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1 Introduction

The popular Dynamic Markov Compression Algorithm (DMC) [8] is a member of

the family of data compression algorithms that combine an on-line stochastic data

model with an arithmetic coder. DMC's distinguishing feature is an elegant but ad

hoc modeling technique that provides state-of-the-art compression performance and

matchless conceptual simplicity. In practice, however, the cost of DMC's simplicity

and performance is often outrageous memory consumption. Several known attempts

at reducing DMC's unwieldy model growth (e.g., [15, 19]) have rendered DMC's

compression performance uncompetitive.

One reason why DMC's model growth problem has resisted solution is that

the algorithm is poorly understood. DMC is the only published stochastic data

model for which a characterization of its states, in terms of conditioning contexts, is

unknown. Up until now, all that was certain about DMC was that a �nite-context

characterization exists, which was proved in [3] using a �niteness argument.

Here, we present and prove the �rst �nite-context characterization of the states

of DMC's data model. The impact of our characterization is threefold.

1. It proves that although DMC constructs a uni�lar �nite-order Markov FSM,

DMC states cannot be uniquely characterized by single conditioning contexts,

and therefore DMC models do not belong to the class of FSMX automata [13],

which purportedly contain all Markovian FSMs.

2. It illuminates principled solutions for curbing counterproductive model growth.

3. It provides a su�ciently general on-line Markov model that can be parameter-

ized to exactly emulate many other in
uential algorithms from the literature,

including many popular FSMX models [7, 9, 11, 12, 13, 17, 18]. This allows

(a) precise identi�cation and comparison of the features that distinguish the

structure and a priori statistical assumptions of di�erent algorithms (such

as \state selection," \blending," \update exclusions," etc.), and
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(b) experiments that evaluate the general e�ectiveness of speci�c model fea-

tures by controlling the confounding factors induced by the myriad imple-

mentation decisions underlying any empirical evaluation.

Indeed, this work is preliminary to such a taxonomy and controlled empirical

study [4].

Our analysis reveals that the DMC model, with or without its counterproductive

portions, o�ers abstract structural features not found in other models. Ironically, the

space-hungry DMC algorithm actually has a greater capacity for economical model

representation than its counterparts have. Once identi�ed, DMC's distinguishing fea-

tures combine easily with the best features from other techniques. These combinations

have the potential for achieving very competitive compression/memory tradeo�s.

2 The DMC Automaton

DMC constructs a series of �nite-state machines (FSMs) M = fM

0

;M

1

; : : : ;M

m

g,

where for 0 � k � m, M

k

= (S

k

; A; �

k

; s

0

) such that

s

0

is the initial state;

S

k

is the �nite set of states, de�ned recursively as

S

k

= fs

0

g if k = 0,

= S

k�1

[ fs

k

g, otherwise;

A is the �nite (input) alphabet; and

�

k

: S

k

� A! S

k

is the transition function, which extends to

�

k

: S

k

� A

�

! S

k

in the traditional fashion.
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As each symbol in a given input sequence is scanned, DMC applies a re�nement

eligibility criterion, E : M � A

�

! fT; Fg, to the current FSM, M

k

, to decide if it

should be extended into M

k+1

.

The FSMs M

k

; 8k � 0 are de�ned recursively. At the start, �

0

(s

0

; a) = s

0

; 8a 2

A: That is, the initial model consists of the single state, s

0

and a re
exive transition

for each symbol in the input alphabet.
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During processing of an input sequence,

whenever E(M

k

; wa) = T , a new machine M

k+1

is constructed from M

k

as follows.

Let s

p

= �

k

(s

0

; w) and s

t

= �

k

(s

p

; a). Then, we de�ne

�

k+1

(s

p

; a) = s

k+1

(1)

�

k+1

(s

p

; b) = �

k

(s

p

; b); 8b 2 A� fag (2)

�

k+1

(s

i

; b) = �

k

(s

i

; b); 8b 2 A; 8i � k; i 6= p (3)

�

k+1

(s

k+1

; b) = �

k+1

(s

t

; b); 8b 2 A: (4)

The process of extending the current FSM M

k

to M

k+1

, called \cloning," is

depicted in Figure 1. Cloning [8] simply redirects the current transition, �

k

(s

p

; a), to

a newly added state s

k+1

. Cloning is performed whenever E(M

k

; wa) = T , where w is

the already scanned portion of the input sequence. The newly added state is a copy of

the transition's destination such that the transitions leaving the new state are copied

2

Throughout, we shall denote the concatenation of strings w and y as wy or as w � y.

3

Other possible initial models are given in [8].
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Figure 1: DMC's Finite-State Data Model. DMC's �nite-state data model is

created incrementally by cloning the destination of the current transition, if it is

determined to be eligible. The bold (presumably eligible) transition in each model

M

k

is redirected to a newly added state s

k+1

to form model M

k+1

. The transitions

leaving s

k+1

are copied from the bold transition's former destination, after the bold

transition is redirected.



from the transitions leaving the original state. The number of models in M , and the

number of states in the �nal FSM, M

m

, equal m+ 1. The number of proper pre�xes

wa of the given input sequence for which the criterion E(M

k

; wa) holds determines

the value of m.

The eligibility criterion given in [8] is based upon the popularity of the current

transition relative to the popularity of its destination. That is, E() is equivalent to

the well-formed formula

t

1

� jfy : y 2 pre�xes(w); �

k

(s

0

; y) = �

k

(s

0

; w); �

k

(s

0

; ya) = �

k

(s

0

; wa)gj and

t

2

� jfy : y 2 pre�xes(w); �

k

(s

0

; y) 6= �

k

(s

0

; w); �

k

(s

0

; ya) = �

k

(s

0

; wa)gj;

where thresholds t

1

and t

2

are algorithm input parameters. This particular de�nition

of E() causes DMC to construct a stochastic model that cannot converge to any �nite

stochastic source that could be assumed to have emitted the sequence. The following

analysis of DMC's model structure does not depend upon any particular de�nition

of E().

3 Observable Structure in DMC

3.1 De�nitions

The following de�nitions formulate the intuition and axioms of our analysis. They

are illustrated in Figure 2.

pre�x(s

i

) = s

0

; i = 0

= s

p

: �

i�1

(s

p

; a) 6= �

i

(s

p

; a) = s

i

; p < i; a 2 A; i > 0

symbol(s

i

) = �; i = 0; where � denotes the empty string

= a : �

i

(pre�x(s

i

); a) = s

i

; a 2 A; i > 0

context(s

i

) = �; i = 0

= context(pre�x(s

i

))symbol(s

i

); i > 0

su�x(s

i

) = s

0

; i = 0

= �

i�1

(pre�x(s

i

); symbol(s

i

)); i > 0

extns

k

(s

i

) = fs

d

: su�x(s

d

) = s

i

; d � kg

extns

�

k

(s

i

) = extns

k

(s

i

) [

S

s

d

2extns

k

(s

i

)

extns

�

k

(s

d

)

The function pre�x : S ! S is used with the function symbol : S ! A

to recursively map states to �nite strings, or contexts. The state pre�x(s

i

) is the

source of the transition that was redirected to s

i

when s

i

was added to the model.

The character symbol(s

i

) labels the transition that was originally redirected to state

s

i

, and any subsequently added transitions into s

i

. Lemma 3.1 proves that any string

that brings M

k

into state s

i

ends in the �nite string context(s

i

), for k � i.

The function su�x : S ! S organizes the states of M

k

into a tree, acting

as a parent pointer. The state su�x(s

i

) is the former destination of the transition

that was redirected to state s

i

when s

i

was created. In the tree induced by M

k

,

the state s

i

is the parent of the states in extns

k

(s

i

). Equivalently, the set of states

extns

k

(s

i

) equals the children of state s

i

. The name \extns" is used instead of

\children" because the relationships among the conditioning contexts associated with

each state, rather than their positions in the tree, are the primary points of interest.



The Abstract Structure of DMC 
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Figure 2: Observable Structure in DMC Models. For any state s

i

, su�x(s

i

)

is the original destination of the transition that was redirected to s

i

when s

i

was

created; pre�x(s

i

) is the source of the transition which was redirected to s

i

, when

s

i

was added to the model; and symbol(s

i

) labels the transition that was originally

redirected to s

i

, and any subsequently added transitions into s

i

. The context of s

i

,

context(s

i

), labels each state.

The non-re
exive transitions of model M

6

, pictured in Figure 1, are omitted. How-

ever, the re
exive transitions of M

6

are included here to illustrate the consistent

substructures they de�ne in the DMC model. There are always jAj re
exive transi-

tions in the model. (Here A = fa; b; cg). When a re
exive transition is redirected by

cloning, the newly added state will have a re
exive transition with the same symbol.

For any state s

i

with a re
exive transition (it can only have one, if i 6= 0), context(s

i

)

will be a sequence consisting of a �nite number of occurrences of the symbol on the

re
exive edge, which equals the state's symbol. For example, if the re
exive edge

labeled c is redirected to a new state s

7

, pre�x(s

7

) will equal s

3

and context(s

7

)

will equal cc.

The state s

6

is an example of a state that has been created by redirecting a pre-

�x transition. That is, the original edge which was redirected to point to s

1

was

redirected again when s

6

was added to the model. Both s

6

and s

1

therefore have

identical contexts.



The closure of the set of children of state s

i

equals the set of descendants of s

i

, and

is denoted extns

�

k

(s

i

).

Additionally, two observations from [3] are used repeatedly in the proofs of the

lemmas and theorems to follow, and they can be restated using the su�xfunction

above. The observations basically point out that the only states whose input transi-

tions are a�ected when s

k+1

is added are su�x(s

k+1

) and s

k+1

.

Observation 3.1

8i � k; w 2 A

�

;

�

k+1

(s

i

; w) 6= s

k+1

) �

k+1

(s

i

; w) = �

k

(s

i

; w):

Observation 3.2

8i � k + 1; w 2 A

�

;

�

k

(s

i

; w) 6= �

k+1

(s

i

; w) ) �

k

(s

i

; w) = su�x(s

k+1

) and

�

k+1

(s

i

; w) = s

k+1

:

3.2 Contexts of DMC States

Although no semantics have been assigned to DMC states in the related literature,

the evocative names of the above functions do imply accurate semantics. That is, the

following properties hold for all s

i

:

� [Pre�xes] context(pre�x(s

i

)) is a pre�x of context(s

i

),

� [Su�xes] context(su�x(s

i

)) is a su�x of context(s

i

),

� [Extensions] s

d

2 extns

�

k

(s

i

) implies that context(s

d

) extends context(s

i

) on

the left by zero or more symbols.

Note that context(pre�x(s

i

)) is exactly one symbol shorter than context(s

i

),

while context(s

i

) may be arbitrarily longer than context(su�x(s

i

)). Thus DMC

builds a context model with variable-length minimal extensions

4

of a context. Fur-

thermore, if the eligibility criterion E() allows transitions to be redirected more than

once, as DMC's does, it is possible that context(su�x(s

i

)) = context(s

i

).

The context() of a state in a DMC model is provably analogous the context of

a state in an FSMX model [13]. The next lemma shows that every string entering a

given state s

i

in model M

k

ends in the substring context(s

i

).

Lemma 3.1 (Context Lemma)

8k; 8i and j � k; 8wa 2 A

+

;

�

k

(s

j

; wa) = s

i

) wa 2 A

�

context(s

i

):

The proof is by induction on k. The base case, k = 0, is trivial because

context(s

0

) = �. To prove the induction step, assume the statement holds for

�

k

() and assume that �

k+1

(s

j

; wa) = s

i

. We can further assume that j � k because

�

k+1

(s

k+1

; wa) = �

k+1

(su�x(s

k+1

); wa) and su�x(s

k+1

) 6= s

k+1

.

4

A minimal extension is the y 2 A

�

s:t: context(s

i

) = y � context(su�x(s

i

)).



There are two cases to consider, i 6= k + 1, and i = k + 1. If s

i

6= s

k+1

, then

�

k+1

(s

k+1

; wa) = �

k

(s

j

; wa). So, by the induction hypothesis, wa 2 A

�

context(s

k+1

).

For the case that i = k + 1, let a = symbol(s

k+1

) and suppose that

�

k+1

(s

j

; wa) = �

k+1

(�

k+1

(s

j

; w); a) = s

k+1

:

Then, by de�nition of M

k+1

,

�

k

(s

j

; wa) = �

k

(�

k

(s

j

; w); a) = su�x(s

k+1

):

Also, by inspection of the de�nition of M

k+1

, we know that

�

k+1

(s

j

; w) 2 fs

k+1

; pre�x(s

k+1

)g:

�

k+1

(s

j

; w) = pre�x(s

k+1

)

) �

k+1

(s

j

; w) = �

k

(s

j

; w) = pre�x(s

k+1

) by Observation 3.1

) w 2 A

�

context(pre�x(s

k+1

)) by ind. hyp.

) wa 2 A

�

context(pre�x(s

k+1

) � a by regular set concatenation

) wa 2 A

�

context(s

k+1

) by def context():

�

k+1

(s

j

; w) = s

k+1

) �

k+1

(s

k+1

; a) = s

k+1

since �

k+1

(s

j

; wa) = s

k+1

) su�x(s

k+1

) = pre�x(s

k+1

) and

�

k

(su�x(s

k+1

); a) = su�x(s

k+1

) by Lemma 3.2

) �

k

(s

j

; w) = su�x(s

k+1

) by Observation 3.2

) �

k

(s

j

; w) = pre�x(s

k+1

) by subst.

) w 2 A

�

context(pre�x(s

k+1

)) by ind. hyp.

) wa 2 A

�

context(pre�x(s

k+1

) � a by regular set concatenation

) wa 2 A

�

context(s

k+1

)2

3.3 Re
exive Edges in DMC

Re
exive edges appear only under certain circumstances in DMC models, and any

M

k

will have re
exive edges if and only if the initial state s

0

does. Intuitively, Lemma

3.2 states that any other re
exive edges can only be created by redirecting re
exive

edges. When a re
exive edge is redirected, the pre�x of the new destination state

equals that state's su�x. Over time, a re
exive edge will either stay the same or will

point down into its source state's extensions (subtree). Conversely, any state with

a self-loop, or an edge that points down into its subtree, was initially added to the

model as as the new destination of a redirected re
exive edge.

Only the base case of the following lemma, that is, a description of re
exive

edges leaving any novel state s

k

in model M

k

, is required for the proof of the main

result, the complete characterization of DMC's structure. However, by proving the

lemma for all states i in any model M

k

, we can describe the behavior of all re
exive

edges in DMC models over time. Incidentally, when i = 0, the left hand side of the

equivalence holds trivially. That is, all edges leaving the root state s

0

enter either s

0

or a node in its subtree.



Lemma 3.2 (Re
exive Edge Characterization)
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) �
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k
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k
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For the induction step, assume the statement holds for a given state s

i

; i > 0;

in model M

k

and consider the same state s

i

in model M

k+1

. Note that s

i

6= s

k+1

because s

k+1
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; a) = �

k

(s

i

; a) by Observation 3.1

) su�x(s

i

) = pre�x(s

i

) and

�

i�1

(su�x(s

i

); a) = su�x(s

i

) by ind. hyp., subst.

�

k+1

(s

i

; a) = s

k+1

) �

k+1

(s

i

; a) 6= �

k

(s

i

; a) s

k+1

62 S

k

) �

k

(s

i

; a) = su�x(s

k+1

) by Obs. 3.2

) �

k

(s

i

; a) 2 extns

�

k+1

(s

i

)� fs

k+1

g �

k

(s

i

; a) 2 extns

�

k+1

(s

i

) and

�

k

(s

i

; a) 6= s

k+1

) �

k

(s

i

; a) 2 extns

�

k

(s

i

) extns

�

k

(s

i

) = extns

�

k+1

(s

i

)� fs

k+1

g

) su�x(s

i

) = pre�x(s

i

) and

�

i�1

(su�x(s

i

); a) = su�x(s

i

) by ind. hyp.

When su�x(s

i

) = pre�x(s

i

) and �

i�1

(su�x(s

i

); a) = su�x(s

i

); we know

by the induction hypothesis that �

k

(s

i

; a) 2 extns

�

k

(s

i

) [ fs

i

g. Either �

k+1

(s

i

; a) =

�

k

(s

i

; a), and so �

k+1

(s

i

; a) 2 extns

�

k+1

(s

i

)[ fs

i

g because extns

�

k

(s

i

) � extns

�

k+1

(s

i

);

or �

k+1

(s

i

; a) 6= �

k

(s

i

; a). In the latter case,

�

k+1

(s

i

; a) 6= �

k

(s

i

; a)

) �

k

(s

i

; a) = su�x(s

k+1

) by Observation 3.2

) su�x(s

k+1

) 2 extns

�

k

(s

i

) [ fs

i

g by ind. hyp., subst.

) s

k+1

2 extns

�

k+1

(s

i

) by def. extns

�

()2

Lemma 3.2 implies the following regularities for DMC models, assuming the

initial model given earlier:

� For each b 2 A there exists exactly one re
exive edge labeled b.

� No state other than s

0

may have more than one re
exive edge.

� And, if a state s

i

has a re
exive edge labeled a, then context(s

i

) = a

h

, where

h is the length of the path of pre�x() pointers from s

i

to s

0

.

Lastly, the following technical corollary to Lemma 3.2 will be required to prove

the upcoming DMC characterization. If a string brings a model M

k+1

into the new

state s

k+1

and it also brought the preceding model M

k

to the pre�xstate of the new

state, then the new state must have a re
exive out-edge, labeled with the state's

symbol.

Corollary 3.1 (to Re
exive Edge Characterization)

8k; 8j � k; 8w 2 A

�

;

�

k

(s

j

; w) = pre�x(s

k+1

) and �

k+1

(s

j

; w) = s

k+1

) �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

:

Proof:



�

k

(s

j

; w) = pre�x(s

k+1

) and �

k+1

(s

j

; w) = s

k+1

) �

k

(s

j

; w) 6= �

k+1

(s

j

; w) pre�x(s

k+1

) 6= s

k+1

) �

k

(s

j

; w) = su�x(s

k+1

) by Observation 3.2

) pre�x(s

k+1

) = su�x(s

k+1

) subst.

) �

k

(pre�x(s

k+1

); symbol(s

k+1

)) = su�x(s

k+1

) by def. su�x(s

k+1

)

) �

k+1

(pre�x(s

k+1

); symbol(s

k+1

)) = s

k+1

by def. �

k+1

()

) �

k

(su�x(s

k+1

); symbol(s

k+1

)) = su�x(s

k+1

) subst.

) �

k+1

(s

k+1

; symbol(s

k+1

)) = fs

k+1

g [ extns

�

k+1

(s

k+1

) by Lemma 3.2, contrap.

) �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

extns

�

k+1

(s

k+1

) = fg2

4 A Finite-Order Characterization of DMC States

A �nite-state stochastic model, such as DMC's, is traditionally de�ned in terms of

its structure and parameters. The language of an individual FSM state is the set of

strings which put the FSM into the given state, by following the successive transitions

labelled with each symbol of the string left-to-right, starting at the FSM's initial

state. The set consisting of each language of each state in a stochastic model forms

a partition on the set of possible input sequences to the model, that is, a context

partition. The structure of a stochastic model is de�ned by its context partition.

Thus each state in the model is associated with a single class of strings, and the

model is used to successively classify each progressively longer pre�x of an entire input

sequence. To use such a model to estimate probabilities of a sequence, or to predict

or generate such a sequence, each state in the model must also be associated with a

(usually empirical) probability measure on the symbols that may immediately follow

any string belonging to the state's class. DMC's solution to this parameterization

problem is described in Section 5.3.

DMC is unique in the data compression literature, in that its model was not

originally de�ned to represent a given context partition. The goal of this analysis

is to identify the (hitherto unknown) context partition of any DMC model, so that

aspects of the DMC technique may be meaningfully compared with features of other

techniques in the literature. DMC's context partition is given below by the function

C

k

: S ! 2

A

�

, which, as we prove, describes the language of any state in a DMC

model M

k

.

Theorem 4.1 (Characterization of DMC Structure)

Let C

k

(s

i

) = L(s

i

)�

[

s

d

2extns

k

(s

i

)

L(s

d

); (8)

where L(s

i

) = A

�

; if i = 0

= C

i�1

(pre�x(s

i

)) � symbol(s

i

); otherwise.

Then, 8k; 8i � k; and 8w 2 A

�

;

w 2 C

k

(s

i

) , �

k

(s

0

; w) = s

i

: (9)

Before we prove that the characterization C

k

() is correct, a discussion of some

properties of the functions introduced above will provide some insight.



The function C

k

: S

k

! 2

A

�

maps each state to a set of conditioning contexts.

Equation (9) implies that the sets of distinct states are disjoint; that is, C

k

() relies on

the function L(), which is one-to-one regardless of the de�nition of E(). The regular

set L(s

i

) precisely describes the set of strings that bring M

k

to state s

i

or to any

descendant of s

i

. Note that although the language C

k

(s

i

) of a state s

i

changes with

k (which is monotone increasing), the language of the subtree rooted by a state s

i

,

that is, L(s

i

), does not (even though the subtree itself may change in structure).

The set L(s

i

) � A

�

context(s

i

), and recursive expansions of the regular expres-

sion L(s

i

) quit branching at all states s

p

such that L(s

p

) = A

�

context(s

p

). Figure 3

shows the DMC model substructures relevant to any arbitrary state s

i

, and illustrates

the recursive expansion of expressions C

k

(s

i

) and L(s

i

).

The function L() is well-de�ned, and would still be well-de�ned even if we did

not require the recursive expansion to continue down to the initial state s

0

. This can

be accomplished by optimizing the terminating expansion given above:

L(s

i

) = A

�

� context(s

i

); if i = 0 or 8j � i

pre�x(s

j

) 6= pre�x(su�x(s

j

)) and extns

j�1

(pre�x(s

j

)) = fg (10)

= C

i�1

(pre�x(s

i

)) � symbol(s

i

); otherwise.

The resulting regular expressions for the languages of each state are the same with

either de�nition, but the terminating criterion used in Equation (10) above creates

the shallowest recursive expansion. Furthermore, the model condition required by

Equation (10), the base of the inductive de�nition, describes the exact requirements

for the states of a DMC model to be characterizable by single �nite strings.

4.1 Correctness Proof of the DMC Characterization

Here we prove Theorem 4.1, which states that Equation (8) characterizes the partition

of conditioning contexts that is induced by the states of any model M

k

, by proving

that C

k

: S ! 2

A

�

describes the language of each state in M

k

, for all k. The proof

proceeds by induction on k, the number of states that have been added to M

0

to

create the k progressive re�nements to M

0

which result in model M

k

.

The induction base is trivial: �

0

(s

0

; w) = s

0

and w 2 C

0

(s

0

) = A

�

�. C

0

(s

0

) =

A

�

� because extns

0

(s

0

) = fg and L(s

0

) = A

�

�:

For the induction step we assume that

8h � k; 8i � h; and 8w 2 A

�

;

w 2 C

h

(s

i

) , �

h

(s

0

; w) = s

i

;

and prove that

8i � k + 1; and 8w 2 A

�

;

w 2 C

k+1

(s

i

) , �

k+1

(s

0

; w) = s

i

:

When w = �, we know that w 2 C

k+1

(s

i

) , s

i

= s

0

, �

k+1

(s

0

; w) = s

i

. This

equivalence follows from the fact that s

d

2 extns(s

i

) ) symbol(s

d

) = symbol(s

i

)

and the de�nition of C

k

(), which expands to form

C

k

(s

0

) = A

�

�

[

s

d

2extns

k

(s

i

)

C

d�1

(pre�x(s

d

)) � symbol(s

d

); and

C

k

(s

i 6=0

) =

0

@

C

i�1

(pre�x(s

i

))�

[

s

d

2extns

k

(s

i

)

C

d�1

(pre�x(s

d

))

1

A

� symbol(s

i

):



Thus, C

k

(s

0

) contains � and C

k

(s

i 6=0

) only contains strings ending in symbol(s

i

).

When w 6= �, we let w = va and consider two cases: s

i

= s

k+1

and s

i

6= s

k+1

.

The complete proofs for each case are given below.

4.1.1 Proof that va 2 C

k+1

(s

k+1

), �

k+1

(s

0

; va) = s

k+1

va 2 C

k+1

(s

k+1

)

, va 2 L(s

k+1

)�

S

s

d

2extns

k+1

(s

k+1

)

L(s

d

) by def. C

k+1

()

, va 2 L(s

k+1

) extns

k+1

(s

k+1

) = fg

, va 2 C

k

(pre�x(s

k+1

)) � symbol(s

k+1

) by def. L()

, v 2 C

k

(pre�x(s

k+1

)) and a = symbol(s

k+1

) substitution; s

k+1

6= s

0

v 2 C

k

(pre�x(s

k+1

)); a = symbol(s

k+1

)

) �

k

(s

0

; v) = pre�x(s

k+1

); by ind. hyp.

) Case: �

k+1

(s

0

; v) 6= s

k+1

) �

k+1

(s

0

; v) = �

k

(s

0

; v) = pre�x(s

k+1

) Obs. 3.1

Case: �

k+1

(s

0

; v) = s

k+1

) �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

Corollary 3.1

) �

k+1

(�

k+1

(s

0

; v); symbol(s

k+1

)) = s

k+1

) �

k+1

(s

0

; va) = s

k+1

substitution

�

k+1

(s

0

; va) = s

k+1

) �

k+1

(�

k+1

(s

0

; v); symbol(s

k+1

)) = s

k+1

) Case: �

k+1

(s

0

; v) 6= s

k+1

) �

k+1

(s

0

; v) = �

k

(s

0

; v) = pre�x(s

k+1

); Obs. 3.1

Case: �

k+1

(s

0

; v) = s

k+1

) �

k+1

(s

0

; v) 6= �

k

(s

0

; v) s

k+1
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k

) �

k

(s

0

; v) = su�x(s

k+1

) Obs. 3.2

) �

k+1

(�

k+1

(s

0

; v); a) = �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

substitution

) �

k

(su�x(s

k+1

); symbol(s

k+1

)) = su�x(s

k+1

)

and su�x(s

k+1

) = pre�x(s

k+1

) Lemma 3.2

) �

k

(s

0

; v) = pre�x(s

k+1

) substitution.

) v 2 C

k

(pre�x(s

k+1

)) and a = symbol(s

k+1

) by ind. hyp.2

4.1.2 Proof that for i 6= k + 1, va 2 C

k+1

(s

i

), �

k+1

(s

0

; va) = s

i

Here, the contrapositive of the result proved in Section 4.1.1, above, shall be useful:

va 62 C

k+1

(s

k+1

) , �

k+1

(s

0

; va) = s

i

for some i 6= k + 1: (11)

Furthermore, the fact that the languages of disjoint subtrees are disjoint is

required. That is,

Claim 4.1

va 2 C

k+1

(s

i

); i 6= k + 1; and s

i

6= su�x(s

k+1

) ) va 62 L(s

k+1

)

Proof: We proceed by a proof by contradiction.



s

i

6= su�x(s

k+1

) and va 2 C

k+1

(s

i

)

) C

k+1

(s

i

) = C

k

(s

i

) and va 2 C

k

(s

i

) extns

k+1

(s

i

) = extns

k

(s

i

)

) �

k

(s

0

; va) = s

i

by ind. hyp.

va 2 L(s

k+1

)

) va 2 C

k

(pre�x(s

k+1

)) � symbol(s

k+1

) by def. L()

) �

k

(s

0

; v) = pre�x(s

k+1

) by ind. hyp.

) �

k

(s

0

; va) = su�x(s

k+1

) by def. su�x()(! )

The remainder of the proof of Theorem 4.1 follows easily:

va 2 C

k+1

(s

i

); i 6= k + 1

, va 2

0

@

L(s

i

)�

[

s

d

2extns

k+1

(s

i

)

L(s

d

)

1

A

by def. C

k+1

()

, va 2

0

@

L(s

i

)�

[

s

d

2extns

k

(s

i

)

L(s

d

)

1

A

� L(s

k+1

)

s

i

6= su�x(s

k+1

) and Claim 4:1

or s

i

= su�x(s

k+1

); therefore

s

k+1

2 extns

k

(s

i

)

, va 2

0

@

L(s

i

)�

[

s

d

2extns

k

(s

i

)

L(s

d

)

1

A

�

0

@

L(s

k+1

)�

[

s

d

2extns

k+1

(s

k+1

)

L(s

d

)

1

A

extns

k+1

(s

k+1

) = fg

, va 2 C

k

(s

i

)� C

k+1

(s

k+1

) by def. C

k

()

, va 2 C

k

(s

i

) and va 62 C

k+1

(s

k+1

)

, �

k

(s

0

; va) = s

i

and �

k+1

(s

0

; va) 6= s

k+1

by ind. hyp. and (11)

, �

k+1

(s

0

; va) = s

i

i 6= k + 1;Obs. 3.12

5 DMC vs. Other Stochastic Data Models

There are three important aspects of a stochastic data modeling technique that may

distinguish it abstractly from others: the language family of the models constructed,

which ultimately determines the limitations of the technique; model structure, which

determines how the model organizes the data it gathers; and the statistical assump-

tions, which determine how the frequency data is updated and combined to compute

probability estimates.

These are not orthogonal issues. Usually the frequency data are organized

with respect to conditioning contexts, which correspond to partitions on the set of

possible strings. Since a model's structure certainly determines the languages its

states recognize, a structural point of view is, for the most part, a di�erent (and more

intuitive) way of looking at the generative power of the model. But only for the most

part: two models that recognize the same languages can have very di�erent structure,

and therefore may organize frequency data di�erently.

5.1 Linguistic Power

Given that the partition element that corresponds to an arbitrary DMC model state

cannot be described using a single �nite su�x, what, generally speaking, does it take

to describe it? There is a known family of languages that contains the family of lan-

guages recognizable by DMC FSMs more tightly than the class of regular languages:

For any DMC model state s, C

k

(s) is a locally testable star-free regular set. Star-free



regular languages are regular sets that can be described using a �nite number of set

concatenations, unions, and complements, [16, Chapter 1].

To see that C

k

(s

i

) is star-free for any s

i

, simply replace set subtraction with

intersection of the absolute complement of the subtrahend, and A

�

with fg. C

k

(s

i

) is

also locally testable, which means expressible as �nite Boolean combinations of sets of

the type FA

�

, A

�

G, or A

�

HA

�

, where F;G;H are �nite sets. However, this is a loose

characterization, for it was shown in [3] the languages recognizable by DMC models

are contained, possibly properly, in the class of languages expressible as A

�

F [ G,

that is, �nite-order languages. Below, we give a new proof of that containment, which

also shows that the characterization of Theorem 4.1, C

k

() is �nite-order, as it should

be.

Intuitively, DMC models belong to the class of �nite-order Markov sources [1],

also known as Finite-Context Automata [3], because only a �nite su�x of a given

source string is required to determine the state to which the string will carry a given

model. This means, for one thing, that DMC FSMs cannot recognize in�nitely repeat-

ing patterns, a common capability of more general FSMs. Neither, however, can any

of the popular FSMX models [7, 6, 9, 11, 12, 13, 17, 18], all of which can determine

the current model state by locating the state whose single associated �nite context

is a maximal su�x of the given input string. On the other hand, while a given state

in an FSMX model can be uniquely speci�ed with a single �nite string, an arbitrary

DMC state cannot. Therefore, even when stripped of its implementation details and

Bayesian assumptions for probability estimation, DMC proves to be distinct from the

other stochastic models in the literature.

5.1.1 DMC Models Have Finite Order

The regular expression C

k

(s

i

) may be described as a �nite-order characterization of

the strings which bringM

k

to s

i

from the initial state s

0

, because deciding membership

of any string wa in the language of any state s

i

requires a �nite number of comparisons

with a �nite number of symbols at the end of the string wa. The concept, �nite-order,

is easily formalized for regular expressions (and therefore for �nite-state machines),

and leads to a simple proof that DMC constructs �nite-order FSMs.

A language L over a �nite alphabet A is �nite order if and only if there exist

�nite sets of strings F and G such that L = A

�

F [G.

Finite-Order Expressions over A and the languages they denote are de�ned

recursively:

1. A

�

is a �nite-order expression and L(A

�

) = A

�

.

2. If � and � are �nite-order expressions over A and a 2 A then � [ �, � \ �, �,

and � � a are �nite-order expressions, where

L(� \ �) = L(�) \ L(�)

L(� [ �) = L(�) [ L(�)

L(�) = A

�

� L(�)

L(� � a) = L(�) � a:

Theorem 5.1 A language L is �nite-order i� L = L(�), for some �nite-order ex-

pression �.



Proof: To show that any �nite order language can be expressed as a �nite-order ex-

pression, we consider a �nite-order language L = A

�

F [ G, where F = fx

1

; : : : ; x

n

g,

and G = fy

1

; : : : ; y

m

g, and then express the sets A

�

F , and G, as �nite-order expres-

sions:

A

�

F = A

�

x

1

[ A

�

x

2

[ � � � [ A

�

x

n

; and

G = f�gy

1

[ f�gy

2

[ � � � [ f�gy

m

= A

�

Ay

1

[ A

�

Ay

2

[ � � � [ A

�

Ay

m

:

To prove the contrapositive, we show, by induction on expression length, that

the language of any �nite-order expression can be expressed as a �nite order language,

A

�

F [ G, where F and G are �nite. The basis is trivial: A

�

= A

�

f�g [ fg. For the

step, consider a �nite-order expression that is composed of two shorter �nite-order

expressions � and �, which by induction hypothesis have corresponding �nite sets

F

�

= fx

1

; : : : ; x

n

g, F

�

= fy

1

; : : : ; y

m

g, G

�

= fv

1

; : : : ; v

r

g, and G

�

= fw

1

; : : : ; w

s

g.

There are four cases:

L(� � a) = A

�

(F

�

� fag) [ G

�

� fag:

L(� [ �) = A

�

(F

�

[ F

�

) [ (G

�

[G

�

):

L(� \ �) = A

�

F [G;

where G =

S

1 � i � n

1 � k � r

(A

�

x

i

\ v

k

)[

S

1 � j � m

1 � l � s

(A

�

y

j

\ w

l

)[

S

1 � k � r

1 � l � s

(v

k

\ w

l

) ;

and F = fx

i

2 F

�

: 9y

j

2 F

�

s.t. y

j

is a su�x of x

i

g [

fy

j

2 F

�

: 9x

i

2 F

�

s.t. x

i

is a su�x of y

j

g:

The de�nition of F follows from the fact that

A

�

F =

S

1 � i � n

1 � j � m

(A

�

x

i

\ A

�

y

j

) :

L(�) = A

�

x

1

[ A

�

x

2

[ � � � [ A

�

x

n

[ v

1

[ v

2

[ � � � [ v

p

= A

�

x

1

\ A

�

x

w

\ � � � \ A

�

x

n

\ v

1

\ v

2

\ � � � \ v

p

;

where v

i

= A

�

Av

i

[ A

�

v

i

;

A

�

x = fg; if x = �;

A

�

x = A

�

a

1

a

2

� � �a

z

; if x = a

1

a

2

� � �a

z

= f�g [ A

�

a

z

[ A

�

a

z�1

a

z

[ � � � [ A

�

a

1

a

2

� � �a

z

;

a = fb 2 A : b 6= ag:

Thus, any �nite order expression � can be transformed into a

�nite-order expression constructed from single symbols and A

�

using only concatenation, intersection, and union; that is, an

expression for which the induction is already proved2

The fact that DMC models are �nite-order may now be expressed clearly:

Corollary 5.1 The language of a state s

i

in a DMC modelM

k

, C

k

(s

i

), is �nite-order

for all i and k.



Proof: The recursive de�nition of C

k

(s

i

) reduces to a �nite-order expression, that is,

C

k

(s

i

) = L(s

i

) \

\

s

d

2extns

k

(s

i

)

L(s

d

):

5.1.2 DMC Models Are Not FSMX

It is instructive to consider restricted DMC embodiments in which E() allows tran-

sitions to be redirected only once and disallows the redirection of transitions from

states that already have extensions. In such models, Equation (10) holds for every

state. In that case,

C

k

(s

i

) = A

�

context(s

i

)�

[

s

d

2extns

k

(s

i

)

A

�

context(s

d

);

which is logically equivalent to the closed-form transition function of FSMX models.

FSMX models, de�ned by Rissanen [12], are characterized by their state-set and

transition function:

� The states satisfy a su�x property, where states mapped to unique �nite strings,

or conditioning contexts, and for every state with context x, there exist states

for each proper su�x of x. The set of maximal conditioning contexts that

have states in the model is determined by a growth heuristic, and varies among

di�erent techniques.

� The transition function has a closed form based on state conditioning contexts.

The next state is always the state whose associated �nite context is the maximal

su�x, relative to the context partition de�ned by the model, of the already-

processed portion of the input sequence.

DMC transition functions cannot, in general, be expressed in such a simple closed

form.

When E() allows transitions to be redirected more than once, distinct states s

i

and s

j

may be mapped by the function context() to the same string:

context(s

i

) = context(s

j

) ) 9 l < jcontext(s

i

)j s.t.

pre�x

l

(s

i

) = pre�x

l

(s

j

);

where pre�x

l

() is the function obtained by composing the function pre�x() with

itself l � 1 times.

Furthermore, a completely independent complication arises when transitions

from a state that already has extensions may be redirected. In this case, the state

corresponding to M

k

(wa) will not always be the state in M

k

whose context() is the

longest match to the end of wa. An example of this situation occurs with respect to

an arbitrary state s

i

in an arbitrary model M

k

, where:

context(s

i

) = `abc';

context(pre�x(s

i

)) = `ab';

context(s

d

) = `wabc' for some s

d

2 extns

k

(s

i

);

context(pre�x(s

d

)) = `wab', and

context(s

r

) = `vwab' for some s

r

2 extns

d�1

(pre�x(s

d

)):
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Figure 3: Example-independent illustration of the (necessary) alternating recur-

sion of function L(). The states in the upper subtrees correspond to contexts in the

�rst term of C

k

(), which describes strings that bring M

k

to the subtree headed by s

i

.

The states in the lower subtrees correspond to contexts in the second term of C

k

(),

which describes strings that have been directed away from s

i

into s

i

's subtree. Note,

the �gure does not illustrate multiply-redirected transitions.



(Figure 3 is included for use as a template for correctly visualizing particular examples

such as this one by writing given contexts on the states with the above labels.) Here,

context(s

d

) is the best-matching context for any input substring in ending in `vwabc';

however, substrings ending in `vwabc' take M

k

to s

i

, not s

d

. This example proves

that DMC states cannot be uniquely characterized with single strings.

Thus a stronger characterization is required for DMC models than for FSMX

models, because DMC models can recognize languages for which no FSMX model

exists. Furthermore, for any FSMX model there exists a linguistically equivalent

DMC model. Another interesting consequence of the fact that DMC is not FSMX

is that this proves conclusively that the family of languages generated by FSMX

models does not properly contain the languages generated by Markov Models. This

apparently contradicts conventional wisdom that FSMX models \generalize the class

of Markov Models" [13].

5.2 Structural Comparison

The context() of a DMC state is analogous to the �nite contexts of the states in

FSMX models [7, 6, 9, 11, 12, 13, 17, 18] vis �a vis the terms of the de�nition of C

k

(),

and the fact that every string that takes a DMC model to a given state s

i

ends in

context(s

i

), which is proved in Lemma 3.1. Both DMC and FSMX models are tree-

structured, where children states correspond to minimal extensions of their parent's

context. Thus DMC and FSMX models are similar enough to allow meaningful

comparison of their abstract structural di�erences, in terms of conditioning contexts.

Since FSMX models are characterized by a uniformly restricted version of

DMC's characterizing function C

k

(), we know that any FSMX model can be sim-

ulated by a DMC model. However, such a simulation will require extra states in the

DMC model, for the class of DMC models does not contain the class of FSMX models

(or vice versa). DMC models are strictly Markovian, that is, the next state is always

a function of the current state and the currently scanned symbol; whereas the next

state in an FSMX model may also depend upon which states were visited before the

current state. Note that it is equivalent to say that DMC models satisfy a pre�x

property: for every state s there exist states p for each proper pre�x of context(s)

such that �

k

(p; w) = s, where context(s) = context(p) � w. A DMC model that

simulates an FSMX model, a Markovian FSMX model, would satisfy both the pre�x

property above, and the su�x property satis�ed by FSMX models. The comparison

between such a model and an arbitrary DMC model explores structural di�erences

besides the Markov (or pre�x) property.

The �rst di�erence is that a DMC model can have distinct states whose associ-

ated conditioning context partition elements have the same maximum common su�x.

The function context() describes these maximum common su�xes. FSMX models

also associate conditioning context partition elements with each state, but each is fully

characterized by its maximum common su�x, and therefore there is no duplication

of the maximum common su�x of any state. The duplication in DMC is partially

caused by redirecting the original transition for which a given state was created (that

state's pre�x transition). Any bene�t of redirecting a pre�x transition is realized

only if the other transitions entering the given state, or earlier crossings of the pre�x

transition itself, have caused the frequency distribution on the state's outgoing tran-

sitions (described in Section 5.3) to become contaminated (i.e., non-representative).

The cost of redirecting pre�x transitions in the absence of such contamination is per-

vasive model redundancy. Not only can this hinder structural convergence, but the



convergence of statistical parameters may be slowed because message statistics are

distributed unnecessarily.

A more important distinction is DMC's capacity for variable-length minimal

extensions of a context. This capacity alone sets DMC's (Markovian) data model

apart from all FSMX models. Techniques that build FSMX models [7, 6, 9, 11, 12,

13, 17, 18] all grow models with single-character minimal extensions. Thus DMC

has the capacity for modeling the most probable substrings in a given sequence using

fewer states than any of its counterparts.

5

The remaining structural di�erence is due to the fact that the (temporal) order

in which �nite substrings in a given sequence become recognizably frequent strongly

a�ects the structure of the regular sets of conditioning contexts associated with each

state. Thus the structure of DMC models re
ects higher-order statistics of the con-

ditioning contexts themselves. In contrast, the structure of FSMX models only re-


ects the zero-order statistics of the conditioning contexts (i.e., how many times each

context appears in the source message). Therefore, DMC's Markov models record

information about the input sequence that FSMX models do not.

5.3 Bayesian Assumptions and Local Order Estimation

The remaining undescribed aspect of DMC is how it computes probability estimates.

As each symbol is processed, DMC simply produces a frequency distribution over A,

from the frequency data at the current state, and then increments the symbol count

which corresponds to the current symbol at that state. The key to the computation

of the estimate is which values are assumed for the recorded frequency of each symbol

in A given the current state, when it is �rst added to the model. For when a new

state is �rst added, the observed frequencies of all symbols given that state are zero,

and therefore cannot be the basis for a probability estimate. Thus, DMC computes

a prior frequency distribution for each newly added state, when it is created.

This contrasts sharply with the practice of two other families of on-line al-

gorithms. Rissanen's Context algorithm and variants [9, 11, 12, 13, 17] typically

assume the same uniform prior for each state as it is added to the model. The as-

sumed prior is therefore not based upon any frequency data. Such simplistic prior

assumptions incur negligible penalties later in long target sequences; they are often

combined with information-theoretic state-selection that dynamically (re)estimates

the local order of the model, and which requires that frequency counts at all excited

states be incremented for each symbol. At the other extreme, the PPM algorithm

and subsequent variants [7, 6, 18] compute a frequency distribution that is a dynam-

ically weighted average of the distributions at all excited states (i.e., states whose

conditioning contexts match the current input history). This \blending" technique

is algebraically equivalent to assuming a (pseudo-Bayesian) prior frequency distribu-

tion that is (re)computed at the latest possible moment, and which therefore employs

information that was not available when the new state was �rst added to the model.

With blending, frequency updates are best made only at certain of the highest-order

excited states. DMC's (Bayesian) priors are based only upon frequency data that

have been gathered up to the moment that a given state was added, and frequencies

are updated only at the highest-order excited state.

5

That is, assuming the sequence was generated by a Markov FSMX source. Using a Markov

model such as DMC's to simulate any non-Markovian FSMX source requires systematic addition of

extra states.



5.3.1 Frequency Distributions in DMC

In DMC's intial model, M

0

, a uniform frequency distribution is assumed over the

re
exive out-transitions of s

0

. As each s

k+1

is added, it becomes the new destination

of a transition, edge(s

p

; c), on some c from some s

p

, and each out-transition from the

original destination, s

t

, is copied and assigned a frequency f

k+1

(). That is,

8b 2 A; f

k+1

(edge(s

k+1

; b)) = ratio � f

k

(edge(s

t

; b));

where s

t

= �

k

(s

p

; c) and

ratio = f

k

(edge(s

p

; c))=�

b2A

f

k+1

(edge(s

t

; b)):

Then, the frequencies of the copied out-transitions are reduced by the frequencies

assigned to the copies,

8b 2 A; f

k+1

(edge(s

t

; b)) = f

k

(edge(s

t

; b))� f

k+1

(edge(s

k+1

; b)):

For all other transitions, f

k+1

= f

k

.

This process is pictured in Figure 4, using the the de�nitions of Section 3.1, that

is, s

t

= su�x(s

k+1

) and s

p

= pre�x(s

k+1

). We call the resulting frequency distribu-

tion on the edges leaving s

k+1

a retraction, since the process of redirecting an edge

to a new state can be viewed as a reclassi�cation of the strings which take M

k

across

that edge. Note the resulting `homogeneity assumption' regarding the distribution of

next-symbol frequencies that are conditioned by the redirected edge, relative to the

original frequency distribution at its original destination su�x(s

k+1

) that is implicit

here. A more exact (and expensive) way to implement retractions would require hav-

ing each edge remember the exact distribution of next-symbol frequencies that are

conditioned by strings which have crossed the edge in the past.

When encoding an input sequence, DMC's model simply computes the fre-

quency, relative to the sum of the frequencies of the transitions leaving the current

state s

i

, of the transition leaving s

i

that corresponds to the currently scanned sym-

bol c. The resulting conditional probability estimate may then be encoded in as few

as � log(p

est

(cjs

i

)) bits.

This does not directly a�ect DMC's structure, of interest here. But, we note

that the prior distribution assumption that DMC invokes by redistributing frequencies

between a new state s

k+1

and su�x(s

k+1

) salvages DMC's compression performance,

because it hedges against the gross local order over-estimation induced by the def-

inition of E() of [8] described earlier. Order estimation is performed in all FSMX

models, at least implicitly, to decide how long the contexts represented by the model

should be. Local order estimation decides whether individual contexts in the model

should be shorter or longer. Since C

k

(s

i

) is minimal and A

�

C

k

(s

i

) � A

�

context(s

i

);

the order of any state s

i

in a DMC model is at least jcontext(s

i

)j.

The following are immediate corollaries of our main result:

1. DMC states have a de�ned, locally-variable minimum order.

2. Every state has the same or higher minimum order than its parent.

3. The act of invoking the criterion E() to decide when to add a state s

k+1

as an

extension to a given s

t

is indeed local order estimation.
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Figure 4: Cloning, Frequency Distributions, and Retractions in DMC.When

a selected edge redirected, its new destination is a clone of its former destination, and

the frequency distribution at the original destination is uniformly divided between

the two destinations. The frequencies in the clone's copy of the distribution (the

retraction) sum to the number of times the redirected edge has been traversed, and

the original destination state keeps the remaining frequencies. Note that the number

of distribution subinterval calculations and the number of newly added edge pointers

corresponds to the size of the input alphabet jAj, so in practice, DMC has always

taken a binary input alphabet.



6 Curbing Counterproductive Model Growth

An obvious way to reduce the number of states in DMC models is to use a larger

input alphabet. However, as originally presented, DMC is only feasible with a binary

alphabet, since jAj out-transitions are created for every new state. Other authors

[14, 15, 19] have independently generalized DMC to larger alphabets using variations

of what we call lazy cloning , which copies out-transitions only as needed. However,

only the solutions in [4, 14] successfully reduced DMC's memory requirements without

eliminating DMC's advantages. The others all had a similar approach: when the

required out-transition was absent from the current state, the needed transition was

copied from a state that was essentially a zero- or �rst-order state.

Our analysis implies that the best state from which to copy out-transitions one

at a time is the same state they would have been copied from if the copying were done

all at once: the su�x() state. This way, the transitions go to a next state with the

longest possible matching conditioning context. Copying out-transitions from a low-

order state has the opposite e�ect. Thus our analysis of DMC explains the successes

and failures of the various practical approaches.

Several natural solutions for curbing DMC's counterproductive model growth

follow from our characterization of DMC. They apply individually and in combination.

1. E() should better approximate entropy-based local order estimation. The fre-

quency of a particular edge does say something about the probability of the

state it leads to. Thus the original E() crudely approximates the contribution

of that destination state to the entropy of the model. The other approximation

extreme is exempli�ed by Rissanen [13] and Furlan [9]. These authors closely

approximate the relative entropies between states and their minimal extension

states using counters which keep track of the code-length di�erences. The mid-

dle ground, that is, e�ective but quick and imprecise approximations, is utterly

unexplored.

2. The re�nement eligibility criterion E() should prevent transitions from being

redirected more than once.

6

3. The transitions exiting any given state should be copied from its su�x() one

at a time, as they are needed, see Figure 5. When a state does not have the

required out-transition, the probability estimate can be made from its su�x().

This way, larger input alphabets can be economically accommodated, since only

conditioning contexts which have been seen before will be represented by the

model. Probability estimation can proceed using the recursive blending tech-

nique of PPM [7], or by lazy evaluation of DMC's prior distribution assump-

tion [4]. For example, if blending method PPMC [10] were used, the frequency

on the su�x() edge should always equal the number of distinct symbols which

have been seen when in a given state, and the application of such optimizations

as exclusions and update exclusions [2] is straightforward. Lazy evaluation of

DMC's prior distribution assumption, that is, lazy retractions, is described in

Figure 5.

6

Caveat emptor: J. Teuhola and T. Raita report [personal correspondence] unsatisfactory results

when this restriction is combined with lazy cloning. In [4] we investigate whether the success of

this restriction depends upon the nature of the re�nement criterion E(), and whether transition

frequencies are incremented before or after new transition creation.
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Figure 5: Lazy Cloning and Retractions in DMC. When a new state is created,

the frequency of the event that a novel symbol is seen (�) is set to the frequency of

the redirected edge, and thus the probability of traversing the su�x() pointer when

in that state is 1:0. Whenever a novel symbol is seen in a given state, its portion

of the state's retraction is recursively evaluated, before the symbol's probability is

estimated and before any frequency updates occur at the given state. Note that a

novel symbol's portion of the retraction is subtracted from �'s frequency and added

to the symbol's frequency. Frequency updates are discussed in detail in [4].



The analysis in this paper holds for all of the DMC variations outlined above.

Some of the lazy cloning ideas outlined in item 3 above and explored in [4] were

independently developed in [14]. This study of DMC contributes to a larger body

of work [4] that examines the combination of convergent local order estimation, ag-

gressive model growth, and statistically aggressive pseudo-Bayesian assumptions in

FSMX models and DMC variants.
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