
Optimal One-Way Sorting on a One-Dimensional Sub-Bus Array

�

James D. Fix

y

Richard E. Ladner

z

Abstract

The problem of sorting on a one-dimensional sub-bus array

of processors is addressed. A one-dimensional sub-bus array

has a bus connecting the processors which can be segmented

into sub-buses on which an active processor can broadcast.

The sub-bus broadcast capability is implemented on the

MasPar MP-1 and MP-2 parallel computers. The sub-bus

broadcast operation makes possible a new class of parallel

sorting algorithms which can be characterized by parallel

insertion steps. We restrict our attention to the class of

sorting methods where parallel insertion steps are in the

same direction, say left. For this class of one-way sorting

strategies we prove a lower bound and give two strategies,

the left greedy sort and the left adaptive insertion sort, both

of which achieve the lower bound. Because our parallel

insertion model is quite general, it is not necessarily the

case that a sorting strategy in the model can be e�ciently

implemented on a real sub-bus array of processors. The left

greedy sort cannot be e�ciently implemented, but the left

adaptive insertion sort can be e�ciently implemented. The

two sorting strategies have di�erent properties and each is

interesting in its own right.

1 Introduction

Sorting is a fundamental problem in computation. It

has been well studied in many forms (see Knuth [4],

for example) and occurs as a sub-problem of a vari-

ety of algorithms and applications. For many applica-

tions, sorting problem sizes are large enough to warrant

the need for e�cient sorting algorithms for massively

parallel machines. A popular architecture for parallel

computers is the two-dimensional array or mesh of pro-

cessors such as the MasPar MP-1 and MP-2 [1], and

the Intel Paragon. The problem of sorting on a mesh

of processors has been well studied [5, 6, 7]. However,

most of the sorting techniques for meshes assume that a

processor can only communicate with its nearest neigh-

bors. However, modern mesh computers, such as the

MasPar MP-1 and MP-2 allow for broadcast along rows

and columns. Moreover, any bus connecting a row or

column can be broken up into sub-buses allowing so-

�

This paper appears in the Sixth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, January 1995. It is available as a

University of Washington, Department of Computer Science and

Engineering Technical Report, TR 94-11-01.

y

Department of Computer Science and Engineering, University

of Washington, Seattle, WA 98195, �x@cs.washington.edu. Fix's

research was supported by an Osberg Family Trust Fellowship.

z

Department of Computer Science and Engineering, University

of Washington, Seattle, WA 98195, ladner@cs.washington.edu.

Ladner's research was supported by NSF grant no. CCR-9108314.

called segmented broadcasts. This paper addresses the

question of whether or not the sub-bus capability gives

rise to better sorting algorithms than are possible on the

standard mesh of processors which only allows nearest

neighbor communication.

A basic building block of most two-dimensional

mesh sorting algorithms is the one-dimensional algo-

rithm called odd-even transposition sort described in

Leighton's book [5]. Odd-even transposition sort resem-

bles a parallel \bubble sort". It involves successively

comparing and exchanging values between odd/even

neighbors and even/odd neighbors until the values are

in order. Odd-even transposition sorts any input in ex-

actly d or d + 1 compare-exchange steps, where d is

the maximum distance a value must travel to its des-

tination. This is a tight bound since d mesh commu-

nication steps are necessary to transmit this value to

its �nal destination. This bound no longer holds in

the one-dimensional sub-bus model as can be seen by

the following example. Consider the data 2; 3; :::; n; 1

stored in processors 1; 2; 3; :::; n, respectively. The stan-

dard odd-even transposition sort takes n� 1 or n steps

to sort the data. However, a single left broadcast by

processor n to all the other processors can inform each

one to the left to shift its data one processor to the

right and inform processor 1 to accept the data from

processor n. Thus, sorting this data array can be done

in constant time on a one-dimensional sub-bus array of

processors.

2 Summary of Results

In this paper we focus on one-dimensional sub-bus

sorting algorithms in which broadcasts of a distance

greater than one are in just one direction, say left. We

call these algorithms one-way sorting strategies. We

begin by introducing a simple abstract model called

the parallel insertion model to model one-dimensional,

in-place, comparison based, sorting strategies

1

. A left

insertion step in the parallel insertion model resembles

a set of simultaneous insertion sort steps. A left-only

1

A strategy is more general than an algorithm. A strategy to

sort a data array is simply a sequence of allowable steps which

sorts the array. The sequence may or may not be described by an

algorithm.

1

2 James D. Fix and Richard E. Ladner

sorting strategy is one that only uses left insertion steps.

We show that that the number of steps required

to sort using a left-only sorting strategy is at least

the maximum distance a data value is from its �nal

destination for those values which are left of their �nal

destinations. We show that if all permutations of the

data are equally likely then the expected number of

steps required to sort is n�

p

�n

2

+

2

3

��(n

�

1

2

) where

n is the number of processors in the array.

We introduce the left greedy sorting strategy which

always sorts in the minimum number of left insertion

steps. The left greedy sorting strategy has the inter-

esting property that each step in the strategy removes

the maximum number of inversions possible by any left

insertion step. Unfortunately, the left greedy sorting

strategy is not e�ciently implementable on a real sub-

bus array.

Finally, we introduce the left adaptive insertion

sorting strategy which is also optimal, but can be

implemented e�ciently on a real sub-bus array. In the

context of the parallel insertion model, the left adaptive

insertion sort meets our goal of �nding an algorithm

which is as good as odd-even transposition sort on all

inputs and outperforms it on some inputs. Our lower

bound on the expected number of steps for left-only

sorting strategies indicates that the advantage of left

adaptive insertion sort over odd-even transposition sort

is quite small on average.

In summary, we introduce a new realistic model

for sorting. For an interesting subclass of sorting

strategies in the model, the one-way sorting strategies,

we demonstrate lower bounds and prove the optimality

of several interesting sorting strategies. We brie
y

describe some preliminary results on two-way sorting

strategies.

3 The Parallel Insertion Model

We begin by de�ning a simple abstract model for

sub-bus sorting, which we call the parallel insertion

model, for one-dimensional, in-place, comparison sub-

bus sorting. In the parallel insertion model the data

to be sorted is represented by a permutation � of

f1; 2; :::; ng where n is the number of processors. The

data value �[i] is stored at processor i and � is sorted

if �[i] = i for 1 � i � n. A left insertion step � is

de�ned by a set of active processors A

�

� f0; 1; 2; :::; ng,

where 0 is always a member of A

�

2

. The permutation

�(�) is de�ned to be the permutation which is the

result of moving the data values �[i + 1]; :::; �[j � 1]

to the processors i + 2; i + 3; :::; j, respectively, and

2

We add 0 as a dummy active processor and assume �[0] = �1

This makes the de�nitions and proofs go through more smoothly.

�

2 3

�

1

�

4 8 9

�

5 6 7

+

�(�)

1 2 3 4 5 8 9 6 7

Figure 1: Data movement in a left insertion step �

applied to � where A

�

= f0; 3; 4;7g

value �[j] to processor i + 1 for every pair i; j of

consecutive active processors. To be more precise, let

A

�

= fi

0

; i

1

; i

2

; : : : ; i

k

g with 0 = i

0

< i

1

< i

2

< : : : <

i

k

. The result of the left insertion step � applied to �

is the permutation �(�) where

�(�)[i] =

8

<

:

�[i

j

] if i = i

j�1

+ 1 and 1 � j � k

�[i� 1] if i � 1 2 A

�

and i� 1 < i

k

�[i] if i 2 A

�

and i > i

k

:

Figure 1 illustrates a left insertion with active processors

0, 3, 4, and 7. Notice that since consecutive processors

3 and 4 are both active, the value of 4 does not move.

A left-only sorting strategy for � is a sequence

�

1

; �

2

; :::�

T

where � = �

0

, for 1 � i � T , �

i

=

�

i

(�

i�1

), and �

T

is sorted. The left-only sorting

strategy �

1

; �

2

; :::�

T

sorts � in T steps.

In a symmetric way we can de�ne right insertion

steps and right-only sorting strategies. A more general

sorting strategy is a two-way sorting strategy which

allows both left and right insertion steps. In this paper

we focus on left-only sorting strategies because there are

interesting examples of such sorting strategies which

can be shown to be optimal. In section 9 we return

to two-way sorting strategies, giving some preliminary

empirical and theoretical results.

4 Lower Bounds

Left-only sorting strategies are limited by the fact that

an value which is left of its �nal position can move at

most one position to the right per left insertion step.

Let 1 � x � n and � be a permutation of f1; 2; : : : ; ng.

Suppose i is the location of the value x in �, so x = �[i].

Then we de�ne dist

L

(x; �) = maxf0; x� ig. Since the

�nal destination of x is processor x, dist

L

(x; �) is the

distance in � of x from it �nal destination if x is to the

left of its �nal destination. Otherwise, dist

L

(x; �) =

0. De�ne maxdist

L

(�) = max

x

dist

L

(x; �), that is

maxdist

L

(�) is the maximum distance left to its �nal

destination of any value in �.

We observe that � is sorted if and only if

maxdist

L

(�) = 0. Clearly, if � is sorted then

Optimal One-Way Sub-Bus Sorting 3

maxdist

L

(�) = 0. If � is not sorted then let x be as

large as possible such that �[x] 6= x. Let �[i] = x Since

�[j] = j for all j > x then i < x. Thus,

maxdist

L

(�) � dist

L

(x; �) = maxf0; x� ig = x� i > 0:

Our �rst theorem is an elementary lower bound on

left-only sorting strategies:

Theorem 4.1. If �

1

; �

2

; : : :�

T

is a left-only sorting

strategy for �, then T � maxdist

L

(�).

Proof. This follows from the observation that if

� is unsorted and � is left insertion step then

maxdist

L

(�(�)) � maxdist

L

(�)� 1. 2

We de�ne E(n) to be the expected value of

maxdist

L

(�) where each permutation � of f1; 2; :::ng is

equally likely. We have the following theorem:

Theorem 4.2. The expected value of maxdist

L

(�)

is

E(n) = n �

1

n!

n

X

k=0

k!k

n�k

:

Proof. De�ne m

k

(n) to be the number of permuta-

tions � of f1; 2; :::; ng such that maxdist

L

(�) � k. The

function m

k

can be expressed recursively as follows:

m

k

(n) =

�

n! if n � k + 1

(k + 1)m

k

(n� 1) if n > k + 1

To see the case where n > k + 1, there are k + 1

distinct i's which can be chosen such that �[i] = n and

dist

L

(n; �) � k. Once i is chosen such that �[i] = n and

dist

L

(n; �) � k then the number of ways to choose the

remaining components of the permutation � satisfying

maxdist

L

(�) � k is simply m

k

(n � 1). Unwinding the

recursion we obtain m

k

(n) = (k + 1)!(k + 1)

n�k�1

for

n � k + 1. We calculate:

E(n) =

1

n!

n�1

X

k=1

k[m

k

(n)�m

k�1

(n)]

=

1

n!

[nm

n�1

(n)�

n�1

X

k=0

m

k

(n)]

= n �

1

n!

n�1

X

k=0

(k + 1)!(k + 1)

n�k�1

= n �

1

n!

n

X

k=0

k!k

n�k

:

2

As it happens, the expression

1

n!

P

n

k=0

k!k

n�k

can

be approximated very closely as

p

�n

2

+

2

3

��(n

�

1

2

) (cf.

Knuth Vol. 1, pages 112-117 [3]). Combining this fact

with the previous two theorems we have:

�

1

�

2

�

4 5 3

�

6

�

7

�

9 8

�

+

(�)

1 2 3 4 5 6 7 8 9

Figure 2: Data movement in a left greedy step.

Theorem 4.3. The expected number of steps in

any left-only sorting strategy is at least

n �

r

�n

2

+

2

3

� �(n

�

1

2

):

Thus, the advantage of a left-only sorting strategy

over odd-even transposition sort can only be slight.

Nonetheless, it is interesting to see if optimality for left-

only sorting strategies can be achieved.

5 The Left Greedy Sorting Strategy

A natural approach for devising sorting strategies on

the sub-bus is to try to maximize the sorting work per-

formed at each step. The left greedy sorting strategy was

designed to maximize the number of inversions removed

by a step. The set of inversions in a permutation � is

de�ned as the set of out-of-order value pairs, I(�) =

f(x; y) j x = �[i]; y = �[j] where i < j and x > yg. The

set of inversions and the number of inversions of a per-

mutation are useful measures of order within a permuta-

tion, and have been applied to the analysis of sequential

sorting [4]. The only permutation with no inversions is

the sorted permutation. De�ne the left greedy step for

� as a left insertion step where the set of active proces-

sors is G

L

(�) = fi j for all j > i; �[j] > �[i]g [f0g.

An example of the action of a left greedy step can be

seen in Figure 2. The values at active processors form

an increasing sequence from left to right, as prescribed

by the active set de�nition.

An important property of a left greedy step is that

it never creates any new inversions. This is stated in

the following lemma.

Lemma 5.1. Let � be a permutation,
 be a left-

greedy step for �. If i 2 G

L

(�) and
(�)[j] = �[i], then

for all j � k < i, �[i] < �[k].

Proof. Let i 2 G

L

(�) and
(�)[j] = �[i], and

suppose the lemma were false. There is a maximal k

with j � k < i and �[i] > �[k]. Then for all l with

k < l < i, we know that �[l] > �[i] > �[k] by our choice

of k. Also, since i 2 G

L

(�) we know that for all l > i,

�[l] > �[i] as well. Hence, �[l] > �[i] for all l > i. As

4 James D. Fix and Richard E. Ladner

a consequence k 2 G

L

(�). This is impossible because

(�)[j] = �[i] implies j > k. 2

Our next theorem demonstrates that a left greedy

step truly exhibits greedy behavior.

Theorem 5.1. Let
 be the left greedy step for �.

For all possible left insertion steps � for �, jI(
(�))j �

jI(�(�))j.

Proof. Let ! be a left broadcast step with the

property that for all left broadcast steps �, jI(!(�))j �

jI(�(�))j and among those with the property A

!

is

as large a set as possible. We will demonstrate that

G

L

(�) = A

!

which implies the result.

Claim 1: n 2 A

!

.

Suppose n 62 A

!

. Choose i to be the largest

member of A

!

. De�ne left insertion step � by the active

set A

�

= A

!

[fi + 1; i + 2; : : : ; ng. It follows that

�(�) = !(�) but A

�

has more more members than A

!

,

which contradicts our choice of !.

Claim 2: G

L

(�) � A

!

.

Suppose otherwise, then choose i to be as large as

possible such that i 2 G

L

(�)�A

!

. Let A

�

= A

!

[fig.

That is, we form the new left insertion step � from !

by adding i as an active processor. By the previous

claim i 6= n and n 2 A

!

. Choose j to be as small

as possible such that j > i and j 2 A

!

. Since

i 2 G

L

(�) we must have �[i] < �[j]. Thus, we have

(�[j]; �[i]) 2 I(!(�)) � I(�(�)). On the other hand, by

the reasoning in the proof of lemma 5.1 making i active

in � will not introduce any inversions than ! does not

already introduce. Thus, jI(�(�))j < jI(!(�))j, which

is impossible.

Claim 3: A

!

� G

L

(�)

Suppose otherwise, then choose i to be as large as

possible such that i 2 A

!

�G

L

(�). Let A

�

= A

!

� fig.

That is, we form the new left insertion step � from !

by deleting i as an active processor. Since n 2 G

L

(�),

i 6= n. Choose j to be as small as possible such that

j > i and j 2 G

L

(�). By the previous claim and the

choice of j, j is also the smallest member of A

!

larger

than i. We have 0 2 G

L

(�), so choose k < i to be as

large as possible such that k 2 G

L

(�). By the previous

claim k 2 A

!

. Thus, by lemma 5.1, no new inversions

are created by removing i from A

!

, that is, I(�(�)) �

I(!(�)). On the other hand, the removal of i from A

!

means that the inversion (�[i]; �[j]) 2 I(!(�))�I(�(�)).

Thus, jI(�(�))j < jI(!(�))j, which is impossible. 2

The left greedy sorting strategy for � is the left-only

sorting strategy for � where each insertion step is left

greedy. The left greedy sorting strategy is an optimal

left-only sorting strategy as evidenced by the following

theorem.

Theorem 5.2. Let � be a permutation and

1

;

2

; : : :

T

be the left greedy sorting strategy for �.

Then T = maxdist

L

(�).

Proof. Let � be a permutation and

1

;

2

; : : :

T

be

the left greedy sorting strategy for �. By the lower

bound theorem, to prove optimality we have to show

T � maxdist

L

(�). To do this we simply have to

show that each left adaptive insertion step reduces the

maximum distance left of values in � by one. That is,

for 1 � i � T , maxdist

L

(�

i

) = maxdist

L

(�

i�1

) � 1,

where �

0

= � and �

i

=

i

(�

i�1

). This follows from

lemma 5.2 below. 2

Lemma 5.2. Let � be an unsorted permutation and

 be the greedy step for �. Then maxdist

L

(
(�)) =

maxdist

L

(�) � 1.

Proof. The proof of the lemma is done by two

claims. The �rst claim states that if the value at any

inactive processor is left of its �nal destination then it

moves one processor closer to its �nal destination as the

result of the left adaptive insertion step. The second

claim states that the value at any active processor is at

or to the right of its �nal destination.

The following formalizes these claims. Let i be a

processor with x = �[i].

Claim 1: If i 62 G

L

(�) then either dist

L

(x;
(�)) =

dist

L

(x; �) = 0 or dist

L

(x;
(�)) = dist

L

(x; �)� 1.

Suppose i 62 G

L

(�). Since n 2 G

L

(�), choose j as

small as possible such that j > i and j 2 G

L

(�). By

de�nition of left broadcast steps,
(�)[i + 1] = x. If

dist

L

(x; �) = 0 then x� i � 0, so x� i� 1 < 0. Hence,

dist

L

(x;
(�)) = maxf0; x�i�1g = 0. If dist

L

(x; �) > 0

we have x � i > 0, so x � i � 1 � 0. It follows that

dist

L

(x;
(�)) = maxf0; x� i � 1g = dist

L

(x; �)� 1.

Claim 2: If i 2 G

L

(�) then dist

L

(x;
(�)) =

dist

L

(x; �) = 0.

Suppose i 2 G

L

(�). Then for all j > i we have

x < �[j]. Let
(�)[k] = x, so k is the new location of

x after step
. By lemma 5.1, for all j with k < j � i,

(�)[j] = �[j � 1] > x. Also, for all j > i, there is some

l > i with
(�)[j] = �[l] > x. That is, all the values

in positions greater than i in � stay in positions greater

than i in
(�). Thus, for all j > k,
(�)[j] > x. There

are n� k values larger than x, so x � n� (n � k) = k

which means dist

L

(x;
(�)) = maxf0; x� kg = 0.

Conclusion of the proof of lemma 5.2: Having

established these claims, the lemma follows easily:

maxdist

L

(
(�)) = max

x

dist

L

(x;
(�))

= maxfdist

L

(x;
(�)) j x = �[i]

with i 62 G

L

(�)g

= maxdist

L

(�)� 1

The �rst equality follows from the de�nition of

Optimal One-Way Sub-Bus Sorting 5

maxdist

L

, the second equality from claim 2, and the

last equality from claim 1. 2

6 The Left Adaptive Insertion Sorting Strategy

From the standpoint of the parallel insertion model the

left greedy sorting strategy is as good as any left-only

sorting strategy. Unfortunately, it is not always the case

that a sorting strategy for the parallel insertion model

can be implemented e�ciently on a real machine. In

order to implement a sorting strategy e�ciently there

must be a way for processors to quickly determine if they

are active or inactive. In the left greedy sorting strategy,

each processor has to determine if its value is smaller

than the value at all higher numbered processors. This

task could be performed by a parallel su�x minimum

operation, but such an operation requires logn steps on

the one-dimensional sub-bus mesh [2]. A logarithmic

number of sub-bus steps per left insertion step implies

that the left-only greedy algorithm is unsuitable for

practice.

We have discovered an optimal left-only sorting

strategy, the left adaptive insertion sorting strategy,

which is implementable in a constant number of sub-

bus operations per left insertion step. The description

of which processors are active in a left adaptive insertion

step is fairly complicated, but a left adaptive insertion

step can be implemented on a real sub-bus array in

roughly the same complexity as a step in the odd-even

transposition sort.

Determining the active processors in a left adaptive

insertion step for � is a two step process. First, we

de�ne the pre-active set of processors P

L

(�) to be

P

L

(�) = fi j �[i � 1] > �[i] and �[i] < �[i+ 1]g

where 1 � i � n and the boundary values �[0] = �1

and �[n+1] =1. Making only the pre-active processors

active is not enough to ensure a sorting step where

no inversions are introduced. Figure 3a illustrates a

situation in which inversions would be created by a left

insertion step with only the pre-active processors being

active. The broadcasts of 3 and 8 are broadcast as far

left as possible, creating inversions. To correct this,

we extend the active set in the obvious way: given a

permutation �, de�ne the blocking set of processors

B

L

(�) = fi j for some j > i; j 2 P

L

(�); �[i] < �[j];

and for i � l < j; l 62 P

L

(�)g

The additional active processors simply insure that a

broadcast value does not create any inversions. As we

shall see in the proof of lemma 7.1, claim 3, the blocking

processors within a segment bounded by two pre-active

processors always form a contiguous block at the left

1 2 4 5 3

�

6 7 9 8

�

+

3 1 2 4 5 8 6 7 9

(a)

1

�

2

�

4 5 3

�

6

�

7

�

9 8

�

+

3 1 2 4 5 6 7 8 9

(b)

Figure 3: (a) Inversions created by left insertion step

with active set P

L

(�). (b) Corrected left insertion step

with additional active processors B

L

(�).

end of the segment. These blocking processors block

the broadcast of larger values to their right. Figure

3b illustrates the previous example with the proper

blocking processors. The 3 and the 8 are blocked by the

values of 2 and 7, respectively, and this is the behavior

we desire.

The left adaptive insertion step for � is a left

insertion step whose set of active processors is the

combined set A

L

(�) = P

L

(�) [B

L

(�) [f0g. The

left adaptive insertion sorting strategy for � is the left-

only sorting strategy where each insertion step is a left

adaptive insertion step. Figure 4 shows the left adaptive

insertion for a sample permutation.

To see that left adaptive insertion sort is e�ciently

implementable, �rst note that a processor can determine

if it is pre-active using a left and right nearest neighbor

communication. For a processor to determine if it

blocking, each pre-active processor broadcasts its value

to the left. A processor is blocking if it is not pre-active

and the value it observes from a pre-active processor is

larger than its own.

7 Optimality of Left Adaptive Insertion Sort

We now prove the optimality of the left adaptive inser-

tion sort as stated in the theorem below.

Theorem 7.1. Let � be a permutation and

�

1

; �

2

; : : :�

T

be the left adaptive insertion sorting strat-

egy for �. Then T = maxdist

L

(�).

6 James D. Fix and Richard E. Ladner

4 2

�

6 8 3 1

�

5

�

9 7

�

+

2 4 1

�

6 8 3

�

5 7 9

+

1

�

2

�

4 3

�

6 8 5

�

7 9

+

1

�

2

�

3

�

4

�

5

�

6

�

8 7

�

9

+

1 2 3 4 5 6 7 8 9

Figure 4: left adaptive insertion sort

Proof. Let � be a permutation and �

1

; �

2

; : : :�

T

be the left adaptive insertion sorting strategy for �. By

the lower bound theorem, to prove optimality we have

to show T � maxdist

L

(�). To do this we simply have

to show that each left adaptive insertion step reduces

the maximum distance left of values in � by one. That

is, for 1 � i � T , maxdist

L

(�

i

) = maxdist

L

(�

i�1

) � 1,

where �

0

= � and �

i

= �

i

(�

i�1

). This follows from

lemma 7.1 below. 2

Lemma 7.1. Let � be an unsorted permutation and

� be the left adaptive insertion step for �. Then

maxdist

L

(�(�)) = maxdist

L

(�) � 1.

Proof. The proof of the lemma is done by a series of

three claims. The �rst claim states that if the value at

any inactive processor is left of its �nal destination then

it moves one processor closer to its �nal destination as

the result of the left adaptive insertion step. The second

claim states that the value at a pre-active processor

after the left adaptive insertion step is never further left

of its �nal destination than the value at some inactive

processor. The third claim states that the value at a

blocking processor after the left adaptive insertion step

is never further left of its �nal destination than the value

at some pre-active processor. The cascading e�ect of

these three claims is that the maximim distance left of

the values must decrease by one as a result of the left

adaptive insertion step.

The following formalizes these claims. Let i be a

processor with x = �[i].

�

�
�

y

j

. .

x

�

i

.

x

.

y

+

�(�)

x

j

y

. .

�

i

.

x

.

y

Figure 5: Data movement of x and y with left adaptive

insertion step � described in Claim 2.

Claim 1: If i 62 A

L

(�) then dist

L

(x; �(�)) =

dist

L

(x; �) = 0 or dist

L

(x; �(�)) = dist

L

(x; �)� 1.

Suppose i 62 A

L

(�). There are two cases: there is a

j 2 A

L

(�) with j > i or for all l > i we have l 62 A

L

(�).

Case 1. Let j 2 A

L

(�) with j > i and for i < l < j,

l 62 A

L

(�). By the de�nition of left insertion steps we

have �(�)[i + 1] = x. Thus, either dist

L

(x; �(�)) =

dist

L

(x; �) = 0 or dist

L

(x; �(�)) = dist

L

(x; �)� 1.

Case 2. Suppose that for all l > i we have

l 62 A

L

(�). It must be the case that for i � l < n,

�[l] < �[l + 1]. Otherwise, there is a maximal l with

i � l < n and �[l] > �[l + 1]. If l + 1 = n we have

l 2 P

L

(�). If l + 1 < n then �[l + 1] < �[l + 2] by our

choice of l, so l 2 P

L

(�). But l 62 P

L

(�), so we have a

contradiction. Hence, for i � l < n, �[l] < �[l + 1].

Since there are no active processors right of i,

�(�)[i] = x and dist

L

(x; �) = dist

L

(x; �(�)). There are

at least n�i values greater than x, so x � n�(n�i) = i.

Thus, dist

L

(x; �(�)) = 0.

Claim 2: If i 2 P

L

(�) then there is a j 62 A

L

(�)

with y = �[j] and dist

L

(x; �(�)) � dist

L

(y; �(�)).

Suppose i 2 P

L

(�). Let �(�)[j] = x. Since

i 2 P

L

(�), �[i� 1] > �[i]. Hence i � 1 62 P

L

(�). Thus,

j < i and j 62 P

L

(�).

Let y = �[j]. It must be true that y > x, otherwise

j 2 B

L

(�), so y � x + 1. Note that �(�)[j + 1] = y so

we have

dist

L

(x; �(�)) = maxf0; x� jg

= maxf0; (x+ 1)� (j + 1)g

� maxf0; y � (j + 1)g

= dist

L

(y; �(�)):

Therefore, Claim 2 follows with this choice of j 62 A

L

(�).

Claim 2 is illustrated in Figure 5. For x to be farther

left of its destination than y, x would have to be greater

than y. But x < y instead so x's distance left is bounded

by the left distance of y.

Claim 3: If i 2 B

L

(�) then there is a j 2 P

L

(�)

with y = �[j] and dist

L

(x; �(�)) � dist

L

(y; �(�)).

Optimal One-Way Sub-Bus Sorting 7

This is the most di�cult proof and requires an in-

duction on contiguous sequences of blocking processors.

Suppose i 2 B

L

(�). By de�nition of B

L

(�) there is a

j 2 P

L

(�) such that y = �[j] > x and for i � l < j,

l 62 P

L

(�).

Let �(�)[k] = y. We know that k 6= j, otherwise

j � 1 2 A

L

(�). This cannot be since this would imply

that �[j � 1] < �[j] and j 62 P

L

(�).

Thus, for y to move to processor k < j with step

�, we must have k 62 A

L

(�) and k � 1 2 A

L

(�). In

fact, k � 1 2 B

L

(�) by the de�nition of j. We show by

induction on k � l that if i � l � k � 1, then l 2 B

L

(�)

and �[l] < �[l + 1]:

Basis: l = k � 1. From above we know that

k � 1 2 B

L

(�). Thus, �[k � 1] < y. Since k 62 B

L

(�),

we know that �[k] > y, so �[k� 1] < �[k].

Inductive Step: Assume that l 2 B

L

(�), �[l] <

�[l + 1] and that i < l � k � 1. We know that

�[l � 1] < �[l], otherwise l 2 P

L

(�). By the de�nition

of B

L

(�), �[l] < y, so �[l � 1] < y. We know that

l� 1 62 P

L

(�) by de�nition of j, so it must be true that

l � 1 2 B

L

(�).

So for all l with i � l < k, we have �[l] < �[l + 1].

Since �[k�1]< y we can say that x = �[i] � y� (k� i).

Also, we know that x = �[i] < �[i + 1]. So for i > 1

it must be true that �[i � 1] < �[i] = x, otherwise

i 2 P

L

(�). It follows that i � 1 2 A

L

(�). Therefore,

whether i = 1 or i > 1, we have �(�)[i] = x.

We can now �nish the proof of the �nal case:

dist

L

(x; �(�)) = maxf0; x� ig

= maxf0; (x+ k � i) � kg

� maxf0; y � kg

= dist

L

(y; �(�)):

The inequality step above follows because x+k� i � y.

So there exists a j 2 P

L

(�) with y = �[j] whose distance

left is at least as large as x's in �(�).

This case is shown in Figure 6. The situation is

very similar to that shown in Figure 5 for the previous

case, except for the run of blocking actives between i

and k. This extra distance left is balanced by the fact

that x � y� (k� i), giving a bound on dist

L

(x; �(�)).

Conclusion of the proof of lemma 7.1: Having

established these three claims, the lemma follows easily:

maxdist

L

(�(�)) = max

x

dist

L

(x; �(�))

= maxfdist

L

(x; �(�)) j x = �[i]

with i 2 P

L

(�) or i 62 A

L

(�)g

= maxfdist

L

(x; �(�)) j x = �[i]

with i 62 A

L

(�)g

= maxdist

L

(�) � 1

�

�
�

x

i

�

.

�

k

.

y

�

j

.

x

.

y

+

�(�)

x

j

.

y

k

.

j

.

x

.

y

Figure 6: Data movement of x and y with left adaptive

insertion step � described in Claim 3.

The �rst equality follows from the de�nition of

maxdist

L

, the second equality follows from claim 3, the

third equality from claim 2, and the last equality from

claim 1. Thus, the maximum distance left of the permu-

tation decreases by one with each application of a left

adaptive insertion step. 2

8 Implementing Sorting Strategies

In this section we give more detail on how one-

dimensional sorting strategies can be implemented on

a real sub-bus mesh computer such as a MasPar MP-1

or MP-2. In the process we will compare the well under-

stood odd-even transposition sort and the left adaptive

insertion sort.

There are n processors numbered 1 to n which are

linked together by a single segmentable communication

bus. For simplicity we adopt the single instruction

multiple data (SIMD) computing model. Thus, there is

a front-end processor which synchronously broadcasts

parallel instructions to the processors. In addition,

the front-end executes any sequential instructions in

the program. In our programs there are two kinds of

variables, singular which have a single value stored at

the front-end and plural which have a value for each

processor. A typical parallel instruction has the form:

if test then statement.

If the test is True at a processor, then the processor

is said to be active and executes the statement. If

the test is False at a processor, then the processor is

said to be inactive and does not execute the statement.

Statements to be executed include the usual kinds

of RAM instructions such as addition, multiplication,

and comparison. In our programming model we also

have the communication instructions left broadcast and

right broadcast. For example, if a processor wants to

broadcast a value x right on a sub-bus when a certain

test is True, it would execute:

if test then y right broadcast(x).

Each processor whose test is True places its value

8 James D. Fix and Richard E. Ladner

if test then y right broadcast(x)

proc-id 1 2 3 4 5 6 7 8 9

test F T F T T F F T F

x a b c d e f g h i

y * * b b d e e e h

Table 1: E�ect of a right broadcast on a sub-bus

machine. The * indicates that the value of y does not

change with the broadcast.

of x on the sub-bus. The broadcast value travels to

all the processors right of a broadcasting processor

up to and including the next active processor. If

there is no active processor to the right, then the

broadcast travels to the end of the array. Thus, all

processors (active and inactive) will read the value of

x from the �rst active processor to its left into its

own register y. If a processor has no active processor

to its left, then the value of y does not change. A

left broadcast behaves similarly, with data movement in

the left direction. Table 1 illustrates the behavior of

right broadcast. An additional primitive sing is needed

for individual processors to communicate with the front-

end. If the variable x is plural, then sing(i,x) returns a

singular value which is the value of x at processor i.

In our examples below we assume that all processors

have \hard-wired" plural variables proc id, the index

of the processor, and num procs, the number n of

processors. We begin with the program for odd-even

transposition sort. Normally, odd-even transposition

sort has a while loop that is executed exactly num procs

times. In order to compare our sorting algorithms we

make the while loop stop when the array is sorted.

Algorithm 8.1.

procedure Odd Even Transposition Sort(pi);

singular step, all done;

plural pi, left, right, done;

step 0; all done False;

while not all done do

step step + 1;

left broadcast right(pi);

if proc id = 1 then left �1;

right broadcast left(pi);

if proc id = num procs then right 1;

done pi < right;

if proc id � step mod 2 then

if left > pi then pi left;

else

if right < pi then pi right;

endif

if not done then done broadcast left(done);

all done sing(1,done);

endwhile

On even numbered steps even numbered processors

look to their left and odd numbered processors look

to their right in order to coordinate an interchange

of out of order values. On odd numbered steps the

reverse happens. At each iteration the processors check

to see if the array is sorted. This is done by making

each processor that detects an out of order value to

its right broadcast that information to its left. As a

result processor 1 learns if more sorting has to be done

and informs the front-end. A total of three broadcast

communication instructions are used to implement each

step of odd-even insertion sort.

The following is a program for left adaptive inser-

tion sort.

Algorithm 8.2.

procedure Left Adaptive Insertion Sort(pi);

singular all done;

plural pi, left, right, data, pre act, act, left act;

all done False;

while not all done do

left broadcast right(pi);

if proc id = 1 then left �1;

right broadcast left(pi);

if proc id = num procs then right 1;

pre act (left > pi and right > pi); (A)

data 1;

if pre act then data broadcast left(pi);

act pi < data or pre act; (B)

left act True;

left act broadcast right(act);

if not act and left act then pi data;

if not (act or left act) or pre act then pi left;

all done sing(1,data) = 1;

endwhile

The variable names in the program match fairly

closely the description of the left adaptive sorting strat-

egy described in section 6. The set of pre-active pro-

cessors are those which compute the value of pre act

equal to True on line (A). The blocking processors are

those which have pi < data in the calculation of act on

line (B). The active processor are those that compute

act equal to True on line (B). There is a slight excep-

tion to this in that the processors to the right of the

right most pre-active processor also compute act equal

Optimal One-Way Sub-Bus Sorting 9

to True. Allowing these processors to be active does

not change the result of a left adaptive insertion step.

To complete the insertion step, a processor which is not

active and whose left neighbors is active accepts the

insertion stored in data, and a processor which is pre-

active or is not active and does not have an active left

neighbor accepts the value of its left neighbor which is

stored in left. Termination is achieved by setting the

plural variable data to 1. If processor 1's data remain

1 after the pre-active processors broadcast, then the

array must be sorted because there were no pre-active

processors.

The two sorting algorithms are roughly the same

length and complexity. The odd-even transposition sort

uses two local communications and one long distance

broadcast per iteration, while left adaptive insertion

sort uses three local communications and one long

distance broadcast per iteration. The main advantage

of left insertion sort over odd-even transposition sort

is that on some inputs the former has many fewer

iterations than the latter. As we have shown in section

4, on average left adaptive insertion sort has only a

slight advantage over odd-even transposition sort.

9 Two-way Sorting Strategies

We have some preliminary results on two-way sorting

strategies, strategies which may employ both left and

right insertion steps. Both the left greedy sort and left

adaptive insertion sort can be modi�ed into two-way

sorting strategies. One modi�cation is to simply alter-

nate left insertion step and right insertion steps. We

call these two methods alternating greedy sort and al-

ternating adaptive insertion sort, respectively. Another

modi�cation is to simply choose the best, in terms of

the maximum number of inversions removed, of a left or

right insertion step. We call these two methods greedy-

greedy sort and greedy-adaptive insertion sort, respec-

tively. Interestingly, we have observed empirically that

all these sorting strategies have about the same expected

performance, namely, the average number of steps to

sort is slightly larger than n=2. This is a two-fold speed-

up over the one-way sorting algorithms. The maximum

distance of values from their destinations in no longer

a bottleneck for the two-way sorting strategies. Using

a bandwidth argument we can show that the expected

number of steps to sort with a two-way sorting strategy

is at least n=4. An extension of the argument demon-

strates that any alternating two-way sorting strategy

has expected number of steps to sort at least n=2. It is

most likely that any e�ciently implementable two-way

sorting strategy will be alternating. Hence, the alter-

nating adaptive insertion sort, which is e�ciently im-

plementable, appears to be the best or nearly the best

possible e�ciently implementable sorting strategy for

the one-dimensional sub-bus array.

10 Conclusion

We have shown that the maximum distance a value is

from its destination in a data array is the main bottle-

neck for one-way sorting algorithms. We have given two

optimal left-only sorting strategies, the left greedy and

the left adaptive insertion. The left greedy sort is not ef-

�ciently implementable while the left adaptive insertion

sort is.

There are a number of open problems left to solve.

Is there a simple way to characterize optimal two-way

sorting strategies such as the maxdist

L

characterization

of optimal left-only sorting strategies? Is the alternating

adaptive insertion sort a near optimal two-way sorting

strategy? Are four communication operations per left

insertion step necessary to implement an optimal left-

only sorting strategy or can it be done with three?

Finally, how can the sub-bus capability be of advantage

in two-dimensional sorting?

11 Acknowledgements

We wish to thank Martin Tompa for reading and

commenting on early versions of this paper.

References

[1] T. Blank. The MasPar MP-1 architecture. Proceedings

of COMPCON Spring 90 - The Thirty-Fifth IEEE

Computer Society International Conference, pp. 20-24,

February 1990.

[2] A. Condon, R. E. Ladner, J. Lampe, and R. Sinha.

Complexity of sub-bus mesh computations. Technical

Report 93-04-15, University of Washington, Depart-

ment of Computer Science and Engineering, 1993. To

appear in SIAM Journal on Computing.

[3] D. E. Knuth. The Art of Computer Programming:

Fundamental Algorithms, volume 1. Addison-Wesley,

1969.

[4] D. E. Knuth. The Art of Computer Programming: Sort-

ing and Searching, volume 3. Addison-Wesley, 1973.

[5] F. T. Leighton. Introduction to Parallel Algorithms

and Architectures: Arrays, Trees, Hypercubes. Morgan

Kaufmann, 1992.

[6] I. Scherson, S. Sen, and A. Shamir. Shear-sort: A true

two-dimensional sorting technique for VLSI networks.

In IEEE-ACM International Conference on Parallel

Processing, pages 903{908, 1986.

[7] C. Schnorr and A. Shamir. An optimal sorting algo-

rithm for mesh connected computers. In Proceedings of

the 18th Annual ACM Symposium on Theory of Com-

puting, pages 255{263, 1986.

