

5.4.6 Mask Operators : 22

5.4.7 The Of Operator : 23

5.5 Procedure Calls : 24

5.6 L-Values : 24

6 Sequential and Parallel Variables 25

6.1 Operations on Whole Indexed Arrays. : 25

6.2 Promotion : 26

6.2.1 Parameter Promotion : 27

6.2.2 Procedure Promotion : 27

7 Statements 28

7.1 Assignment Statements : 28

7.2 Compound Statements : 29

7.2.1 Unconditional Control Flow : 29

7.2.2 Conditional Control Flow : 29

7.2.3 Iterative Control Flow : 31

7.2.4 Shattered Control Flow : 31

7.3 Wrap and Re
ect : 31

7.4 Input and Output : 34

7.4.1 Open and Close : 34

7.4.2 Read and Write : 34

7.4.3 Control Strings : 35

7.4.4 Customized I/O Routines : 35

7.4.5 Caveats : 36

3

8 Program Structure 37

8.1 The ZPL Module : 37

8.2 External Procedures : 38

9 The Compiler and Runtime System 38

9.1 Compiler Flags : 38

9.2 Runtime Flags : 39

A ZPL Syntax 40

4

1 Introduction

This document presents a complete description of the ZPL language. The language is

presented without motivation in a bottom-up fashion, starting with lexical elements and

then building upon these to introduce the ZPL data types, variables, expressions, and

statements. An extensive index is found at the end.

2 Lexical Issues

2.1 Comments

ZPL has two types of comments. Dashes (--) specify comments that continue to the end of

the line (unless the dashes appear in a string literal). Multiple line comments are bracketed

by /* and */ (unless these characters appear in a string literal).

2.2 White Space

All white space|blanks, tabs, newlines and linefeeds|are ignored except to separate to-

kens.

2.3 Case-Sensitivity

ZPL is case-sensitive.

2.4 Tokens

ZPL tokens fall into one of the following categories: identi�ers, keywords, constants, oper-

ators, and separators. Each category is described below.

2.4.1 Identi�ers

An identi�er is a programmer-de�ned name that consists of a sequence of letters, digits or

the underscore character () and begins with a letter. Identi�ers can be used to name new

data types, variables, record �elds, named constants, procedures, and program names.

2.4.2 Keywords

Table 1 lists the reserved words in ZPL that cannot be used as identi�ers.

2.4.3 Constants

Numeric constants are by default speci�ed in decimal units. Octal and hexadecimal con-

stants are speci�ed using a leading 0 and 0x (or 0X), respectively. Thus, the following are

equivalent: 15, 017, 0xf. Constants can be speci�ed to be a longint by using a trailing l

or L. Otherwise, their type is integer.

5

Table 1: Keywords in ZPL.

and array begin by char con�g

constant continue direction double do downto

else elsif end exit �le for

halt if integer longint of or

procedure program prototype read real record

re
ect region repeat return shortint string

then to type union unsigned until

var while with without wrap write

writeln

Floating point values can contain a decimal point (.) and an exponent (e or E). For

example, 0.001 and 1e-3 are equivalent. By default,
oating point constants are of type

real; a double is speci�ed by using a trailing l or L.

Character constants are delimited by single quotes. For example, the character a is

speci�ed by 'a'. A list of special characters is shown in Table 2.

Table 2: Special Characters in ZPL.

'nb' backspace

'nf' formfeed

'nh' hexadecimal escape sequence

'nn' newline

'no' octal escape sequence

'nr' carriage return

'nt' tab

'nv' vertical tab

'n0' end of string

'nn' backslash

Other ASCII characters can be speci�ed numerically by using the octal and hexadecimal

escape sequences to specify octal and hexadecimal bit sequences. For example, ' n x07'

speci�es the ASCII character whose numeric value is 7 in hexadecimal (this happens to be

the bell character).

String constants are delimited by double quotes ("). String constants may not span

multiple lines, but consecutive string constants are automatically concatenated by the com-

piler to represent a single long string constant. Thus, the following are equivalent:

"hello world"

6

"hello " "world".

Named Constants. Constants can be given a name. These are de�ned at the global

scope. See Section 8.1.

2.4.4 Operators

Table 5 lists the ZPL operators. These operators are described in Section 5.

2.4.5 Separators

The following symbols serve as token separators in ZPL.

: .. , ; .

The use of colons (:) is described in Section 4.2. When declaring variables, the colon

separates variable names from their types. The use of dots (..) and commas (,) is shown

in Sections 3.3.3 and 3.5. These dots separate the lower and upper bounds of an array

dimension, and the comma separates the items in a list of dimensions. The semicolon (;)

is a statement terminator: All ZPL statements end with a semicolon. Finally, Section 3.3.1

describes how the period (.) is used to specify �elds of a record variable.

3 Data Types

3.1 Base Types

Table 3 shows the base data types that are supported in ZPL. All of the base types except

file and string are considered to be arithmetic types. The arithmetic types all have C

equivalents, which is important when invoking external C procedures (see Section 8.2). The

integral types consist of all arithmetic types except for float and double.

The file data type is used to specify �le I/O (Section 7.4 describes �le I/O). Variables

of type file can be assigned to, passed to procedures as parameters, and returned from

procedures; they cannot be used as operands to any of the operators listed in Table 5 (see

page 20).

The string data type represents a sequence of characters. Variables of this type may

be assigned to, initialized as con�g parameters (Section 4.1.1 describes con�g parameters),

and passed to and returned from procedures.

3.2 Enumerated Types

An enumerated type is a user-de�ned set of integral values. Each element of an enumerated

type is given a unique identi�er (by the user) and a unique value. By default, the values

of an enumerated type are consecutive starting at 0. Thus, it is legal to iterate from one

element to another, as shown below.

7

Table 3: Base Types in ZPL (and their C equivalents).

char (char)

integer (int)

shortint (short)

longint (long)

unsigned char (unsigned char)

unsigned integer (unsigned int)

unsigned shortint (unsigned short)

unsigned longint (unsigned long)

real (
oat)

double (double)

�le

string (char *)

type fruit = (apple, banana, orange, mango);

var f : fruit;

for f := apple to orange do

. . .

end;

All operations that are legal on integral types are legal on enumerated types, except that

the value of an enumerated type is limited to the set of values speci�ed in the enumerated

type's declaration.

The values of speci�c elements of an enumerated type may be speci�ed in the type

declaration. The following declaration would start the values at 171 instead of 0.

type fruit = (apple=171, banana, orange, mango);

Any arbitrary integral expression can be used to de�ne values of enumerated types. These

expressions cannot refer to other values in the same set, so the following is illegal.

type fruit = (apple=171, banana=apple+2, orange, mango);

3.3 Derived Types

New data types can be constructed using records, parallel arrays, indexed arrays,

and unions.

8

Table 4: Derived Types in ZPL.

record

parallel array

indexed array

union

3.3.1 Records

Records provide a way to associate related data into a single data structure. A record

consists of one or more �elds that each have a name and a type. The type of a �eld may

be any base or derived type. The names must be unique within each record type, but each

record type de�nes a new lexical scope. A record can be declared as illustrated below:

type person = record

age : integer;

weight : integer;

end;

Individual �elds of a record are accessed using the dot operator (.):

var daphne : person;

daphne.age := 10;

Records can be assigned or passed as parameters to procedures as whole entities. When

records are passed as value parameters, only the top level �elds are copied.

3.3.2 Parallel Arrays

Parallel arrays are the primary means of specifying parallelism in ZPL. While the use of

this data type has sequential semantics, the compiler will distribute these for execution

on parallel machines. Parallel arrays are declared using regions (Regions are described in

Section 3.5.) and no explicit indexing is allowed. Instead, parallel arrays can be manipulated

as whole entities. All of the operators listed in Table 5 can be applied to parallel arrays;

these are described in more detail in Section 5. Parallel arrays may be arbitrarily composed

with indexed arrays and records, but they cannot be nested inside of other parallel arrays,

i.e., the elements of a parallel array cannot be a parallel array.

The rank of a parallel array is its number of dimensions. There is no limit on the number

of dimensions that a parallel array may have.

1

1

The current implementation of the compiler assumes no more than six dimensions.

9

3.3.3 Indexed Arrays

An indexed array is a sequential data type|its use can yield no parallelism. Indexed arrays

are identical to arrays in languages such as Pascal and Modula-2. They may be indexed

and their bounds must be known at compile time. In particular, their bounds may be

expressions that are known at compile time, so they may involve constants but not con�g

parameters (Section 4.1.1). The conversion of sequential variables to parallel variables is

discussed in Section 6.2.

Note that there is a distinction between nested indexed arrays and multi-dimensional

indexed arrays. They are declared di�erently and accessed di�erently. Below, a is a nested

indexed array and b is a multidimensional indexed array.

var a : array [1..10] of array [1..5] of real;

b : array [1..10, 1..5] of real;

a[1][5] := b[1,5];

3.3.4 Unions

Unions are similar to records except that memory is shared across the union's �elds. Indi-

vidual �elds are accessed using the . operator. Unions may not have parallel variables as

�elds.

2

3.4 Directions

Directions are vectors that have several uses in ZPL. They can be used to create new regions

(see Section 5.4.7), and they can be used to shift a parallel array reference (see Section 5.1.1).

An example of a de�nition for a direction of rank two is shown below:

direction east = [0, 1];

northeast = [-1,1];

Directions may be de�ned in terms of constants or expressions involving constants. Like

regions, directions are not �rst class objects. They cannot be modi�ed and cannot be passed

as parameters to procedures.

3.5 Regions

Regions are index sets that are used to de�ne parallel arrays and de�ne the domain for

parallel array operations. Regions can be de�ned as follows:

region R = [1..N, 1..M];

2

Unions are currently not supported by the compiler.

10

The bounds of a named region are speci�ed in terms of integral expressions involving only

constants and con�g variables.

Once de�ned, regions can be used to declare parallel arrays:

var A, B: [R] real;

I: [R] integer;

Regions are applied to statements to de�ne the domain over which the computation should

occur. The following use of the region [R] indicates that each element of B in the index set

R will be assigned to the corresponding element of A.

[R] A := B;

All parallel arrays in a statement must have storage for the indices of the region that applies

to it.

3.5.1 Of Regions

Regions can be de�ned relative to other regions using the of operator as shown below:

direction east = [0,1];

region R = [1..N, 1..M];

E = [east of R];

Note that [E] is also considered to be an \Of Region." Thus, the following two statements

are equivalent.

[east of R] wrap A;

[E] wrap A;

However, a subtle detail is that [E] and [east of R] di�er in their e�ects on memory

allocation. First, \raw" Of Regions, such as [east of R], are not used when determining

the data partitioning. This is consistent with the view that these regions serve primarily

to de�ne boundary conditions. By contrast, the indices in [E] are used to determine data

partitioning. Second, implicit storage is only de�ned for \raw" Of Regions, not for named

Of Regions.

[east of R] A := 0; -- initialize east boundary of A

[E] A := 0; -- identical to above statement

3.5.2 Region Scope Rules

With one exception, a statement that refers to a parallel array must have a region of the

same rank that applies to it. The exception is a procedure call that completely de�nes

the size and rank of its parallel parameters and explicitly speci�es regions for its statement

body. For example, the following invocation of procedure f does not require a region.

11

procedure f (X : [R] integer);

[R]

begin

. . .

end;

. . .

f(A); -- This statement does not require a region

Since a compound statement (see Section 7.2) is considered to be a statement, applying

a region to a compound statement is equivalent to applying the region to each individual

statement in the compound statement. This propagation of regions applies to all nested

compound statements, as well. In the example below the region [R] applies to every state-

ment.

[R] begin

A := B;

count := f(A);

if count>0 then

B := C;

end;

end;

The body of a procedure need not specify a region for every statement. In this case,

the region scope that exists at the procedure's call site is propagated into the body of

the procedure and applied to individual statements as needed. An example is shown in

Section 4.2.3. It is an error if no region scope of the proper rank is applied to the call site.

Regions do not a�ect control
ow (see Section 3.5.4). Regions can be viewed as provid-

ing index sets for expressions that require them. Thus, applying a region to a statement

that has no parallel variables has no e�ect. Furthermore, a statement may have multiple

regions of di�erent rank applied to it; this is needed for operations that involve operands of

di�erent rank (e.g. partial reductions and scans; see Section 5.3) and is sometimes useful

for compound statements.

3.5.3 Restrictions on Regions

Regions are not �rst class objects. They cannot be used with any operators other than with,

without, and of. They cannot be assigned to, and they cannot be passed as parameters to

procedures.

3.5.4 Regions Lists

Region lists provide a way to reduce code replication. The code below assigns the elements

of B to corresponding elements of A inside of both R and E.

12

[R][E] A := B;

The above code is semantically equivalent to the following:

[R] A := B;

[E] A := B;

Region Lists are applied to compound statements one statement at a time. So the following

two blocks of code are equivalent:

[R][E] begin

A := B;

A := 0;

end;

begin

[R] A := B;

[E] A := B;

[R] A := 0;

[E] A := 0;

end;

Note that a Region List has no e�ect if applied to a statement with no parallel variables,

and a Region List has no e�ect on a statement that already has a region of the proper

rank speci�ed. This last point is illustrated by the following two code fragments, which are

equivalent:

[R][E] begin

A := B;

[T] A := 0;

B := 1;

end;

begin

[R][E] A := B;

[T] A := 0;

[R][E] B := 1;

end;

Note the di�erence between a Region List and the use of multiple regions of di�erent

rank to a single statement:

13

region R = [1..N, 1..M];

V1, V2 = [1..N];

[R][E] A := B; -- Region List: replicates code

[R][V1] A := B; -- two regions of different rank: only

-- the appropriate region is used

When multiple regions are applied to a statement the regions must all have di�erent rank.

When a Region List is applied to a statement the regions must all have the same rank. It is

not legal to apply multiple Region Lists of di�erent rank to a statement; if this is desired,

multiple compound statements may be used:

[R][E] begin

[V1][V2] begin

-- statements...

end;

end;

3.5.5 Dynamic Regions

Dynamic regions are anonymous regions whose value need not be known until runtime. In

the example below, i and M are integers:

procedure f(i: integer);

begin

[i, 1..M] A := B; -- copy the i_th row of B to the i_th row of A

end;

The bounds of a dynamic region are �xed before its corresponding body of code is executed.

Thus, in the following procedure the dynamic region is set to the 3

rd

row of the index space

even though the variable i is modi�ed in the body of the code.

procedure g();

var i: integer;

begin

i := 3;

[i, 1..M]

begin

i := i+1; -- this does not affect the dynamic region

A := B; -- copy the 3_rd row of B to the 3_rd row of A

end;

end;

The bounds of a dynamic region can be arbitrary expressions that evaluate to integers. In

particular, region bounds cannot be parallel arrays, so the following is illegal:

14

var A : [R] integer;

. . .

[i, 1..A] B := C; -- illegal because A is a parallel array.

The of operator may not be used in conjunction with dynamic regions.

Dynamic regions incur somewhat higher cost than statically de�ned regions, so static

regions should used be whenever possible.

3.6 Type Conversion

Type equivalence in ZPL is by name equivalence, not structure equivalence.

ZPL follows the same type conversion rules as ANSI C. Generally speaking, smaller

values may be converted to larger ones, but assigning larger values to smaller values may

give unpredictable results. ZPL does not provide any facility for casting one data type to

another.

3.7 Sequential vs. Parallel Variables

A parallel variable is any data structure that contains a parallel array, for example, a parallel

array of records, or an indexed array of parallel arrays. A sequential variable is any data

structure that does not contain a parallel array. Similarly, a sequential statement in any

statement that makes no reference to parallel variables. As mentioned in Section 3.3.2,

parallel variables are distributed across multiple processes, and thus are the basic source of

parallelism. Sequential variables, on the other hand, are replicated across the processors,

but ZPL semantics guarantee that the multiple replicas are kept coherent. By convention

in this manual, all parallel variables have names that begin with an uppercase letter.

4 Variables

4.1 Special Variables

4.1.1 Con�g Variables

ZPL provides a special class of variables known as con�g variables, or con�g parameters.

These are essentially write-once variables that can be speci�ed at load time via command-

line parameters.

There are three ways to initialize con�g variables. They may be speci�ed at runtime by

using the -s
ag on the command line (see Section 9.2, they may be initialized in a �le by

using the -f
ag on the command line, or they may be given default values when they're

declared in the text of the program. The values speci�ed at the command line override any

other values, and those given in a �le override any of the default values. Con�g parameters

may be initialized in terms of expressions of constants or other con�g parameters.

15

4.1.2 \Index" Arrays

ZPL provides a set of special parallel arrays named IndexRMO, Index1, Index2, etc., These

are constants that are de�ned by the compiler and conformable with any region whose rank

is no greater than the index number (IndexRMO is conformable with any parallel variable).

The elements of IndexRMO are guaranteed to be unique for each index regardless of the

region that it is applied to. For the other \Index" Arrays, the value of each element of the

i

th

\Index" Array is the index of that element in the i

th

dimension.

A := Index1; -- assign row indices to each element of A

There are certain restrictions on the use of these parallel variables.

� \Index" Arrays cannot be modi�ed.

� The rank of \Index" Arrays must be de�ned by their context. In particular, they

cannot be used in I/O statements (see Section 7.4) unless additional context speci�es

their rank. For example, the following is legal because the array A de�nes the rank of

Index1: write(A+Index1); The following is not legal because there is no context to

indicate the rank of Index1: write(A, Index1);

4.2 Declarations

4.2.1 Scope Rules

Variables must be declared before they are used. Except for regions, which are dynamically

scoped, ZPL uses two-level lexical scoping: Variables may be declared at the global scope or

they may be declared within the scope of a procedure. Variables de�ned local to a procedure

hide any global variables of the same name.

Variables are de�ned with the keyword var:

var a : real; -- declaration of a sequential variable

A : [R] real; -- declaration of a parallel array

Multiple variables may be declared using the same type speci�er:

var X, Y : [R] real;

Nested structures are declared from left to right. The following declares an indexed array

of parallel arrays of real, that is, ten distinct parallel arrays of reals.

var B : array [1..10] of [R] real;

By contrast, the following declares a parallel variable where each element consists of ten

reals.

var C : [R] array [1..10] of real;

16

Finally, the following example shows a parallel array where each element is a record:

type complex = record

r : real;

z : real;

end;

var D : [R] complex; -- parallel array of complex records

4.2.2 Declaring Degenerate Dimensions

The above example shows how indexed arrays and parallel arrays are declared by specifying

upper and lower bounds for each dimension. A short-hand is provided for degenerate

dimensions that contain only a single index. The following two declarations are equivalent.

region east = [1..N, N..N]

East = [1..N, N];

This short-hand is legal for declaring indexed arrays, parallel arrays, or dynamic regions

(see Section 3.5.5).

4.2.3 Rank De�ned Arrays

At the global scope, parallel variables must be declared using regions, as shown above.

However, parallel variables that are local to a procedure can be de�ned using only their

rank. This gives the procedure the
exibility to accept parallel parameters of any region

of the appropriate rank. Below, the procedures Double and Swap are de�ned for two-

dimensional parallel arrays.

procedure Double (X : [2] real) : [2] real;

begin

return X * 2;

end;

procedure Swap (var X,Y : [2] real);

var Temp : [2] real;

begin

Temp := X;

X := Y;

Y := Temp;

end;

. . .

[east of R] Double(A);

17

[west of R] Double(A);

[R] Swap (A, B);

Note that there are two concepts at work here. First, a parameter that is rank-de�ned can

take any variable of the same rank as its actual parameters. Second, return values and local

parallel arrays assume the size of the region scope that is speci�ed at the call site.

4.2.4 Implicit Storage for Parallel Variables

Of Regions are viewed as boundary conditions, so storage is implicitly extended for parallel

arrays that are modi�ed in the context of an Of Regions. Implicit storage is only de�ned

for the base region, i.e., the region with which the parallel variable was declared, and only

for parallel variables that are modi�ed in the Of Region. Examples are shown below.

region R = [1..N, 1..N];

E = [east of R];

var A, B : [R] real;-- A and B declared to have the same base size

. . .

[east of R] A := 1.0; -- A's storage is implicitly extended to include

-- [east of R]

[E] B := 1.0; -- B's storage is implicitly extended.

Implicit storage is not used in determining the partitioning of a parallel variable.

Note that it is an error to reference a parallel variable outside of its de�ned storage.

Thus, the following is illegal.

var A, B : [R] real;

. . .

[east of R] A := 1.0; -- implicit storage defined for A

[R] A := B@east; -- error: no implicit storage defined for B

4.2.5 Procedure Prototypes

Before a procedure is invoked, it must either be de�ned or prototyped. A prototype is

a header that de�nes a procedure's parameter and return types. Procedure prototypes

are needed for de�ning mutually recursive procedures or for invoking external procedures

written in C (see Section 8.2.

18

4.3 Initializing Variables

Con�g variables must be initialized when they are declared. Variables other than con�g

variables must be initialized in the program text:

config var

N : integer = 100;

var

heat : real; -- cannot initialize heat in its declaration

...

heat := 1.0; -- initialize heat in the program text

5 Expressions and Operators

The set of ZPL operators is shown in Table 5 along with the associativity of each operator.

Operators with highest precedence are listed at the top of the table. Those with lowest

precedence are listed at the bottom. The @ operator has highest precedence because it

speci�es an l-valued expression (see Section 5.6). Unary operators have higher precedence

than the reduction and scan operators (which are can be either unary or binary operators),

and these in turn have higher precedence than the remaining binary operators.

5.1 Logical Operators

ZPL's logical operators apply to integral operands (see Section 3.1). Zero represents logical

false. Non-zero represents logical truth.

5.1.1 The At Operator

The At operator (@) takes two operands|a parallel variable and a direction|and results

a parallel variable of the same size and shape, but displaced from the original by the

direction vector. The parallel operand must have a legal l-value (see Section 5.6). The

resulting expression itself has an l-value and can be used wherever a parallel variable is

used. In particular, it can appear on either the lefthand side or righthand side of assignment

statements, and it can be passed as a parameter to procedures.

5.2 Unary Operators

5.2.1 Unary Plus and Minus

Unary plus (+) and unary minus (-) are pre�x operators that must be applied to arithmetic

operands. The type of the resulting expression is the type of the operand.

19

Table 5: Operators in ZPL.

At Operator (left associative)

@

Unary Operators (right associative)

+ - ! ~

Reductions and Scans (right associative)

+n *n maxn minn andn orn &n |n ^n

+nn *nn maxnn minnn andnn ornn &nn |nn ^nn

Binary Operators (left associative)

* / %

+ -

>> <<

> < >= <= = !=

& | ^

and or with without of

20

5.2.2 Logical Negation

The logical negation operator (!) applies to integral operands and evaluates to an integer

type.

5.2.3 Bitwise Complement

The bitwise complement operator (~) returns the one's complement of an integral operand.

5.3 Reductions and Scans

ZPL provides a set of reduction and scan operators that reduce a parallel variable to a

lower-dimensional object (perhaps a sequential value). A reduction applies an operator to

a parallel expression and produces a sequential expression. For example, the maximum

reduction maxn of a parallel expression evaluates to a sequential value that is the value of

the largest element of the parallel expression.

[R] s := max\ A; -- assign to s the largest value in A

These operators accept either one or two operands.

3

The reduce and scan operators

can be applied to arbitrary parallel expressions. An optional parameter that immediately

proceeds the operator is used to specify partial scans and reductions. For example, a

reduction across the �rst dimension produces a parallel expression that is the same shape

as the parallel operand but with its �rst dimension missing.

V := +\ [1] A; -- reduce the first dimension of A

A negative dimension indicates that the scan is to be performed in reverse order, i.e., from

the largest index to the smallest for the speci�ed dimension. (These dimension parameters

may be speci�ed for reduction operators, but the order of evaluation for reductions does

not produce any semantic di�erence.)

The scan operators compute the parallel pre�x of a parallel expression. Each element

is the reduction of the values that precede it. The order of \precedes" is, by default, row

major order. The order can be de�ned by the user by specifying the order of the dimensions

as optional parameters. For example, the following performs a scan in the opposite order

from the default.

A := +\\ [-2][-1] A; -- compute parallel prefix in reverse order

The && and || symbols are synonyms for and and or, respectively. These synonyms can

be used in reduce and scan operators, namely, &&n, &&nn, ||n, and ||nn.

3

Future implementations will allow a third operand to specify segmented scans.

21

5.4 Binary Operators

ZPL's binary operators are all in�x operators. When given parallel operands, binary oper-

ators are applied to corresponding elements of the two operands in an unde�ned order.

5.4.1 Arithmetic Operators

The arithmetic operators|addition (+), subtraction (-), multiplication (*), division (/) and

modulus (%)|accept arithmetic operands; the type of the resulting expression is the type

of the larger of the two operands (See Section 3.6 for type conversion rules). Multiplication,

division, and modulus have higher precedence than addition and subtraction.

The modulus operator must be applied to integral operands. It returns the remainder

of the left operand divided by the right operand. When applied to integral operands, the

division operator returns the quotient of the two operands.

5.4.2 Shift Operators

The shift operators|bitwise-right-shift (>>), and bitwise left shift (<<)|apply only to in-

tegral operands. The details of sign extension are machine-dependent and are de�ned by

the target machine's C compiler. These operations are unde�ned if the second operand is

negative.

5.4.3 Relational Operators

The relational operators|equality (=), inequality (!=), greater-than (>), less-than (<),

greater-than-or-equal-to (>=), and less-than-or-equal-to (<=)|compare two arithmetic oper-

ands, returning an integral value.

5.4.4 Bitwise Operators

The bitwise operators|bitwise-exclusive-or (^), bitwise-and (&), and bitwise-or (|)|apply

logical operators to corresponding bits of two integral operands.

5.4.5 Logical Operators

The logical operators|and (and) and or (or)|can be applied to arithmetic operands. And

returns 1 if both operands are non-zero, and 0 if either operand is zero. Or returns 1 if

either operand is non-zero, and 0 if both operands are zero. The precedence of and is higher

than that of or. && and || are synonyms for and and or, respectively.

5.4.6 Mask Operators

A mask is a region expression that speci�es an index set based on the value of a parallel

operand. The with operator produces an index set that is the intersection of the region

and the true elements (non-zero) of the parallel operand. The without operator intersects

22

with the false elements of the parallel operand. The following code fragment shows how a

Red-Black SOR program could be written using masks.

var Mask : [R] integer;

. . .

-- set mask to checkerboard pattern

Mask := ((Index1 % 2) and (Index2 % 2) or

!(Index1 % 2) and !(Index2 % 2));

[R with Mask] Sor(A);

[R without Mask] Sor(A);

The with and without operators can take one or two operands. The mask operand must

always be speci�ed, but the region may be omitted, in which case the existing region scope

is used to compute the intersection. Thus, the following two statements are equivalent.

[R] begin

[with Mask] Sor(A);

[without Mask] Sor(A);

end;

begin

[R with Mask] Sor(A);

[R without Mask] Sor(A);

end;

The mask operand must be a parallel variable with an l-value (see Section 5.6). This

restriction simply prevents the use of complicated expressions as the mask operand.

5.4.7 The Of Operator

The Of operator takes two operands|a region and a direction|and evaluates to a new

region that is adjacent to the original region. The relative position of the new region is

determined by the signs of the components of the direction vector, and the size of the new

region is determined by circumscribing a box around the direction as shown in Figure 1.

Mathematically, if vector v = (v

1

; v

2

; :::v

n

) and

region R = (l

1

; u

1

)� (l

2

; u

2

)� :::� (l

n

; u

n

),

[v of R] de�nes an array of size v

0

1

� v

0

2

� :::� v

0

n

,

where v

0

i

=j v

i

j if v

i

6= 0;

or

v

0

i

= u

i

� l

i

+ 1 if v

i

= 0:

23

[R]NE2 = [−2,2]

SE2 = [2, 2]

east2 = [0, 2]

[SE2 of R]

[east2 of R]

[NE2 of R]

Figure 1: Illustration of \Of" Regions.

This array is located such that it is adjacent to R at (r

1

; r

2

; :::r

n

),

where r

i

= l

i

if v

i

< 0

or

r

i

= u

i

if v

i

> 0:

In other words, if v

i

< 0, the upper bound of the Of array is the lower bound of the

i

th

dimension. If v

i

> 0, the lower bound of the Of array is the upper bound of the i

th

dimension.

5.5 Procedure Calls

By default, parameters in ZPL are passed by value, which means that any modi�cations

to the formal parameter do not a�ect the actual parameter. Note that this may be ex-

pensive because parameters may have to be copied to preserve \call-by-value" semantics.

Parameters can be passed by reference by pre�xing the var keyword to the formal param-

eter declaration, in which case any modi�cations to a formal parameter will also a�ect its

corresponding actual parameter. Below, the �rst parameter is passed by reference and the

second is passed by value.

procedure p (var A: [R] real; B: [R] real);

When nested data structures are passed by value, only the top-level is copied. For example,

if a record is passed by value, the record itself is copied but its sub�elds are not.

Recursion is allowed.

5.6 L-Values

Certain expressions refer to a user-de�ned data object and are said to have l-values. Such

expressions can appear anywhere that a simple variable name can be used. In particular,

such expressions can appear on the lefthand side of assignment statements. In addition, if

a formal parameter is passed by reference, its corresponding actual parameter must have

an l-value. Both of these cases require l-values because they specify the modi�cation of a

memory location.

24

An expression has an l-value if it is the name of a variable or if it is uses only the

following constructs: indices ([]), record �elds (.), and Ats (@).

6 Sequential and Parallel Variables

This section describes additional features of indexed arrays that are particularly useful

when indexed arrays are components of parallel variables. This section also explains how

sequential variables can interact with parallel variables through promotion.

6.1 Operations on Whole Indexed Arrays.

A limited set of aggregate operations are provided for indexed arrays that allows them to

be manipulated as whole entities. These are the assignment statements (see Table 6) and

the binary operators (see Section 5.4). For example, the following is legal:

var a, b : array [1..10, 1..5] of real;

c : real;

a := b; -- aggregate assignment allowed for indexed arrays

Unlike parallel arrays, whole indexed arrays cannot appear as operands to reduction or scan

operators, cannot be promoted (see Section 6.2) and do not result in shattered control
ow

(see Section 7.2.4). However, whole indexed arrays can be used in the wrap and reflect

statements (Section 7.3 describes wrap and reflect) if these indexed arrays appear in

parallel variables. This rule may seem strange, but it makes sense because wrap and reflect

are special forms of the assignment statement. The restriction that the indexed arrays

appear inside a parallel variable is needed because wrap and reflect specify operations on

\Of Regions," and regions have no e�ect on purely sequential statements (see Section 3.7).

Note that a single element of an indexed array can be speci�ed or an entire indexed

array can be speci�ed, but there is no way to specify a sub-portion of an indexed array.

This \all or nothing" rule applies to each individual indexed array, and is illustrated below

using the following declarations:

type array1 = array[1..10] of integer;

array2 = array[1..5] of array1;

var a, b : array1;

c : array2;

a := b; -- all elements of 'a' and 'b' specified

c[1] := a; -- one element of 'c' and all of 'a' specified

A more complicated example is shown below using the following declarations:

25

direction east = [0,1];

region R = [1..N, 1..N];

var a, b : array [6..10] of [R] array [1..5] of real;

The following two statements manipulate an indexed array of parallel arrays of indexed

arrays as a single entity.

a := b;

a@east := b@east;

The statement below speci�es the entire outermost indexed array but only a single element

of the inner indexed array; this is possible because the use of the @ operator explicitly

di�erentiates the indices of the outer indexed array from those of the inner nested array.

a@east[1] := b@east[1];

In the absence of such a disambiguating symbol, the indices are bound beginning from the

outermost indexed array. Thus, the following two statements specify a single element of the

outer array and all of the inner array.

a[10] := b[10];

a[10]@east := b[10]@east;

6.2 Promotion

Sequential and parallel expressions interact through promotion. In the following example

the sequential variable 1.0 is logically promoted to be a parallel array of the same size as

A.

A := 1.0; -- promote 1.0 to a parallel array

Similarly, the return value of a procedure can be promoted by assigning it to a parallel

variable:

var A : [R] real;

s : real;

procedure abs(x: real) : real;

begin

if x<0 then

return -x;

else

return x;

end;

26

. . .

A := abs(s); -- promote the value returned by abs()

It is illegal to modify a promoted sequential variable.

s := A; -- illegal promotion of s

6.2.1 Parameter Promotion

Parameters may be promoted by passing in a sequential actual where a parallel formal

is expected. This is analogous to the above case where a sequential was promoted in an

assignment statement. It is an error to promote a sequential parameter that is modi�ed in

the body of the procedure and is passed by reference.

6.2.2 Procedure Promotion

Procedures can be promoted by passing in parallel parameters where sequential parameters

are expected. The procedure is logically applied to each element of its parallel parameters.

procedure abs (x : real) : real;

begin

if x < 0 then

return -x;

else

return x;

end;

. . .

[R] A := abs(A); -- promote the abs() procedure

The remainder of this section explains two restrictions on the promotion of procedures:

Procedures that refer (directly or indirectly) to parallel procedures cannot be promoted; and

procedures with side e�ects cannot be promoted.

Only sequential procedures|those procedures whose bodies do not refer to any parallel

variables|can be promoted. Procedures that refer to a parallel variable are known as

parallel procedures. Note that a procedure that invokes a parallel procedure is itself a parallel

procedure, and note that all I/O procedures are considered to be parallel procedures. The

following code fragment shows an illegal attempt to promote a parallel procedure.

procedure Scale (X : [R] real, factor: integer) : [R] real;

begin

return X * factor;

27

end;

. . .

[R] A := Scale (A, B); -- illegal promotion of a parallel procedure

Procedures with side e�ects should not be promoted because the order in which the

procedure is applied to the elements of the parallel parameters is not well-de�ned. To

understand this, consider the following promoted procedure.

procedure copy (var a, b: real);

begin

a := b;

end;

. . .

[R] copy (A, A@east); -- dangerous use of promotion

The above procedure is applied to corresponding elements of A and A@east in the region

[R]. However, because the procedure is applied to its parameters in an unspeci�ed order,

the results are unpredictable. By contrast, the following parallel procedure has well de�ned

semantics because the right hand side of the statement is guaranteed to be evaluated before

it is assigned to the left hand side (see Section 7.1).

procedure Copy (var A, B: [2] real);

begin

A := B;

end;

. . .

[R] Copy (A, A@east);

7 Statements

ZPL statements are executed sequentially. Logically, a statement does not begin execution

until the previous one completes.

7.1 Assignment Statements

Table 6 shows the ZPL assignment statements. The right hand side of an assignment

statement is evaluated before it is assigned to the left hand side. The operator-assignment

statements, such as A += B, are shorthand for A := A + B;

28

Table 6: Assignment Statements in ZPL.

:=

+=

*=

-=

/=

%=

<<=

>>=

&=

|=

^=

7.2 Compound Statements

A ZPL statement may consist of a compound statement. The keywords begin and end

are used to form a compound statement from a group of statements; and any regions that

apply to this compound statement apply to each of the individual statements. The other

types of compound statements are shown in Table 7, where the square brackets represent

an optional item, and the square brackets followed by an asterisk represent zero or more

instances of an item.

7.2.1 Unconditional Control Flow

There are four statements that specify unconditional control
ow: halt, continue, exit,

return. The halt statement stops program execution. The continue and exit statements

are used in iterative control constructs. The former skips to the next iteration of the nearest

enclosing loop and the latter exits the nearest enclosing loop. Finally, the return statement

terminates a procedure call and returns control to the calling procedure. For procedures

with return values, return is followed by an expression that is the return value.

7.2.2 Conditional Control Flow

The if statement evaluates its conditional expression and executes the then statements if

the conditional is true. If the conditional evaluates to false, the optional elsif clause (of

which there may be any number) is tested and executed. If none of these clauses evaluates

to true, the optional else statements are executed.

29

Table 7: Compound Statements in ZPL.

begin

statements;

end;

if expression then

statements;

[elsif expression then

statements;]�

[else

statements;]

end;

for index := initial to �nal [by step] do

statements;

end;

for index := initial downto �nal [by step] do

statements;

end;

while expression do

statements;

end;

repeat

statements;

until expression;

30

7.2.3 Iterative Control Flow

The for, while and repeat statements specify iteration. The for statement's index variable

is initialized to initial and is compared against the �nal value before each iteration. The

for...to statement increments the value of the index variable by one after each iteration

and terminates when the value of index is greater than �nal. The for...downto statement

decrements the value of the index variable by one after each iteration and terminates when

the value of index is less than �nal. The optional step expression speci�es the amount of

the increment or decrement; step must be an integral expression that is greater than zero

(negative or zero values of step can lead to in�nite loops). It is legal to modify the index

value inside the body of the statement.

The while statement evaluates its conditional expression before each iteration of its loop

body. The loop terminates when the expression evaluates to false. The repeat statement

is similiar to the while except it evaluates its conditional expression at the end of each

iteration.

7.2.4 Shattered Control Flow

The statements described earlier in this section have all provided a single thread of control

in that a single statement executes at a time. ZPL also has the notion of shattered control

ow: When a parallel expression is used in the conditional of a compound statement, the

control
ow is said to shatter and each index value has its own thread of control. Shattered

control
ow is analogous to an anonymous sequential procedure that is promoted by passing

parallel variables as parameters.

Certain restrictions are placed on shattered control
ow to guarantee that when control

ow shatters, the results are predictable and meaningful.

� Sequential variables cannot be modi�ed inside shattered control
ow. This would be

analogous to promoting a sequential procedure that has side e�ects.

� Each thread may only refer to parallel elements with the same index. Thus, the use

of @, wrap, reflect, reductions and scans is illegal.

� Parallel variables of only a single rank can be used inside shattered control
ow.

Note that shattered control
ow still provides sequential semantics. Nested shattered control

ow is allowed, but they must all have the same rank. The \Index" Arrays, such as Index1

and IndexRMO, are allowed in shattered control
ow.

7.3 Wrap and Re
ect

ZPL's wrap and reflect statements are used to initialize periodic and mirrored boundary

conditions, respectively. The example below initializes the parallel array A in the region

[east of R] by re
ecting the values in [R] across the boundary between [east of R]

and [R].

31

Reflect about
east boundary of R

[R] A

Wrap around
east boundary of R

[R] A [east of R] A[east of R] A

Figure 2: The Re
ect and Wrap Operators.

direction east = [0, 1];

region R = [1..N, 1..N];

var A : [R] real;

[east of R] reflect A;

[east of R] wrap A, B;

The wrap statement is similar to reflect except it copies data from the western columns

of R as if the region were connected as a torus. (See Figure 2.)

The operands to wrap and reflect must be parallel variables. The boundary between

the source and destination regions must be well de�ned, so these statements must have an

Of Region applied to them. Note that a named region that is de�ned using Of is itself

considered an Of Region. If an Of Region is a de�ned in terms of some other Of Region, as

shown below, the boundary used by wrap and reflect is de�ned by the outermost Of, in

this case the boundary between [E] and [EE]. (See Figure 3.)

region E = [east of R];

EE = [east of E];

[EE] reflect A;

Since wrap and reflect are forms of assignment statements, they implicitly de�ne

storage for their operands when used in Of Regions, as explained in Section 4.2.4.

Note that wrap and reflect may be applied to operands involving @'s, so the following

is legal:

[east of R] reflect X@west;

32

[E] [EE][R]

Reflect about boundary
 between E and EE

Figure 3: Re
ect for Nested Of Regions.

[east of R] A [east of R] A@west [east of R] reflect A@west

Figure 4: Illustration of Re
ect Applied to Operands with @'s.

33

In this case [east of R] X@west is the target of the re
ect, and the source is the data

re
ect across the boundary between [east of R] and [R] shifted west. This is illustrated

in Figure 4.

7.4 Input and Output

ZPL provides basic facilities to open and close �les, to read from and write to �les, and to

customize I/O for parallel data structures.

7.4.1 Open and Close

Before a �le is accessed it must be opened using the open() statement, and after the last

access the �le is closed using close(). The open() routine takes two parameters. The �rst

is a string that gives the name of the �le to open. The second is a string that speci�es

the mode of access: "r" for read, "w" for write, and "a" for append. If successful, open()

returns a file variable that can be used to access the �le as described in the next subsection.

If unsuccessful, open() returns 0.

The following example shows how a �le is opened for reading.

var f : file;

. . .

f := open ("input", "r"); -- open file for reading

The close() procedure takes a file parameter that was obtained from open().

7.4.2 Read and Write

ZPL's read and write statements are used to transfer typed variables to and from �les.

The read and write statements have the following syntax, where �le is an optional file

parameter and exprls is an arbitrary list of expressions.

read ([�le,] exprls);

write ([�le,] exprls);

writeln([�le,] exprls);

The file parameter speci�es the �le to access. If this parameter is not speci�ed, input

comes from stdin and output goes to stdout (stdin and stdout are always open and

never need to be closed). For read(), the list of expressions is a list of variables to read

into. For write(), the list of expressions is a list of variables to write. These expressions

may be either sequential or parallel variables. If any are parallel variables a region must

apply to the statement to specify the portions of the parallel variable to read or write.

The writeln() procedure is identical to write() except it writes a newline character after

writing its expression list.

34

var f : file;

i : integer;

A : [R] real;

. . .

read(f, i); -- read an integer into variable i

[R] read(f, A); -- read a parallel of reals into variable A

close (f); -- close the file

The read(); and write(); statements take a variable number of expressions, so the above

two read(); statements could have been written as one:

[R] read(f, i, A); -- equivalent to the two reads() above

Parallel variables are serialized when they are written to a �le. Thus, the �le contains a

sequence of elements and all region structure is lost. This means that if a parallel is written

to �le using one region and is then read from the �le using a subset of that region, the

values that are read will not correspond to those in the subregion of the original parallel

variable. Similarly, care must be taken when applying masked regions to I/O statements

(Section 5.4.6 describes masks).

7.4.3 Control Strings

The format of each expression may be controlled using a control string that precedes the

expression and is separated by a colon (:). These control strings use the same structure as

the control strings in C printf() routines. For example, the following speci�es that each

element of the parallel array A will be printed to 5 decimal places.

[north of R] write("The north boundary contains ", "%.5f": A);

Note that the control string applies to each element of the parallel array. Thus, the following

statement di�ers from the above in that the following will print "The north boundary

contains" once for each element in [north of R], whereas the above statement will print

the string just once.

[north of R] write("The north boundary contains %.5f": A);

Control strings also may be applied to sequential expressions. The colons are used strictly

to separate control strings from expressions, so each colon must follow a string and precede

an expression.

7.4.4 Customized I/O Routines

There are two restrictions on reading and writing parallel variables that can be corrected

by using customized I/O routines. First, parallel variables are by default read or written

35

one element at a time; customized I/O routines provide a way to print these two �elds

side by side. Second, these routines provide a way to print derived data types as a single

expression.

For example, if People is a parallel array of records, the following statement will �rst

write all of the name �elds followed by all of the age �elds.

[R] write(People.name, People.age);

A customized I/O routine is a procedure that speci�es how to print a single element of a

parallel variable. Once bound to a parallel variable using bind write func(), subsequent

I/O calls will use the user-supplied procedure to print each element of the parallel variable

. Thus, the following will cause the name and age �elds to be printed side by side:

procedure Write_Person(outfile: file; var p: person);

begin

write(outfile, p.name, p.age);

end;

. . .

bind_write_func(People, Write_Person);

[R] writeln(People);

The �rst parameter to bind write func() is a file parameter. The second parameter is

one element of the parallel variable. This must be a var parameter but must not be modi�ed

inside the procedure body.

The customized print routine can be unbound using unbind write func() with the

parallel variable's name as a parameter:

unbind_write_func(People);

A pair of analogous routines, bind read func() and unbind read func(), are supplied for

reading parallel variables.

7.4.5 Caveats

Customized I/O routines can only be bound to parallel variables, that is, a single identi�er

that contains no array indexing, no record �eld names, and no @'s. For example, A is a legal

variable name but A.x is not.

I/O statements are considered to be parallel procedures because the multiple processes

must coordinate to print expressions|both sequential and parallel|in a coherent manner.

Thus, it is illegal to promote read(), write(), or writeln(). This is illustrated below:

var A : [R] real;

procedure print_real (var a: real);

36

begin

write(a);

end;

. . .

print_real(A); -- illegal promotion of a parallel procedure

8 Program Structure

A ZPL program consists of the following items, which will be discussed in turn.

� a single ZPL module containing all ZPL source code

� C �les that will be linked in

� object �les that will be linked in

� external libraries that will be linked in

8.1 The ZPL Module

The ZPL compiler does not currently support separate compilation, so all ZPL code must

reside in a single �le (�les may be included using the C pre-processor|see Section 9.1), but

the compiler sees a single source �le). The ZPL source �le has the following syntax.

program Identi�er;

Declarations

Procedures

The program's name, Identi�er, must be a legal ZPL identi�er (see Section 2.4.1). Declara-

tions represents the set of globally de�ned con�g variables, constants, types and variables,

as well as the program's directions and regions, which can only be de�ned at the global

level. Declarations consist of any number of the following items in any order, where curly

braces indicate an item that may be repeated zero or more times.

config var Identi�er:Type = Expression;

fIdenti�er:Type = Expression;g

constant Identi�er:Type = Expression;

fIdenti�er:Type = Expression;g

type Identi�er = Type;

fIdenti�er = Type;g

37

direction Identi�er = [Vector];

fIdenti�er = [Vector];g

region Identi�er = [DimensionList];

fIdenti�er = [DimensionList];g

var Identi�erList:Type;

fIdenti�erList:Type;g

Procedures represent procedure declarations and procedure prototypes. The general form

of a procedure body is shown below. A procedure prototype consists of just the Procedure-

Header.

procedure Identi�er (f fvarg Identi�erList: Typeg) f: Type g;

LocalVars

Statement

The local variables (LocalVars) of a procedure have the same form as the global variable

declarations shown above, and the body is simply a ZPL statement (typically a compound

statement using the begin and end construct).

One procedure must have the same name as the program name. This procedure is the

program's entry point.

8.2 External Procedures

ZPL programs can invoke procedures written in C and other languages that use the same

procedure call interface and object �le format.

Because C allows data types that are not found in ZPL, two special data types are

provided exclusively for declaring prototypes of external C procedures: procedure and

region. These data types allow procedures and regions to be passed as parameters to C

procedures.

ZPL programs treats sequential and parallel C procedures di�erently. Sequential pro-

cedures are treated just as sequential ZPL procedures. Thus, they can be promoted and

any regions or masked regions will correctly apply to them. Any external procedure that is

declared to accept parallel variables is considered to be a parallel procedure. Regions and

masked regions have no e�ect on external parallel procedures. The assumption being that if

an external procedure expects a parallel parameter, that procedure will itself be managing

parallelism.

9 The Compiler and Runtime System

9.1 Compiler Flags

The ZPL compiler produces object C �les along with a Make�le for compiling the result-

ing C code and linking them in with the machine-speci�c libraries. The machine-speci�c

38

executable can be created by simply typing make in the proper directory. The current ZPL

compiler, zpl, supports the following
ags.

-a Enables e�cient access to parallel arrays. Program execution

time will decrease while code size will increase.

-c Enables optimized communication insertion algorithm. Both execution

time and code size will decrease.

-f<�le> Speci�es the ZPL source �le.

-h Displays this message.

-i Reduces code size by not inlining communication code.

-n Disables the C pre-processor. By default, the ZPL input �le is passed

through cpp before it is passed to the ZPL compiler.

-p<pass-�le> Speci�es the pass �le that determines the order in which the compiler's

passes are invoked. Defaults to pass.default.

-v Displays version information and quits.

-I<path> Adds the speci�ed include path during object code compilation, where

object code refers to the C code produced by the ZPL compiler.

-L<path> Adds the speci�ed library during object code compilation.

-l<library> Links in the speci�ed library during object code compilation.

User-written C �les and object �les (�les using the Unix .o format) can be also be

speci�ed at the command line when compiling a ZPL program. These C �les an object �les

are included in the automatically generated Make�le. See the on-line documentation for

further details on using the compiler and compiling the object C �les.

9.2 Runtime Flags

The following
ags can be supplied at runtime to the executable ZPL program. The -p,

r and c
ags specify the processor mesh con�guration. If only the -p
ag is speci�ed, a

default mesh con�guration is used that is made as square as possible. If any two of these

three
ags are speci�ed, the mesh will be con�gured as de�ned by the user.

The -s
ag is used to set the value of con�g parameters.

-c<number> Speci�es the number of columns of processors to use.

-f<�le> Speci�es a �le from which to initialize con�g variables.

-p<number> Speci�es the number of processors to use.

-r<number> Speci�es the number of rows of processors to use.

-s<var>=<value> Initializes the value of a con�g variable.

39

A ZPL Syntax

Key: { foo } foo may be repeated one (1) or more times

{{ foo }} foo may be omitted

foo-LIST stands for a comma-separated list of one or more foo's.

foo-ID is an identifier (ID) that is semantically a foo.

Note that "[" and "]" are literals.

PROGRAM: program ID; { DEFINITION }

DEFINITION: direction { ID = [INTEGER-LIST]; }

| type { ID = TYPE; }

| region { ID = REGIONDEF; }

| var { ID-LIST : TYPE; }

| config var { ID-LIST : TYPE = INIT; }

| constant { ID-LIST : TYPE = INIT; }

| prototype ID ({{ FORMALS }}) {{ : TYPE }} ; -- procedure prototype

| procedure ID ({{ FORMALS }}) {{ : TYPE }} ;

{{ var { ID-LIST : TYPE; } }} -- local vars

STMT

TYPE: integer | unsigned integer

| char | unsigned char

| shortint | unsigned shortint

| longint | unsigned longint

| real

| double

| TYPE-ID

| (ID-LIST) -- enumerated type

| array [DIMENSION-LIST] of TYPE -- indexed array

| record { ID-LIST : TYPE; } end -- record

| union { ID-LIST : TYPE; } end -- union (variant record)

| REGION TYPE -- array

| [integer] TYPE -- rank-defined array

DIMENSION: EXPR .. EXPR

| EXPR -- allows [1, 1..M]

INIT: EXPR

| [INIT-LIST]

REGION: [REGION-ID]

| [DIRECTION-ID of REGION-ID]

REGIONDEF: [DIMENSION-LIST]

| { REGION }

MASK: [{{REGION-ID}} with VARIABLE-ID]

| [{{REGION-ID}} without VARIABLE-ID]

40

FORMALS: -- a semicolon-separated list of one (1) or more FORMAL's

FORMAL: {{ var }} ID-LIST : TYPE

UN_OP: one of: + - ~ !

BIN_OP: one of: + - * / % << >> < <= > >= = != & | ^ and && or ||

ASSIGN_OP: one of: := += -= *= /= %= <<= >>= &= ^= |=

SCAN_OP: one of: +\\ *\\ min\\ max\\ and\\ &&\\ or\\ ||\\ &\\ |\\ ^\\

REDUCE_OP: one of: +\ *\ min\ max\ and\ &&\ or\ ||\ &\ |\ ^\

PRIMARY: VARIABLE-ID

| INTEGER-CONSTANT

| REAL-CONSTANT

| CHARACTER-CONSTANT -- e.g. 'c'

| { STRING-CONSTANT } -- strings concatenated

| (EXPR)

| PROCEDURE-ID ({{ EXPR-LIST }}) -- procedure call

| PRIMARY [EXPR-LIST] -- indexed array

| PRIMARY @ DIRECTION-ID -- At operator

EXPR: PRIMARY

| UN_OP EXPR

| EXPR BIN_OP EXPR

| SCAN_OP {{ [INTEGER-LIST] }} EXPR -- []'s are for partial scans

| REDUCE_OP {{ [INTEGER-LIST] }} EXPR -- scans and reduces

STMT: REGION-LIST STMT -- region specification

| MASK STMT -- region with mask

| begin {STMT} end;

| PRIMARY ASSIGN_OP EXPR;

| PROCEDURE-ID ({{ EXPR-LIST }}); -- procedure call

| if EXPR then {STMT} {{ { elsif EXPR then {STMT} } }}

{{ else {STMT} }} end;

| while EXPR do {STMT} end;

| repeat {STMT} until EXPR;

| for ID := EXPR to EXPR {{ by EXPR }} do {STMT} end;

| for ID := EXPR downto EXPR {{ by EXPR }} do {STMT} end;

| exit; -- exit block

| continue; -- go to next loop iteration

| halt; -- stop program

| return {{ EXPR }} ;

| ; -- null statement

| wrap ID-LIST;

| reflect ID-LIST;

| read (EXPR-LIST);

| write (EXPR-LIST);

| writeln ({{EXPR-LIST}});

There are a few white lies to make this more readable: an extraneous comma is ignored at the end of INIT

lists and enumerated type lists; enumerated type ID's may be given a value, e.g. "(R=2,G=4,B=8)"; and "+4"

is a legal integer when defining directions or specifying which dimensions to scan/reduce.

41

Index

\Index" Arrays 16

arithmetic operators, binary 22

arithmetic types 7

at operator 19

base types 7

binary operators, arithmetic 22

binary operators, bitwise 22

binary operators, logical 22

binary operators, relational 22

binary operators, shift 22

bind read func() 36

bind write func() 36

bitwise complement 21

bitwise operators, binary 22

bitwise operators, unary 21

calling C procedures 38

case-sensitivity 5

character constants 6

close() 34

comments 5

compiler
ags 38

compiling ZPL programs 38

conditional control
ow 29

con�g parameters 15

con�g variables 15

constants, character 6

constants, named 7

constants, numeric 5

continue 29

control
ow, conditional 29

control
ow, iterative 31

control
ow, shattered 31

control strings 35

customized I/O 35

degenerate dimensions 17

derived types 8

directions 10

dynamic regions 14

enumerated types 7

exit 29

external procedures 38

external procedures, parallel 38

external procedures, sequential 38

false 19

�le data type 7

�le I/O 34

for statement 31

formatted I/O 35

halt 29

I/O, common problems 36

identi�er 5

if statement 29

implicit storage 18

indexed array 10

indexed arrays, operation on whole 25

IndexRMO 16

input from �le 34

integer division 22

integral types 7

iterative control
ow 31

l-values 24

list of regions 12

logical negation 21

logical operators 19

logical operators, binary 22

logical operators, unary 21

masked regions 22

masks 22

named constants 7

numeric constants 5

of operator 23

42

Of Regions 11

open() 34

operators 7

operators, unary 19

output to �le 34

parallel array 9

parallel external procedures 38

parallel procedures 27

parallel variable, de�nition of 15

parallel variables, implicit storage 18

parallel vs. sequential variables 15

parameter promotion 27

procedure calls 24

procedure promotion 27

procedure prototypes 18

procedures, external 38

procedures, parallel 27

procedures, sequential 27

program structure 37

promotion 26

rank 9

rank-de�ned arrays 17

read() 34

records 9

recursion 24

reduction operators 21

regions 10

regions, scope rules 11

relational operators, binary 22

repeat statement 31

return 29

runtime
ags 39

scan operators 21

scope rules 15, 16

sequential external procedures 38

sequential procedure 27

sequential procedures 27

sequential statement 15

sequential variable, de�nition of 15

sequential vs. parallel variables 15

shattered control
ow 31

shift operators 22

string data type 7

tokens 5

true 19

type conversion 15

unary minus 19

unary operators 19

unary plus 19

unbind read func() 36

unbind write func() 36

unions 10

variable initialization 19

variables, sequential vs. parallel 15

while statement 31

white space 5

with 22

without 22

write() 34

writeln() 34

43

