
Runtime Support for

Dynamic Space-Based Applications on

Distributed Memory Multiprocessors

Immaneni Ashok

Technical Report # 94-12-03

December 1994

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

A dissertation submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy, University of Washington, 1994.

The research described in this dissertation was supported in part by the National

Science Foundation (Grants CCR-8619663, CCR-9123308, and CCR-9200832), the

Washington Technology Center, and Digital Equipment Corporation (Systems Re-

search Center and External Research Program).

University of Washington

Abstract

Runtime Support for Dynamic Space-Based Applications on

Distributed Memory Multiprocessors

by Immaneni Ashok

Chairperson of Supervisory Committee: Professor John Zahorjan

Department of

Computer Science and Engineering

Dynamic space-based applications are simulations of objects moving through a closed

k-dimensional space subject to mutual forces. There are a wide variety of such ap-

plications, di�ering in the kinds of objects and forces being simulated. These appli-

cations exhibit strong data locality patterns, but these patterns change during the

computation as objects change position in the simulated space.

To achieve good performance when run on distributed memory multiprocessors,

two con
icting goals must be addressed: the strong spatial data locality must be

exploited, and the computational load must be balanced across the processors. These

optimizations can be done statically, by either the programmer or the compiler, or

dynamically, by handwritten application code or a runtime system. This dissertation

investigates the issues involved in designing a specialized runtime system that provides

convenience of programming as well as e�cient execution.

First, we address the issues in designing a programming interface for dynamic

space-based applications. We propose a new programming model that enables the

development of parallel codes that involve very few additional lines of code and very

few additional concepts beyond those required to construct a sequential version of

the application.

Second, we address the issues in data partitioning and dynamic load balancing.

We propose heuristics that can be e�ectively used to determine a good partitioning

scheme based on the application execution characteristics and the machine character-

istics. We propose a novel dynamic load balancing scheme that uses a non-uniform,

adaptive load discretization method to estimate the load distribution, a hierarchical

scheme to balance the load, and a predictive method to determine how often to re-

balance. We show that the schemes that we propose are very e�ective in reducing

the execution overheads due to communication, load imbalance and load balancing.

Third, we study the issues in adapting to processor reallocations performed by the

operating system on a multiprogrammed system. We show that it is advantageous

for the runtime system to remap the data, unless the processor allocation changes

too often or there is very little time left over to �nish the job.

Table of Contents

List of Figures ii

List of Tables iii

I Introduction 1

Chapter 1: Dynamic Space-Based Applications 2

1.1 Characteristics of Dynamic Space-Based Applications : : : : : : : : : 2

1.2 Examples of Dynamic Space-Based Applications : : : : : : : : : : : : 3

1.2.1 Electro-Magnetic Particle-In-Cell : : : : : : : : : : : : : : : : 3

1.2.2 Rare�ed Fluid Flow : 4

1.2.3 Molecular Dynamics : 5

1.3 Parallelizing Dynamic Space-Based Applications on Distributed Mem-

ory Multiprocessors : 6

1.3.1 Distributed Memory Multiprocessors : : : : : : : : : : : : : : 6

1.3.2 Programming Distributed Memory Multiprocessors : : : : : : 7

1.3.3 Parallelizing Dynamic Space-Based Applications : : : : : : : : 7

1.4 Specialized Runtime Support : 8

Chapter 2: Thesis 11

2.1 Thesis Contributions : 11

2.2 Organization of the Thesis : 12

Chapter 3: Related Work 14

3.1 Parallel Programming Environments : : : : : : : : : : : : : : : : : : 14

3.1.1 Parallelizing Compilers : 14

3.1.2 Specialized Runtime Systems : : : : : : : : : : : : : : : : : : 14

3.1.3 Parallel Scienti�c Applications : : : : : : : : : : : : : : : : : : 15

3.2 Application Induced Load Balancing : : : : : : : : : : : : : : : : : : 15

3.2.1 Automatic Data Partitioning : : : : : : : : : : : : : : : : : : 15

3.2.2 Dynamic Load Balancing : 16

3.3 Operating System Induced Load Balancing : : : : : : : : : : : : : : : 16

3.4 Summary : 16

II Parallel Programming Model for Dynamic Space-

Based Applications 17

Chapter 4: The

�

ADH

�

ARA Programming Model 18

4.1 Computation Space : 20

4.2 Spatial Data Structures : 21

4.3 Data Sharing : 25

4.3.1 Sharing Regular-Grid Data : 26

4.3.2 Sharing Particle Data : 28

4.3.3 Global Operations : 29

4.4 Phases : 29

4.5 Summary : 31

Chapter 5: Parallelizing Dynamic Space Based Applications Using

�

ADH

�

ARA 32

5.1 Electro-Magnetic Particle-In-Cell : 33

5.1.1 Sequential Program for the EMPIC Application : : : : : : : : 34

5.1.2

�

Adh�ara Program for the EMPIC Application : : : : : : : : : : 36

5.2 Rare�ed Fluid Flow : 40

5.2.1 Sequential Program for Rare�ed Fluid Flow Application : : : 40

5.2.2

�

Adh�ara Program for Rare�ed Fluid Flow Application : : : : : 44

5.3 Molecular Dynamics : 49

5.3.1 Sequential Program for the Molecular Dynamics Application : 49

5.3.2

�

Adh�ara Program for the Molecular Dynamics Application : : : 52

5.4 Summary : 55

Chapter 6: Evaluation of the

�

ADH

�

ARA Programming Model and

Comparison with Existing Programming Environments 56

ii

6.1 Evaluation of the

�

Adh�ara Programming Model : : : : : : : : : : : : : 56

6.2 Comparison with Existing Programming Environments : : : : : : : : 58

6.3 Summary : 59

III Application Induced Load Balancing 60

Chapter 7: Issues in Application Induced Load Balancing 61

7.1 How to Partition the Space : 61

7.1.1 Rectangular vs. Non-Rectangular Regions : : : : : : : : : : : 61

7.1.2 Block vs. Scatter Decompositions : : : : : : : : : : : : : : : : 63

7.1.3 Non-Hierarchical vs. Hierarchical Partitioning : : : : : : : : : 63

7.2 How to Load Balance : 65

7.2.1 Sorting vs. Discretization : 65

7.2.2 Static vs. Adaptive Discretization : : : : : : : : : : : : : : : : 67

7.2.3 Uniform vs. Non-Uniform Discretization : : : : : : : : : : : : 67

7.2.4 Centralized vs. Distributed Schemes : : : : : : : : : : : : : : 68

7.2.5 Hierarchical Load Balancing : : : : : : : : : : : : : : : : : : : 69

7.3 When to Load Balance : 70

7.3.1 Fixed vs. Adaptive Frequency : : : : : : : : : : : : : : : : : : 70

7.3.2 Methods for Adapting Frequency : : : : : : : : : : : : : : : : 70

7.4 Comparison with the Existing Load Balancing Systems : : : : : : : : 71

7.5 Summary : 71

Chapter 8: Choosing a Hierarchical Partitioning Scheme Based on

Application Characteristics 73

8.1 Heuristics for Choosing a Good Hierarchical Partitioning Scheme : : : 73

8.2 Extracting Execution Characteristics : : : : : : : : : : : : : : : : : : 75

8.3 Parameters for the Heuristics : 76

8.4 Summary : 76

Chapter 9: Dynamic Load Balancing Using Non-Uniform, Adaptive

Discretization of Space 77

9.1 Representing a Non-Uniform, Adaptive Load Discretizing Mesh : : : 77

iii

9.2 Estimating Load Distribution : 78

9.3 Hierarchical Load Balancing : 79

9.4 Adjusting Parameters of the Load Discretizing Mesh Based on Appli-

cation Characteristics : 85

9.4.1 Adjusting the size of the boundary region to discretize : : : : 85

9.4.2 Adjusting �neness of the load discretizing mesh based on the

desired quality of load balance : : : : : : : : : : : : : : : : : : 87

9.5 Taking Advantage of Preferential Load Movement : : : : : : : : : : : 87

9.6 Adaptive Distributed Algorithm for Hierarchical Load Balancing : : : 87

9.7 Adapting to a New Partitioning Scheme : : : : : : : : : : : : : : : : 89

9.8 Summary : 89

Chapter 10: Predictive Method for Adapting Frequency of Load Bal-

ancing 93

Chapter 11: Implementation of the Portable Runtime System 96

11.1 Design of

�

Adh�ara Runtime System Software : : : : : : : : : : : : : : 96

11.2 Portability : 96

11.3 Implementation Issues : 98

11.4 Message Handler : 99

11.5 Phase Manager : 102

11.6 Spatial Data Manager : 103

11.7 Data Redistributor : 104

11.8 Load Balancer : 104

11.9 Processor Reallocation Adapter : 104

11.10Summary : 106

Chapter 12: Performance Results 107

12.1 Sensitivity of Application Performance to the Partitioning Scheme : : 108

12.1.1 E�ect of the Partitioning Scheme on the Load Imbalance Over-

head : 108

12.1.2 E�ect of the Partitioning Scheme on the Communication Over-

head : 111

12.1.3 E�ect of the Partitioning Scheme on the Parallel E�ciency : : 111

iv

12.1.4 Importance of Choosing a Good Partitioning Scheme : : : : : 111

12.2 E�ectiveness of

�

Adh�ara's Heuristics for Choosing a Good Partitioning

Scheme : 114

12.3 Overhead of Dynamically Changing the Partitioning Scheme : : : : : 116

12.4 E�ect of the Coarseness of the Load Discretizing Mesh on the Perfor-

mance : 116

12.5 Performance of the Non-Uniform, Adaptive Load Discretizing Mesh

Scheme : 117

12.6 Adaptation of the Non-Uniform Load Discretizing Mesh : : : : : : : : 119

12.7 Performance of the Predictive Method : : : : : : : : : : : : : : : : : 122

12.8 E�ect of the

�

Adh�ara's Load Balancing Scheme on Overall Execution

Time : 128

12.9 Summary : 131

IV Operating System Induced Load Balancing 132

Chapter 13: Adapting to Processor Reallocations 133

13.1 Assumptions and Cost Model : 135

13.2 Measurements : 137

13.2.1 Execution Overheads : 137

13.2.2 Reallocation Overhead : 137

13.2.3 Relative Overhead of the Non-Adaptation Scheme : : : : : : : 139

13.3 Conclusions : 141

V Summary and Conclusions 142

Chapter 14: Conclusions 143

14.1 Summary : 143

14.2 Future Research Directions : 145

14.2.1 Supporting Other Types of Space-Based Data Structures : : : 145

14.2.2 Experimentation on Di�erent Types of Large Scale Machines : 145

14.2.3 Using Other Applications : 145

v

Bibliography 146

vi

List of Figures

1.1 Examples of Two-Dimensional Spatial Data Structures : : : : : : : : 3

1.2 Data Dependencies in various phases in one time step of the EMPIC

simulation : 4

1.3 Data dependencies in one time step of the MP3D simulation : : : : : 5

1.4 Data Dependencies in one time step of the CGV simulation : : : : : : 6

1.5 Distributed Memory Machine Model : : : : : : : : : : : : : : : : : : 7

1.6 A Spatial Partitioning Scheme for a Two-Dimensional Application : : 8

4.1 Compiling an

�

Adh�ara Program : 19

4.2 Methods of Partitioning a Three Dimensional Space into Eight Rect-

angular Regions : 20

4.3 Examples of Two-Dimensional Spatial Data Structures : : : : : : : : 22

4.4 Communicating Out-Of-Bound Particles : : : : : : : : : : : : : : : : 25

4.5 Example of Read Overlap : 26

4.6 Example of Write Overlap : 27

4.7 Replication of Particle Data for Extracting Pairs of Particles : : : : : 28

4.8 Automatic Data Redistribution in between Phases : : : : : : : : : : : 30

5.1 Data Dependencies in various phases in one time step of the EMPIC

simulation : 33

5.2 Data dependencies in one time step of the rare�ed
uid
ow simulation 41

7.1 Partitioning a Three Dimensional Space into Eight Non-rectangular

Regions : 62

7.2 Methods of Partitioning a Three Dimensional Space into Eight Rect-

angular Regions : 62

7.3 Block vs. Scatter Decompositions : 63

7.4 Non-hierarchical vs. Hierarchical Partitioning : : : : : : : : : : : : : 64

7.5 Types of Hierarchical Partitions : 65

vii

7.6 Sorting vs. Discretization Methods for Load Balancing : : : : : : : : 66

7.7 Uniform vs. Non-Uniform Discretization : : : : : : : : : : : : : : : : 68

7.8 Distributed Scheme for Computing New Partition : : : : : : : : : : : 69

8.1 Examples of Partitioning Schemes : 74

9.1 Parameters of the Non-Uniform Load Discretizing Mesh : : : : : : : : 78

9.2 Using Bins to Separate Boundary and Non-Boundary Objects : : : : 78

9.3 Load Estimation using a Non-Uniform Load Discretizing Mesh : : : : 80

9.4 Hierarchical Load Balancing : 81

9.5 Processor Hierarchy for Distributed Load Balancing : : : : : : : : : : 82

9.6 Distributed Algorithm for Hierarchical Load Balancing: STEP 1 : : : 83

9.7 Distributed Algorithm for Hierarchical Load Balancing: STEP 2 : : : 84

9.8 Adjusting Parameters of the Load Discretizing Mesh : : : : : : : : : 86

9.9 Heuristic Algorithm for Adjusting Parameters of the Load Discretizing

Mesh : 88

9.10 Adaptive Algorithm for Hierarchical Load Balancing: STEP 1 : : : : 90

9.11 Heuristic Procedure for Adapting Partitioning Scheme and the Dimen-

sions in which Load Needs to be Balanced : : : : : : : : : : : : : : : 91

9.12 Adaptive Algorithm for Hierarchical Load Balancing: STEP 2 : : : : 92

10.1 E�ect of the length of the load balancing interval on load balancing

and load imbalance overheads : 94

11.1 Compiling an

�

Adh�ara Program : 97

11.2 Organization of the

�

Adh�ara Runtime Software : : : : : : : : : : : : : 97

11.3 Representing Space Partitioning of a Two Dimensional Space: An Ex-

ample : 99

11.4 Communicating Array Sections: An Example : : : : : : : : : : : : : : 100

11.5 Storing and Accessing a REGULAR-GRID Data Structure : : : : : : 103

11.6 Example of a Redistribution Schedule : : : : : : : : : : : : : : : : : : 105

12.1 E�ect of the Partitioning Scheme on the Load Imbalance : : : : : : : 110

12.2 E�ect of the Partitioning Scheme on the Communication Overhead : 112

12.3 E�ect of the Partitioning Scheme on the Parallel E�ciency : : : : : : 113

viii

12.4 E�ect of Coarseness of Load Discretizing Mesh on the Sum of Load

Imbalance and Load Balancing Overheads : : : : : : : : : : : : : : : 118

12.5 Adaptation of the Coarseness of the Load Discretizing Mesh for the

EMPIC Application : 121

12.6 Adaptation of the Number of Slots of the Load Discretizing Mesh:

EMPIC Application : 123

12.7 Adaptation of the Number of Slots of the Load Discretizing Mesh:

MP3D Application : 124

12.8 E�ect of the Frequency of Load Balancing on the Sum of Load Imbal-

ance and Load Balancing Overheads : : : : : : : : : : : : : : : : : : 126

12.9 Adaptation of Load Balancing Frequency : : : : : : : : : : : : : : : : 127

12.10E�ect of the

�

Adh�ara's Load Balancing Scheme on Parallel E�ciency : 130

13.1 Processor Reallocation by the Operating System : : : : : : : : : : : : 133

13.2 E�ect of the Number of Threads on the Execution Overhead : : : : : 135

13.3 E�ective Speed-Up on Two Processors Induced by the Non-Adaptation

Scheme : 136

13.4 Execution Overheads : 138

13.5 Overhead of the Non-Adaptation Scheme relative to the Dynamic Adap-

tation Scheme : 140

ix

List of Tables

5.1 Comparison of the Characteristics of the Example Applications : : : 32

6.1 Evaluation of the

�

Adh�ara programming model : : : : : : : : : : : : : 57

6.2 Comparison of

�

Adh�ara with existing programming environments : : : 58

7.1 Comparison with the Existing Load Balancing Systems : : : : : : : : 72

12.1 Comparison of the Application and Execution Characteristics : : : : 109

12.2 Applying Heuristics for Choosing a Partitioning Scheme : : : : : : : : 114

12.3 Overhead of Dynamically Changing the Partitioning Scheme : : : : : 116

12.4 Performance of the Non-Uniform, Adaptive Load Discretizing Mesh : 120

12.5 Performance of the Predictive Scheme for Adapting Frequency of Load

Balancing : 125

12.6 Performance of the

�

Adh�ara's Load Balancing Scheme : : : : : : : : : 129

13.1 Non-Adaptation and Dynamic Adaptation Schemes: Advantages and

Disadvantages : 134

13.2 Execution Overheads for Di�erent Processor Contractions : : : : : : : 139

13.3 Overhead for Adapting to Processor Reallocations : : : : : : : : : : : 139

x

Acknowledgments

I'd like to thank:

� The Almighty for everything

� My advisor John Zahorjan for his wonderful guidance, enormous patience and

understanding

� Ed Lazowska for his support and valuable comments

� My parents for their encouragement to pursue my goal

The research described in this dissertation was supported in part by the

National Science Foundation (Grants CCR-8619663, CCR-9123308, and CCR-

9200832), the Washington Technology Center, and Digital Equipment Corpo-

ration (Systems Research Center and External Research Program).

xi

Part I

Introduction

1

Chapter 1

DYNAMIC SPACE-BASED APPLICATIONS

Dynamic space-based applications are simulations of objects moving through

bounded k-dimensional space. The objects are subject to mutual forces, and change

their spatial positions dynamically. There are a wide variety of such applications,

di�ering in the kinds of objects and forces being simulated.

Many important scienti�c applications in plasma physics, chemistry, materials

science and aeronautics, among others, fall into the category of dynamic space-based

applications. For example, an electro-magnetic particle-in-cell application simulates

the movement of charged particles subject to forces induced by electric and magnetic

�elds. A molecular dynamics application, on the other hand, simulates molecules

subject to inter-atomic forces.

1.1 Characteristics of Dynamic Space-Based Applications

Dynamic space-based applications exhibit the following common characteristics:

1. They simulate the trajectory of objects moving in a bounded k-dimensional

space.

2. The simulation proceeds in a series of time steps. In each time step, the spatial

positions of all the objects are updated.

3. Each time step consists of one or more data-parallel phases in which the same

computation is performed on all the objects.

4. They exhibit strong spatial locality, i.e., computation on an object depends

most strongly on the objects that are spatially close to itself

1

.

5. Spatial relationships change dynamically, as the objects move around in space.

3

REGULAR GRID PARTICLE

Figure 1.1: Examples of Two-Dimensional Spatial Data Structures

The components of the simulation can be grouped into one or more spatial data

structures. Examples of spatial data structures are regular-grid and particle (Fig-

ure 1.1). The objects in a regular-grid (grid points) are uniformly and statically

distributed in the space, whereas the objects in a particle data structure are non-

uniformly distributed in the space and the distribution can change dynamically.

1.2 Examples of Dynamic Space-Based Applications

1.2.1 Electro-Magnetic Particle-In-Cell

The Electro-Magnetic Particle-In-Cell (EMPIC) application simulates movement of

charged particles that interact by exerting electric and magnetic �eld forces on each

other [Birdsall & Langdon 85, Hockney & Eastwood 88, Walker 90]. The force expe-

rienced by a particle depends on the current position and velocity of all the particles,

and this changes continuously with time. The goal of the simulation is to understand

the behavior of the particles.

The standard solution uses a particle-mesh method, which discretizes space by

a grid and time by updating the position and velocity of the particles only at the

boundaries of small time intervals. Each time step consists of three phases. In the

scatter phase, current-density is assigned to the grid points using the position and

velocity of all the particles (Figure 1.2(a)). In the solve phase, new values of electric

1

In this thesis, we address primarily simulations that use short-range forces.

4

P

(c) Push Phase

P

PP

P

(a) Scatter Phase

Grid Point Particle

(b) Solve Phase

Figure 1.2: Data Dependencies in various phases in one time step of the EMPIC

simulation

(Only two dimensions are used for simplicity of illustration. The grid points refer to

the Electric Field, Magnetic Field or Current Density data, depending on the con-

text. An arrow between two objects indicates data dependency, and a dotted arrow

represents movement of the object.)

and magnetic �elds are computed at each grid point, using the old �eld values and

the current density assigned in the scatter phase (Figure 1.2(b)). In the push phase,

using the �eld values at the grid points, the force on each particle is computed, and

the position and velocity of all the particles are updated (Figure 1.2(c)).

1.2.2 Rare�ed Fluid Flow

The rare�ed
uid
ow application, referred to as MP3D in the SPLASH benchmarks

[Singh et al 90], simulates trajectories of gaseous molecules in low density regions.

This application is used by aerospace researchers to study the forces exerted on space

vehicles as they pass through the upper atmosphere at hypersonic speeds.

In low density conditions, Monte Carlo methods that rely on the discrete particle

nature are used [Fallavollita et al. 92, McDonald 89]. Computation is performed

on random pairs of molecules. For the purposes of e�cient collision pairing, the

active space is represented as a three-dimensional space array of unit-sized cells.

Molecules can move among cells, but are only eligible for collision with other molecules

occupying the same cell at that time. Each time step consists of a single phase in

5

(shown in much smaller scale

Space vehicle

compared to the cell size)

Cell composed of grid points

molecule (interacts with surrounding grid points)

interacting pair of molecules
(random pairing)

Figure 1.3: Data dependencies in one time step of the MP3D simulation

(Only eight atoms in two dimensional space are used for simplicity of illustration.)

which random pairs of molecules within each cell are collided and the positions and

velocities of the molecules are updated.

1.2.3 Molecular Dynamics

The molecular dynamics application can be used to simulate several types of material

systems. Examples of simulations are study of metallic interfaces and �lm deposition

(from vapor and by sputtering process).

Here we describe a �lm deposition simulation that studies the formation of crystals

of metals such as platinum and copper [Allen & Tildesley 87]. Atoms are dropped,

one by one, onto the existing crystal. When a new atom collides with the stable

crystal, the existing atoms are disturbed, settling down after a while. For each new

atom, the system is simulated for several time steps, until the crystal comes back to

a stable state. Each time step has two phases: In the potential phase, potential

i;j

and

electronDensity

i;j

are computed for each atom pair (i; j) such that distance between

i and j is less than some cut-o� distance. (Figure 1.4 shows the interactions between

the atoms for a small two-dimensional problem.) In the push phase, using the values

computed in the previous phase, the force on each atom is computed, and the position

and velocity of all the particles are updated.

6

CUT-OFF DISTANCE

A

interacting pair of atoms

atoms not interacting with the atom A

atoms interacting with the atom A

Figure 1.4: Data Dependencies in one time step of the CGV simulation

(The �gure shows the dependencies only between the atom A and its neighboring atoms

that are within the cuto� distance from A.)

1.3 Parallelizing Dynamic Space-Based Applications on Distributed Memory Mul-

tiprocessors

1.3.1 Distributed Memory Multiprocessors

In this work, we address the class of multiple-instruction-multiple-data (MIMD) mul-

tiprocessors where the memory is physically distributed across the machine (Fig-

ure 1.5). Current examples of such machines are the Intel Paragon, CM-5, nCUBE

and transputer based systems. In the future, networks of workstations might be used

in this fashion. Each node consists of a general purpose processor and a memory unit.

The nodes are connected via high-speed interconnection network. A processor can

access the memory situated in another node (termed as the non-local memory) either

directly through hardware (as in the KSR-1 and DASH [Singh et al. 93]) or indirectly

through messages (as in the Intel Paragon, CM-5 and nCUBE). In either case, the

time required to access non-local memory is at least an order of magnitude greater

than the time required to access local memory. We focus on the non-shared memory

(or message passing) machines in this work because it is harder to develop e�cient

parallel programs for message passing machines and since the techniques used for

achieving e�ciency on non-shared memory machines apply well for shared memory

machines [Lin & Snyder 90, Ngo & Snyder 92].

7

o o o o o

HIGH SPEED INTERCONNECTION NETWORK

Processor Memory Unit

Node 1 Node 2 Node P

Figure 1.5: Distributed Memory Machine Model

1.3.2 Programming Distributed Memory Multiprocessors

It is hard and time consuming to develop e�cient parallel programs for distributed

memory multiprocessors for two reasons: it is hard to write correct parallel programs

and it is hard to tune them for e�ciency. Writing parallel programs is di�cult because

the programmers need to think about several concepts not necessary for expressing

the computation, such as communication, synchronization and load distribution.

To achieve good e�ciency, the overheads due to communication and load imbal-

ance need to be minimized. Since the data is distributed across the machine, the

processors need to communicate to share the data, and this introduces communica-

tion overhead. If the computational load is not well balanced across the processors,

some processors waste time while waiting for the other processors to complete their

work. This situation introduces load imbalance overhead. It is hard to tune for ef-

�ciency because communication and load imbalance overheads are antithetical, that

is, minimizing one of them in isolation typically increases the other. These two over-

heads must be minimized simultaneously, and it is hard to develop code to perform

the necessary optimizations.

1.3.3 Parallelizing Dynamic Space-Based Applications

Dynamic space-based applications exhibit strong spatial locality because commu-

nication is spatially local. This characteristic can be used e�ectively to minimize

communication overhead. Spatial locality is exploited by partitioning the space into

contiguous regions and assigning one region per processor. Each processor is respon-

8

P1 P3 P4

P5 P6 P7

P1 P2 P3 P4

P5 P6 P7

P2

P8 P8

Partitioning in time step T1 Partitioning in time step T2

Figure 1.6: A Spatial Partitioning Scheme for a Two-Dimensional Application

sible for managing the values of those objects located in its region. The overhead due

to load imbalance is minimized by partitioning the space in such a way that the re-

gions have (nearly) equal computational load. Since the objects change their locations

in space dynamically, to maintain load balance the space needs to be repartitioned

dynamically.

Figure 1.6 shows a partitioning scheme for reducing the total communication and

load imbalance overhead for a sample application. This �gure shows the distribution

of particles in a two-dimensional space at two di�erent time steps of the simulation.

A spatial partitioning scheme brings down communication overhead by reducing the

number of pairs of processors that need to communicate. For example, in Figure 1.6,

processor P2 needs to communicate only with processors P1, P3 and P6 which own

regions adjacent to the region owned by P2.

1.4 Specialized Runtime Support

A programmer can parallelize dynamic space-based applications in three ways: (1) by

using a parallelizing compiler, (2) by programming using message passing primitives,

or (3) by employing a specialized runtime system. Here we compare these approaches

based on the following features that a programming environment must support for

simplifying the process of developing e�cient parallel code for dynamic space-based

applications:

9

1. Mechanisms for expressing and operating on space-based data objects: Examples

of such mechanisms are creating a particle data structure and iterating over

pairs of closely located particles. Without these mechanisms, the user needs to

develop complicated code for maintaining distributed spatial data structures.

If the system does not support dynamic space-based data, such as particles,

the burden of determining the granularity of the space partitioning and load

balancing falls on the user.

2. Mechanisms for sharing data along partition boundaries: These mechanisms

relieve the user from managing communication, and increase portability.

3. Automatic data partitioning: The performance impact of a partitioning scheme

depends not only on the application characteristics (such as communication

patterns and load distribution and movement), but also on the number of pro-

cessors and machine architecture (in particular, the speed of inter-processor

communication). It is di�cult for a programmer to choose a good partitioning

scheme without using the knowledge about application and machine character-

istics. To achieve high performance and portability, the system must support

automatic data partitioning.

4. Automatic dynamic load balancing: The optimal frequency of load balancing

depends on the overheads due to load imbalance and load balancing. The load

balancing cost depends on the algorithm as well as the machine architecture.

Clearly, implementing this feature in each application would be a signi�cant

burden on application developers.

Message passing primitives are the \assembly language" approach to parallel pro-

gramming: best e�ciency is possible, but only with substantial e�ort. The pro-

grammer needs to spend enormous time developing code that manages spatial data

structures, data partitioning, communication and dynamic load balancing.

High-level languages, such as HPF, try to provide a more convenient environment

for the general class of applications, but at the cost of reduced e�ciency. This type of

environment reduces program development time, but may not o�er good performance,

since not all characteristics of the application can be exploited by a general purpose

compiler. There is no convenient way of expressing dynamic space-based data objects

10

and their spatial relationships. The user is responsible for deciding on the partitioning

scheme, and when and how to perform dynamic load balancing.

More specialized support can o�er even more convenient environments without

loss of e�ciency, but at the cost of reduced applicability. A specialized system can

provide support for managing spatial data structures and take care of data partition-

ing, communication and dynamic load balancing without requiring much e�ort from

the programmer. A specialized programming environment can o�er convenience of

programming as well as good performance.

Chapter 2

THESIS

In this chapter, we list the contributions of the thesis and describe the organization

of this report.

2.1 Thesis Contributions

The thesis addresses the following fundamental issues for parallelizing dynamic space-

based applications on distributed memory multiprocessors:

� How to provide support for e�cient programming?

� How to provide support for e�cient execution?

The thesis makes the following contributions:

Support for E�cient Programming

� Design of a parallel programming model: We propose a new programming model,

which we call

�

Adh�ara, to conveniently express dynamic space-based computa-

tions [Ashok & Zahorjan 94]. The model requires the programmer to specify

information using only concepts that are natural to the application. The pro-

grammer need not be concerned about the artifacts of a parallel execution,

e.g., partitioning, communication and load balancing, which are automatically

managed by the associated runtime system.

� Evaluation of the model using real applications: We evaluate the e�ectiveness

of the

�

Adh�ara programming model by using three real applications from dif-

ferent scienti�c �elds: physics, aeronautics and materials science. We evaluate

the model by converting the existing sequential programs into parallel

�

Adh�ara

programs and measuring the programming overhead (in terms of the extra lines

of code) introduced by the conversion process.

12

Support for E�cient Execution

� Design of an automatic partitioning scheme: We propose a new scheme that

determines a good method of partitioning a three-dimensional space into rect-

angular regions, based on the following information: execution speci�c charac-

teristics such as communication patterns and the movement and distribution of

spatial objects; number of processors allocated to the application; and machine

speci�c characteristics such as the speed of inter-processor communication.

� Design of an e�cient, scalable dynamic load balancing scheme: We propose a

novel scheme that estimates the load distribution by a non-uniform, adaptive

discretization of the problem space. Compared to the traditional schemes that

uniformly and statically discretize the space, our scheme is faster, uses less

memory, and scales better. We also propose a predictive scheme that adjusts

the frequency of load balancing so as to minimize the sum of load balancing

and load imbalance overheads.

� Implementation of the portable runtime system: We developed an e�cient im-

plementation of the prototype

�

Adh�ara runtime system. The system is portable

across a variety of distributed memory machines, such as the Intel Paragon,

CM-5, and KSR.

� Performance evaluation using real applications: We evaluated the novel parti-

tioning and load balancing schemes, and the overall performance of the runtime

system, using three real applications: electro-magnetic particle-in-cell (plasma

physics), rare�ed
uid
ow (aeronautics) and molecular dynamics (materials

science).

� Study of issues in adapting to dynamic processor reallocations: We studied the

issues in adapting to processor reallocations performed by the kernel scheduler

in a multi-programmed environment.

2.2 Organization of the Thesis

The thesis is organized in �ve parts. The �rst part (chapters 1-3) describes the class

of dynamic space-based applications, contributions of the thesis and related work.

13

The second part (chapters 4-6) focuses on the programming support for dy-

namic space-based applications. Chapter 4 describes the

�

Adh�ara programming model.

Chapter 5 gives programming examples, and Chapter 6 evaluates the e�ectiveness of

the programming model.

The third part (chapters 7-12) deals with aspects of application induced load

balancing and implementation of the runtime system. The issues in space-based

partitioning and load balancing are discussed in Chapter 7. Chapters 8, 9 and 10

describe the novel schemes for automatic data partitioning and dynamic load bal-

ancing. Chapter 11 describes the implementation of the prototype runtime system.

Performance results are discussed in Chapter 12.

The fourth part (chapter 13) focuses on the issues in adapting to dynamic proces-

sor reallocations performed by the operating system scheduler on a multi-programmed

machine. The �fth part (chapter 14) summarizes and concludes the thesis.

Chapter 3

RELATED WORK

In this chapter we provide an overview of other research work related to our thesis.

Details of the relevant work and comparison with our work are given in Chapters 6

and 9.

3.1 Parallel Programming Environments

Research work on programming environments falls into three categories: parallelizing

compilers for general-purpose high-level languages, runtime systems specialized for

speci�c classes of applications, and parallel programs for speci�c applications.

3.1.1 Parallelizing Compilers

A substantial amount of research has been done on automatic parallelizing compilers

for distributed memory machines. Fortran-D [Hiranandani et al. 91], Vienna Fortran

[Chapman et al. 93a] and HPF [Bozkus et al. 94, Chapman et al. 93b] extend the For-

tran language with annotations for controlling data partitioning. Various techniques

for extracting parallelism from the sequential source code and for minimizing execu-

tion overheads are discussed in the literature [Bozkus et al. 94, Gupta & Banerjee

93, Hiranandani et al. 94, Rogers & Pingali 94, Saltz et al. 91].

3.1.2 Specialized Runtime Systems

The Phase Abstractions model [Snyder 89, Griswold et al. 90] provides scalable ab-

stractions for decomposing parallel computations into phases of di�erent data access,

computation and communication characteristics. The ZPL language [Lin & Snyder

93] is specialized for array based computations.

DINO [Rosing et al 91] is a language for expressing data-parallel numerical com-

putations, and its extension DYNO [Weaver & Schnabel 92] is specialized for un-

structured applications.

15

The LPAR programming environment [Baden & Kohn 91, Baden & Kohn 94,

Kohn & Baden 93] supports dynamic non-uniform scienti�c applications. The PARTI

primitives [Berryman et al 91, Agrawal et al. 93] provide low-level support for block

structured and irregular mesh applications. The DIME system [Williams 91a] and the

Voxel Database system [Williams 92] provide high-level support for irregular mesh

applications.

3.1.3 Parallel Scienti�c Applications

Several researchers studied issues in parallelizing speci�c scienti�c applications in

di�erent �elds of science and engineering. Here we mention the work done on dy-

namic space-based applications: particle-in-cell (plasma physics) [Campbell et al. 90,

Ferraro et al. 93, Liewer & Decyk 89, Walker 90], rare�ed
uid
ow (aeronautics)

[Fallavollita et al. 92, McDonald 89, Singh et al 90], and molecular dynamics (ma-

terials science and chemistry) [Brug�e & Fornili 90, Fincham 87, Pinches et al. 91,

Raine et al 89, Rapaport 91, Smith 91].

3.2 Application Induced Load Balancing

3.2.1 Automatic Data Partitioning

Much research has been done on parallel schemes for partitioning spatial data. One

part of this work deals with the schemes for partitioning the space into rectangular

regions [Belkhale & Banerjee 90, Berger & Bokhari 87, Bokhari et al. 93, Cybenko &

Allen, Nicol 91], while the other looks at non-rectangular regions [Hinz 90, Pilkington

& Baden 94, Reed et al. 87, Weaver & Schnabel 92, Williams 92].

Specialized runtime systems such as the DIME [Williams 91a], Voxel Database

[Williams 92] and DYNO [Weaver & Schnabel 92] perform automatic data partitioning

based on the characteristics of the speci�c classes of applications being targeted.

Programming environments such as the LPAR [Baden & Kohn 94] leave the task of

data partitioning to the programmer (the programmer can choose from the generic

schemes available in the application libraries).

Parallelizing compilers for languages such as Fortran-D [Hiranandani et al. 91],

Vienna Fortran [Chapman et al. 93a] and HPF [Bozkus et al. 94] make use of the

annotations provided by the programmer to partition the data. Recently, researchers

16

started looking at automatic data partitioning techniques for parallelizing compilers

[Gupta & Banerjee 92].

3.2.2 Dynamic Load Balancing

Researchers have analyzed the performance of di�erent load balancing techniques for

speci�c classes of applications, such as particle-based simulations [Baden & Kohn 91,

Campbell et al. 90, Hanxleden & Scott 91, Hinz 90], molecular dynamics [Brug�e &

Fornili 90] and unstructured mesh computations [Weaver & Schnabel 92, Williams

91b].

3.3 Operating System Induced Load Balancing

Researchers have studied the issues in scheduling on multiprogrammed shared-memory

machines, such as process control [Tucker & Gupta 89], dynamic process allocation

policies [McCann et al. 92], and adapting to processor reallocations [Anderson et al.

92].

On distributed memory multiprocessors, researchers have studied the issues in

multiprogramming [Leuze et al. 89, Park & Dowdy 89], process scheduling [Setia

et al. 93] and dynamic reallocation policies [McCann & Zahorjan 93, McCann 94].

3.4 Summary

In the �rst part (chapters 1-3) of this report, we discussed the need for specialized

programming support for dynamic space-based applications, the contributions of this

thesis, and an overview of relevant research work. In the next part (chapters 4-6),

we describe

�

Adh�ara, a specialized programming environment that we propose for

developing parallel dynamic space-based applications.

Part II

Parallel Programming Model

for

Dynamic Space-Based

Applications

17

Chapter 4

THE

�

ADH

�

ARA PROGRAMMING MODEL

We propose a new programming model, which we call

�

Adh�ara, to conveniently

express dynamic space-based computations. In this chapter, we describe the design

of

�

Adh�ara.

In order to program with

�

Adh�ara, the user needs have an understanding of the

following concepts:

� Data Parallelism

� Data partitioning on distributed memory machines

� Data dependencies, local and non-local data, and need for sharing data

These are the basic concepts that are necessary to understand how a data-parallel

program is parallelized on a distributed memory machine. Fortunately, these concepts

are very easily understood in the context of dynamic space-based applications.

�

Adh�ara supports all the four features that are required to simplify the process of

developing e�cient parallel code for dynamic space-based applications (details can

found in Section 1.4):

1. Mechanisms for expressing and operating on space-based data objects

2. Mechanisms for sharing data along partition boundaries

3. Automatic data partitioning

4. Automatic dynamic load balancing

�

Adh�ara presents a non-shared memory, data-parallel (SPMD - Single Program

Multiple Data) model. The same program executes on all the processors, but each

processor operates on di�erent data.

�

Adh�ara extends the C-language with primitives

19

PRE-PROCESSOR EXECUTABLE CODE

RUNTIME
LIBRARY

ADHARA

C-COMPILERC-PROGRAM

LIBRARY

SYSTEM DEPENDENT

MESSAGE PASSSING

PROGRAM

ADHARA

Figure 4.1: Compiling an

�

Adh�ara Program

for expressing space-based computations. An

�

Adh�ara program is converted into a

C-program by a pre-processor. The resulting C-code is compiled and linked with

the

�

Adh�ara runtime library and the system dependent library that supports message

passing primitives (Figure 4.1). Implementation of the

�

Adh�ara runtime library is

discussed in Chapter 11.

�

Adh�ara enables the programmer to specify space-based computations using four

concepts that are natural to dynamic space-based applications:

1. Computation space: This corresponds to the bounded physical space that is

modelled by the application.

�

Adh�ara uses this space as a basis to exploit spatial

locality and to balance the load.

2. Spatial data structures:

�

Adh�ara provides mechanisms to declare and operate on

distributed space-based data structures such as grids and particles.

3. Data sharing: The user can specify spatial data dependencies in a natural way.

�

Adh�ara uses this information to maintain consistency of the distributed data.

4. Phases:

�

Adh�ara enables the user to decompose the parallel computation into

phases exhibiting di�erent data access and communication characteristics. The

phases are used as a basis to balance the load dynamically.

20

No partitioning
in this dimension

in this dimension
Partitioning only

BLOCK: Three dimensions BEAM: Two dimensions SLICE: One dimension

Figure 4.2: Methods of Partitioning a Three Dimensional Space into Eight Rectan-

gular Regions

These concepts are described in detail in the following sections. For simplicity of

illustration, we assume a three-dimensional space, but the ideas can be extended to

k dimensions.

4.1 Computation Space

The computation space refers to the bounded physical space that is modelled by the

application. The statement

COMPUTATION-SPACE (2.0, 1.5, 1.0)

creates a bounded three dimensional space of size 2:0� 1:5� 1:0 units. Each spatial

object must lie within this space. To exploit spatial locality,

�

Adh�ara partitions the

data using domain decomposition [Campbell et al. 90, Walker 90], where the com-

putation space is partitioned into contiguous regions and each processor is assigned

one region. Each region is a rectangular block and forms the basis for exploiting

spatial locality and for balancing the load. (The motivation for choosing domain

decomposition into rectangular blocks is discussed in Section 7.1.2.) Load balance is

maintained by balancing the computational load across the regions. Each node owns

all the data elements that map into its regions, and is responsible for maintaining

consistent values of the data that it owns. (Note: Properties of a data element are

not necessarily computed exclusively by its owner.)

There are many ways of partitioning a k-dimensional space, depending on how

many of the dimensions are partitioned. For example, a three dimensional space

21

can be partitioned in seven di�erent ways (Figure 4.2): partitioning all the three

dimensions (one choice: BLOCK), two dimensions (three choices: BEAM-X, BEAM-

Y and BEAM-Z) and one dimension (three choices: SLICE-X, SLICE-Y and SLICE-

Z). The programmer can optionally specify how to partition the space:

PARTITIONING-SCHEME BEAM-Z /* optional */

If the user does not specify a partitioning scheme,

�

Adh�ara uses heuristics to determine

a good choice. The heuristics are based on the application speci�c characteristics

such as the communication patterns and movement and density of the spatial objects,

number of processors allocated to the application, and machine speci�c characteristics

such as the speed of the inter-connection network. These heuristics are described in

Chapter 8.

4.2 Spatial Data Structures

�

Adh�ara distinguishes between two types of data structures: particle and regular-

grid (Figure 4.3). The data objects of a particle data structure can lie anywhere

in the computation space, and can change their positions dynamically. A regular-

grid is a restricted form of a particle data structure that is regular and static. It is

perfectly aligned with the computation space. The mapping of a regular-grid onto

the computation space is implicitly speci�ed by giving the dimensions of the grid,

whereas the mapping of a particle data structure is explicitly speci�ed by giving the

coordinate of each object of the data structure, and is allowed to change dynamically.

�

Adh�ara supports the most common operation on the spatial data structures, which

is to iterate over the sets of their objects. A regular-grid is declared and accessed as

follows:

typedef struct vectornode { double X, Y, Z; } vectorType;

REGULAR-GRID vectorType MagneticField (GridSizeX, GridSizeY, GridSizeZ);

FORALL-GRIDPOINTS (I,J,K) IN MagneticField DO {

MagneticField[I,J,K] = function_of (

ElectricField[I,J,K], ElectricField[I,J,K+1], ..)

}

When a regular-grid is declared, each node allocates enough memory to store its por-

tion of the distributed grid. The \FORALL-GRIDPOINTS" loop accesses only those

22

REGULAR GRID PARTICLE

Figure 4.3: Examples of Two-Dimensional Spatial Data Structures

grid points that are within the region owned by the processor. If the computation

needs to iterate over the grid points that are located just outside the boundary of the

region, the \INCLUDING" primitive can be used:

FORALL-GRIDPOINTS (I,J,K) IN MagneticField INCLUDING

BOUNDARY { ALL-DIRS = 1 } DO

CurrentDensity[I,J,K] = 0;

The \BOUNDARY f ... g" speci�es the directions of interest. More details about

specifying the boundaries are given in the following section.

A particle data structure is declared by specifying the data-type (structure) of the

particle. The �rst �eld of the C-struct must denote the coordinate of the particle.

(The runtime system uses this information to maintain spatial relationships.)

typedef struct vectornode { double X, Y, Z; } vectorType;

typedef struct atomnode {

vectorType coordinate; /* coordinate must be the first field */

int atom_type;

vectorType force;

vectorType velocity;

......

} atomType;

3D-PARTICLE atomType Atoms;

23

Initially the \Atoms" data structure is empty. Atoms are inserted using the ADD-

PARTICLE primitive, as shown below.

for(i = 0; i < NumAtoms; i++) {

atomType aa;

aa.coordX = ...; aa.coordY = ..; ...

ADD-PARTICLE aa TO Atoms;

/* data is copied into the memory allocated by Adhara */

}

This particle is stored in the local memory only if it is located in the region owned

by this processor.

�

Adh�ara assumes that each particle is inserted by every processor,

so the ADD-PARTICLE primitive guarantees that exactly one processor stores this

particle in its local memory. If this assumption is not valid (i.e., this particle is

inserted only by one processor), then the \ADD-PARTICLE-LOCAL" primitive can

be used:

.. generate a new atom `aa' locally ..

ADD-PARTICLE-LOCAL aa TO Atoms;

This primitive guarantees that the particle is stored in the local memory of the

processor executing this statement, even if the particle is located outside of the region

owned by this processor. If the particle is not within the owned region, it is sent to

the owner when the \UPDATE-COORDINATES" primitive is executed (see the end

of this section).

The user can access the objects in a particle data structure either one at a time

or in groups of arbitrary size such that all members in each group are within some

�xed distance of each other. (Molecular dynamics applications, for example, iterate

over pairs of atoms that are within a cut-o� distance of each other.)

The particles can be accessed one at a time using a \FORALL-PARTICLES" loop

as shown below.

FORALL-PARTICLES (Atom) IN Atoms DO {

Atom->coordinate = function_of (Atom->force, ..., Atom->velocity);

}

If the particles interact with surrounding grid points (from a regular-grid), the \SUR-

ROUNDING" primitive can be used to extract the necessary data:

24

FORALL-PARTICLES (Particle) IN ChargedParticles DO {

field_on_particle = 0;

FORALL-GRIDPOINTS (I,J,K) IN ElectricField SURROUNDING (Particle) DO

field_on_particle += interpolate_field(ElectricField[I,J,K]);

Particle->force = function_of(field_on_particle);

}

If the particle interacts only with one corner of the cell (formed by the surrounding

grid points) in which it is located, the \CELL-INDEX" primitive can used to extract

the necessary index:

FORALL-PARTICLES (Particle) IN Atoms DO {

(I,J,K) = CELL-INDEX OF (Particle);

NumAtomsInTheCell[I,J,K]++; /* NumAtomsInTheCell is a regular-grid */

}

If the computation uses pairs of particles that are within a cut-o� distance of

each other (particle-particle interaction), the programmer needs to specify additional

information while declaring the particle data structure. To generate the pairs e�-

ciently,

�

Adh�ara partially sorts the particles into three-dimensional cells. The user can

specify the size of the cell while declaring the particle data structure, as given below

1

.

3D-PARTICLE atomType Atoms SORT-INTO-CELLS(cutoffX, cutoffY, cutoffZ);

FORALL-PARTICLES (Atom1, Atom2) IN Atoms CELL-DISTANCE 1 DO {

pair_force = function_of (Atom1->coordinate, Atom1->type,

Atom2->coordinate, Atom2->type, ...);

update Atom1->force and Atom2->force using pair_force;

}

The \SORT-INTO-CELLS" primitive enables the system to keep the particles par-

tially sorted into cells of speci�ed size. Pairs of particles are generated by specifying

the cuto� distance in terms of cells. If the user speci�es a \CELL-DISTANCE" of N ,

then

�

Adh�ara gives all those pairs of particles that are within N cells of each other.

This operation is e�cient, since

�

Adh�ara does not need to compute distances between

1

The current implementation supports only pairs, and those that can be formed using the particles

within one PARTICLE data structure. The model can be extended to support sets of three

or more particles among multiple PARTICLE data structures, and this presents no conceptual

di�culty.

25

P1 P2

P3

P1 P2

P3P4 P4

P1 P2

P3 P4

3 4 4

2

n This particle needs to be
sent to processor ‘n’

PARTICLES MANAGED BY
PROCESSOR ‘P1’ AT THE

PARTITIONING
IN

PARTICLES MANAGED BY
PROCESSOR ‘P1’ AT THE

BEGINNING OF TIME STEP ‘T’TIME STEP ‘T’ END OF TIME STEP ‘T’

Figure 4.4: Communicating Out-Of-Bound Particles

the particles. The user can screen the pairs depending on the computational re-

quirements.

�

Adh�ara guarantees that each pair of particles is processed by exactly one

processor (i.e., there is no duplication of pairs), and that no pairs are left unprocessed.

The size of the cells can be changed dynamically using the following statement:

SORT-INTO-CELLS(newCutoffX, newCutoffY, newCutoffZ) Atoms;

When the coordinates of the particles are updated, the user must inform the

system using the \UPDATE-COORDINATES" primitive.

FORALL-PARTICLES (Atom) IN Atoms DO

Atom->coordinate = function_of(Atom->velocity, .., Atom->force)

UPDATE-COORDINATES OF Atoms;

When this primitive is executed,

�

Adh�ara checks if the particles that are currently

managed by this processor are still within the region assinged to this processor. If

any particles have moved out of the assigned region, they are sent to appropriate

processors. This operation is done for maintaining spatial locality (Figure 4.4)

4.3 Data Sharing

In dynamic space-based applications, since communication is spatially local, pro-

cessors need to share data only along partition boundaries. Here we describe how

26

Region 0 Region 1

Region 2 Region 3

Assigned Region
(local data)

Extended Region
(non-local data)

copy

copy

copy copy

copy from
the left edge

copy from
the left edge

copy from the top edge of Region 0 copy from the top edge of Region 1

of Region 0

of Region 2

Figure 4.5: Example of Read Overlap

(The space is partitioned into four regions. The �gure gives the read overlap for all

the regions. Only two dimensions are used for simplicity of illustration.)

spatial dependencies can be expressed in a natural way.

�

Adh�ara uses this information

to prepare e�cient communication schedules for data sharing.

A processor can access that portion of the data that it owns (local data), and

some overlapped data owned by the other nodes (non-local data).

4.3.1 Sharing Regular-Grid Data

The sharing of grid data along the boundaries of the regions is described by specifying

how each region must be overlapped with the neighboring regions. The user can

specify, for each direction, the overlap distance in terms of the number of grid cells,

and the boundary condition:

READ-BOUNDARY ElectricField OVERLAP(

{ X-DIR = (0,1),Y-DIR = (0,1),Z-DIR = (0,1) },

PERIODIC-BOUNDARY);

In the READ-BOUNDARY statement, \X-DIR = (a,b)" means that there is an

overlap of `a' cells in the negative X direction and an overlap of `b' cells in the

positive X direction. The statement given above speci�es that the partition of the

regular-grid ElectricField must be overlapped by one cell along the positive X, Y, and

27

(non-local data)
Extended Region

Assigned Region
(owned local data)

Region 0 Region 1

Region 2 Region 3

(+) (+)

(+)
by other nodes

owned data at the top
and left edges updated

Figure 4.6: Example of Write Overlap

(The �gure gives the write overlap for the data assigned to Region-3 only. Only two

dimensions are used for simplicity of illustration.)

Z directions, and that the data must be read into the extended region using a periodic

boundary condition

2

(Figure 4.5).

In some cases, a processor may need to update non-local data. For example,

in the scatter phase of the EMPIC application (Section 1.2.1), for each particle p,

current density is assigned to the grid points enclosing p. If the particle lies near the

boundary of its region, then some of the non-local values of current density may need

to be updated. At the end of the phase, the updated non-local data must be sent to

its owner. This task is accomplished by the following statement:

WRITE-BOUNDARY CurrentDensity OVERLAP({ ALL-DIRS=1 }, PERIODIC-BOUNDARY)

OPERATION (ADD-DOUBLETYPE);

More than one node can update the current density at the same grid point. The

OPERATION speci�es the commutative-associative operation that must be used to

combine the values of CurrentDensity at the same grid point that are updated by

more than one node (Figure 4.6).

2

A periodic boundary condition is a tool that is implemented by people who do computer simulations

to allow one to mimic an in�nitely sized system with a \smaller" image. The con�guration of

the particles in computation space represents the central image and then one pictures that central

image as being surrounded on all sides by similar images. For example, in two dimensions, the

central image is surrounded by eight images - one on each axis and one at each corner.

28

non-local particle (with respect to region-1)

cutoffY
are partially sorted

Non-local region which is one

cell distance away from Region-1

P1 P2

P3 P4

cutoffX

Cells into which particles

Pair containing one local particle and one

Figure 4.7: Replication of Particle Data for Extracting Pairs of Particles

(The space is partitioned into four regions. Only two dimensions are used for simplic-

ity of illustration. The �gure gives the read overlap for Region-1 only. The particles

in the shared region are copied to Node-1.)

4.3.2 Sharing Particle Data

The

�

Adh�ara runtime system will automatically replicate particles along the bound-

aries of the regions when the \FORALL-PARTICLES" loop is executed for extracting

pairs of particles:

FORALL-PARTICLES (Atom1, Atom2) IN Atoms CELL-DISTANCE 1 DO { ... }

�

Adh�ara copies the entire structure when replicating the particle data. If only a small

portion of the structure is needed for the pair computation, the user can specify which

portion of the structure needs to be copied:

typedef struct atomnode {

vectorType coordinate;

int atom_type;

vectorType force;

vectorType velocity;

......

} atomType;

3D-PARTICLE atomType Atoms;

........

29

READ-BOUNDARY Atoms USING-FIELDS FROM coordinate TO atom_type;

FORALL-PARTICLES (Atom1, Atom2) IN Atoms CELL-DISTANCE 1 DO { ... }

If the computation updates non-local particle data, the updated data must be sent

to its owner using the following statement:

WRITE-BOUNDARY Atoms USING-FIELDS FROM force TO velocity

OPERATION (ADD-DOUBLETYPE);

The �elds specify which portion of the data was updated, and the OPERATION

speci�es the commutative-associative operation that must be used to combine the

values of the same particle that are updated by more than one node.

4.3.3 Global Operations

�

Adh�ara provides primitives for combining data from di�erent processors. The system

supports standard commutative, associative global operations such as add, min and

max for di�erent data-types. Examples of global operations are given below.

GLOBAL-SUM num_exiting_atoms DATATYPE-INT;

GLOBAL-MAX energy DATATYPE-DOUBLE;

4.4 Phases

The computation is divided into phases, where each phase computes on a particular

data structure called its primary data structure. (It often corresponds to the com-

putation in a do-loop of a sequential algorithm.) This phase, in concept, is similar to

the phase de�ned in the Phase Abstractions Model [Griswold et al. 90]. The com-

pute load in a phase is assumed to be proportional to the sum of the computation

(measured in terms of iterations) on the objects in the corresponding primary data

structure. This information is used by

�

Adh�ara to balance the load in each phase.

Phases, which are natural to the application, are speci�ed by the user. For example,

the phases in the electro-magnetic particle-in-cell application (Section 1.2.1) can be

declared as follows:

PHASE ScatterPhase {

(ChargedParticle, PRIMARY, USAGE READ-ONLY)

(CurrentDensity, USAGE WRITE-ONLY)

30

particle

grid point

P4P3

P2P1

P4P3

P2P1

PARTITIONING FOR SOLVE PHASE PARTITIONING FOR PUSH PHASE

Grid points in the shaded region need to be redistributed when the execution proceeds from
Solve Phase to Push Phase

IN TIME-STEP ‘T’ IN TIME-STEP ‘T’

Figure 4.8: Automatic Data Redistribution in between Phases

}

PHASE Solvephase {

(MagneticField, USAGE READ-WRITE)

(CurrentDensity, USAGE READ-ONLY)

}

PHASE PushPhase {

(ChargedParticle, PRIMARY, USAGE READ-WRITE)

(ElectricField, USAGE READ-ONLY)

(MagneticField, USAGE READ-ONLY)

}

In the Solvephase, ElectricField is the primary data structure, so the computation

is proportional to the number of grid points. The data structures MagneticField

and CurrentDensity are also accessed in the Solvephase. The USAGE speci�es how

the data is used in this computation, and enables

�

Adh�ara to determine whether to

redistribute the data or not when the execution proceeds from one phase to another.

The computation is performed by executing a procedure within a phase:

void ScatterRoutine() { }

void SolveRoutine() { }

void PushRoutine() { }

main() {

for T time-steps do:

EXECUTE ScatterRoutine IN ScatterPhase;

EXECUTE SolveRoutine IN Solvephase;

31

EXECUTE PushRoutine IN PushPhase;

}

In the Solvephase, the space is partitioned into equal sized regions, since the

computation is proportional to the number of elements in ElectricField, a regular-grid.

In the PushPhase, the computation is proportional to the number of particles, which

are non-uniformly distributed in space, so the space is partitioned in such a way that

all regions contain approximately equal numbers of particles. Since the distribution of

particles in space changes dynamically, the space partitioning in PushPhase must also

change dynamically. In the above program fragment, in between the computation of

SolveRoutine and PushRoutine, the data elements of ElectricField and MagneticField

are automatically redistributed, if the space partitioning in PushPhase is di�erent

from that in Solvephase (Figure 4.8).

4.5 Summary

In this chapter, we described the design of the

�

Adh�ara programming model. In order

to use

�

Adh�ara, the programmer needs to know basic concepts about parallelizing

data-parallel programs on distributed memory machines. In the following chapter,

we describe how to parallelize applications using

�

Adh�ara.

Chapter 5

PARALLELIZING DYNAMIC SPACE BASED

APPLICATIONS USING

�

ADH

�

ARA

In this chapter, we describe how to develop parallel programs using

�

Adh�ara. We

illustrate using three dynamic space-based applications from di�erent scienti�c �elds:

electro-magnetic particle-in-cell (plasma physics), rare�ed
uid
ow (aeronautics) and

molecular dynamics (materials science). We chose these three applications because

they exhibit di�erent computation and communication characteristics. The impor-

tant di�erences are listed in Table 5.1.

Table 5.1: Comparison of the Characteristics of the Example Applications

ELECTRO-MAGNETIC RAREFIED MOLECULAR

PARTICLE-IN-CELL FLUID FLOW DYNAMICS

Type of movement of charged movement of gaseous movement of atoms

simulation particles in electric atoms in low interacting via

and magnetic �elds density regions Lennard-Jones

potential

Spatial data regular-grid regular-grid particle

structures and particle and particle

Types of particle-grid particle-grid particle-particle

interactions grid-grid particle-particle (pairing based on

(random pairing cut-o� distance)

within a grid-cell)

Granularity

(computation per medium small large

particle)

For each application, we �rst describe the computation, give the sequential pro-

gram, discuss the changes that are needed to convert the sequential program into an

�

Adh�ara program, and then present the

�

Adh�ara program.

33

P

(c) Push Phase

P

PP

P

(a) Scatter Phase

Grid Point Particle

(b) Solve Phase

Figure 5.1: Data Dependencies in various phases in one time step of the EMPIC

simulation

(Only two dimensions are used for simplicity of illustration. The grid points refer to

the Electric Field, Magnetic Field or Current Density data, depending on the context.)

5.1 Electro-Magnetic Particle-In-Cell

The electro-magnetic particle-in-cell (EMPIC) application simulates movement of

charged particles that interact by exerting electric and magnetic �eld forces on each

other [Birdsall & Langdon 85, Hockney & Eastwood 88, Walker 90]. The force expe-

rienced by a particle depends on the current position and velocity of all the particles,

and this changes continuously with time. The standard solution uses a particle-mesh

method which discretizes space by a grid, and time by updating the position and

velocity of the particles only at the boundaries of small time intervals.

Each time step consists of three phases. In the scatter phase, current-density is

assigned to the grid points using the position and velocity of all the particles (Fig-

ure 5.1(a)). In the solve phase, new values of electric and magnetic �elds are computed

at each grid point, using the old �eld values and the current density assigned in the

scatter phase (Figure 5.1(b)). A leap-frog time integration scheme is used for solv-

ing Maxwell's di�erential equations [Birdsall & Langdon 85, Hockney & Eastwood

88]. In the push phase, using the �eld values at the grid points, the force on each

particle is computed, and the position and velocity of all the particles are updated

(Figure 5.1(c)).

34

5.1.1 Sequential Program for the EMPIC Application

typedef struct vectornode { double X, Y, Z; } vectorType;

typedef struct particleNode {

vectorType coordinate;

vectorType velocity;

double charge;

....

} particleType;

particleType Particle[MAX_NUM_PARTICLES];

vectorType ElectricField[MAXNUM_X, MAXNUM_Y, MAXNUM_Z],

MagneticField[...], CurrentDensity[...];

/* three dimensional grids */

main() {

/* read simulation parameters */

......

/* read initial particle configuration */

for (i = 0; i < NumParticles; i++) {

.. initialize fields of Particle[i] ..

}

/* initialize grid points */

/* LOOP 1 */

for (i = 0; i < NumGridX; i++)

for (j = 0; j < NumGridY; j++)

for (k = 0; k < NumGridZ; k++)

ElectricField[i,j,k] = MagneticField[i,j,k] = 0;

for (step = 0; step < num_time_steps; step++) {

ScatterRoutine();

SolveRoutine();

PushRoutine();

}

}

ScatterRoutine() {

/* initialize current density at all the grid points */

/* LOOP 2 */

for (i = 0; i < NumGridX; i++)

35

for (j = 0; j < NumGridY; j++)

for (k = 0; k < NumGridZ; k++)

CurrentDensity[i,j,k] = 0;

/* for each particle P, assign P's contribution of the

current density to the surrounding grid points */

/* LOOP 3 */

for (n = 0; n < NumParticles; n++) {

P = &Particle[i];

... for each grid point (i,j,k) surrounding particle P do ...

/* periodic boundary condition is used for

determining neighboring grid points */

CurrentDensity[i,j,k] += function_of(distance between

grid-point (i,j,k) and P, ..);

}

}

SolveRoutine() {

/* advance magnetic fields from step K to K+1/2 */

/* LOOP 4 */

for (i = 0; i < NumGridX; i++)

for (j = 0; j < NumGridY; j++)

for (k = 0; k < NumGridZ; k++)

/* periodic boundary condition is used for

determining neighboring grid points */

MagneticField[i,j,k] = function_of(ElectricField[i,j,k],

ElectricField[i,j,k+1],

ElectricField[i,j+1,k],

ElectricField[i+1,j,k],

....);

/* advance electric fields from step K to K+1 */

/* LOOP 5 */

for (i = 0; i < NumGridX; i++)

for (j = 0; j < NumGridY; j++)

for (k = 0; k < NumGridZ; k++)

/* periodic boundary condition is used for

determining neighboring grid points */

ElectricField[i,j,k] = function_of(MagneticField[i,j,k],

MagneticField[i,j,k-1],

MagneticField[i,j-1,k],

MagneticField[i-1,j,k],

CurrentDensity[i,j,k],

....);

36

/* advance magnetic fields from step K+1/2 to K+1 */

/* LOOP 6 */

..........................

}

PushRoutine() {

/* for each particle P, compute the effective field on P by

interpolating electric and magnetic fields from the

surrounding grid points, and then update the velocity

and position of P */

/* LOOP 7 */

for (n = 0; n < NumParticles; n++) {

P = &Particle[i];

field_on_P = 0;

... for each grid point (i,j,k) surrounding particle P do ...

/* periodic boundary condition is used for

determining neighboring grid points */

field_on_P += function_of(ElectricField[i,j,k],

MagneticField[i,j,k],

distance between (i,j,k) and P);

P->velocity = function_of(field_on_P, P->velocity);

P->coordinate = function_of(P->velocity, timestep);

}

}

5.1.2

�

Adh�ara Program for the EMPIC Application

The following changes were made to the sequential program to convert it into an

�

Adh�ara program:

� Declare and de�ne the computation space, spatial data structures and phases.

A new routine called InitSpatialData() is added for this purpose.

� Change the \for" loops 1, 2, 4, 5 and 6 to \FORALL-GRIDPOINTS" loops,

and the \for" loops 3 and 7 to \FORALL-PARTICLES" loops.

� Use the EXECUTE primitive for organizing the computation into phases (see

main() below).

� Use the READ-BOUNDARY and WRITE-BOUNDARY primitives for reading

and updating non-local data when necessary.

37

� Use the UPDATE-COORDINATES primitive to inform the runtime system

when the coordinates of the particles are updated (see PushRoutine() below).

The

�

Adh�ara program for the EMPIC application is given below.

/* declare variables for spatial data structures */

3D-PARTICLE-TYPE Particle;

REGULAR-GRID-TYPE ElectricField, MagneticField, CurrentDensity;

PHASE-TYPE ScatterPhase, GridPhase, PushPhase;

/* this rountine defines the computation space, spatial data

structures and phases */

InitSpatialData() {

COMPUTATION-SPACE(BoxSizeX, BoxSizeY, BoxSizeZ);

/* size of the simulation box */

3D-PARTICLE particleType Particle;

REGULAR-GRID vectorType

ElectricField(NumGridX, NumGridY, NumGridZ);

REGULAR-GRID vectorType MagneticField(...);

REGULAR-GRID vectorType CurrentDensity(...);

PHASE ScatterPhase {

(ChargedParticle, PRIMARY, USAGE READ-ONLY),

(CurrentDensity, USAGE WRITE-ONLY) };

PHASE GridPhase {

(ElectricField, PRIMARY, USAGE READ-WRITE),

(MagneticField, USAGE READ-WRITE),

(CurrentDensity, USAGE READ-ONLY) };

PHASE PushPhase {

(ChargedParticle, PRIMARY, USAGE READ-WRITE),

(ElectricField, USAGE READ-ONLY),

(MagneticField, USAGE READ-ONLY) };

}

main() {

ADHARA-INITIALIZE-NODE;

/* initializes the runtime system data structures */

/* read simulation parameters */

........

/* the following routine must be called before accessing any

spatial data */

38

InitSpatialData();

/* read initial particle configuration */

for (i = 0; i < NumParticles; i++) {

particleType tempP;

.. initialize fields of tempP ..

ADD-PARTICLE tempP TO ChargedParticle;

}

/* initialize grid points */

/* LOOP 1 */

FORALL-GRIDPOINTS (I,J,K) IN ElectricField DO

ElectricField[I,J,K] = 0;

FORALL-GRIDPOINTS (I,J,K) IN MagneticField DO

MagneticField[I,J,K] = 0;

for (step = 0; step < num_time_steps; step++) {

EXECUTE ScatterRoutine IN ScatterPhase;

EXECUTE SolveRoutine IN GridPhase;

EXECUTE PushRoutine IN PushPhase;

}

}

ScatterRoutine() {

/* some non-local grid-points are going to be updated, so

initialize boundary data also */

/* LOOP 2 */

FORALL-GRIDPOINTS (I,J,K) IN CurrentDensity

INCLUDING BOUNDARY { ALL-DIRS = 1 } DO

CurrentDensity[I,J,K] = 0;

/* LOOP 3 */

FORALL-PARTICLES (P) IN ChargedParticle DO {

FORALL-GRIDPOINTS (I,J,K) IN CurrentDensity

SURROUNDING (P) DO {

CurrentDensity[I,J,K] += function_of(distance between

grid-point (I,J,K) and P, ..);

}

/* communicate updated non-local data */

WRITE-BOUNDARY CurrentDensity

OVERLAP({ ALL-DIRS=1 }, PERIODIC-BOUNDARY)

OPERATION (ADD-DOUBLETYPE);

}

39

SolveRoutine() {

/* advance magnetic fields from step K to K+1/2 */

/* non-local data along the positive boundary needed */

READ-BOUNDARY ElectricField OVERLAP(

{ X-DIR = (0,1),Y-DIR = (0,1),Z-DIR = (0,1) }

PERIODIC-BOUNDARY);

/* LOOP 4 */

FORALL-GRIDPOINTS (I,J,K) IN MagneticField DO

MagneticField[I,J,K] = function_of(ElectricField[I,J,K],

ElectricField[I,J,K+1],

....);

/* advance electric fields from step K to K+1 */

/* non-local data along the negative boundary needed */

READ-BOUNDARY MagneticField OVERLAP(

{ X-DIR = (1,0),Y-DIR = (1,0),Z-DIR = (1,0) }

PERIODIC-BOUNDARY);

/* LOOP 5 */

FORALL-GRIDPOINTS (I,J,K) IN MagneticField DO

ElectricField[I,J,K] = function_of(MagneticField[I,J,K],

MagneticField[I,J,K-1],

....

CurrentDensity[I,J,K]);

/* advance magnetic fields from step K+1/2 to K+1 */

/* LOOP 6 */

..........................

}

PushRoutine() {

/* non-local data along all the boundaries needed */

READ-BOUNDARY ElectricField

OVERLAP({ ALL-DIRS=1 }, PERIODIC-BOUNDARY)

READ-BOUNDARY MagneticField

OVERLAP({ ALL-DIRS=1 }, PERIODIC-BOUNDARY)

/* LOOP 7 */

FORALL-PARTICLES (P) IN ChargedParticle DO {

field_on_P = 0;

FORALL-GRIDPOINTS (I,J,K) IN ElectricField

SURROUNDING (P) DO {

field_on_P += function_of(ElectricField[I,J,K],

MagneticField[I,J,K],

distance between (I,J,K) and P);

40

P->velocity = function(field_on_P, P->velocity);

P->coordinate = function(P->velocity, timeStep);

}

UPDATE-COORDINATES OF ChargedParticle;

}

5.2 Rare�ed Fluid Flow

The rare�ed
uid
ow application, referred to as MP3D in the SPLASH benchmarks

[Singh et al 90], simulates trajectories of the gaseous molecules using Monte Carlo

method [Fallavollita et al. 92, McDonald 89].

The active space is a rectangular tunnel with openings at each end and re
ecting

walls on the remaining sides. The object being studied (e.g., a space vehicle) is

represented as a set of additional boundaries in the active space. Atoms generally

ow through the tunnel in the positive x direction. Exiting atoms are reused after

being thermalized to the free stream temperature and randomly distributed near the

entrance to the tunnel. A reservoir of atoms is maintained to keep track of a set of

random coordinates and velocities. These values are used for randomly distributing

new atoms near the entrance of the tunnel.

Computation is performed on random pairs of atoms, and atomic collisions are

statistically determined. For the purposes of e�cient collision pairing, the active

space is represented as a three-dimensional space array of unit-sized cells. Atoms can

move among cells, but are only eligible for collision with other atoms occupying the

same cell at that time. Each time step consists of a single phase in which random

pairs of atoms within each cell are collided and the positions and velocities of the

atoms are updated.

5.2.1 Sequential Program for Rare�ed Fluid Flow Application

typedef struct vectornode { double X, Y, Z; } vectorType;

typedef struct atomnode {

vectorType coordinate;

vectorType velocity;

double r, s; /* rotational velocities */

} atomType;

typedef struct cellnode {

41

(shown in much smaller scale

Space vehicle

compared to the cell size)

Cell composed of grid points

molecule (interacts with surrounding grid points)

interacting pair of molecules
(random pairing)

Figure 5.2: Data dependencies in one time step of the rare�ed
uid
ow simulation

(Only eight atoms in two dimensional space are used for simplicity of illustration.)

int boundary_tag; /* if greater than zero, this cell

falls in the boundary region;

the number gives boundary type */

int cell_population; /* no.of particles in the cell */

double avg_probability; /* this value is used for random

collisions within the cell */

atomType *atom_in_cell; /* used for pairing up atoms within

a cell for collision -- see move_atoms() */

.....

} cellType;

atomType Atoms[MAX_NUM_ATOMS];

atomType ReservoirAtoms[MAX_NUM_RESERVOIR_ATOMS];

cellType Cell[MAXNUM_X][MAXNUM_Y][MAXNUM_Z];

/* active space of three-dimensional cells */

main() {

/* read simulation parameters */

......

/* read initial atom configuration */

for (i = 0; i < NumAtoms; i++) {

.. initialize fields of Atoms[i] ..

}

/* initialize cells */

/* LOOP 1 */

for (i = 0; i < NumCellX; i++)

42

for (j = 0; j < NumCellY; j++)

for (k = 0; k < NumCellZ; k++)

.. initialize Cell[i,j,k] ..

for (time_step = 0; time_step < num_time_steps; time_step++) {

advance();

}

}

advance() {

....

reset();

move_atoms();

add_atoms_to_free_stream();

move_and_collide_reservoir_atoms();

}

reset() {

/* reset cells */

/* LOOP 2 */

for (i = 0; i < NumCellX; i++)

for (j = 0; j < NumCellY; j++)

for (k = 0; k < NumCellZ; k++) {

C = &Cell[i,j,k];

C->avg_probability = function(C->avg_probability,

C->cell_population, ...);

C->atom_in_cell = NULL;

C->cell_population = 0;

}

}

boundary_case(boundary_tag, A /* atom */) {

switch (boundary_tag) {

case SOLID_WALL: .. bounce back A .. ; break;

case AFTER_EXIT_OF_TUNNEL: exit_num_flow++;

/* keep track of the number of atoms exiting

from the tunnel; this value is used in

add_atoms_to_free_stream() to determine

how many extra atoms to add to the system */

/* reuse this atom -- place it near the

entrance of the tunnel; the position and

velocity are randomized using the coordinate

and velocity of the next reservoir atom */

43

case BEFORE_ENTRANCE_OF_TUNNEL:

R = &ReservoirAtoms[next_R_atom++];

A->velocity = R->velocity;

/* randomly distribute at the entrance */

A->coordinate = function(R->coordinate, ..);

}

}

move_atoms() {

/* For each atom, move using the current velocity. If the new

position falls in a boundary region, apply appropriate

boundary condition. Then pair it up with another atom from

the same cell and randomly collide to determine new

set of velocities */

/* LOOP 3 */

for (n = 0; n < total_num_atoms; n++) {

A = &Atoms[i];

A->coordinate = function(A->velocity);

C = .. ptr to cell in which A is located ..;

/* if A is in a boundary cell, apply boundary condition */

if (C->boundary_tag > 0) {

boundary_case(C->boundary_tag, A);

C = .. ptr to the new cell in which A is located ..;

}

C->cell_population++;

/* If A is in an open cell, collide with another atom

within the same cell. Pairing is done as follows:

For each cell, the odd-numbered atom is placed in the

"atom_in_cell" slot. When the next (even-numbered) atom

from the same cell is encountered, it is paired up with

the stored odd-numbered atom, and the slot is cleared. */

if (C->boundary_tag == 0) { /* open cell */

if (C->atom_in_cell == NULL) /* odd-numbered atom */

C->atom_in_cell = A; /* store it in the slot */

else { /* even-numbered atom, so pair up */

if (RANDOM_NUMBER <= C->avg_probability)

.. collide atom "A" with atom "C->atom_in_cell"

to compute new velocities for both the atoms ..

C->atom_in_cell = NULL; /* clear the slot */

}

44

}

else ...

}

}

add_atoms_to_free_stream() {

/* add new atoms to the system */

total_num_atoms_to_be_added = function(total_num_atoms,

exit_num_flow, ..);

/* LOOP 4 */

for (n = 0; n < total_num_atoms_to_be_added; n++) {

A = &Atoms[total_num_atoms];

R = &ReservoirAtoms[next_R_atom++];

/* use the coordinates and velocities of the

reservoir atoms to randomly distribute new atoms

at the entrance of tunnel */

A->velocity = R->velocity;

A->coordinate = function(R->coordinate, ..);

}

total_num_atoms += total_num_atoms_to_be_added;

}

move_and_collide_reservoir_atoms() {

.. move each reservoir atom to update coordinates ..

.. collide pairs of reservoir atoms to update velocities ..

}

5.2.2

�

Adh�ara Program for Rare�ed Fluid Flow Application

We made the following changes to the sequential program to convert it into an

�

Adh�ara

program:

� We split the reservoir of atoms into small reservoirs, and assigned one small

reservoir to each processor. This enables the processors to maintain smaller

reservoirs independently of each other (Loop 4).

� We declared and de�ned the computation space, spatial data structures and

phases (see InitSpatialData() below). We organized the computation into one

phase (see main() below).

45

� We changed the \for" loops 1 and 2 to \FORALL-GRIDPOINTS" loops, and

the \for" loop 3 to a \FORALL-PARTICLES" loop.

� The only non-local data that is read and updated is the cell population, so to

minimize the communication overhead, we separated the \cell population" �eld

from the \cellType", and used another regular grid called \CellPopulation" to

keep track of the number of atoms in each cell.

� We used the READ-BOUNDARY and WRITE-BOUNDARY primitives for

reading and updating non-local data when necessary. (See move atoms() and

reset() below.)

� We used the UPDATE-COORDINATES primitive to inform the runtime system

when the coordinates of the particles are updated (see move atoms() below). In

add atoms to free stream() routine, we used the GLOBAL-SUM primitive for

summing up the value \num exit
ow" which was updated by all the processors.

The

�

Adh�ara program for the rare�ed
uid
ow application is given below.

/* declare variables for spatial data structures */

3D-PARTICLE Atoms;

REGULAR-GRID Cell, CellPopulation;

PHASE-TYPE AdvancePhase;

InitSpatialData() {

COMPUTATION-SPACE(BoxSizeX, BoxSizeY, BoxSizeZ);

/* size of the simulation box */

3D-PARTICLE atomType Atoms;

REGULAR-GRID cellType Cell(NumCellX, NumCellY, NumCellZ);

REGULAR-GRID int CellPopulation(...);

PHASE AdvancePhase {

(Atoms, PRIMARY, USAGE READ-WRITE),

(Cell, USAGE READ-WRITE),

(CellPopulation, USAGE READ-WRITE) };

}

main() {

ADHARA-INITIALIZE-NODE;

46

/* read simulation parameters */

......

/* the following routine must be called before accessing any

spatial data */

InitSpatialData();

/* read initial atom configuration */

for (i = 0; i < NumAtoms; i++) {

atomType tempA;

.. initialize fields of tempA ..

ADD-PARTICLE tempA TO Atoms;

}

/* initialize cells */

/* LOOP 1 */

FORALL-GRIDPOINTS (I,J,K) IN Cell DO

.. initialize Cell[I,J,K] ..

FORALL-GRIDPOINTS (I,J,K) IN CellPopulation DO

CellPopulation[I,J,K] = 0;

for (time_step = 0; time_step < num_time_steps; time_step++) {

EXECUTE advance IN AdvancePhase;

}

}

advance() {

....

reset();

move_atoms();

add_atoms_to_free_stream();

move_and_collide_reservoir_atoms();

}

reset() {

/* need non-local CellPopulation data along the boundary */

READ-BOUNDARY CellPopulation

OVERLAP({ ALL-DIRS=1 }, RIGID-BOUNDARY)

/* reset cells */

/* LOOP 2 */

FORALL-GRIDPOINTS (I,J,K) IN Cell

47

INCLUDING BOUNDARY { ALL-DIRS = 1 } DO {

C = &Cell[I,J,K];

C->avg_probability = function(C->avg_probability,

CellPopulation[I,J,K], ...);

C->atom_in_cell = NULL;

CellPopulation[I,J,K] = 0;

}

}

boundary_case(boundary_tag, A /* atom */) {

switch (boundary_tag) {

case SOLID_WALL: .. bounce back A .. ; break;

case AFTER_EXIT_OF_TUNNEL: exit_num_flow++;

case BEFORE_ENTRANCE_OF_TUNNEL:

R = &ReservoirAtom[next_R_atom++];

A->velocity = R->velocity;

/* randomly distribute at the entrance */

A->coordinate = function(R->coordinate, ..);

}

}

move_atoms() {

/* LOOP 3 */

FORALL-PARTICLES (A) IN Atoms DO {

A->coordinate = function(A->velocity);

(I,J,K) = CELL-INDEX OF (A);

C = Cell[I,J,K];

/* if A is in a boundary cell, apply boundary condition */

if (C->boundary_tag > 0) {

boundary_case(C->boundary_tag, A);

(I,J,K) = CELL-INDEX OF (A);

C = Cell[I,J,K];

}

CellPopulation[I,J,K]++;

if (C->boundary_tag == 0) { /* open cell */

if (C->atom_in_cell == NULL) /* odd-numbered atom */

C->atom_in_cell = A; /* store it in the slot */

else { /* even-numbered atom, so pair up */

if (RANDOM_NUMBER <= C->avg_probability)

.. collide atom "A" with atom "C->atom_in_cell"

to compute new velocities for both the atoms ..

48

C->atom_in_cell = NULL; /* clear the slot */

}

}

else ...

}

UPDATE-COORDINATES OF Atoms;

/* communicate updated non-local data */

WRITE-BOUNDARY CellPopulation

OVERLAP({ ALL-DIRS=1 }, RIGID-BOUNDARY)

OPERATION (ADD-INTTYPE);

}

add_atoms_to_free_stream() {

/* sum up the number of exit atoms from all the nodes */

GLOBAL-SUM exit_num_flow DATATYPE-INT;

/* add new atoms to the system */

total_num_atoms_to_be_added = function(total_num_atoms,

exit_num_flow, ..);

/* LOOP 4 */

/* split the reservoir into small reservoirs, and maintain small

reservoirs at each processor */

num_per_processor = total_num_atoms_to_be_added / NumProcessors;

for (n = 0; n < num_per_processor; n++) {

atomType tempA;

R = &ReservoirAtoms[next_R_atom++];

tempA.velocity = R->velocity;

tempA.coordinate = function(R->coordinate, ..);

ADD_PARTICLE-LOCAL tempA TO Atoms;

}

total_num_atoms += total_num_atoms_to_be_added;

}

move_and_collide_reservoir_atoms() {

.. move each reservoir atom to update coordinates ..

.. collide pairs of reservoir atoms to update velocities ..

}

49

5.3 Molecular Dynamics

Molecular Dynamics simulation, herein after referred to as MD, is a very powerful

and popular technique used to study a number of interesting problems related to

�lm deposition, materials interfaces, formation and properties of minerals in extreme

atmospheric conditions, etc. [Allen & Tildesley 87, Fincham 87, Pinches et al. 91].

Conceptually, MD involves numerical integration (over time) of the classical New-

ton's equations of motion for a system of interacting particles. These particles move

about inside a simulation box with periodic boundaries. From the computed particle

trajectories, many of the material properties can be derived.

Particles in the system can interact via a number of potentials. In the example

shown here, we use the classic Lennard-Jones potential, a function of inter-particle

separation. It is a short-range potential, i.e. two particles separated by a distance

greater than rcut, the cuto� distance for the potential, will not interact with each

other. Identifying particle pairs separated by distances less than rcut is the �rst step

in force computation. Next, gradient of the potential for each interacting pair is

computed, and this gives the force due to pair interaction. Net force on each particle

is the vector sum of these pair forces.

Once the forces are evaluated, the atom position is updated to the next time step

by a second order numerical scheme. For this new set of positions, forces are once

again computed and their values used to update the particle velocities. This iterative

scheme is continued over a large number of time steps.

The code given below uses a multiple time step scheme for simulating a system

containing light and heavy atoms. Since light atoms tend to move faster than heavy

atoms, in every time step, the properties of the light atoms are updated several times

before updating the properties of the heavy atoms.

5.3.1 Sequential Program for the Molecular Dynamics Application

typedef struct vectornode { double X, Y, Z; } vectorType;

typedef struct atomNode {

vectorType coordinate;

int atom_type;

vectorType force;

vectorType velocity;

vectorType acceleration;

50

vectorType displacement;

} atomType;

atomType Atoms[MAX_NUM_ATOMS];

main() {

/* read simulation parameters */

......

/* read initial atom configuration */

for (i = 0; i < NumAtoms; i++) {

.. initialize fields of Atoms[i] ..

}

/* partially sort the atoms into cells */

sort_atoms_into_cells(cutoffX, cutoffY, cutoffZ);

/* code for this is quite involved, and not given here */

for (big_time_step = 0; big_time_step < num_big_time_steps;

big_time_step++) {

update_atoms();

}

}

update_coordinate(A, timestep) {

new_coordinate = function_of(A->coordinate, A->velocity, timestep);

A->displacement = A->displacement + (new_coordinate - A->coordinate);

if (A->displacement > threshold) need_to_re-sort_into_cells = 1;

A->coordinate = new_coordinate;

}

update_velocity(A, timestep) {

A->velocity = function_of(A->velocity, A->acceleration, A->force,

A->atom_type, timestep);

}

correct_velocity(A, timestep) {

correction = function_of(A->acceleration, A->force,

A->atom_type, timestep);

A->velocity += correction;

}

update_atoms() {

51

/* fix heavy atoms and integrate light atoms for

num_small_time_steps */

for (step = 0; step < num_small_time_steps; step++) {

/* LOOP 1 */

for (n = 0; n < NumAtoms; n++) {

A = &Atoms[i];

if (A->atom_type == LIGHT_ATOM)

update_coordinate(A);

}

/* compute force on each light atom */

/* LOOP 2 */

.. for each atom pair (A1,A2) within cutoff distance do .. {

/* the code for extracting pairs is complicated, not given here */

if (A1->atom_type == LIGHT_ATOM ||

A2->atom_type == LIGHT_ATOM) {

pair_force12 = function_of(A1->coordinate,A1->atom_type,

A2->coordinate,A2->atom_type);

A1->force += pair_force12;

A2->force -= pair_force12;

}

}

/* LOOP 3 */

for (n = 0; n < NumAtoms; n++) {

A = &Atoms[i];

if (A->atom_type == LIGHT_ATOM) {

update_velocity(A, small_timestep);

A->force = 0;

}

}

if (need_to_re-sort_into_cells) {

re-sort_atoms_into_cells(); /* code not given here */

need_to_re-sort_into_cells = 0;

}

}

/* update coordinates of heavy atoms by big_timestep */

/* LOOP 4 */

for (n = 0; n < NumAtoms; n++) {

A = &Atoms[i];

if (A->atom_type == HEAVY_ATOM) {

52

update_coordinate(A, big_timestep);

A->force = 0;

}

}

/* compute forces on all atoms */

/* LOOP 5 */

for each atom pair (A1,A2) within cutoff distance do {

pair_force12 = function_of(A1->coordinate, A1->atom_type,

A2->coordinate, A2->atom_type);

A1->force += pair_force12;

A2->force -= pair_force12;

}

/* compute velocities of heavy atoms and

correct velocities of light atoms */

/* LOOP 6 */

for (n = 0; n < NumAtoms; n++) {

A = &Atoms[i];

if (A->atom_type == HEAVY_ATOM)

update_velocity(A, big_timestep);

else

correct_velocity(A, big_timestep);

A->displacement = 0;

}

}

5.3.2

�

Adh�ara Program for the Molecular Dynamics Application

We made the following changes to the sequential program to convert it into an

�

Adh�ara

program:

� We declared and de�ned the computation space, spatial data structures and

phases (see InitSpatialData() below). We organized the computation into one

phase (see main() below).

� We used the SORT-INTO-CELLS primitive to partially sort the atoms into

cells (see InitSpatialData()), since we need to form pairs of atoms for the force

computation (see loops 2 and 5).

53

� We changed the \for" loops 1, 3, 4 and 6 to \FORALL-PARTICLES (A)" loops,

and the loops 2 and 5 to \FORALL-PARTICLES (A1,A2) .." loops.

� We used the UPDATE-COORDINATES primitive to re-sort the atoms into

cells.

The

�

Adh�ara program for the molecular dynamics application is given below.

3D-PARTCLE-TYPE Atoms; PHASE-TYPE UpdatePhase;

InitSpatialData() {

COMPUTATION-SPACE(BoxSizeX, BoxSizeY, BoxSizeZ);

3D-PARTICLE atomType Atoms SORT-INTO-CELLS (cutoffX, cutoffY, cutoffZ);

PHASE UpdatePhase { (Atoms, PRIMARY, USAGE READ-WRITE) };

}

main() {

ADHARA-INITIALIZE-NODE;

/* read simulation parameters */

........

InitSpatialData();

/* read initial atom configuration */

for (i = 0; i < NumAtoms; i++) {

atomType tempA;

.. initialize fields of tempA ..

ADD-PARTICLE tempA TO Atoms;

/* atoms will be automatically sorted into cells */

}

for (big_time_step = 0; big_time_step < NumBigTimeSteps;

big_time_step++) {

EXECUTE update_atoms IN UpdatePhase;

}

}

update_atoms() {

/* fix heavy atoms and integrate light atoms for num_small_time_steps */

for (step = 0; step < num_small_time_steps; step++) {

/* LOOP 1 */

FORALL-PARTICLES (A) IN Atoms DO {

if (A->atom_type == LIGHT_ATOM)

update_coordinate(A);

}

54

/* compute force on each light atom */

/* LOOP 2 */

FORALL-PARTICLES (A1,A2) IN Atoms CELL-DISTANCE 1 DO {

if (A1->atom_type == LIGHT_ATOM ||

A2->atom_type == LIGHT_ATOM) {

pair_force12 = function_of(A1->coordinate,A1->atom_type,

A2->coordinate,A2->atom_type);

A1->force += pair_force12;

A2->force -= pair_force12;

}

}

/* LOOP 3 */

FORALL-PARTICLES (A) IN Atoms DO {

if (A->atom_type == LIGHT_ATOM) {

update_velocity(A, small_timestep);

A->force = 0;

}

}

if (need_to_re-sort_into_cells) {

UPDATE-COORDINATES OF Atoms;

/* atoms will be automatically re-sorted into cells */

need_to_re-sort_into_cells = 0;

}

}

/* update coordinates of heavy atoms by big_timestep */

/* LOOP 4 */

FORALL-PARTICLES (A) IN Atoms DO {

if (A->atom_type == HEAVY_ATOM) {

update_coordinate(A, big_timestep);

A->force = 0;

}

}

/* compute forces on all atoms */

/* LOOP 5 */

FORALL-PARTICLES (A1,A2) IN Atoms CELL-DISTANCE 1 DO {

pair_force12 = function_of(A1->coordinate, A1->atom_type,

A2->coordinate, A2->atom_type);

A1->force += pair_force12;

A2->force -= pair_force12;

}

/* compute velocities of heavy atoms and

correct velocities of light atoms */

/* LOOP 6 */

55

FORALL-PARTICLES (A) IN Atoms DO {

if (A->atom_type == HEAVY_ATOM)

update_velocity(A, big_timestep);

else

correct_velocity(A, big_timestep);

}

}

5.4 Summary

In this chapter, we described how to develop parallel programs using

�

Adh�ara. Us-

ing three dynamic space-based applications as examples, we illustrated the process

of converting the sequential programs into

�

Adh�ara programs. We showed that the

conversion process uses simple concepts about data-parallel programming and very

few lines of additional code.

Chapter 6

EVALUATION OF THE

�

ADH

�

ARA PROGRAMMING

MODEL AND COMPARISON WITH EXISTING

PROGRAMMING ENVIRONMENTS

We evaluate the e�ectiveness of the

�

Adh�ara programming model using the follow-

ing metrics:

� Programming e�ort: Wemeasure the programming e�ort in terms of the amount

of extra code that need to be written, in order to convert a sequential program

into a parallel program. Let L

par

be the number of lines in the parallel source

code and L

seq

be the number of lines in the sequential source code. Then

programming e�ort =

L

par

�L

seq

L

seq

� Parallel e�ciency: Let T

seq

be the execution time of the sequential program for

a given input. Let T

par;P

be the execution time of the parallel program for the

same input on P processors. Then

parallel e�ciency (on P processors) =

T

seq

PT

par;P

6.1 Evaluation of the

�

Adh�ara Programming Model

In order to evaluate the e�ectiveness of the

�

Adh�ara model, we compare

�

Adh�ara pro-

grams with two versions of hand-coded parallel programs (that use message passing

primitives): one that uses static data partitioning and other that employs dynamic

load balancing. Both versions exploit spatial locality by using domain decomposition.

Actual hand-coded parallel programs that perform all optimizations to minimize com-

munication, load balance and load imbalance overheads are not available, since it is

very hard and time consuming to hand-code the necessary optimizations. (This is

the motivation for developing

�

Adh�ara programming environment.) Hence we estimate

the programming e�ort for the hand-coded versions based on the amount of

�

Adh�ara

57

Table 6.1: Evaluation of the

�

Adh�ara programming model

(For the �rst two applications, inputs with 32K particles are used, and for the third application, an

input with 16K particles is used. An Intel Paragon with 16 nodes is used for all the

measurements.)

Electro-Magnetic Rare�ed Molecular

Particle-In-Cell Fluid Flow Dynamics

Sequential code 1500 lines 1700 lines 4500 lines

HAND-CODED

(with static partitioning)

Parallel code 2500 lines 2700 lines 6500 lines

Programming e�ort 67% 59% 44%

Parallel e�ciency 70% 49% 59%

HAND-CODED

(with dynamic load balancing)

Parallel code 6500 lines 6700 lines 10500 lines

Programming e�ort 333% 294% 133%

Parallel e�ciency 88% 80% 79%

ADHARA

Parallel code 1600 lines 1800 lines 3800 lines

Programming e�ort 7% 6% -15%

Parallel e�ciency 84% 76% 71%

runtime system code that is exercised by each application. We estimate the paral-

lel e�ciency for the hand-coded versions that employ dynamic load balancing based

on how much the performance of the

�

Adh�ara program can be improved by employ-

ing an idealized load balancing scheme that balances the load perfectly by incurring

absolutely no overhead.

Table 6.1 evaluates the

�

Adh�ara model using the three dynamic space-based appli-

cations that were discussed in the previous chapter. The hand-coded versions that

use static partitioning take reasonable amount of programming e�ort, but do not

perform well. The hand-coded versions that use dynamic load balancing perform

very well, but at the cost of substantial programming e�ort. The

�

Adh�ara programs

perform reasonably close to the optimized hand-coded versions that employ ideal-

ized load balancing scheme, but require very little programming e�ort. In the case

of molecular dynamics application, the programming e�ort is negative, that is, it is

quicker to develop an

�

Adh�ara program than to develop a sequential program. This is

58

Table 6.2: Comparison of

�

Adh�ara with existing programming environments

(In the row that compares the support for data sharing, explicit means explicitly speci�ed by the user,

and implicit means automatically performed by the system.)

HPF like PARTI LPAR ADHARA

language

Environment general purpose general purpose specialized for specialized for

language / runtime system dynamic dynamic

parallel for parallel non-uniform space-based

compiler compilers applications applications

Spatial regular-grid regular composition regular-grid

data and irregular of regular and

structures grids domains particle

Operations iteration iteration iteration iteration over

on spatial over grid over grid over set grid points,

data points points of regular particles and

structures domains pairs of particles;

Data implicit explicit explicit explicit for

Sharing for grids for grids for domains grids, implicit

for particles

Data speci�ed managed managed automatic

Partitioning by the user by the user by the user

Load managed managed managed automatic

Balancing by the user by the user by the user

because,

�

Adh�ara supports high-level primitives for operating on space-based objects,

such as iterating on pairs of closely located particles. In the sequential program, the

code for implementing such primitives must be developed, where as, in the

�

Adh�ara

program such code is not needed.

6.2 Comparison with Existing Programming Environments

In Table 6.2, we compare

�

Adh�ara with the existing programming environments

that can be used for parallelizing dynamic space-based applications. Compared to

these environments, it is more convenient to program using

�

Adh�ara because

�

Adh�ara

supports high-level primitives to create and operate on spatial data structures in a

natural way, and data partitioning and load balancing are automatically performed

by the system.

59

6.3 Summary

In the second part of this report (chapters 4-6), we presented the

�

Adh�ara programming

model, described how to develop programs using three sample applications, evaluated

the model using the programming e�ort and parallel e�ciency metrics, and compared

�

Adh�ara with the existing programming systems. In the next part of the thesis, we

discuss the issues in application induced load balancing.

Part III

Application Induced Load

Balancing

60

Chapter 7

ISSUES IN APPLICATION INDUCED LOAD

BALANCING

There are three issues in dynamic load balancing in an application domain: (1)

how to partition the space, (2) how to load balance, and (3) when to load balance.

These three issues are discussed in the rest of this chapter.

7.1 How to Partition the Space

There are several ways of decomposing a three-dimensional space into small re-

gions and assigning them to processors. The regions could be rectangular or non-

rectangular, a processor could be assigned one or more regions, and the space could

be partitioned either non-hierarchically or hierarchically. In this section, we describe

various alternatives and discuss the tradeo�s.

7.1.1 Rectangular vs. Non-Rectangular Regions

The regions can be either rectangular or non-rectangular. The motivation of using

non-rectangular regions (Figure 7.1) is to exploit the characteristics of the application

for achieving a �ne load balance with a small communication overhead [Hinz 90,

Weaver & Schnabel 92, Williams 91b]. Non-rectangular regions are typically used

for partitioning irregular meshes [Williams 91b]. Computing a good non-rectangular

partition is expensive. A non-rectangular region also introduces signi�cant overhead

of maintaining the data partitions. This approach might be practical for the problems

where the load distribution is static and the partitioning is performed just once at the

beginning of the execution. For dynamic problems it is probably not worth spending

a lot of time �nding a perfect partitioning each time the load is rebalanced, since the

load is going to change in the very next problem step.

In this work we consider only rectangular regions for the following reasons: (1) the

overhead of maintaining and repartitioning the data is small, (2) the load balancing

62

Figure 7.1: Partitioning a Three Dimensional Space into Eight Non-rectangular Re-

gions

No partitioning
in this dimension

in this dimension
Partitioning only

BLOCK: Three dimensions BEAM: Two dimensions SLICE: One dimension

Figure 7.2: Methods of Partitioning a Three Dimensional Space into Eight Rectan-

gular Regions

overhead can be adjusted in a simple way depending on the desired quality of the

load balance (Section 9.4), and (3) certain issues in the rectangular partitioning have

not received enough attention by researchers, and these need to be studied in detail

before moving on to more complicated schemes.

There are many ways of decomposing a k-dimensional space into rectangular re-

gions, depending on how many of the dimensions are partitioned. Each dimension

can either be partitioned or not partitioned, so there are 2

k

�1 choices in total. (The

case where none of the dimensions is partitioned is not allowed.) A three dimen-

sional space can be decomposed in seven di�erent ways (Figure 7.2): partitioning

all three dimensions (one choice), two dimensions (three choices) or one dimension

(three choices).

63

SCATTER DECOMPOSITION

32

10

BLOCK DECOMPOSITION

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

Figure 7.3: Block vs. Scatter Decompositions

(The �gure shows how a two dimensional space can be partitioned onto four processors

using block and scatter decompositions. The dotted circles represent the particles in

space. The numbers represent the processors to which the corresponding regions are

assigned.)

7.1.2 Block vs. Scatter Decompositions

Let us suppose there are P processors. The method of decomposing the space into

P contiguous regions of equal load (but not necessarily of equal volume) is called a

block decomposition. If the load distribution changes dynamically, the space needs to

be repartitioned. Dynamic load balancing can be avoided by a scatter decomposition

scheme [Nicol & Saltz 90]. This scheme decomposes the space into sP sub-regions

of equal volume and assigns s sub-regions to each processor in a regular manner

(Figure 7.3). This method gives good load balance if an appropriate s is chosen, but

results in a higher communication cost, since the region (collection of sub-regions)

assigned to a processor is not contiguous. Moreover, it is hard to choose an optimal

parameter s: if s is too small, the load imbalance overhead might be signi�cant, and

if s is too large, the communication overhead might be signi�cant. In this work, we

propose e�cient dynamic load balancing schemes, hence we focus only on the block

decomposition.

7.1.3 Non-Hierarchical vs. Hierarchical Partitioning

In a non-hierarchical scheme, no attention is paid to the order in which dimensions

are partitioned (Figure 7.4). In a hierarchical scheme, the space is partitioned at

64

X

Y

HIERARCHICAL

X

Y

partition-level-1

partition-
level-2

NON-HIERARCHICAL

Figure 7.4: Non-hierarchical vs. Hierarchical Partitioning

(The �gure shows how a two dimensional space can be partitioned into sixteen regions

using non-hierarchical and hierarchical schemes.)

di�erent levels. In each level L, the region is split into a speci�ed number of parts N

L

along the speci�ed dimension D

L

, such that each part has approximately the same

amount of computational load.

There are two types of hierarchical partitioning, one in which the number of levels

are related to the number of processors, and the other in which the number of levels are

related to the number of dimensions of the space. Figure 7.5 gives speci�c examples in

which the space is partitioned into sixteen regions. The TYPE-1 scheme has 4 levels

(number of levels = log P , where P is the number of processors), and in each level,

the region is split into 2 parts along alternate dimensions: D

1

= X;D

2

= Y;D

3

= X

and D

4

= Y . The TYPE-2 scheme has 2 levels (number of levels = number of

dimensions). At level-1, the space is split into 4 parts along X, and at level-2, each

of the resulting parts is split into 4 regions along Y.

A hierarchical scheme is preferable to a non-hierarchical scheme for two reasons:

it is easy to specify, and it can take advantage of preferential movement

1

of spatial

objects when the computational load is balanced dynamically. If the movement of

1

We say that there is preferential movement along dimension X, if the average displacement of the

particles per time step along X is much greater than the displacement along the other dimensions.

65

level-2

X X

Y Y

partition-level-3

partition-
level-2

TYPE 1: Number of levels = 4

= log (number of processors)

TYPE 2: Number of levels = 2

= number of dimensions

partition-level-1 partition-level-1

partition-
level-4

partition-

Figure 7.5: Types of Hierarchical Partitions

(The �gure shows how a two dimensional space can be partitioned into sixteen regions

using di�erent types of hierarchical schemes.)

spatial objects is localized (say, at the corners), a TYPE-1 scheme is advantageous,

since the load can be balanced just by adjusting partitions at levels 3 and 4. If the

movement is global, and the objects are preferentially moving along one particular

dimension, say along Y, a TYPE-2 scheme is advantageous, since only the partitions

at level-2 need to be adjusted.

7.2 How to Load Balance

This section describes di�erent methods of estimating the load distribution and par-

titioning the space into regions of approximately equal load.

7.2.1 Sorting vs. Discretization

There are two general schemes for partitioning the space into regions of equal load:

one uses the list of objects sorted by their spatial coordinates [Belkhale & Banerjee 90]

and the other discretizes the space into rectangular slots and uses the load estimate

in each slot.

We describe the sorting method for a simple case where the space is partitioned

along just one dimension, say along the X-axis. Let the processors P

1

; :::; P

N

manage

consecutive regions of space. Let us suppose that for balancing the load P

i

needs to

66

load = 4 load = 8

Very fine load discretizing mesh

load = 6 load = 6

load = 6 load = 6 load = 5 load = 7

SORTING DISCRETIZATION

Coarse load discretizing mesh

Fine load discretizing mesh

Figure 7.6: Sorting vs. Discretization Methods for Load Balancing

(The �gure illustrates how a one-dimensional space can be partitioned into two regions

using sorting and discretization methods.)

send n

i;i�1

data objects to P

i�1

and n

i;i+1

to P

i+1

. P

i

sorts the local data according

to the x-coordinate, sends the �rst n

i;i�1

objects to P

i�1

and the last n

i;i+1

objects

to P

i+1

. The sorting method uses continuous load distribution (the boundaries of

the partitions can fall anywhere in space), and hence results in a �ne load balance

(Figure 7.6). However, this method incurs signi�cant overhead to sort the data.

The overhead of sorting can be reduced by partially sorting the data using a

load discretizing mesh. The space is discretized into a number of slots and the load

estimate in each slot is used for partitioning the space. This approach imposes a

restriction that the boundaries of the partitions must fall along the boundaries of

the slots. In general, the �ner the mesh the better the load balance and higher the

load balancing cost (Figure 7.6). If the load distribution changes rapidly and the

computation time per data item is small relative to the communication time, it is

better to load balance quickly using a coarse mesh than to balance with a �ne mesh.

This approach is
exible, since we can control the �neness of the load discretizing

mesh depending on how good a load balance is required. Hence we focus on this

67

approach in our work.

7.2.2 Static vs. Adaptive Discretization

The �neness of the load discretizing mesh can be either �xed or adapted dynamically

based on the distribution of the load. A static scheme cannot adjust to changes

in the load density. It results in high load imbalance overhead if the mesh is too

coarse and in high load balancing cost if the mesh is too �ne. It is di�cult, if not

impossible, to choose the optimal �neness statically. An adaptive scheme can use a

coarse mesh when the load density is low, and a �ner mesh when the density becomes

high, thereby minimizing the load balancing and load imbalance overheads. However,

the adaptive scheme is harder to implement, since the load distribution needs to be

monitored dynamically.

7.2.3 Uniform vs. Non-Uniform Discretization

In a uniform discretization scheme, the whole space is discretized into equal sized

slots, and the load in each slot is estimated. This scheme has the following disad-

vantages: In many dynamic space-based applications, the load distribution changes

slowly with time. If the load is balanced frequently, the change in the partitions from

one load balancing step to another is small. In order to �nd a new partition, load

distribution along the boundaries of the current regions is su�cient. The uniform

scheme estimates load throughout the space, thereby generating a lot of unnecessary

data. This scheme uses considerable time to produce this data, and a large amount of

memory to store it. It also requires larger messages to communicate this data, thus

incurring high communication cost.

A non-uniform discretization scheme estimates the load only along the boundaries

of the regions (Figure 7.7). It uses a non-uniform load discretizing mesh to discretize

the space. It is hard to choose an appropriate non-uniform mesh, since it's e�ective-

ness is very sensitive to the load distribution and movement. If the load estimates

are not su�cient, i.e., if the boundary region that is used to estimate the load is not

su�ciently wide, this scheme incurs high load imbalance overhead. If the estimates

are much more than necessary, this scheme su�ers from the same disadvantages as

those of the uniform scheme. In order to bene�t from the non-uniform scheme, the

load discretizing mesh must be adapted dynamically based on the load distribution

68

Load estimation with non-uniform discretizationLoad estimation with uniform discretization

Figure 7.7: Uniform vs. Non-Uniform Discretization

(The �gure shows how a two-dimensional space can be discretized using uniform and

non-uniform meshes. The space is partitioned into four regions.)

and movement.

Although a non-uniform, adaptive discretization scheme is hard to implement,

it has several advantages: It estimates the load only along the boundaries of the

regions, thereby reducing the time required for load estimation. It requires only a

small amount of memory and small messages to communicate the load information.

Thus, it incurs less communication cost and is more scalable than the uniform scheme.

7.2.4 Centralized vs. Distributed Schemes

Once the load is estimated, the next step is to communicate the local load informa-

tion to compute a new global partitioning of the space. In a centralized scheme, a

designated central node collects information from all the nodes, computes the new

partition and broadcasts the result. Although easy to implement, this scheme is not

scalable because of two reasons: a large amount of memory is needed at the central

node to store the global load information, and the central node becomes a bottleneck.

A distributed scheme removes this bottleneck by distributing the work across the

processors. A hierarchical partitioning scheme induces a natural implementation of

the distributed scheme for computing a new partition. We explain this using a simple

example illustrated in Figure 7.8. The two dimensional space is partitioned into four

69

X

Y processor-level-0

processor-level-1

processor-level-2P0 P1

P2 P3 P0 P1 P2 P3

P0 P2

P0

C1
(partition-

level-1)

C2 (partition-level-2)

C3 (partition-level-2)

Space partitioning Processor hierarchy

Figure 7.8: Distributed Scheme for Computing New Partition

(The �gure shows an example of a two dimensional space partitioned onto four pro-

cessors, and how the processors are organized into a hierarchy for communicating load

estimates and for computing a new partition.)

regions using a hierarchical scheme. At level-1, the space is partitioned into two

regions along Y dimension (using line C1). The resulting regions are called level-1

regions. At level-2, each level-1 region is partitioned into two level-2 regions along

X (using lines C2 and C3). For collecting the load estimates and for computing a

new partition, the processors are organized into a hierarchy, as shown in Figure 7.8.

Processors P0 and P1 communicate to estimate the load in the region above line C1,

and processors P2 and P3 estimate the load in the region below C1. Processor P0 is

�nally responsible for computing level-1 regions (i.e., for computing a new C1), and

processors P0 and P2 are responsible for computing level-2 regions (lines C2 and C3).

Although the distributed scheme requires more communication steps than the

centralized scheme, in practice, it is faster and scalable, since the amount of data

communicated is much smaller, the computation is distributed across the processors,

and the communication is performed in parallel.

7.2.5 Hierarchical Load Balancing

Hierarchical load balancing can be used to exploit preferential movement of the spatial

objects. Consider the example given in Figure 7.8. If the objects are preferentially

moving along X, the level-1 regions (partitioned by the line C1) need not be updated

as often as the level-2 regions (partitioned by the lines C2 and C3), since very few

70

objects move across the line C1. That is, most of the time, it is su�cient to balance

the load globally by balancing just along X, thereby reducing the load balancing

overhead.

7.3 When to Load Balance

The �nal issue in dynamic load balancing is when to load balance. In this section,

we look at di�erent schemes for determining the frequency of load balancing.

7.3.1 Fixed vs. Adaptive Frequency

In a �xed frequency scheme, the load is balanced every f time steps, for a �xed f .

If f is too small, this scheme balances the load too often, thus incurring high load

balancing overhead. On the other hand, if f is too large, it incurs high load imbalance

overhead. The �xed frequency scheme has two disadvantages: it performs poorly if

the load distribution changes unpredictably, and it is hard to choose statically an f

that minimizes the sum of load balancing and load imbalance overheads.

An adaptive frequency scheme overcomes these disadvantages by dynamically ad-

justing f based on the execution characteristics. Di�erent methods for adapting load

balancing frequency are discussed below.

7.3.2 Methods for Adapting Frequency

There are three approaches to deciding when to load balance: event driven, monitor-

ing, and predictive. All these methods attempt to minimize the sum of load balancing

and load imbalance overheads per time step of the simulation, which we call the LILB

overhead. Note that the load balancing cost is amortized over the interval in which

load balancing is not done.

The event drivenmethod [Walker 90] initiates load balancing when the load imbal-

ance crosses a threshold. The threshold value is chosen to minimize LILB overhead.

This method assumes that the load imbalance increases linearly, an assumption which

does not hold most of time in real applications. Moreover, global communication is

required for computing the load imbalance at every time step.

The monitoring method [Nicol & Saltz 88] monitors the load imbalance after each

time step of the simulation, and initiates load balancing when it detects a minimal

71

value of the LILB overhead in the current interval. This method is robust, but

requires global synchronization for monitoring at every time step. The e�ect of the

global synchronization on the performance is dependent on the application and the

machine, and may or may not be signi�cant.

We propose a predictive method (Chapter 10) that does not require monitoring.

This method assumes that the average rate of increase of load imbalance does not

vary much from one interval to the following interval. It uses the average rate from

the previous interval to estimate the length of the next interval. This method is not

as robust as the monitoring method, but does not require global synchronization.

7.4 Comparison with the Existing Load Balancing Systems

In Table 7.1, we compare

�

Adh�ara with the following runtime systems with respect to

their support for dynamic load balancing: PARTI, LPAR, DYNO and DIME.

7.5 Summary

In this chapter, we looked at the issues in application induced load balancing: how to

partition the space, how to load balance and when to load balance. In the next chap-

ter, we describe how

�

Adh�ara chooses a partitioning scheme based on the application

and machine characteristics.

72

Table 7.1: Comparison with the Existing Load Balancing Systems

How is How is When is

Partitioning Load Load

Scheme Chosen? Balanced? Balanced?

PARTI speci�ed by the user; managed by the user speci�ed by the user

supports rectangular

and non-rectangular

regions, block/scatter

decompositions

LPAR speci�ed by the user; managed by the user speci�ed by the user

supports rectangular

and non-rectangular

regions, block/scatter

decompositions

DYNO automatic & dynamic; automatic automatic

specialized for irregular

mesh applications

DIME automatic & dynamic; automatic automatic

specialized for irregular

mesh applications

ADHARA automatic & dynamic; automatic automatic;

rectangular regions; load estimation by adaptive frequency

block decomposition; non-uniform, adaptive predictive method

hierarchical; discretization of space;

specialized for hierarchical

dynamic space-based

applications

Chapter 8

CHOOSING A HIERARCHICAL PARTITIONING

SCHEME BASED ON APPLICATION

CHARACTERISTICS

�

Adh�ara partitions space into rectangular regions using a hierarchical block decom-

position scheme.

�

Adh�ara optimizes the load balancing overhead if there is preferential

global load movement. It uses a TYPE-2 hierarchical scheme where the number of

levels is equal to the number of dimensions (Section 7.1.3).

�

Adh�ara represents a partitioning scheme using four parameters:

1. Type of the decomposition (block, beam or slice)

2. Dimensions along which the space is decomposed (applicable for beam and slice

decompositions)

3. Hierarchical order in which the dimensions are partitioned

4. Number of partitions in each dimension

For example, BLOCK[YZX][4x2x2] represents a three-dimensional partitioning

scheme where the space is partitioned into four regions �rst along Y, then into two

regions along Z and �nally into two regions along X. BEAM-Z[YX][4x4] represents a

two-dimensional scheme where the space is partitioned into four regions �rst along Y

and then into four regions along X (beams along Z dimension). Figure 8.1 illustrates

these two schemes.

�

Adh�ara uses heuristics that are based on execution characteristics to automatically

choose a good partitioning scheme. The following two sections describe the heuristics

and the methods of extracting execution characteristics.

8.1 Heuristics for Choosing a Good Hierarchical Partitioning Scheme

�

Adh�ara's heuristics are based on the following parameters:

74

Y

Z

X

Y

Z

X

BEAM-Z [YX] [4x4]BLOCK [YZX] [4x2x2]

Figure 8.1: Examples of Partitioning Schemes

� Application execution characteristics, such as the communication patterns and

the movement and distribution of spatial objects

� Number of processors allocated to the application

� Machine speci�c characteristics, such as the latency and bandwidth of message

communication

A partitioning scheme is chosen by eliminating bad choices. The heuristics used

by

�

Adh�ara are given below:

� If the load movement along dimension D is much more than the movement

in the other dimensions, then avoid partitioning along D. It is better not to

partition along D because it results in higher communication and load balancing

overheads, since there would be considerable movement across the partition

boundaries.

� If the load density along dimension D

1

is much higher than the density along

the other dimensions and if data is shared across partition boundaries along

1

By load density along dimension D, we mean the density of the particles in the cross-section along

D

75

D, then avoid partitioning along D, because the amount of data communicated

along D is very high.

� If the number of processors allocated to the application is large, then avoid

the slice scheme because thin slices result in high communication overhead for

sharing the data along the boundaries.

� If there is large amount of data sharing along the partition boundaries, then

avoid schemes (such as the Slice and Beam) that result in partitions with large

surface area.

� If the latency of message communication is large compared to the transfer rate,

then avoid the block scheme because it results in too many messages. On the

other hand, if the transfer rate is small, then avoid the slice scheme because it

results in large messages.

� If the load movement along dimension D1 is more than movement along di-

mension D2, then partition the space �rst along D2 and then along D1. If the

movement along D2 is very small, then the load balancing overhead can be

reduced by balancing the load only along D1.

8.2 Extracting Execution Characteristics

�

Adh�ara estimates the following parameters dynamically:

� Load movement along each dimension

� Load density along each dimension

The estimation method used by

�

Adh�ara is described here. The coordinates of

the spatial objects are discretized by a �ne regular grid called the CS-Mesh. (`CS'

stands for computation space.) The discretized coordinates of an object represent

the grid-cell in which the object is located.

�

Adh�ara measures the load movement in

terms of the average distance (number of grid cells) traveled by the objects per time

step. (Recall that the simulation proceeds in series of time steps). Load density along

dimension D is measured in terms of the number of particles per slice along D (slices

76

are induced by the CS-Mesh).

�

Adh�ara takes a sample of the objects to compute the

load movement and density in each dimension.

8.3 Parameters for the Heuristics

In the current implementation, we use the following parameters for making decisions:

� We say that A is much greater than B if A > 2B. We use this equation

for comparing load movement, load density and data sharing along di�erent

dimensions.

� We avoid the slice scheme along dimension D, if the number of processors is

greater than or equal to the number of cells along D. Here, cells refer to either

the cells of a regular grid, or the cells used for partially sorting the particles.

� We say that the latency of message communication is large, if the latency is

greater than the transfer time for a message of average length that is commu-

nicated to share data along the partition boundaries.

� For estimating load movement and density, we sample 10% of the objects.

8.4 Summary

In this chapter, we discussed the heuristics used by

�

Adh�ara for choosing a good

partitioning scheme based on the application execution characteristics and machine

characteristics. In the following chapter, we describe

�

Adh�ara's dynamic load balancing

scheme.

Chapter 9

DYNAMIC LOAD BALANCING USING

NON-UNIFORM, ADAPTIVE DISCRETIZATION OF

SPACE

�

Adh�ara discretizes the space by means of a �ne, uniform, static grid called the

CS-Mesh. The load is estimated using a load discretizing mesh, which we call the LD-

Mesh. The LD-Mesh is represented using the CS-Mesh, as described in the following

section. Throughout this chapter, by CSM-Slots, we refer to the slots induced by the

CS-Mesh, and by LDM-Slots, we refer to the slots induced by the LD-Mesh.

This chapter is organized as follows: Section 9.1 describes how the non-uniform

load discretizing mesh is represented using the CS-Mesh. Section 9.2 describes how

the load is estimated using the LD-Mesh. Hierarchical load balancing using the LD-

Mesh is explained in Section 9.3. Heuristics for adapting the LD-Mesh are given in

Section 9.4. Section 9.5 describes how to take advantage of preferential load move-

ment. Section 9.6 gives the adaptive distributed algorithm for hierarchical load bal-

ancing. Adaptation to a new partitioning scheme is discussed in Section 9.7.

9.1 Representing a Non-Uniform, Adaptive Load Discretizing Mesh

The LD-Mesh is de�ned by the following parameters:

� Width

D

, for each dimension D

� NSlots

+

D

and NSlots

�

D

, for each dimension D

Each processor maintains a portion of the LD-Mesh, as shown in Figure 9.1. Width

D

represents the width of the LDM-Slots with respect to the width of CSM-Slots along

dimension D. (LDM-Slots are at most as �ne as CSM-Slots.) NSlots

+

D

and NSlots

�

D

represent the number of LDM-Slots used along the positive and negative directions

of a region, along dimension D.

78

P0 P1

P2 P3

LD-MESH

P0 P1

P2 P3

NSlots- = 2
X

NSlots+ = 4
X

Y

X

Width = 2

Width = 1

Y

Y

Y

X

NSlots+ = 2

NSlots- = 1

CS-MESH

Figure 9.1: Parameters of the Non-Uniform Load Discretizing Mesh

(The �gure illustrates how an LD-mesh is represented using the CS-Mesh. The two

dimensional space is partitioned onto four processors.)

9.2 Estimating Load Distribution

Each processor estimates the load distribution along the boundaries of its region. To

make the selection of boundary objects e�cient, each processor partially sorts the

objects into two bins (Figure 9.2). The exterior bin contains the boundary objects

whose coordinates need to be discretized, and the interior bin contains the non-

boundary objects whose coordinates need not be discretized. Each processor sorts

the objects a time step before load balancing, at the time of checking the coordinates

P3

INTERIOR BIN

EXTERIOR BIN

(undiscretized region)

(discretized region)

P0 P1

P2

Figure 9.2: Using Bins to Separate Boundary and Non-Boundary Objects

79

of the objects for possible movement out of its assigned region

1

.

The load is discretized along the dimension in which it is going to be balanced.

For example, consider a two dimensional space partitioned into four regions using a

BEAM[YX] partitioning scheme (Figure 9.3). The load is �rst balanced along Y, and

then balanced along X. In the �rst step, each processor discretizes the load along Y

by partially sorting the boundary objects into the LDM-Slots along the Y dimension.

The resulting load estimates computed by the four processors are shown in Figure 9.3.

The �gure also shows the load estimates along the X dimension. These estimates are

used if the load is balanced only along X (see Section 9.5).

9.3 Hierarchical Load Balancing

We explain the distributed hierarchical load balancing algorithm using the simple

example illustrated in Figure 9.4. In this example, a two dimensional space is par-

titioned into four regions using a BEAM[YX][2x2] partitioning scheme. The line C1

divides the space along the Y dimension into two level-1 regions, and the lines C2

and C3 divide the level-1 regions along the X dimension into four level-2 regions. The

four regions are assigned to processors P0, P1, P2 and P3, as shown in the �gure.

The load is balanced hierarchically, in two steps. In the �rst step, the load is

balanced along Y by moving the line C1 so that the computational load in each level-

1 region is approximately the same. In the second step, the load is balanced along X

by moving the lines C2 and C3 so that the computational loads in the level-2 regions

are approximately equal.

In each step, the computation and communication is distributed across the ma-

chine by making use of the processor hierarchy induced by the hierarchical partition-

ing scheme (Figure 9.5). Each processor at processor-level-0 represents the level-2

region (created by the lines C1 and C2/C3) that it is assigned. Processors P0 and

P2 at processor-level-1 represent the level-1 regions created by the line C1, and are

responsible for updating C2 and C3 for balancing the load along X. Processor P0 at

processor-level-2 represents the whole space, and is responsible for updating C1 to

balance the load along Y.

The distributed algorithm is given in Figures 9.6 and 9.7, and is explained below.

1

When an object moves from the region of processor P1 to the region of processor P2, P1 needs

to send the object to P2 to maintain spatial locality.

80

(c) LOAD ESTIMATES ALONG ‘X’ DIMENSION

C1

P0 P1

P2 P3
X

Y

C3

C2

1

6

3

2

0

5

1

0

2

6

0

0

1

5

0

0

P0 P1

P2 P3

1 7 2 2

3 3 0

5 1 2

1 5 0 0

0

0

P3

P1

P2

P0

(a) LD-MESH

(b) LOAD ESTIMATES ALONG ‘Y’ DIMENSION

Figure 9.3: Load Estimation using a Non-Uniform Load Discretizing Mesh

(The �gure illustrates how each processor in a four-processor system estimates the

load using a load discretizing mesh. The two dimensional space is partitioned using

a BEAM[YX][2x2] scheme. In this example, each particle represents unit load.)

81

1 15

C2

SPACE PARTITIONING AFTER LOAD BALANCING

1

2

3

11

C1

1

4

2

3

0

0

11

11

C3

4

0

0

11

C2

C3X

Y

C2

C3X

Y

C1

C2

C3

C2

C3

After STEP 2B

After STEP 2D

After STEP 2A

After STEP 2C

ESTIMATES OF LOAD
DISTRIBUTION ALONG X

2 2 3 3 0 0

0 7 1 2 1 5 0 0

C1

2 2 3 3 0 0

0 7 1 2 1 5 0 0

5

P0 P1

P2 P3

C1

C1

BEFORE LOAD BALANCING
SPACE PARTITIONING ESTIMATES OF LOAD DISTRIBUTION ALONG Y

After STEP 1D After STEP 1E

SPACE PARTITIONING
AFTER STEP-1

Figure 9.4: Hierarchical Load Balancing

(This �gure illustrates hierarchical load balancing using a non-uniform load discretiz-

ing mesh. A two dimensional space is partitioned onto four processors using a

BEAM[YX][2x2] partitioning scheme. In this example, each particle represents unit

load.)

82

X

Y processor-level-0

processor-level-1

processor-level-2P0 P1

P2 P3 P0 P1 P2 P3

P0 P2

P0

C1
(partition-

level-1)

C2 (partition-level-2)

C3 (partition-level-2)

Space partitioning Processor hierarchy

Figure 9.5: Processor Hierarchy for Distributed Load Balancing

(The �gure shows an example of a two dimensional space partitioned onto four pro-

cessors, and how the processors are organized into a hierarchy for communicating load

estimates and for computing a new partition.)

In Step 1, each processor estimates the load distribution along Y. The resulting

load estimates (after STEP 1A of the algorithm) are shown in Figure 9.3. Pro-

cessor P0(P2) at processor-level-1 combines the estimates computed by P0(P2) and

P1(P3) using the addition operation (STEP 1B(1C)). Processor P0 at processor-level-

2 combines the resulting estimates using the concatenate operation (STEP 1D) and

computes a new C1 that divides the space into level-1 regions of approximately equal

load (STEP 1E). The result of these two operations is shown in Figure 9.4. The new

C1 is broadcast using the processor hierarchy. The processors then exchange data to

adjust to the new level-1 regions.

In Step 2, each processor estimates the load distribution along X. Processor

P0(P2) at processor-level-1 combines the estimates computed by P0(P2) and P1(P3)

using the concatenate operation (STEP 2A(2C)) and computes new C2(C3) that di-

vides the level-1 region into level-2 regions of approximately equal load. Processor

P0 then combines the new partition information (fC2,C3g) and broadcasts using the

processor hierarchy. The processors then exchange data to adjust to the new level-2

regions.

83

/*

STEP 1: UPDATE LEVEL-1 REGIONS (UPDATE LINE C1)

NOTE: Pn(L-m) means processor `n' at level-`m'

Px means all processors

*/

Px(L-0): estimate local load distribution along Y .. STEP 1A

P1(L-0): send load estimates to P0

P3(L-0): send load estimates to P2

P0(L-1): recv load estimates from P1

add estimates of P0 and P1 .. STEP 1B

P2(L-1): recv load estimates from P3

add estimates of P2 and P3 .. STEP 1C

send level-1 estimates to P0(L-2)

P0(L-2): recv level-1 estimates from P2

concatenate level-1 estimates of P0 and P2 .. STEP 1D

compute new C1 (level-1 regions) .. STEP 1E

send C1 to P2(L-1)

P0(L-1): send C1 to P1(L-0)

P2(L-1): recv C1 from P0(L-2)

send C1 to P3(L-0)

P1(L-0): recv C1 from P0

P3(L-0): recv C1 from P2

Px(L-0): exchange data to move C1

Figure 9.6: Distributed Algorithm for Hierarchical Load Balancing: STEP 1

(This �gure gives STEP 1 of the hierarchical load balancing algorithm for a sim-

ple case where a two dimensional space is partitioned into four regions using a

BEAM[YX][2x2] partitioning scheme. The result of executing this algorithm on a

speci�c example is given in Figure 9.4.)

84

/*

STEP 2: UPDATE LEVEL-2 REGIONS (UPDATE LINES C2 AND C3)

NOTE: Pn(L-m) means processor `n' at level-`m'

Px means all processors

*/

Px(L-0): estimate local load distribution along X

P1(L-0): send load estimates to P0

P3(L-0): send load estimates to P2

P0(L-1): recv load estimates from P1

concatenate estimates of P0 and P1 .. STEP 2A

compute new C2 (level-2 regions) .. STEP 2B

P2(L-1): recv load estimates from P3

concatenate estimates of P2 and P3 .. STEP 2C

compute new C3 (level-2 regions) .. STEP 2D

send C3 to P0(L-2)

P0(L-2): recv C3 from P2

send {C2,C3} to P2

P0(L-1): send {C2,C3} to P1(L-0)

P2(L-1): recv {C2,C3} from P0(L-2)

send {C2,C3} to P3(L-0)

P1(L-0): recv {C2,C3} from P0

P3(L-0): recv {C2,C3} from P2

Px(L-0): exchange data to move C2/C3

Figure 9.7: Distributed Algorithm for Hierarchical Load Balancing: STEP 2

(This �gure gives STEP 2 of the hierarchical load balancing algorithm for a sim-

ple case where a two dimensional space is partitioned into four regions using a

BEAM[YX][2x2] partitioning scheme. The result of executing this algorithm on a

speci�c example is given in Figure 9.4.)

85

9.4 Adjusting Parameters of the Load DiscretizingMesh Based on Application Char-

acteristics

The parameters of the LD-Mesh must be chosen so as to minimize the amount of

memory and time required for load balancing, while achieving good load balance.

Good load balance can be achieved by choosing a load discretizing mesh that is

�ne enough and by discretizing a su�ciently wide boundary region. Memory usage

can be minimized by discretizing just the necessary amount of the boundary region.

The time required for load balancing can be minimized by reducing the number of

load estimates, i.e., by using as few and as wide LDM-Slots as possible.

�

Adh�ara dynamically adjusts the parameters of the LD-Mesh based on the load

movement and density. The following subsections describe how the parameters are

adjusted by

�

Adh�ara.

9.4.1 Adjusting the size of the boundary region to discretize

The boundary region discretized along dimension D is speci�ed by the Width

D

,

NSlots

�

D

and NSlots

+

D

parameters. The following paragraph describes how

�

Adh�ara

adjusts these parameters for a particular dimension (the dimension su�x is omitted).

When the load is balanced, partition boundaries (for example, line C1 in Fig-

ure 9.8) tend to move in the direction of load movement. Hence

�

Adh�ara adjusts the

NSlots parameters based on the maximum number of slots used for moving the par-

tition boundaries. We explain the heuristics used by

�

Adh�ara by means of the example

shown in Figure 9.8. As a result of load balancing, the partition boundary C1 moved

by two slots in the negative direction, C2 by one slot in the positive direction and

C3 by one slot in the negative direction. The maximum number of NSlots

+

used is

2 (due to C1) and the maximum number of NSlots

�

used is 1 (due to C2). Since

the current NSlots

+

is 2, and they are used up for moving C1,

�

Adh�ara predicts that

more NSlots

+

might be used the next time the load is balanced. Hence, the NSlots

+

parameter is increased from 2 to 4. Similarly, since the current NSlots

�

is 4 and only

one of them is used up,

�

Adh�ara decreases the NSlots

�

parameter from 4 to 2. The

heuristic algorithm to adjust the NSlots parameters is given in Figure 9.9.

86

P0 P1 P2 P3

P0 P1 P2 P3

NSlots+ = 4

(increased from 2 to 4)

NSlots- = 2

(reduced from 4 to 2)

LD-Mesh at

Time Step T
(before load

balancing)

NSlots- = 4 NSlots+ = 2

P0 P1 P2 P3

LD-Mesh at

Time Step T

(after load
balancing)

LD-Mesh at

Time Step T+1

(before load
balancing)

repartitioning = 2

NSlots+ used for NSlots- used for

repartitioning = 1

C1 C2 C3

C1 C2 C3

Figure 9.8: Adjusting Parameters of the Load Discretizing Mesh

(The �gure shows how the NSlots parameters of the load discretizing mesh are ad-

justed based on the application characteristics. A one-dimensional space is used for

simplicity of illustration. The space is partitioned into four regions.)

87

9.4.2 Adjusting �neness of the load discretizing mesh based on the desired quality

of load balance

The �neness of the LD-Mesh in dimension D is speci�ed by the Width

D

parameter.

The threshold load per LDM slot parameter, which is the limit on the total com-

putational load per LDM-Slot along dimension D, represents the desired quality of

load balance. (

�

Adh�ara sets this threshold to 0.5 percent of the total load.)

�

Adh�ara adjusts the Width parameter based on the load density. Load density

is represented by max

i

fload per LDM slot

i

g. Note that only the load distribution

along the partition boundary is considered for estimating the load density. Consider

the example given in Figure 9.4. From the estimates of the load distribution along Y

(computed at STEP 1D of the load balancing algorithm), we can see that the load

density is 4 (maximum of the load in the LDM-Slots along Y: 1, 4, 2, 3, 0, and 0).

�

Adh�ara adapts theWidth such that max

i

fload per LDM slot

i

g is approximately

equal to the threshold load per LDM slot. Once the boundary region is �xed by

adjusting the NSlots parameters (as described in the previous subsection), when

the Width is increased(decreased), the NSlots parameter must be appropriately de-

creased(increased), as given in the heuristic algorithm (Figure 9.9).

9.5 Taking Advantage of Preferential Load Movement

If the load moves preferentially along a particular dimension, say X, and if there is

very little movement along Y, then the load along Y does not need to be balanced

as often as it is balanced along X. That is, most of the time, the space can be

repartitioned just by balancing the load along X.

Consider the example given in Figure 9.4. If there is very little movement along

Y, the line C1 does not need to be updated; it is su�cient to update C2 and C3

to balance the load. In this case, STEP 1 of the load balancing algorithm can be

omitted, thereby reducing the load balancing overhead.

9.6 Adaptive Distributed Algorithm for Hierarchical Load Balancing

Here we describe the distributed algorithm that not only balances the load but also

adapts the load discretizing mesh and the partitioning hierarchy. This algorithm is

88

ADJUST BOUNDARY REGION:

let 2

i

� NSlots

used

< 2

i+1

.

if (NSlots

used

< 1:5 � 2

i

)

NSlots = 2

i+1

;

else

NSlots = 2

i+2

;

ADJUST FINENESS OF THE LD-MESH:

density = max

i

fload per LDM slot

i

g;

limit = threshold load per LDM slot;

if (density > limit)

while (density > limit) f

Width = Width=2;

density = density=2;

NSlots

+

= NSlots

+

� 2;

NSlots

�

= NSlots

�

� 2;

g

else

while (density < limit) f

Width = Width � 2;

density = density � 2;

NSlots

+

= NSlots

+

=2;

NSlots

�

= NSlots

�

=2;

g

Figure 9.9: Heuristic Algorithm for Adjusting Parameters of the Load Discretizing

Mesh

89

a modi�ed version of the algorithm discussed in Section 9.3 (the code is given in

Figures 9.6 and 9.7.

STEP 1 and STEP 2 of the new algorithm are given in Figures 9.10 and 9.12.

STEP 2 of the algorithm uses a heuristic procedure to adapt the partitioning type,

hierarchy and the dimensions in which the load needs to be balanced at the next

balancing step. This heuristic procedure is given in Figure 9.11.

At STEP 1A, the processors estimate the load distribution as well as the load

movement and density (together called as the load info). At STEP 1B+(1C+), pro-

cessor P0(P2) combines the load characteristics of P0(P2) and P1(P3). Processor P0

combines the resulting load characteristics at STEP 1D+ and adjusts the LD-Mesh

parameters along Y (STEP 1E+) and broadcasts the new parameters.

Similarly, in STEP 2, LD-Mesh parameters along X are adjusted by processor

P0 (see steps 2A+, 2C+ and 2E+). At STEP 2F+, P0 uses the heuristic procedure

(Figure 9.11) to determine if the partitioning scheme needs to be adjusted. The

runtime system adapts to the new partitioning scheme after the completion of the

current time step, as discussed in the following section.

9.7 Adapting to a New Partitioning Scheme

To adapt to a new partitioning scheme, the runtime system determines a new space

partitioning and redistributes the data. The existing non-uniform load discretizing

mesh may not be suitable for estimating the load distribution because the partition

boundaries may move substantially. Hence, a uniform load discretizing mesh, which

estimates the load throughout the space, is used for balancing the load. Once the

system adapts to the new partitioning scheme, a new non-uniform load discretizing

mesh is created and then adapted in the subsequent time steps.

9.8 Summary

In this chapter, we described the novel hierarchical load balancing scheme imple-

mented in the

�

Adh�ara runtime system. In the following chapter, we describe the

predictive method for adapting the frequency of load balancing.

90

/* STEP 1: UPDATE LEVEL-1 REGIONS (UPDATE LINE C1)

Pn(L-m) means processor `n' at level-`m', Px means all processors

load_info means load estimates and characteristics (movement and density)

LD-Mesh-Y means parameters of the LD-Mesh along dimension Y

*/

If the load needs to be balanced only along X, then go to STEP 2

Px(L-0): estimate local load_info along Y .. STEP 1A

P1(L-0): send load_info to P0

P3(L-0): send load_info to P2

P0(L-1): recv load_info from P1

add load estimates of P0 and P1 .. STEP 1B

combine load characteristics of P0 and P1 .. STEP 1B+

P2(L-1): recv load_info from P3

add load estimates of P2 and P3 .. STEP 1C

combine load characteristics of P2 and P3 .. STEP 1C+

send level-1 load_info to P0(L-2)

P0(L-2): recv level-1 load_info from P2

concatenate level-1 estimates of P0 and P2 .. STEP 1D

combine load characteristics of P0 and P2 .. STEP 1D+

compute new C1 (level-1 regions) .. STEP 1E

adjust LD-Mesh-Y .. STEP 1E+

send C1 and new LD-Mesh-Y to P2(L-1)

P0(L-1): send C1 and new LD-Mesh-Y to P1(L-0)

P2(L-1): recv C1 and new LD-Mesh-Y from P0(L-2)

send C1 and new LD-Mesh-Y to P3(L-0)

P1(L-0): recv C1 and new LD-Mesh-Y from P0

P3(L-0): recv C1 and new LD-Mesh-Y from P2

Px(L-0): exchange data to move C1 and update LD-Mesh-Y

Figure 9.10: Adaptive Algorithm for Hierarchical Load Balancing: STEP 1

91

procedure_decide_what_to_adapt() {

Use heuristics (given in Chapter 8) to determine if the

partitioning scheme needs to be changed

if the type of partitioning scheme (BEAM/SLICE) needs to be changed {

Determine new partitioning scheme

At the next load balancing step, balance the load along

all the dimensions in which the space is partitioned

}

else { /* no change in the type of partitioning scheme */

if (load movement along Y >> load movement along X) {

Change the hierarchy from [YX] to [XY]

At the next load balancing step, adapt to the new hierarchy

and balance the load along X and Y

}

else {

if there is preferential movement along X

and very little movement along Y

and the current C1 balances the load well along Y {

At the next load balancing step, balance the load only along X

}

else /* no change */

At the next balancing step, balance the load along Y and X

}

}

Store the result in info_what_to_adapt

}

Figure 9.11: Heuristic Procedure for Adapting Partitioning Scheme and the Dimen-

sions in which Load Needs to be Balanced

(This �gure gives the heuristic procedure for a simple case where a two dimensional

space is partitioned into four regions using a BEAM[YX][2x2] partitioning scheme.)

92

/* STEP 2: UPDATE LEVEL-2 REGIONS (UPDATE LINES C2 AND C3) */

Pn(L-m) means processor `n' at level-`m', Px means all processors

load_info means load estimates and characteristics (movement and density)

LD-Mesh-X means parameters of the LD-Mesh along dimension X

*/

Px(L-0): estimate local load_info along X

P1(L-0): send load_info to P0

P3(L-0): send load_info to P2

P0(L-1): recv load_info from P1

concatenate load estimates of P0 and P1 .. STEP 2A

combine load characteristics of P0 and P1 .. STEP 2A+

compute new C2 (level-2 regions) .. STEP 2B

P2(L-1): recv load_info from P3

concatenate load estimates of P2 and P3 .. STEP 2C

combine load characteristics of P2 and P3 .. STEP 2C+

compute new C3 (level-2 regions) .. STEP 2D

send C3 and level-1 load characteristics to P0(L-2)

P0(L-2): recv C3 and level-1 load characteristics from P2

combine load characteristics of P0 and P2

adjust LD-Mesh-X .. STEP 2E+

procedure_decide_what_to_adapt() .. STEP 2F+

send {C2,C3}, new LD-Mesh-X and info_what_to_adapt to P2

P0(L-1): send {C2,C3}, new LD-Mesh-X and info_what_to_adapt to P1(L-0)

P2(L-1): recv {C2,C3}, new LD-Mesh-X and info_what_to_adapt from P0(L-2)

send {C2,C3}, new LD-Mesh-X and info_what_to_adapt to P3(L-0)

P1(L-0): recv {C2,C3}, new LD-Mesh-X and info_what_to_adapt from P0

P3(L-0): recv {C2,C3}, new LD-Mesh-X and info_what_to_adapt from P2

Px(L-0): exchange data to move C2/C3 and update LD-Mesh-Y

after finishing the computation in the current time step,

adapt to the new partitioning scheme based on info_what_to_adapt

Figure 9.12: Adaptive Algorithm for Hierarchical Load Balancing: STEP 2

Chapter 10

PREDICTIVE METHOD FOR ADAPTING

FREQUENCY OF LOAD BALANCING

�

Adh�ara uses a predictive method for deciding when to balance the load. This

method attempts to minimize the sum of load balancing and load imbalance overheads

per time step of the simulation, which we call the LILB overhead. If the load is

balanced too often, then the load balancing overhead is very high, and if the load

is balanced too infrequently, then the load imbalance overhead is very high. The

predictive method dynamically adjusts the frequency of load balancing to balance

these two overheads together.

T
i

TT

f f
i i+1

i-1

Interval ‘i’
Interval ‘i+1’

= ?

i+1

time step

Let us suppose that the load is balanced at time steps T

i�1

and T

i

. Let f

i

represent

the interval-i in which the load is not balanced (f

i

= T

i

� T

i�1

). At time step T

i

, the

predictive method determines the next interval f

i+1

based on the load balancing cost

incurred at T

i

and load imbalance in the interval-i. This method assumes that the

load imbalance in interval-(i+ 1) changes in the same way as it did in the interval-i.

Let R

LI

be the average rate of increase of load imbalance in the interval-i, and L

i

be the load imbalance at time step T

i

just after the load is balanced. Let C

LB

be the

load balancing overhead at time step T

i

. Let C

compute

be the computation time per

94

fi+1

fi+1 fi+1

fi+1

LILB
Overhead

(+)

Load Balancing Overhead Load Imbalance Overhead

that minimizes LILB overhead

Figure 10.1: E�ect of the length of the load balancing interval on load balancing and

load imbalance overheads

object (per unit load). Then

Predicted load balancing overhead per time step in interval-(i+ 1)

=

C

LB

f

i+1

Predicted average load imbalance overhead per time step in interval-(i+ 1)

= C

compute

(L

i

+

R

LI

f

i+1

2

)

Predicted LILB overhead in interval-(i+ 1)

=

C

LB

f

i+1

+ C

compute

(L

i

+

R

LI

f

i+1

2

)

Figure 10.1 shows how the LILB overhead is predicted to vary with f

i+1

. The goal

of the predictive method is to determine an f

i+1

that minimizes the LILB overhead.

The value of f

i+1

that minimizes the above expression can be shown to be

f

i+1

=

q

2C

LB

C

compute

R

LI

The cost parameters C

LB

and C

compute

are estimated dynamically by measuring

the time taken for balancing the load and the time taken for the actual computation.

The rate R

LI

is estimated by taking the di�erence in the load imbalance at the

95

beginning and the end of the previous interval, and dividing by f

i

.

This method does not require global synchronization at very time step. However,

it cannot handle drastic changes in the load distribution. In dynamic space-based

simulations, most of the time, load distribution changes gradually. Sudden changes

occur only when new objects enter the system, for example, when a cluster of atoms

drop onto a crystal in a molecular dynamics simulation. The application programmer

knows about such changes, so she can inform

�

Adh�ara so that the runtime system can

balance the load as soon as drastic load changes occur.

Summary

In the last three chapters, we described

�

Adh�ara's approach to automatic data par-

titioning and dynamic load balancing. In the following chapter, we discuss some

implementation details, and in chapter 12, we present some performance results.

Chapter 11

IMPLEMENTATION OF THE PORTABLE RUNTIME

SYSTEM

In this chapter, we describe how the

�

Adh�ara runtime system is implemented. This

chapter is organized as follows: Section 11.1 describes the organization of the

�

Adh�ara

runtime software. Portability of the runtime system is discussed in Section 11.2.

Some important implementation issues are given in Section 11.3. Sections 11.4- 11.9

describe the software modules.

11.1 Design of

�

Adh�ara Runtime System Software

The

�

Adh�ara runtime system is implemented as a C-library. The application program,

which is written using the

�

Adh�ara programming constructs, is �rst converted into

C-code by a pre-processor. The resulting code is then compiled and linked with the

�

Adh�ara runtime library and the system dependent message passing library to produce

an executable parallel code (Figure 11.1).

Figure 11.2 shows how the

�

Adh�ara runtime software is organized into various

modules. The application communicates with the runtime system through the appli-

cation interface module. The runtime system and the operating system communicate

through the operating system interface module. The main functions of the runtime

system are handled by six modules: message handler, phase manager, spatial data

manager, data redistributor, load balancer and processor reallocation adapter. These

modules are described in Sections 11.4- 11.9.

11.2 Portability

The runtime system assumes simple message passing support from the operating

system. This support is provided either directly by the operating system (on non-

shared memory machines such as the Intel Paragon and nCUBE) or by message

passing interfaces such as the PVM (on networks of workstations and shared memory

97

Program

Adhara Application
Pre-processor

Adhara

Library

Runtime

Library
Message Passing

System Dependent

C-Compiler
C-Code

Parallel Code

Executable

Figure 11.1: Compiling an

�

Adh�ara Program

SPATIAL DATA
MANAGER

MESSAGE HANDLER

REDISTRIBUTOR

DATA

PHASE

MANAGER

REALLOCATION
ADAPTOR

PROCESSOR

LOAD BALANCER

APPLICATION

OPERATING SYSTEM

APPLICATION INTERFACE

OPERATING SYSTEM INTERFACE

A
D

H
A

R
A

Figure 11.2: Organization of the

�

Adh�ara Runtime Software

98

machines such as the KSR-1).

�

Adh�ara expects support for the following machine

dependent functions:

� Load an executable code on a set of processors

� Name the processes for sending and receiving messages

� Send an asynchronous message of given type to a speci�c process

� Receive messages asynchronously

� Poll and read in the message of a speci�c type sent by a speci�c process

� Combine distributed data using global operations such as ADD and MAX

The operating system interface module of the runtime system provides a machine

independent interface to these functions, so this is the only module that is machine

dependent. The code required to provide this interface is less than 2% of the runtime

system code, and it is straightforward to port this module to di�erent machines. The

remaining modules do not use any system dependent functions, so they are portable

across di�erent machines.

�

Adh�ara automatically tunes the performance of an application not only based on

the application execution characteristics but also based on the machine characteristics

such as the latency and transfer rate of message communication and the relative

processor speed. Hence

�

Adh�ara is portable both in terms of adapting the code and

the performance.

11.3 Implementation Issues

�

Adh�ara uses a very �ne, regular, static grid called the CS-Mesh to discretize the space.

It uses this mesh for:

� discretizing coordinates of the spatial objects

� representing space partitioning

� representing the load discretizing mesh that is used for load balancing

99

X

Y

Space Partitioning: P0: {(0,0),(6,4)}

P1: {(0,5),(6,7)}

P2: {(7,0),(11,2)}

P3: {(7,3),(11,7)

CS-Slot represented by (5,3)

5

0

1

2

3

4

5

6

8

9

10

11

7

0 1 2 3 4 6 7

P2 P3

P0 P1

CS-Mesh

Figure 11.3: Representing Space Partitioning of a Two Dimensional Space: An Ex-

ample

(This �gure given an example of a two dimensional space partitioned onto four pro-

cessors P0-P3. The space is discretized by a 12 x 8 CS-Mesh.)

Space partitioning is represented by PartitionArray, an array of sub-cubes which

are de�ned using the discretized coordinates. Let the size of the CS-Mesh be CS

X

�

CS

Y

� CS

Z

. The region assigned to node i is given by

PartitionArray[i]: f(X1

i

; Y 1

i

; Z1

i

), (X2

i

; Y 2

i

; Z2

i

)g,

where 0 � D1

i

� D2

i

< CS

D

for D = X;Y;Z. (X1

i

; Y 1

i

; Z1

i

) and (X2

i

; Y 2

i

; Z2

i

)

specify the diagonally opposite corners of the subcube assigned to node i. Figure 11.3

illustrates a two dimensional example.

11.4 Message Handler

The message handler module provides support for high-level message passing func-

tions tailored to the needs of dynamic space based applications. The features sup-

ported by this module are listed below.

� Combining messages: It bu�ers up requests for sending/receiving data and

combines messages going to the same processor, thereby reducing the number

100

1

2

3

size-P0

stride-P0

stride-P1

Array section owned
by processor P0

Data layout in the memory of P0

Data layout in the memory of P1

1

2

3

1 2 3

1 2 3

Array section
sent to P1

size-P1

Array section owned
by processor P1

Array section
received from P0

size-P0

size-P1

start-address-P0

start-address-P1

Figure 11.4: Communicating Array Sections: An Example

(This �gure shows an example of communicating a section of a two dimensional ar-

ray.)

101

of operating system level messages. Requests for send/receive are bu�ered up

using msg need to send/receive () functions, and the data is actually sent/

received using the msg send/receive() function. Consider the following example

code:

PROCESSOR P0: msg_need_to_send___(P1, data1, ...);

msg_need_to_send___(P2, data2, ...);

msg_need_to_send___(P1, data3, ...);

msg_need_to_send___(P2, data4, ...);

msg_send();

PROCESSOR P1: msg_need_to_recv___(P0, buffer1, ...);

msg_need_to_recv___(P0, buffer2, ...);

msg_recv();

PROCESSOR P2: msg_need_to_recv___(P0, buffer1, ...);

msg_need_to_recv___(P0, buffer2, ...);

msg_recv();

When the above code is executed, the message handler module sends data1

and data3 together in a single operating system level message from processor

P0 to processor P1, and data2 and data4 in a single message to processor P2.

Processors P1 and P2 receive one message each, and demultiplex the data into

bu�er1 and bu�er2.

� Gather/Scatter operations: Themessage handler provides support for gath-

ering/scattering data from/to regular sections of three-dimensional arrays. For

example, a column of a two-dimensional array (Figure 11.4) can be communi-

cated using the following code:

PROCESSOR P0: msg_need_to_send_2D_array_section(

P1, start-address-P0,

size-P0, stride-P0);

msg_send();

102

PROCESSOR P1: msg_need_to_recv_2D_array_section(

P1, start-address-P1,

size-P1, stride-P1);

msg_recv();

� Processing received data: The message handler gives di�erent options for

processing received data:

{ Scatter into a 2D/3D array section (just copies the data)

{ Scatter into a 2D/3D array section and combine the old and new data with

the speci�ed operation (such as ADD and MAX)

{ Copy into a bu�er, or combine the new data with the data existing in the

bu�er

{ Invoke the speci�ed handler to process incoming data

11.5 Phase Manager

The phase manager executes the application routines within the phases speci�ed by

the user. When the EXECUTE-PHASE construct is executed, the phase manager

goes through the following steps:

1. Invoke the load balancer. If necessary, the load balancer balances the load.

2. For each spatial data structure that is going to be used in the current phase, if

the space partitioning in the current phase is di�erent from the partitioning in

the previous phase in which this data structure was used, then redistribute the

data.

3. Execute the application routine.

4. If the load balancer suggests a di�erent partitioning scheme for this phase,

redistribute the data to adapt to the new partitioning scheme.

103

Y

X

width_Y

width_Y

start_address

start-address

Memory allocated for non-local dataMemory allocated for local data

LocalSubGrid[i, j] is addressed by (start_address + i * width_Y + j)

LAYOUT OF THE 2D SUB-GRID DATA LAYOUT IN THE LOCAL MEMORY

Figure 11.5: Storing and Accessing a REGULAR-GRID Data Structure

(This �gure illustrates how a node stores and accesses its portion of a two dimensional

regular-grid)

11.6 Spatial Data Manager

This module maintains the distributed spatial data structures. Each node maintains

its portion of the REGULAR-GRID data structure as a dynamic array within its local

memory. Su�cient memory is reserved for storing non-local data that is received from

the neighboring processors along the partition boundary. Figure 11.5 shows how a

node stores and accesses its portion of a two-dimensional regular grid.

The data elements of a PARTICLE data structure are maintained, at each node,

in a complex local structure. This local data structure keeps the particles partially

sorted (according to their X, Y, Z coordinates) into CS-Slots, the slots induced by

the CS-Mesh that is used to discretize the space. Partial sorting makes the operation

of moving particles from region to another easier. (This operation is performed when

the particle data is repartitioned to balance the load.) Partial sorting also makes it

easier to pair up closely located particles for applications such as Molecular Dynamics

that operate on pairs of particles located within a cut-o� distance.

104

11.7 Data Redistributor

The data redistributor module supports redistribution of the spatial data in the fol-

lowing situations:

1. when the execution proceeds from one phase to another and the space parti-

tioning in the previous phase is di�erent from the partitioning in the current

phase

2. when the data is shared across partition boundaries

3. when the load is balanced and the space needs to be repartitioned

4. when the spatial objects move from one region to another

In the �rst two situations, the redistribution schedule could be repeatedly used, so

the data redistributor module saves the schedules and reuses them. A redistribution

schedule is represented by the set f(S,P)g, where S is the sub-cube that needs to

be sent to (or received from) processor P . In the case of a REGULAR-GRID data

structure, S represents a sub-grid, whereas in the case of a PARTICLE data structure,

S represents a sub-region from which particles must be taken (or a sub-region into

which particles must be placed). Figure 11.6 shows an example of a redistribution

schedule used when the phase changes.

11.8 Load Balancer

The load balancer module decides when to balance the load, estimates the load distri-

bution using a non-uniform, adaptive load discretizing mesh, and balances the load

hierarchically. The functionally of the load balancer module is described in detail in

Chapter 9.

11.9 Processor Reallocation Adapter

The processor reallocation adapter module interacts with the operating system to

adapt to the processor reallocations performed by the kernel scheduler. The func-

tionality of this module is described in Chapter 13.

105

5

0

1

2

3

4

5

6

8

9

10

11

7

0 1 2 3 4 6 7

P2

P1

P3

P0
Y

X

send {(7,3),(11,3)} to P2

5

0

1

2

3

4

5

6

8

9

10

11

7

0 1 2 3 4 6 7

P2 P3

P0 P1

CS-Mesh

Space Partitioning in PHASE-A Space Partitioning in PHASE-B

REDISTRIBUTION SCHEDULE FOR PHASE CHANGE (A->B)

P0: send {(0,4),(5,4)} to P1

send {(6,0),(6,3)} to P2

send {(6,4),(6,4)} to P3

P2: recv {(6,0),(6,3)} from P0

recv {(7,3),(11,3)} from P3

P1: send {(6,5),(6,7)} to P3

recv {(0,4),(5,4)} from P0

P3:

recv {(6,4),(6,4)} from P0

recv {(6,5),(6,7)} from P1

Figure 11.6: Example of a Redistribution Schedule

106

11.10 Summary

In this chapter, we discussed some details about the implementation of the

�

Adh�ara

runtime system. In the next chapter, we present some performance results.

Chapter 12

PERFORMANCE RESULTS

To evaluate the performance of the

�

Adh�ara runtime system, we used applications

from three scienti�c �elds: plasma physics, aeronautics and materials science. We

refer to the electro-magnetic particle-in-cell simulation by EMPIC, rare�ed
uid
ow

by MP3D and molecular dynamics by MD. The EMPIC application was developed by

hand converting a sequential Fortran program (written by David Walker, Oak Ridge

National Laboratory) to a sequential C program and then to an

�

Adh�ara program.

The MP3D application was developed by extracting the sequential program from the

shared-memory parallel C program, which is one of the SPLASH benchmarks, and

converting it into an

�

Adh�ara program. The MD program was developed by converting

a sequential C program developed in the department of Materials Science at the

University of Washington. The computational characteristics of these applications

are given Table 12.1.

We executed the applications on 2 to 16 nodes of an Intel Paragon. Each simu-

lation was performed for 200 time steps (leading to 1 - 30 minute execution times,

depending on the application and the number of nodes), unless otherwise speci�ed.

We measured all overheads in terms of the percentage of optimal compute time, which

is the execution time of the sequential program divided by the number of processors

on which the parallel program is executed.

We use all the three applications for studying the e�ect of

�

Adh�ara's heuristics

for choosing a partitioning scheme and the e�ect of

�

Adh�ara's dynamic load balanc-

ing scheme on the overall performance. For studying the e�ect of the non-uniform,

adaptive load discretizing mesh and the e�ect of the predictive method, we do not

use the MD application, the reason for which is discussed below. Both EMPIC and

MP3D use

�

Adh�ara's automatic load balancing facility, whereas MD does not. The

MD application, in order to optimize the time required for partially sorting the par-

ticles into cells, informs

�

Adh�ara of spatial changes only once every few time steps,

instead of every time step (see Section 5.3). It explicitly invokes the load balancer

108

after the changes in the coordinates are given to the runtime system. Since the fre-

quency of load balancing is under the control of the application,

�

Adh�ara uses a static

load discretizing mesh for balancing the load.

This chapter is organized as follows. Section 12.1 describes how the performance is

a�ected by the partitioning scheme. The e�ectiveness of

�

Adh�ara's heuristics for choos-

ing a good partitioning scheme is discussed in Section 12.2. Section 12.3 gives the

overhead of dynamically changing the partitioning scheme. The e�ect of the coarse-

ness of the load discretizing mesh is discussed in Section 12.4. The performance of the

non-uniform, adaptive mesh scheme and adaptation of the parameters of this mesh

are presented in Sections 12.5 and 12.6. The performance of the predictive method

is given in Section 12.7. Section 12.8 discusses the e�ect of

�

Adh�ara's load balancing

scheme on the overall execution time. Section 12.9 concludes by summarizing the

important results.

12.1 Sensitivity of Application Performance to the Partitioning Scheme

In this section, we show that application performance can be very sensitive to the

partitioning scheme. We use �gures 12.1, 12.2 and 12.3 to illustrate the importance

of choosing a good partitioning scheme. These �gures give the overheads and parallel

e�ciencies for di�erent number of processors and for di�erent partitioning schemes,

when no load balancing is performed. (The e�ect of dynamic load balancing on overall

performance is discussed in section 12.8.) Note that the Block scheme is applicable

only when the number of processors has at least three factors (e.g., 8, 12 and 16) and

the Beam schemes are applicable only when the number of processors has at least two

factors (e.g., 9, 14 and 16). For the MD program, the Slice scheme is not used when

the number of processors is greater than 10, since

�

Adh�ara does not allow very thin

slices. (The length of the simulation box used for the 16K input is only ten times the

cut-o� distance used for forming pairs of particles).

12.1.1 E�ect of the Partitioning Scheme on the Load Imbalance Overhead

Figure 12.1 shows how the partitioning scheme a�ects load imbalance for the

example applications. For the EMPIC application, since there is high load movement

and density along the X dimension, the SliceX scheme results in very high load

109

Table 12.1: Comparison of the Application and Execution Characteristics

EMPIC MP3D MD

Spatial data three regular-grids one regular-grid one particle

structures and one particle and one particle

Data size per small medium

regular-grid cell (24 bytes) (72 bytes)

Data size per medium medium large

particle (100 bytes) (84 bytes) (252 bytes)

Types of particle-grid particle-grid and particle-particle

interactions and grid-grid particle-particle (pairing based on

(random pairing cut-o� distance)

within a grid-cell)

Sharing of grid data four times per once per

along partition time step time step

boundaries

Sharing of particle once for once for once for maintaining

data along partition maintaining maintaining data locality and once

boundaries data locality data locality for forming pairs

(per time step)

Granularity medium small large

(average computation (225 �sec.) (70 �sec.) (900 �sec.)

per particle

per time step)

Input used for 32K particles, 32K particles, 16K atom crystal

the experiments 16x32x16 grid; 32x16x16 grid; with a spherical

(unless otherwise initial particle space object is hole; symmetric

speci�ed) distribution is part of an load distribution

uniform aeroplane wing

Execution high load movement high load movement high communication

characteristics and density along along X; load overhead; load

for the X; load variation variation is unsteady variation is

above inputs is steady due to obstructions slow and steady

Load automatically automatically application speci�es

Balancing performed by performed by when load balancing

�

Adh�ara

�

Adh�ara must be done

Load unit load unit load based on the number of

Estimation per particle per particle pair-wise interactions

on a particle

110

� � Block
� � BeamX
� � BeamY/Z
� � SliceX

 SliceY/Z

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|20

|40

|60

|80

|100

 Number of Processors

 L
oa

d
Im

ba
la

nc
e

O
ve

rh
ea

d

�

� �

�

� �

�
�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

� �

�

�
� �

�

� � �
�

(a) EMPIC

� � Block
� � BeamX
� � BeamY
� � BeamZ
� � SliceX

 SliceY
� � SliceZ

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|20
|40

|60

|80

|100

 Number of Processors

 L
oa

d
Im

ba
la

nc
e

O
ve

rh
ea

d

�

�

�

�

� �

�
�

�

�

�
�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�
�

�

� �

�

�

�

�

�

�

�
� �

� � �

�

�

�
� �

�

�

�
�

�
�

�

�

� �

(b) MP3D

� � Block
� � BeamX/Y/Z
� � SliceX/Y/Z

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|20

|40

|60

|80

|100

 Number of Processors

 L
oa

d
Im

ba
la

nc
e

O
ve

rh
ea

d

�

� �

�

�
�

�

�

�

�

�

�

�
�

�

�
� �

�

�

(c) MD

Figure 12.1: E�ect of the Partitioning Scheme on the Load Imbalance

(Load imbalance is given in terms of the percentage of optimal compute time.)

111

imbalance overhead, whereas the BeamX and SliceY/Z schemes result in low load

imbalance overhead (since for these two schemes, the space is not partitioned along

X). For MP3D, load imbalance is not that sensitive to the partitioning scheme, since

the load variation is high and unsteady along all the three dimensions. The MD

simulation does not exhibit preferential movement along any dimension, and the

distribution of the particles is such that the Block scheme partitions the load more

evenly than the Beam and Slice schemes.

12.1.2 E�ect of the Partitioning Scheme on the Communication Overhead

Figure 12.2 shows how the partitioning scheme a�ects the communication over-

head. For the EMPIC and MP3D applications, the communication overhead is not

signi�cant, where as for the MD application, the overhead is high due to large amount

of data sharing along the partition boundaries every time step. For EMPIC and

MP3D, the SliceZ scheme results in higher overhead because of the larger surface

area of the regions. For MD, the Block scheme results in regions with smaller surface

area, hence, smaller communication overhead.

12.1.3 E�ect of the Partitioning Scheme on the Parallel E�ciency

Figure 12.3 show how the partitioning scheme a�ects the parallel e�ciency. For

the EMPIC application, the BeamX and SliceY schemes perform much better than

the SliceX scheme because they take advantage of the preferential movement along X.

For the MP3D application, the performance is not that sensitive to the partitioning

scheme, because there is no preferential movement and the communication overhead is

not that signi�cant. For the MD application, communication overhead is signi�cant,

hence the Block scheme performs the best since it results in smaller amount of data

shared along the partition boundaries.

12.1.4 Importance of Choosing a Good Partitioning Scheme

From the �gure 12.3, we can see that the performance can be very sensitive to the

partitioning scheme. By choosing the right scheme, parallel e�ciency can be improved

by as much as 30% (see the performance of EMPIC for 16 processors). In the next

section, we see how

�

Adh�ara selects a good scheme using heuristics that as based upon

112

� � Block
� � BeamX/Z
� � BeamY
� � SliceX/Z

 SliceY

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|10

|20

|30

|40

|50

 Number of Processors

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

�

�
�

�
�

�
� �

� �
�

�
�

�
� �

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

(a) EMPIC

� � Block
� � BeamX/Y
� � BeamZ
� � SliceX
� � SliceY/Z

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|10
|20

|30

|40

|50

 Number of Processors

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

�

�

�

�
�

�
� �

�
�

� �

�
�

�
� �

�
�

� �

�
�

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� �

�

�
�

� �

� �
�

(b) MP3D

� � Block
� � BeamX/Y/Z

 SliceX/Y/Z

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|10

|20

|30

|40

|50

 Number of Processors

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

�

� ��

�

�

�
�

�

�

�

(c) MD

Figure 12.2: E�ect of the Partitioning Scheme on the Communication Overhead

(Communication overhead is given in terms of the percentage of optimal compute time.)

113

� � Block
� � BeamX
� � BeamY/Z
� � SliceX

 SliceY
� � SliceZ|

1
|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|40

|50

|60

|70

|80

|90

|100

 Number of Processors

 P
ar

al
le

l E
ffi

ci
en

cy
�

�
�

�

� �

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

� �
�

�
� �

�
� � �

�

�

�
�

� � �
�

� �
�

� �
� � �

(a) EMPIC

� � Block
� � BeamX
� � BeamY
� � BeamZ
� � SliceX

 SliceY
� � SliceZ

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|40

|50

|60
|70

|80

|90

|100

 Number of Processors

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

� �

� �

�

�

�
�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

�

�

�
�

�
� � � � �

�

�

�
� �

�

� � �
�

�

�

�
� �

(b) MP3D

� � Block
� � BeamX/Y/Z
� � SliceX/Y/Z

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|40

|50

|60

|70

|80

|90

|100

 Number of Processors

 P
ar

al
le

l E
ffi

ci
en

cy

�

� �

�

�
�

�

�

�
�

�

�

�
�

�
�

� �

�

�

(c) MD

Figure 12.3: E�ect of the Partitioning Scheme on the Parallel E�ciency

114

Table 12.2: Applying Heuristics for Choosing a Partitioning Scheme

(The load movement and density are given with respect to the grid cells of a �ne 16384

3

CS-Grid.

The RESULT column gives the decision of the

�

Adh�ara's heuristic algorithm. The last two columns

compare the parallel e�ciency of the scheme chosen by

�

Adh�ara with the parallel e�ciency of the

best and worst schemes.)

Load Load Data No. of Di�. Di�

Move- Density Sharing Proce- RESULT from the from the

ment Overhead ssors best worst

scheme scheme

4 BeamX 0% 21%

EMPIC X: 119 X: 43 small

Y: 43 Y: 29 16 BeamX -6% 15%

Z: 28 Z: 48

4 BeamX 0% 14%

MP3D X: 960 X: 93 small

Y: 460 Y: 46 16 BeamX -5% 2%

Z: 308 Z: 103

high, 4 BeamY 0% 18%

MD very same large

small along 16 Block 0% 8%

X, Y, Z

application execution characteristics.

12.2 E�ectiveness of

�

Adh�ara's Heuristics for Choosing a Good Partitioning Scheme

Table 12.2 gives the decisions made by the

�

Adh�ara data partitioner for the three

applications. The heuristics that are used to make the decisions are given below.

� EMPIC: Since the load movement along X is very high, the four schemes that

partition along X (Block, BeamY, BeamZ and SliceX) are eliminated.

{ Four processors: Since the load density and movement along Y and Z

are relatively small and not much di�erent,

�

Adh�ara chooses the BeamX

scheme. Note that there is no strong reason to eliminate the SliceY and

SliceZ schemes. In general,

�

Adh�ara prefers Beam to Slice schemes, because

115

Beam schemes are a good compromise in terms of the surface area of the

regions and the number of neighbors of each region.

{ Sixteen processors: Since the simulation uses a 16x32x16 regular grid, there

are only 16 grid cells along Z. To avoid very thin slices,

�

Adh�ara eliminates

the SliceZ scheme. Since the load density and movement along Y and

Z are relatively small and not much di�erent,

�

Adh�ara chooses the BeamX

scheme. Note that there is no strong reason to eliminate the SliceY scheme.

� MP3D: Since both the load density and movement along X are high, the four

schemes that partition along X (Block, BeamY, BeamZ and SliceX) are elimi-

nated.

{ Four processors: Since the load movement along Y and Z are relatively

small and not much di�erent,

�

Adh�ara chooses the BeamX scheme.

{ Sixteen processors: Since the simulation uses a 32x16x16 regular grid, there

are only 16 grid cells along Y and Z. To avoid very thin slices,

�

Adh�ara

eliminates SliceY and SliceZ schemes, thereby choosing BeamX.

� MD: Since communication overhead is signi�cant due to large amount of data

shared along the partition boundaries,

�

Adh�ara eliminates all of the Slice schemes.

Since the load movement and density along the three dimensions do not di�er

much, the choice is between Block and BeamY. (BeamY is randomly chosen

from the three Beam schemes.)

{ Four processors: Since there is no Block scheme for this case,

�

Adh�ara

chooses the BeamY scheme.

{ Sixteen processors:

�

Adh�ara chooses Block scheme because this schememin-

imizes the amount of data communicated along the partition boundaries.

The last two columns of Table 12.2 show that the

�

Adh�ara's heuristics are very

e�ective in eliminating the bad schemes, and in choosing schemes that perform very

close to the best schemes.

116

Table 12.3: Overhead of Dynamically Changing the Partitioning Scheme

(The measurements are made on 16 nodes of an Intel Paragon. The overheads given here are the

averages of the overheads of changing from block to beam scheme, slice to beam slice, etc.)

Absolute time Relative to compute

(millisec) time per time step

EMPIC

32K input 265 0.55

320K input 2935 0.65

MP3D

32K input 320 2.10

320K input 3570 2.45

MD

16K input 250 0.30

12.3 Overhead of Dynamically Changing the Partitioning Scheme

Table 12.3 gives the overhead of dynamically changing the partitioning scheme,

which involves redistribution of the data to adjust to the new scheme. We can see

that the overhead is quite small compared to the execution time. The MP3D appli-

cation has larger relative overhead compared to the EMPIC because of its smaller

computation granularity. The partitioning scheme is typically changed only once at

the beginning of the execution (after

�

Adh�ara estimates the execution characteristics),

unless the the execution characteristics change dynamically. The simulations are typ-

ically run for hundreds of time steps, hence the overhead of changing the partitioning

scheme is negligible compared to the overall execution time.

12.4 E�ect of the Coarseness of the Load Discretizing Mesh on the Performance

In this section, we show that performance is sensitive to the coarseness of the load

discretizing mesh. Note that the objective of the load balancer is to minimize LILB

overhead, the sum of load imbalance and load balancing overheads. A very �ne load

discretizing mesh results in a good load balance, but high load balancing overhead.

On the other hand, a coarse mesh results in a small load balancing overhead but a

large load imbalance overhead. The load imbalance overhead depends on the load

movement and density, which is speci�c to the application.

117

Figure 12.4 gives LILB overhead (in terms of the percentage of optimal compute

time) for uniform, static load discretizing meshes of varying coarseness. For these

measurements, we represent the coarseness relative to a 16384

3

mesh, that is, a mesh

with coarseness n is of size (

16384

n

)

3

.

We can make the following observations:

� Coarseness of the load discretizing mesh has signi�cant impact on performance.

� As the coarseness increases, the LILB overhead decreases, comes to a minimum

and then increases. The optimal coarseness depends on the application, the

input, and the number of processors.

� For the same input size, the impact is more pronounced for larger number of

processors, because the optimal compute time is smaller.

� For the same input size, the impact is more pronounced for an application with

smaller computation granularity (MP3D), because the optimal compute time is

smaller.

� There is a bigger penalty to overestimating the coarseness than to underesti-

mating it, since the cost of load imbalance resulting from using a very coarse

mesh is much more than the cost of using a very �ne mesh.

The results indicate the need for an adaptive scheme that dynamically chooses the

coarseness based on the application execution characteristics. The following section

describes the performance of the novel scheme that uses a non-uniform, adaptive load

discretizing mesh for balancing the load.

12.5 Performance of the Non-Uniform, Adaptive Load Discretizing Mesh Scheme

The load balancing overhead can be broken up into three parts: (1) overhead for

estimating the load distribution, (2) overhead for computing a new partition, which

includes communication of the local load estimates, and (3) overhead for redistribut-

ing the data for adapting to the new partition. Compared to a uniform, static mesh

scheme, a non-uniform, adaptive mesh scheme reduces the �rst two overheads by

estimating the load only along the partition boundaries and thereby communicating

118

� � EMPIC (small input)
� � MP3D (small input)

|
1

|
2

|
4

|
8

|
16

|0

|20

|40

|60

|80

|100

 Coarseness of Uniform Load Discretization Mesh

 L
IL

B
O

ve
rh

ea
d

� � �

�

�

� � �

�

�

(a) Four Processors

� � EMPIC (large input)
� � EMPIC (small input)
� � MP3D (large input)
� � MP3D (small input)

|
1

|
2

|
4

|
8

|
16

|
32

|0

|20

|40

|60

|80
|100

 Coarseness of Uniform Load Discretization Mesh

 L
IL

B
O

ve
rh

ea
d

� � � �

�

�

�
�

�

�

�

� �

�

�

�

�

�

�

(b) Sixteen Processors

Figure 12.4: E�ect of Coarseness of Load Discretizing Mesh on the Sum of Load

Imbalance and Load Balancing Overheads

(The overheads are given in terms of the percentage of optimal compute time. Coarseness of the

mesh is relative to a 16384

3

mesh, i.e., a mesh with coarseness n is of size (

16384

n

)

3

. A Block

partitioning scheme is used in all the cases. Small input refers to a input containing 32K particles,

whereas large input refers to 320K particles. The load is balanced once every 5 time steps.)

119

smaller amount of data. Since the third overhead is common for both the schemes,

we compare the schemes based on the �rst two overheads.

Table 12.4 compares the performance of the uniform and adaptive mesh schemes.

We can make the following observations:

� By estimating the load only along the boundaries, the non-uniform mesh scheme

reduces the load balancing overhead by a signi�cant amount.

� The heuristics used to adapt the non-uniform mesh (in other words, the bound-

ary region that is used to estimate the load) work very well { the resulting load

imbalance overhead is close to the overhead incurred by the �ne uniform mesh,

i.e., the adaptive scheme does not trade o� much load balance by dynamically

determining just the su�cient amount of boundary region.

� The e�ect of the adaptive scheme is more pronounced for the MP3D application

due to its smaller computation granularity.

The results indicate that the non-uniform, adaptive scheme can improve the perfor-

mance by as much as 24%. In the next section, we show how the heuristic algorithm

adapts the parameters of the load discretizing mesh.

12.6 Adaptation of the Non-Uniform Load Discretizing Mesh

Figure 12.5 shows how

�

Adh�ara adapts the coarseness of the load discretizing mesh for

the EMPIC application. Coarseness along dimension D is chosen based on the load

density along D.

�

Adh�ara adapts the mesh whenever load balancing is performed. For

the EMPIC simulation, since there is high load movement along X, the load density

along X becomes high, hence

�

Adh�ara chooses very thin slots along X. Along the Y

dimension, since the load density is initially low and the load movement is small,

�

Adh�ara uses thicker slots until the time step 176. Along the Z dimension,

�

Adh�ara

changes the coarseness of the mesh earlier, at time step 55.

Figures 12.6 and 12.7 show how

�

Adh�ara adapts the number of slots of the load

discretizing mesh. The number of slots used along dimension D is based on the load

movement along D.

For the EMPIC application,

�

Adh�ara uses more slots along X than along Z, be-

cause there is more load movement along X (Figure 12.6). In the initial part of the

120

Table 12.4: Performance of the Non-Uniform, Adaptive Load Discretizing Mesh

(The experiments are done on 16 processors. All overheads are given in terms of the percentage of

the optimal compute time, unless otherwise speci�ed. Coarseness of the uniform load discretizing

mesh is represented by the coarseness factor cf with respect to a grid of size 16384

3

. For example, cf

= n represents a grid of size (

16384

n

)

3

. LILB overhead is the sum of load imbalance and load balancing

overheads. The performance improvement column gives the di�erence in the LILB overhead between

the adaptive mesh and the optimal uniform mesh.)

Uniform, Static Non-Uniform Performance

Overhead Load Discretizing Mesh Adaptive Improvement

cf=1 cf=2 cf=4 cf=8 cf=16 Mesh

Cost of computing

a new partition 7440 4730 3345 2705 2400 850

(in milliseconds)

EMPIC

Load Estimation 4.0 4.0 4.0 4.0 4.0 0.5 3.5

Computing Partition 7.8 5.0 3.6 2.6 2.5 0.9

Load Imbalance 3.9 3.9 3.9 27.5 35.8 5.5

LILB 15.7 12.9 11.5 34.1 42.3 6.9 4.6

MP3D

Load Estimation 10.0 10.0 10.0 10.0 10.0 0.9 9.1

Computing Partition 25.3 16.0 11.1 8.8 7.9 2.8

Load Imbalance 3.5 5.0 41.7 57.1 80.2 3.6

LILB 38.8 31.0 62.8 75.9 98.1 7.3 23.7

121

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|0

|1

|2

 Time Step

 C
oa

rs
en

es
s

of
 th

e
Lo

ad
 D

isc
re

tiz
in

g
M

es
h

(a) Coarseness Along the X Dimension

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|0

|1

|2

 Time Step

 C
oa

rs
en

es
s

of
 th

e
Lo

ad
 D

isc
re

tiz
in

g
M

es
h

(b) Coarseness Along the Y Dimension

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|0

|1

|2

 Time Step

 C
oa

rs
en

es
s

of
 th

e
Lo

ad
 D

isc
re

tiz
in

g
M

es
h

(c) Coarseness Along the Z Dimension

Figure 12.5: Adaptation of the Coarseness of the Load Discretizing Mesh for the

EMPIC Application

122

simulation, the particles move preferentially along the positive X direction, and in the

later part, along the negative X direction.

�

Adh�ara adapts to the dynamics e�ectively

by initially choosing more slots along the negative X boundary and later choosing

more slots along the positive X boundary. (Note that if load moves in the positive

direction, the partition boundary on the negative side moves towards the positive

side, thereby using the slots on the negative side of the region.) The slow movement

along the Z dimension results in very little variation of slots along Z.

In the MP3D simulation, there is more load movement along X, so

�

Adh�ara chooses

more slots along X. The load movement is unsteady along the positive directions, that

is, the di�erence in the load movement from one time step to the next varies a lot.

This is re
ected in the fast variation in the slots in the negative X and Z directions.

(For example, see the variation in the slots along the negative Z at time step 50 in

Figure 12.7(b).)

From the results, we can see that the heuristic algorithm implemented by

�

Adh�ara

is very e�ective in adapting the load discretizing mesh in response to the changes in

the load distribution and movement.

12.7 Performance of the Predictive Method

In this section, we compare the predictive method with the �xed frequency method.

Figure 12.8 shows that the performance is sensitive to the frequency of load balancing.

We can make the following observations from the �gure:

� As the interval between successive load balancing steps increases, the LILB

overhead �rst decreases, comes to a minimum, and then increases. Unsteady

load variation can result in multiple local minimas (see MP3D).

� The optimal �xed frequency depends on the application, the input, and the

partitioning scheme.

� For high frequencies (that is, when the interval is less than 10), the impact

of the frequency on the performance is higher for those applications that have

smaller computation granularity (such as the MP3D) and that use small inputs.

This is because, at high frequencies, the load balancing cost dominates, and the

relative overhead is higher when the optimal compute time per time step is

123

 Slots along negative X direction
 Slots along positive X direction

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|1

|
|

|4

|
|

|16

|
|

|64

|
|

|256

|
|

|1024

|
|

|4096

|

 Time Step

 N
um

be
r o

f s
lo

ts
 o

f t
he

 a
da

pt
iv

e
m

es
h

(a) Slots along the X dimension

 Slots along negative Z direction
 Slots along positive Z direction

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|1

|
|

|4

|
|

|16

|
|

|64

|
|

|256

|
|

|1024

|
|

|4096

|

 Time Step

 N
um

be
r o

f s
lo

ts
 o

f t
he

 a
da

pt
iv

e
m

es
h

(b) Slots along the Z dimension

Figure 12.6: Adaptation of the Number of Slots of the Load Discretizing Mesh:

EMPIC Application

124

 Slots along negative X direction
 Slots along positive X direction

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|1

|
|

|4

|
|

|16

|
|

|64

|
|

|256

|
|

|1024

|
|

|4096

|

 Time Step

 N
um

be
r o

f s
lo

ts
 o

f t
he

 a
da

pt
iv

e
m

es
h

(a) Slots along the X dimension

 Slots along negative Z direction
 Slots along positive Z direction

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|1

|
|

|4

|
|

|16

|
|

|64

|
|

|256

|
|

|1024

|
|

|4096

|

 Time Step

 N
um

be
r o

f s
lo

ts
 o

f t
he

 a
da

pt
iv

e
m

es
h

(b) Slots along the Z dimension

Figure 12.7: Adaptation of the Number of Slots of the Load Discretizing Mesh: MP3D

Application

125

Table 12.5: Performance of the Predictive Scheme for Adapting Frequency of Load

Balancing

LILB Overhead LILB Overhead Average Interval

Optimal for Optimal for Induced by the

Fixed Fixed Frequency Predictive Predictive

Interval Method Method Method

EMPIC

Block Scheme 3 5.5 7.0 4.3

BeamX Scheme 4 3.8 3.7 6.9

MP3D

Block Scheme 7 7.3 7.9 8.3

BeamX Scheme 8 7.5 7.8 9.1

smaller. We use �gure 12.8(c) to illustrate this point, by using a hypothetical

application that is exactly same as the MP3D application in terms of execution

characteristics, except that it has a very small computation granularity (about

25 � seconds).

The results indicate the need for a scheme that adapts the frequency based on the

costs of load balancing and load imbalance.

Table 12.5 gives the performance of the predictive method. From the results, we

can see that predictive method performs very well { the LILB overhead is very close

to that of the optimal �xed frequency method. In some cases, it performs better

(for example, BeamX scheme for the EMPIC application), because it adapts to the

variation in the load movement. The average frequencies induced by the predictive

method re
ect the execution characteristics. For the EMPIC application, the interval

between successive load balancing steps is higher for the BeamX scheme than for

the Block scheme, because BeamX scheme results is much lower load imbalance (see

Figure 12.1(a)). The average interval for MP3D is larger than the interval for EMPIC,

because the computation granularity is smaller and as a result, the cost of load

imbalance is relatively small compared to the cost of load balancing. Figure 12.9

shows how the predictive method adapts the frequency of load balancing for di�erent

partitioning schemes.

126

� � EMPIC (large input)
� � EMPIC (small input)
� � MP3D (large input)
� � MP3D (small input)

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|0

|5

|10

|15

|20

 Interval between successive load balancing steps

 L
IL

B
Ov

er
he

ad

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�
�

� �

�

(a) Large vs. Small Inputs

� � EMPIC (block scheme)
� � EMPIC (beamX scheme)
� � MP3D (block scheme)
� � MP3D (beamX scheme)

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|0

|5

|10

|15

|20

 Interval between successive load balancing steps

 L
IL

B
Ov

er
he

ad

�
�

�

�

�

�

�
� �

�

�

�
�

� �

�

�

�

�

� �

�

(b) Block vs. Beam Schemes

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|0

|5

|10

|15

|20

 Interval between successive load balancing steps

 L
IL

B
Ov

er
he

ad

�

�

�

�

�

�

(c) Hypothetical Application with a Very Small Computation Granularity

Figure 12.8: E�ect of the Frequency of Load Balancing on the Sum of Load Imbalance

and Load Balancing Overheads

(The overhead is given in terms of the percentage of optimal compute time. Small input refers to

the input containing 32K particles and large input refers to 320K particles. Figure (c) shows the

performance of a hypothetical application whose execution characteristics are similar to the MP3D

application, but whose computation granularity is very small.)

127

 EMPIC (Avg Interval = 4.3)
 MP3D (Avg Interval = 8.3)

|
0

|
10

|
20

|
30

|
40

|
50

|0

|2

|4

|6

|8

|10

 Load balancer invocation

 In
te

rv
al

 b
et

w
ee

n
(i)

-th
 a

nd
 (i

+1
)-t

h
lo

ad
 b

al
an

ce
r i

nv
oc

at
io

ns

(a) Block Scheme

 EMPIC (Avg Interval = 6.9)
 MP3D (Avg Interval = 9.1)

|
0

|
10

|
20

|
30

|
40

|
50

|0

|2

|4

|6

|8

|10

 Load balancer invocation

 In
te

rv
al

 b
et

w
ee

n
(i)

-th
 a

nd
 (i

+1
)-t

h
lo

ad
 b

al
an

ce
r i

nv
oc

at
io

ns

(b) Beam Scheme

Figure 12.9: Adaptation of Load Balancing Frequency

128

12.8 E�ect of the

�

Adh�ara's Load Balancing Scheme on Overall Execution Time

Table 12.6 shows the e�ect of the

�

Adh�ara's load balancing scheme on the perfor-

mance of the three applications for di�erent inputs. The overheads incurred by a

parallel execution are described below:

� Parallelization overhead: This is due to the computation required for maintain-

ing spatial locality. Whenever changes to the spatial coordinates are transmit-

ted to the runtime system,

�

Adh�ara needs to compare the coordinates of each

particle to the region boundaries to check whether or not the particle is still

within the local region. Out of bound particles need to be sent to the appro-

priate processors.

� Communication overhead: This is due to exchanging of particle data for main-

taining spatial locality, sharing grid and particle data along the partition bound-

aries and redistributing data between phases.

� Load imbalance overhead: This is due to uneven distribution of computation

across the processors.

� Load balancing overhead: This is the overhead of repartitioning the space for

balancing the computational load.

From the results, we can see that the

�

Adh�ara's load balancing scheme is very

e�ective in reducing the load imbalance overhead while incurring very small load

balancing overhead. In the case of MP3D application (large input case), there is a

performance improvement of as much as 32%. The results shown here use only 200

time-step simulations. For longer simulations, the load imbalance becomes worse if

dynamic load balancing is not done, hence

�

Adh�ara's load balancing scheme improves

performance even more.

�

Adh�ara's load balancing scheme does not perform as well for the MD application,

because load balancing is under the control of the application. (See the beginning of

this chapter.) However, for longer simulations, the performance improvement will be

more signi�cant.

Figure 12.10 shows the e�ect of the

�

Adh�ara's load balancing scheme on parallel

e�ciency for two partitioning schemes and for di�erent numbers of processors. We

129

Table 12.6: Performance of the

�

Adh�ara's Load Balancing Scheme

(All overheads are given in terms of the percentage of the optimal compute time. Small input refers

to the input containing 32K particles and large input refers to one containing 320K particles. For

MD, a 16K particle input is used. The Block partitioning scheme is used in all the cases on 16

processors. \No LB" means no load balancing and \Dynamic LB" means dynamic load balancing

using the novel adaptive schemes, except for the MD case in which uniform load discretization mesh

is used.)

Application Paralleli- Communi- Load Load Parallel

zation cation Imbalance Balancing E�ciency

Overhead Overhead Overhead Overhead

EMPIC: small input

No LB 2.9 8.3 35.9 - 67.6%

Dynamic LB 2.6 9.8 5.3 1.8 83.5%

EMPIC: large input

No LB 2.6 2.3 26.8 - 75.8%

Dynamic LB 2.5 2.8 2.7 0.4 92.2%

MP3D: small input

No LB 13.2 12.5 78.8 - 48.7%

Dynamic LB 9.1 13.8 4.7 3.2 76.0%

MP3D: large input

No LB 13.2 3.7 73.3 - 52.5%

Dynamic LB 9.5 3.4 4.1 1.3 84.4%

MD

No LB 1.4 20.0 46.6 - 59.4%

Dynamic LB 1.2 22.0 11.9 4.3 71.4%

130

� � Block (without LB)
� � Block (with LB)
� � BeamY (without LB)
� � BeamY (with LB)

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|40

|50

|60

|70

|80

|90

|100

 Number of Processors

 P
ar

al
le

l E
ffi

ci
en

cy
�

�
�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

�

(a) EMPIC

� � Block (without LB)
� � Block (with LB)
� � BeamY (without LB)
� � BeamY (with LB)

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|40

|50

|60
|70

|80

|90

|100

 Number of Processors

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

��

� �

�

�

� �

�

�

�

�
�

�
�

�

� �
�

(b) MP3D

� � Block (without LB)
� � Block (with LB)
� � BeamY (without LB)
� � BeamY (with LB)

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|40

|50

|60

|70

|80

|90

|100

 Number of Processors

 P
ar

al
le

l E
ffi

ci
en

cy

�

� �

�

� �

�

�
�

�

�

�
�

�

�

� � �

�

�

�
�

(c) MD

Figure 12.10: E�ect of the

�

Adh�ara's Load Balancing Scheme on Parallel E�ciency

131

can see that the dynamic load balancing scheme has signi�cant impact on the overall

performance.

12.9 Summary

We summarize the important results below:

� The partitioning scheme has a signi�cant impact on the performance of those

applications that exhibit preferential load movement and/or high data sharing

along the partition boundaries.

�

�

Adh�ara's space partitioning heuristics are very e�ective in choosing good schemes.

� The coarseness of the load discretizing mesh has signi�cant impact on the per-

formance of those applications that have small computation granularity and

that execute on large numbers of processors.

�

�

Adh�ara's novel scheme using a non-uniform, adaptive load discretizing mesh is

very e�ective in reducing the overheads of estimating the load distribution and

computing a new partition, while maintaining good load balance.

� The frequency of load balancing has a signi�cant impact on performance.

� The predictive method implemented by

�

Adh�ara is very e�ective in dynamically

adapting the frequency of load balancing for minimizing the sum of the over-

heads due to load imbalance and load balancing.

�

�

Adh�ara's dynamic load balancing scheme is very e�ective in reducing the load

imbalance while incurring very small overhead for load balancing.

Part IV

Operating System Induced Load

Balancing

132

Chapter 13

ADAPTING TO PROCESSOR REALLOCATIONS

In some environments, the operating system may change an application's proces-

sor allocation its during the execution in order to improve throughput and average

response time of the system workload. In this chapter, we look at the application's

response to the changes in the processor allocation.

Policies that can be used by an operating system to determine when and how

to reallocate the processors are discussed in detail in a recent thesis [McCann 94,

McCann & Zahorjan 93], and we do not discuss them here. Figure 13.1 shows the basic

approach taken by the operating system. When the allocation to a job is changed,

the job's threads are relocated onto its new processor set as evenly as possible. On

the assumption that the computational load is balanced across the threads, this

allocation of threads to processors implements the best load balancing achievable by

the operating system.

13

m

P2P1

1 7

8 10

5 4

2
13

Pn PROCESSOR - n THREAD - ID# m

P2P1 P3 P4

P5 P6 P7 P8

1 7 5 4

8 10 2

Figure 13.1: Processor Reallocation by the Operating System

When the allocation changes, the runtime system can react in either of two ways.

In the non-adaptation scheme, the runtime system ignores the changes and continues

to execute with the current threads. In the dynamic adaptation scheme, the runtime

134

Table 13.1: Non-Adaptation and Dynamic Adaptation Schemes: Advantages and

Disadvantages

Advantages Disadvantages

One time cost Continuing Cost

Non- Simple; Context switching

Adaptation no application level overhead; sub-optimal

Scheme cost at the time load balance; increased

of reallocation load balancing and

communication costs

Dynamic Minimal on-going Cost of

Adaptation overhead remapping

Scheme the data

and adjusting

the number

of threads

system remaps the computation such that the number of working threads is same as

the number of processors currently allocated to the application.

Table 13.1 lists the advantages and disadvantages of these two schemes. The non-

adaptation scheme incurs the continuing costs of context switching and increased

execution overhead due to running multiple threads per processor instead of a single

thread per processor. The latter overhead is simply a re
ection of the fact that

applications typically run more e�ciently at lower parallelism than at higher.

Figure 13.2 shows how the execution overhead increases with the number of ap-

plication threads for three example dynamic space-based applications, when there is

single thread per processor. The purpose of the �gure is to quantify how execution

overhead grows with increasing parallelism. In the �gure, execution overhead is the

sum of the overheads due to communication, load balancing and load imbalance. As

the number of threads increases, the communication cost typically increases due to

the larger number of messages required, the load balancing cost increases due to more

work involved in computing the new partitions, and the load imbalance increases be-

cause the computation needs to be partitioned into many small pieces instead of a

few larger pieces.

Figure 13.3 shows how the performance on two processors degrades due to running

multiple threads per processor. As the number of threads per processor increases,

135

� � EMPIC
� � MP3D
� � MD

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|5

|10

|15

|20

|25

|30

|35

|40

 Number of application threads

 E
xe

cu
tio

n
ov

er
he

ad

�

�

�

�

�

�

�

�

� � �

�

Figure 13.2: E�ect of the Number of Threads on the Execution Overhead

(The overhead is given in terms of the optimal compute time. There is a single thread

per processor.)

the e�ective speed-up decreases due to increased execution overhead.

Compared to the non-adaptation scheme, the dynamic adaptation scheme incurs

smaller execution overhead, but incurs, once per reallocation, the cost of remapping

the application data and adjusting the number of threads. Additionally, it is more

complicated. Note, however, that application level remapping �ts naturally into the

�

Adh�ara runtime system.

Depending on the costs, one approach may be preferable to the other. Our goal is

to get a handle on the application level costs based on the execution characteristics of

the dynamic space-based applications, and then compare the performance of these two

approaches. For our measurements, we use the three example applications, EMPIC,

MP3D and MD, which are described in Chapters 5 and 12.

13.1 Assumptions and Cost Model

For comparing the two schemes, we make the following assumptions:

1. The overhead of context switching among multiple threads of a single applica-

tion running on a single processor is negligible.

2. The execution overhead for an application withN threads per processor running

on P processors is same as the execution overhead for the application with one

136

� � EMPIC
� � MP3D
� � MD

|
1

|
2

|
4

|
8

|1

|2

 Number of Threads Per Processor

 E
ffe

ct
iv

e
Sp

ee
d

U
p

�
�

�

�

�

�

�

�
� �

�

�

Figure 13.3: E�ective Speed-Up on Two Processors Induced by the Non-Adaptation

Scheme

thread per processor running on NP processors.

The �rst assumption favors the non-adaptation scheme, since the context switching

overhead for kernel-level threads cannot be ignored. The second assumption favors

the dynamic adaptation scheme. When there are multiple threads per processor, some

of the communication is local to the processors, so the message processing time can be

reduced by clever schemes. However, the second assumption ignores this optimization

and overestimates the execution overhead induced by the non-adaptation scheme.

Let C

LI;M

, C

LB;M

and C

comm;M

be the costs due to load imbalance, load balanc-

ing overhead and communication respectively, when the application executes on M

processors with one thread per processor. Using assumption (2) above, we de�ne

O

non�adaptation

, the execution overhead per time step for the non-adaptation scheme,

by

O

non�adaptation

= C

LI;NP

+ C

LB;NP

+ C

comm;NP

where P is the number of processors and N is the number of threads per processor. We

compute O

dynamic

, the execution overhead per time step for the dynamic adaptation

scheme, by

O

dynamic

= C

LI;P

+ C

LB;P

+ C

comm;P

Let R

dynamic

represent the remapping overhead incurred by the dynamic adap-

tation scheme. Let T be the number of time steps until the sooner of the next

reallocation or completion of the job. We compare the two schemes using the relative

137

overhead of the non-adaptation scheme, which is given by

Relative overhead = (O

non�adaptation

�O

dynamic

)� T �R

dynamic

When the relative overhead is negative, the non-adaptation scheme is preferable to

the dynamic adaptation scheme, and vice versa.

In the next section, we present measurements obtained using

�

Adh�ara that let us

parameterize this model. In Section 13.2.3, we use those measurements to comment

on the e�ectiveness of the dynamic adaptation scheme.

13.2 Measurements

13.2.1 Execution Overheads

Figure 13.4 shows the e�ect of the number of processors on the execution over-

heads of the three example applications. As the number of processors increases, the

overheads due to communication, load imbalance and load balancing increase, the

reasons for which are discussed earlier. Note that the MD application exhibits un-

usual behavior { the communication cost �rst decreases and then increases. This is

because, large amount of data is shared along the partition boundaries. For small

number of processors (2 and 4),

�

Adh�ara can use only the Slice and Beam schemes,

which result in a high amount of data sharing due to large surface area of the space

partitions. For larger number of processors (8 or more),

�

Adh�ara can partition the

space using the Block scheme, which minimizes the surface area of the partitions.

The e�ect of the number of processors on the total execution overhead is given

in �gure 13.2. Table 13.2 extracts the necessary data from this �gure and presents

the execution overheads incurred by the two schemes for di�erent contractions from

an initial allocation of 16 processors. Execution overhead for the non-adaptation

scheme depends only on the total number of application threads (16), hence, it does

not change when the allocation changes. On the other hand, execution overhead for

the dynamic adaptation scheme depends only on the number of processors, hence, it

decreases when the application is reallocated onto a smaller set of processors.

13.2.2 Reallocation Overhead

Table 13.3 gives the remapping overheads for the three applications when the ini-

tial allocation is 16 processors. These measurements are made by implementing the

138

� � EMPIC
� � MP3D
� � MD

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|5

|10

|15

 Number of Processors

 L
oa

d
Im

ba
la

nc
e

O
ve

rh
ea

d

�
�

�

�

� �

�

�

�

�

�

�

(a) Load Imbalance Overhead

� � EMPIC
� � MP3D
� � MD

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|1

|2

|3

|4

|5

 Number of Processors

 L
oa

d
Ba

la
nc

in
g

O
ve

rh
ea

d

� �

�

�

�

�

�

�

�

�

�

�

(b) Load Balancing Overhead

� � EMPIC
� � MP3D
� � MD

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|5

|10

|15

|20

|25

 Number of Processors

 C
om

m
un

ica
tio

n
O

ve
rh

ea
d

�

�

�

�

�

�

�

�

�

�

�

�

(c) Communication Overhead

Figure 13.4: Execution Overheads

(The overheads are given relative to the compute time per time step.)

139

Table 13.2: Execution Overheads for Di�erent Processor Contractions

(The overheads are given in terms of the percentage of the optimal compute time. The measurements

are made using 32K particle inputs for the EMPIC and the MP3D applications, and 16K inputs for

the MD application.)

Reallocation from Reallocation from Reallocation from

16 to 8 processors 16 to 4 processors 16 to 2 processors

O

non�adapt

O

dynamic

O

non�adapt

O

dynamic

O

non�adapt

O

dynamic

EMPIC 15.4 6.8 15.4 3.5 15.4 1.2

MP3D 20.4 8.9 20.4 4.6 20.4 2.5

MD 36.3 30.5 36.3 31.0 36.3 31.4

Table 13.3: Overhead for Adapting to Processor Reallocations

(These measurements are made on 16 nodes of an Intel Paragon using 32K particle inputs for the

EMPIC and the MP3D applications, and 16K inputs for the MD application.)

16 to 8 Processors 16 to 4 Processors 16 to 2 Processors

Absolute Relative to Absolute Relative to Absolute Relative to

Application time compute time compute time compute

(millisec) time per (millisec) time per (millisec) time per

time step time step time step

EMPIC 435 0.9 600 1.3 815 1.7

MP3D 475 3.2 615 4.1 785 5.2

MD 525 0.6 700 0.8 865 1.0

remapping facility in the

�

Adh�ara runtime system and running experiments on a 16

node Intel Paragon. The results show that the reallocation overhead is quite small

compared to the execution time. The relative reallocation cost is larger for the ap-

plications that have smaller computation granularity (such as MP3D).

13.2.3 Relative Overhead of the Non-Adaptation Scheme

Figure 13.5 gives the relative overhead of the non-adaptation scheme for di�erent

values of T (the number of time steps until the next reallocation or completion of the

job) and di�erent processor contractions from an initial allocation of 16 processors.

Note that all the overheads are measured relative to the compute time per time step.

From the results, we can see that the dynamic adaptation scheme outperforms the

non-adaptation scheme, unless the job is very close to completion (with less than 25

140

� � EMPIC
� � MP3D
� � MD

|
0

|
25

|
50

|
75

|
100

|-6

|-3

|0

|3

|6

|9

|12

 Number of Remaining Time Steps

 R
el

at
ive

 O
ve

rh
ea

d
of

 th
e

No
n-

Ad
ap

ta
tio

n
Sc

he
m

e

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) Reallocation from 16 to 8 processors

� � EMPIC
� � MP3D
� � MD

|
0

|
25

|
50

|
75

|
100

|-6

|-3
|0

|3

|6

|9

|12

 Number of Remaining Time Steps

 R
el

at
ive

 O
ve

rh
ea

d
of

 th
e

No
n-

Ad
ap

ta
tio

n
Sc

he
m

e

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) Reallocation from 16 to 4 processors

� � EMPIC
� � MP3D
� � MD

|
0

|
25

|
50

|
75

|
100

|-6

|-3

|0

|3

|6

|9

|12

 Number of Remaining Time Steps

 R
el

at
ive

 O
ve

rh
ea

d
of

 th
e

No
n-

Ad
ap

ta
tio

n
Sc

he
m

e

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(c) Reallocation from 16 to 2 processors

Figure 13.5: Overhead of the Non-Adaptation Scheme relative to the Dynamic Adap-

tation Scheme

(The overheads are given relative to the compute time per time step.)

141

time steps remaining) or the next reallocation happens within the time required to

execute 25 time steps. For our applications, this corresponds to a threshold of 4 to

20 seconds for small (32K) inputs and 40 to 200 seconds for large (320K) inputs.

13.3 Conclusions

In this chapter, we focussed on the question of how the runtime system should adapt to

changes in processor allocation. The non-adaptation scheme, in which the application

continues to execute with multiple threads per processor, incurs continuing cost due

to sub-optimal load balance and increased communication. On the other hand, the

dynamic adaptation scheme, in which the runtime system remaps the application

data and adjusts the number of threads, incurs the cost of remapping. Based on the

execution characteristics of the three dynamic space-based applications that we used

for our experiments, we show that the dynamic adaptation scheme performs better

than the non-adaptation scheme as long as the job is not too close to completion or

the reallocations are not performed too often. For the applications that we used, the

threshold is 25 time steps, which corresponds to 20 seconds for small (32K) inputs

and 200 seconds for large (320K) inputs.

Part V

Summary and Conclusions

142

Chapter 14

CONCLUSIONS

This thesis investigates the issues in the design of a specialized runtime system for

supporting dynamic space-based applications on distributed memory multiprocessors.

It addresses both the issues in designing an appropriate programming interface and

implementing e�cient runtime support.

This chapter summarizes the contributions of this thesis and proposes some in-

teresting topics for future research in runtime support on distributed memory multi-

processors.

14.1 Summary

This thesis addresses the issues in the runtime support for dynamic space-based ap-

plications on distributed memory multiprocessors, with emphasis on the issues in

dynamic load balancing.

Dynamic space-based applications are simulations of objects moving through a

closed k-dimensional space subject to mutual forces. There are a wide variety of such

applications, di�ering in the kinds of objects and forces being simulated. A space-

based simulation proceeds in series of time steps, each of which consists of one or

more data-parallel computation phases.

We propose a new programming model, called

�

Adh�ara, that supports mechanisms

to operate on spatial data structures such as regular-grids and particles, to specify

short-range spatial interactions, and to specify data-parallel phases. Data parti-

tioning and load balancing are performed automatically by the system. The

�

Adh�ara

programming system enables the programmer to develop parallel codes involving very

few additional lines of code and very few additional concepts beyond those required

to construct a sequential version of the application.

We evaluate the

�

Adh�ara programming model by parallelizing three dynamic space-

based applications from di�erent scienti�c �elds: electro-magnetic particle-in-cell

simulation from plasma physics, rare�ed
uid
ow simulation from aeronautics and

144

molecular dynamics simulation from materials science. We measure the program-

ming e�ort in terms of the additional lines of code that need to be written, in order

to convert a sequential program into a parallel program. We show that the �rst two

applications can be parallelized with less than 7% programming e�ort. The program-

ming e�ort for the third application is negative, i.e., it is easier to develop an

�

Adh�ara

program than to develop a sequential program, since this application takes advantage

of the high-level support provided by

�

Adh�ara for operating on spatial data structures.

For choosing a good partitioning scheme automatically, we propose heuristics

based on the application execution characteristics. By using three sample applica-

tions, we show that these heuristics are very e�ective in eliminating bad schemes. By

measuring the overhead of changing the partitioning scheme for these applications,

and showing that it is very small compared to the execution time, we emphasize the

potential bene�t of using these heuristics for dynamically adapting the partitioning

scheme.

We propose a novel scheme based on non-uniform, adaptive discretization of the

problem space for estimating the load distribution. This scheme, in which the load

is discretized only along the boundaries of the regions, reduces the time for load es-

timation and computing a new partition, by minimizing the amount of information

collected and shared among the processors. It uses a non-uniform, adaptive mesh

to discretize the space, and adapts this grid dynamically, based on the load move-

ment and density. We show that, if the load distribution changes gradually, this

scheme maintains good load balance, while balancing the load six times faster than

the traditional schemes that use a uniform, static mesh for discretizing the space.

We implement a hierarchical load balancing scheme for taking advantage of the

preferential load movement. We show that, if the particles preferentially move along

one dimension, this scheme reduces the load balancing time by balancing the load

only along the dimension in which there is noticeable load movement.

We propose a predictive method for deciding how often to balance the load. This

methods assumes that the average rate of increase of load imbalance does not vary

much from one interval to the following interval. It uses the average rate from the

previous interval to estimate the length of the next interval. We show that this

method is very e�ective in dynamically adapting the frequency of load balancing

based on the costs of load balancing and load imbalance.

145

Finally, we study the issues in adapting to processor reallocations performed by the

operating system on a multiprogrammed parallel machine. We propose an approach

for remapping the application data. We measure the reallocation overhead for the

sample applications and show that it is advantageous for the runtime system to remap

the data, unless the processor allocation changes too often or there is very little time

left over to �nish the job.

14.2 Future Research Directions

14.2.1 Supporting Other Types of Space-Based Data Structures

The programming model that we designed supports only regular-grids and particles.

This model can be extended to support other space-based structures, such as adaptive,

multi-level grids and irregular grids. The characteristics of the load distribution

induced by these structures are di�erent, hence the load balancing scheme and the

heuristics for choosing a partitioning scheme need to be modi�ed. The model could

also be extended to support long-range forces which are used by several N-body

applications.

14.2.2 Experimentation on Di�erent Types of Large Scale Machines

We ran experiments only on an Intel Paragon consisting of 16 nodes. The e�ectiveness

of the schemes that we proposed needs to be examined on larger number of processors

and on a variety of distributed memory machines.

14.2.3 Using Other Applications

In our experiments, we used only three applications. The e�ectiveness of the

�

Adh�ara

system needs to be studied for other dynamic space-based applications that exhibit

di�erent execution characteristics.

Bibliography

[Agrawal et al. 93] G. Agrawal, A. Sussman, and J. Saltz. Compiler and Runtime

Support for Structured and Block Structured Applications. In Proceedings

of the Supercomputing Conference, pages 578{587, November 1993.

[Allen & Tildesley 87] M. P. Allen and D. J. Tildesley. Computer Simulation of Liq-

uids. Clarendon Press, Oxford, 1987.

[Anderson et al. 92] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler

Activations: E�ective Kernel Support for the User-Level Management of

Parallelism. ACM Transactions on Computer Systems, Volume 10(1), pages

53-79, February 1992.

[Ashok & Zahorjan 94] I. Ashok and J. Zahorjan. Adhara: Runtime Support for

Dynamic Space-Based Applications on Distributed Memory Multiprocessors.

Proceedings of the Scalable High Performance Computing Conference, May

1994.

[Baden 91] S. Baden. Programming Abstractions for Dynamically Partitioning and

Coordinating Localized Scienti�c Calculations Running on Multiprocessors.

SIAM Journal of Science and Statistical Computation, Volume 12, Number

1, pages 145{157, January 1991.

[Baden & Kohn 91] S. Baden and S. Kohn. A Comparison of Load Balancing Strate-

gies for Particle Methods Running on MIMD Multiprocessors. Proceedings of

the Fifth SIAM Conference on Parallel Processing for Scienti�c Computing,

March 1991.

[Baden & Kohn 94] S. Baden and S. Kohn. A Robust Parallel Programming Model

for Dynamic Non-Uniform Scienti�c Computations. Proceedings of the Scal-

able High Performance Computing Conference, May 1994.

147

[Belkhale & Banerjee 90] K. P. Belkhale and P. Banerjee. Recursive Partitions on

Multiprocessors. Proceedings of the 4th Distributed Memory Computing Con-

ference, pages 930{938, April 1990.

[Berger & Bokhari 87] M. Berger and S. Bokhari. A Partitioning Strategy for

Nonuniform Problems on Multiprocessors. IEEE Transactions on Comput-

ers, Volume C-36, Number 5, May 1987.

[Berryman et al 91] H. Berryman, J. Saltz, and J. Scroggs. Execution Time Sup-

port for Adaptive Scienti�c Algorithms on Distributed Memory Machines.

Concurrency: Practice and Experience, Volume 3(3), pages 159{178, June

1991.

[Birdsall & Langdon 85] C. K. Birdsall and A. B. Langdon. Plasma Physics via Com-

puter Simulation. McGraw-Hill International, New York, 1985.

[Bokhari et al. 93] S. Bokhari, T. Crockett, and D. Nicol. Parametric Binary Dissec-

tion. ICASE Techincal Report No. 93-39, NASA Langley Research Center,

July 1993.

[Bozkus et al. 94] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. Fortran

90D/HPF Compiler for Distributed Memory MIMD Computers: Design, Im-

plementation and Performance Results. Proceedings of the Supercomputing

Conference, pages 351{360, November 1993.

[Bozkus et al. 94] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.Wu.

Compiling Fortran 90D/HPF for Distributed Memory MIMD Computers.

Journal of Parallel and Distributed Computing, Volume 21, Number 1, April

1994.

[Brug�e & Fornili 90] F. Brug�e and S. Fornili. A distributed Dynamic Load Balancer

and its Implementation on Multi-transputer Systems for Molecular Dynamics

Simulation. Computer Physics Communications, Volume 60, pages 39-45,

1990.

148

[Campbell et al. 90] P. Campbell, E. A. Carmona, and D. W. Walker. Hierarchical

Domain Decomposition With Unitary Load Balancing for Electromagnetic

Particle-In-Cell Codes. Proceedings of the Fifth Distributed Memory Com-

puting Conference, pages 943{950, April 1990.

[Chapman et al. 93a] B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima. Dynamic

Data Distributions in Vienna Fortran. Proceedings of the Supercomputing

Conference, pages 284{293, November 1993.

[Chapman et al. 93b] B. Chapman, P. Mehrotra, and H. Zima. High Performance

Fortran Without Templates: An Alternative Model for Distribution and

Alignment. Proceedings of the Fourth ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP), May 1993.

[Cybenko & Allen] G. Cybenko and T. Allen. Multidimensional Binary Partitions:

Distributed Data Structures for Spatial Partitioning. International Journal

of Control, Volume 54, Number 6, pages 1335{1352, 1991.

[Fallavollita et al. 92] M. A. Fallavollita, J. D. McDonald, and D. Bagano�. Parallel

Implementation of a Particle Simulation for Modeling Rare�ed Gas Dynamic

Flow. Computing Systems in Engineering, volume 3, pages 283{289, 1992.

[Ferraro et al. 93] R. Ferraro, P. Liewer, and V. Decyk. Dynamic Load Balancing

for a 2D Concurren Plasma PIC Code. Journal of Computational Physics,

Volume 109, pages 329-341, 1993.

[Fincham 87] D. Fincham. Parallel Computers and Molecular Simulations. Journal

of Molecular Simulation, Volume 1, 1987.

[Griswold et al. 90] W. G. Griswold, G. A. Harrison, D. Notkin, and L. Snyder. Scal-

able Abstractions for Parallel Programming. Proceedings of the 5th Dis-

tributed Memory Computing Conference, April 1990.

[Gupta & Banerjee 92] M. Gupta and P. Benerjee. Demonstration of Automatic

Data Partitioning Techniques for Parallelizing Compilers on Multicomputers.

149

IEEE Transactions on Parallel and Distributed Systems, Volume 3, Number

2, March 1992.

[Gupta & Banerjee 93] M. Gupta and P. Benerjee. PARADIGM: A Compiler for

Automatic Data Distribution on Multicomputers. Proceedings of the Inter-

national Conference on Supercomputing, July 1993.

[Hanxleden & Scott 91] R. Hanxleden and R. Scott. Load Balancing on Message

Passing Architectures. Journal of Parallel and Distributed Computing, Vol-

ume 13, pages 312{324, 1991.

[Hinz 90] D. Y. Hinz. A Run-Time Load Balancing Strategy for Highly Parallel Sys-

tems. Proceedings of the Fifth Distributed Memory Computing Conference,

pages 951-961, April 1990.

[Hiranandani et al. 91] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and

C. Tseng. An Overview of the Fortran D Programming System. Proceedings

of the Fourth Workshop on Languages and Compilers for Parallel Computing,

August 1991.

[Hiranandani et al. 94] S. Hiranandani, K. Kennedy, and C. Tseng. Evaluating Com-

piler Optimizations for Fortran D. Journal of Parallel and Distributed Com-

puting, Volume 21, Number 1, April 1994.

[Hockney & Eastwood 88] R. W. Hockney and J. W. Eastwood. Computer Simula-

tion Using Particles. Adam Hilger, Bristol, England, 1988.

[Kohn & Baden 93] S. Kohn and S. Baden. An Implementation of the LPAR Parallel

Programming Model for Scienti�c Computations. Proceedings of the Sixth

SIAM Conference on Parallel Processing for Scienti�c Computing, March

1993.

[Lanoski et al. 93] D. Lanoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta,

and J. Hennessy. The DASH Prototype: Logic Overhead and Performance.

IEEE Transactions on Parallel and Distributed Systems, Volume 4, Number

1, January 1993.

150

[Leuze et al. 89] M. Leuze, L. Dowdy, and K. H. Park. Multiprogramming a

Distributed-Memory Multiprocessor. Concurrency: Practice and Experience,

Volume 1, pages 19{33, September 1989.

[Liewer & Decyk 89] P. C. Liewer and V. K. Decyk. A General Concurrent Algo-

rithm for Plasma Particle-In-Cell Simulation Codes. Journal of Computa-

tional Physics, Volume 85, 1989.

[Lin & Snyder 90] C. Lin and L. Snyder. A Comparison of Programming Models for

Shared Memory Multiprocessors. Proceedings of the International Conference

on Parallel Processing, pages II 163{180, 1990.

[Lin & Snyder 93] C. Lin and L. Snyder. ZPL: An Array Sublanguage. Proceedings

of the Languages and Compilers for Parallel Computing Conference, pages

96{114, 1993.

[McCann et al. 92] C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor

Allocation Policy for Multiprogrammed, Shared Memory Multiprocessors.

ACM Transactions on Computer Systems, Volume 11(2), pages 146-178, May

1993.

[McCann & Zahorjan 93] C. McCann and J. Zahorjan. Processor Allocation Policies

for Message-Passing Parallel Computers. Proceedings of ACM SIGMETRICS

Conference, pages 19-32, May 1994.

[McCann 94] C. McCann. Processor Allocation Policies for Message-Passing Parallel

Computers. PhD Thesis, University of Washington, Seattle, 1994.

[McDonald 89] J. D. McDonald. A Computationally E�cient Particle Simulation

Method Suited to Vector Computer Architectures. Ph.D. Thesis, Department

of Aeronautics and Astronautics, Stanford University, December 1989.

[Ngo & Snyder 92] T. Ngo and L. Snyder. On the In
uence of Programming Models

on Shared Memory Computer Performance. Proceedings of the Scalable High

Performance Computing Conference, 1992.

151

[Nicol & Saltz 88] D. M. Nicol and J. H. Saltz. Dynamic Remapping of Parallel Com-

putations with Varying Resource Demands. IEEE Transactions on Comput-

ers, Volume 37, Number 9, pages 1073{1087, 1988.

[Nicol & Saltz 90] D. M. Nicol and J. H. Saltz. An Analysis of Scatter Decomposition.

IEEE Transactions on Computers, Volume 39, pages 1337{1345, 1990.

[Nicol 91] D. M. Nicol. Rectilinear Partitioning of Irregular Data Parallel Computa-

tions. ICASE Technical Report No. 91-55, NASA Langley Research Center,

July 1991.

[Park & Dowdy 89] K. H. Park and L. W. Dowdy. Dynamic Partitioning of Multi-

processor System. International Journal of Parallel Programming, Volume

18, Number 2, pages 91{120, 1989.

[Pilkington & Baden 94] J. Pilkington and S. Baden. Partitioning with Space�lling

Curves. Technical Report No. CS94-349, Department of Computer Science

and Engineering, University of California, San Diego, March 1994.

[Pinches et al. 91] M. R. S. Pinches, D. J. Tildesley, and W. Smith. Large Scale

Molecular Dynamics on Parallel Computers Using the Link-Cell Algorithm.

Journal of Molecular Simulation, Volume 6, 1991.

[Raine et al 89] A. R. C. Raine, D. Fincham, and W. Smith. Systolic Loop Methods

for Molecular Dynamics Simulation Using Multiple Transputers. Computer

Physics Communications, Volume 55, 1989.

[Rapaport 91] D. C. Rapaport. Multi-million Particle Molecular Dynamics II. Design

Considerations for Distributed Processing. Computer Physics Communica-

tions, Volume 62, pages 217{228, 1991.

[Reed et al. 87] D. Reed, L. Adams, and M. Patrick. Stencils and Problem Parti-

tioning: Their In
uence on the Performance of Multiple Processor Systems.

IEEE Transactions on Computers, Volume C-36, Number 7, July 1987.

152

[Rogers 91] A. M. Rogers. Compiling for Locality of Reference. Ph.D. Thesis, De-

partment of Computer Science, Cornell University, 1991.

[Rogers & Pingali 94] A. M. Rogers and K. Pingali. Compiling for Distributed Mem-

ory Architectures. IEEE Transactions on Parallel and Distributed Systems,

Volume 5, Number 3, March 1994.

[Rosing et al 91] M. Rosing, R. B. Schnabel, and R. P. Weaver. The DINO Parallel

Programming Language. Journal of Parallel and Distrbitued Computing,

Volume 13, Number 9, pages 30-42, September 1991.

[Saltz et al. 91] J. Saltz, H. Berryman and J. Wu. Multiprocessors and Runtime

Compilation. Concurrency: Practice and Experience, Volume 3(6), pages

573{592, December 1991.

[Singh et al 90] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford Parallel

Applications for Shared-Memory.

[Singh et al. 93] J. P. Singh, T. Joe, J. L. Hennessy, and A. Gupta. An Empirical

Comparison of the Kendall Square Research KSR-1 and Stanford DASH

Multiprocessors. Proceedings of the Supercomputing Conference, pages 214{

225, November 1993.

[Smith 91] W. Smith. Molecular Dynamics on Hypercube Parallel Computers. Com-

puter Physics Communications, Volume 62, pages 229{248, 1991.

[Snyder 89] L. Snyder. The XYZ abstraction levels of Poker-like languages. Proceed-

ings of the Second Workshop on Parallel Compilers and Algorithms, Urbana,

Illinois, August 1989.

[Snyder 93] L. Snyder. Foundations of Practical Parallel Programming Languages.

Proceedings of the Second International Conference of the Austrian Center

for Parallel Computation, 1993.

153

[Setia et al. 93] S. Setia, M. S. Squillante, and S. Tripathi. Processor Scheduling

on Multiprogrammed, Distributed Memory Parallel Systems. Proceedings of

ACM SIGMETRICS Conference, pages 158-170, May 1993.

[Tucker & Gupta 89] A. Tucker and A. Gupta. Process Control and Scheduling Is-

sues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of

the 12th ACM Symposium on Operating System Principles, pages 159-166,

December 1989.

[Walker 90] D. W. Walker. Characterizing the Parallel Performance of a large-scale

Particle-In-Cell Plasma Simulation Code. Concurrency: Practice and Expe-

rience, Volume 2, pages 257{288, 1990.

[Weaver & Schnabel 92] R. Weaver and R. Schnabel. Automatic Mapping and Load

Balancing of Pointer-Based Dynamic Data Structures on Distributed Mem-

ory Machines. Proceedings of the Scalable High Performance Computing Con-

ference, April 1992.

[Williams 91a] R. Williams. DIME: A users manual. Caltech Concurrent Computa-

tion Project report C3P 861, February 1991.

[Williams 91b] R. Williams. Performance of Dynamic Load Balancing Algorithms

for Unstructured Mesh Calculations. Concurrency: Practice and Experience,

Volume 3(5), pages 457{481, October 1991.

[Williams 92] R. Williams. Voxel Database: A Paradigm for Parallelism with Spatial

Structure. Concurrency: Practice and Experience, Volume 4(8), pages 619-

636, December 1992.

