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Abstract

Rapid commercialization of the Internet and development of the National

Information Infrastructure are likely to change the nature of retailing and

commerce in profound ways. These changes pose both challenges and oppor-

tunites for AI, such as how to design intelligent assistants that help humans

cope with the increasing complexities of electronic commerce. In this paper,

we present the �rst steps towards creating automated bargaining agents |

intelligent assistants that can reason about the relative supply and demand

for goods and services and negotiate to reach a good deal. We �rst review

the economic and game theoretic background for such an endeavor. We then

present a simple economic model of electronic commerce and describe several

bargaining strategies. Preliminary experimental results suggest that sophisti-

cated, adaptive strategies perform better than simple discounting approaches

over a range of economic conditions.
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1 Motivation

Rapid growth of the Internet, development of the National Information In-

frastructure (NII), and maturation of CommerceNet are likely to change the

nature of retailing and commerce in profound ways. These changes pose both

challenges and opportunities for AI. Electronic commerce is an important op-

portunity for AI, because without intelligent agents to assist them, humans

will be swamped by the number of possible vendors and confused by the com-

plexity of the contracts proposed.

For example, although AT&T, MCI, and Sprint have 87% of the $61 billion

long distance market, nearly 400 companies provided long distance service in

the United States in 1994 [13]. Furthermore, each of these companies o�ers

multiple contracts. For example, AT&T True USA Savings provides a 10%

discount for bills between $10{24:99 per month, 20% discount for bills between

$25{74:99, and a 30% discount for bills over $75; there is no monthly fee. On

the other hand, Friends & Family from MCI provides a 20% discount on all

calls to speci�c numbers regardless of the total bill; if those numbers are MCI

customers the discount is 40%, but there is a $3 per month fee. Other plans

provide di�erent discounts based on the time of call. With close to a thousand

possible plans, it is virtually impossible for a human to choose the optimal

contract.

Thus, the challenge for AI is to design intelligent assistants that help hu-

mans cope with the increasing complexities of electronic commerce. Even

simple agents could have a huge payback. For example, it would be straight-

forward to design a computer agent that monitored one's telephone calling

pattern for a month and then selected the most economical long distance car-

rier. In fact, such an agent could even route di�erent calls to di�erent carriers

depending on the time of day and number being called. Of course, these op-

portunities are not limited to telephone services. An intelligent agent could

poll the Apollo or SABRE airline reservation system to monitor the fare and

seating availability of di�erent 
ights.

Furthermore, the opportunities for intelligent assistance at electronic com-

merce are not limited to agents that search databases for the lowest price.

Great potential lies in automated bargaining agents | intelligent assistants

that can reason about the relative supply and demand of a good or service

and negotiate to reach a good price. Today, many commodities, whether

pork bellies, stocks, or airline seats, are traded in active markets; electronic

trading programs manipulate these markets. As electronic commerce becomes

widespread, it is likely that the markets for retail products will become equally

dynamic, and automated bargaining tools may become widespread. Just as

car dealers and electronics stores use sticker prices and sales to increase pro�ts

from naive buyers, electronic vendors will attempt to get the highest price for
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their product, lowering the price only when forced to do so. To get the best

buy, a human will either need to be a skilled and knowledgable negotiator |

or have an intelligent bargaining assistant. In this paper we present the �rst

steps towards creating such an agent. Section 2 describes the economic and

game theoretic background for the endeavor. Then in Sections 3 and 4 we

de�ne a simple model of electronic commerce and describe several bargain-

ing strategies. Section 5 presents our preliminary experimental results. We

conclude with a discussion of related and future work.

2 Bargaining as a Game

At an intuitive level, bargaining is quite simple. Take the simplest case in

which there is one buyer (B), one seller (S), and one product (a \widget"). If

the widget is worth more to the buyer than to the seller (a condition we will

write as value(B) > value(S)), then both agents can bene�t by a transaction

that exchanges the widget for a dollar amount between the two values. The

question is \What is the sale price?" One might argue that a \fair" price

would be halfway between the two valuations, but it is impossible for an agent

to determine this price if it doesn't know the value ascribed by the other

(possibly lying) agent. If there is disparity in the agents' information (e.g., S

knows value(B) but B knows little about value(S)), then S has the advantage

in any negotiation. As a result, a common tactic is for buyer B to make an

o�er which is substantially less than value(B) in an attempt to conceal her

true valuation.

One can analyze bargaining in terms of game theory [10]. Players are

individuals, such as B and S above, who are capable of making decisions.

An action by a player is a choice she can make; examples include making an

o�er or accepting the o�er of another player. A player's information set is

the set of values of di�erent variables that the player thinks are possible but

cannot distinguish; for example, B knows her value with certainty, but might

only know that value(S) falls in the interval [x; y]. Nature is a non-player

who makes random actions at speci�ed points in the game. Di�erent players

might or might not know Nature's probability distribution, and they might

or might not observe each other's (or Nature's) moves. A player's strategy

speci�es which action to take at each point in the game given the player's

information set. A mixed strategy maps information sets to a probability

distribution over actions; for example, a buyer might secretly toss a coin,

raising her o�er only if it came up heads. A continuous strategy selects from a

continuum of actions; if players can choose any real number as an o�er price,
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then their bargaining strategy is continuous. A player's payo� is the utility she

receives when the game has been played out. In a multi-period game, payo�s

are usually discounted in the sense that they are valued less if made at later

rounds; discounting is calculated with the discount rate, a number between

zero and one.

Games are typically classi�ed on a variety of dimensions. If players can

make binding commitments to each other during the game, the game is coop-

erative. A game has complete information if Nature does not move �rst, or

if its initial move is observed by every player. A game is certain if Nature

does not move after any player moves. A game has symmetric information if

no player has information di�erent from other players when she moves or at

the end of the game. A game is perfect if every possible information set is a

singleton (i.e., no player ever has any uncertainty); this is a stronger condition

than symmetry or completeness since it bans simultaneous moves.

To understand the dynamics of a game, it is essential to consider the pos-

sible strategy combinations, since these determine the expected payo�s. For

some games there exists a combination which can be said to represent the

\best" strategy for each player; such a combination is called an equilibrium.

By changing the precise de�nition of \best," economists have devised several

variants: dominant strategy equilibrium, Nash equilibrium, subgame perfect

equilibrium, etc.; space precludes their precise de�nition in this paper. Note

that many games don't have an equilibrium and some games have multiple

equilibria.

One of the simplest models of bargaining is a two-player game in which A

and B seek to divide a pie. The players alternate moves. First, A proposes an

o�er 0 � �

1

� 1 corresponding to her desired share. Next, B accepts or makes

a counter-o�er. If A's o�er is accepted in round m and the discount rate is

r, then A's payo� is �

m

(

1

1+r

)

m

and B's is (1 � �

m

)(

1

1+r

)

m

. If no o�er is ever

accepted, both payo�s are zero. This game is noncooperative, with perfect,

symmetric, complete, and certain information. Rubinstein [14] showed that

this discounted, in�nite game has a unique, perfect equilibrium outcome in

which A receives

r

2

+r

r

2

+2r

. Thus if r = :1 then A could demand 52% of the pie

and a rational B could gain nothing by arguing and so would accept.

In the more realistic case of incomplete information, equilibrium strategies

for bargaining can lead to a sequence of actions lasting more than one time

period. Consider the two-player game in which the seller knows only that

the buyer has either valuation b

low

or b

high

. Similarly, the buyer knows the

seller's valuation is either s

low

or s

high

. (The prior probabilities are common

knowledge.) Assuming s

low

< b

low

< s

high

< b

high

, it is possible the widget is

worth less to the buyer than to the seller and no sale is mutually desirable. On
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the other hand, if either the seller is soft (i.e., value(S) = s

low

) or the buyer

is soft (i.e., value(B) = b

high

), a sale may occur. Players alternate o�ers, and

the payo� from a sale (if one occurs) is discounted as before. The game is

noncooperative, imperfect, asymmetric, incomplete, and certain. Intuitively,

a viable strategy is for a soft buyer to randomly choose between masquerading

as a hard buyer (i.e., o�ering an amount � b

low

) and admitting it is soft.

Every time the seller receives an apparently hard o�er, it uses Bayes rule to

revise the probability that the buyer is soft. If either the buyer or seller is

soft, it will eventually reveal itself and the game will turn into a complete

information one and terminate. Chatterjee and Samuelson [2] show that this

strategy forms an equilibrium for the game, but they are forced to conclude

that a multitude of other equilibria exist.

In the presence of multiple equilibria, it is rather di�cult to analytically

prefer one strategy to another. But analytic methods are simply one tech-

nique for designing bargaining strategies. In the next section we explain how

empirical evaluation can compensate for intractable analytics. We note that

while computer simulation has been used to evaluate agent strategies in simple

games like the prisoner's dilemma [6] and double auctions [7], it has not been

applied to the general case of unrestricted, multi-period bargaining.

3 Economic Model of Electronic Commerce

We elaborate the economic model of Chatterjee Samuelson [2], to account for

multiple buyers and multiple sellers. There is a single commodity (\widgets"),

but each agent's valuation for a widget is an arbitrary real number (i.e., no

limitation of two values as in the Chatterjee and Samuelson model). Buyers

and sellers use a message-based protocol in an attempt to make one or more

pro�table deals.

3.1 Protocol

We assume a simple, discrete model of time. In each round (or cycle), an

agent receives all messages sent to it in the previous cycle, performs arbitrary

computation, and can send one message to every other agent if it desires. Our

simple protocol provides four basic types of messages:

(request-offer <neg-id> <buy-or-sell?>)

(offer <neg-id> <buy-or-sell?> <price>)

(accept <neg-id>)

(abort <neg-id>)
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When an agent sends request-offer to another agent, the receiver must

respond with an offer message or abort. When an agent receives an o�er

from another agent, it can accept the o�er, counter with a di�erent o�er, or

abort the negotiation. Abort and accept messages require no response. All

o�ers are binding for precisely one cycle, then they expire. We chose the

protocol because it models the type of interactions that occur in markets and

seems a fair abstraction of future electronic commerce applications; evaluation

of alternative protocols is a topic for future research.

3.2 Agent Utility

Each agent has type buyer or seller. These classi�cations do not limit the type

of messages that an agent can send, but they do determine what increases the

agent's utility (or pro�t). We assume that each buyer, B

i

, desires a certain

number of widgets (called demand(B

i

)) and gains utility when it accepts an

o�er to sell at cost less than value(B

i

). Each seller, S

j

, can produce an arbitrary

number of widgets and gains utility whenever a sale exceeds value(S

j

). Note

that this implies that the market is demand driven (rather than supply driven);

sellers must compete amongst themselves for a share of limited demand.

Each agent knows which agents are in the game, but no agent knows the

valuation, demand, type, or strategy of another agent. Furthermore, agents

only get to see the content of messages addressed to them. The act of sending

a message (regardless of type) incurs cost, c. The value of c and the discount

rate, 0 < r < 1, are common knowledge to all agents.

We de�ne the payo� of a selling agent S

x

from a sequence of deals as:

1

pro�t(S

x

) =

X

i

(price(D

x;i

)� value(S

x

))(

1

1 + r

)

T (D

x;i

)

� (1)

c

X

j

(

1

1 + r

)

T (M

x;j

)

where D

x;i

is the ith converged deal for agent S

x

, and T (D

x;i

) is the time when

D

x;i

converged; M

x;j

is the jth outgoing message from agent S

x

, and T (M

x;j

)

is the time when message M

x;j

was sent.

This economic model leads to a game that is noncooperative, with certain,

yet imperfect, asymmetric, and incomplete information.

1

The payo� of a buying agent is de�ned in a symmetric manner.
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4 Bargaining Strategies

Since our model of electronic commerce is signi�cantly more complex than

previous models of bargaining, we do not attempt to predict equilibrium be-

havior analytically. Instead, we simulate the performance of a set of strategies

empirically. We selected the strategies to be tested by soliciting suggestions

from a group of Computer Science graduate students and faculty at the Uni-

versity of Washington. The result was a set of four strategies that can be used

by buyers as well as sellers, and an additional strategy that applies only to

sellers.

The �rst two strategies were motivated by the idea of discount chains.

Instead of fancy bargaining, they stick to a low price.

� Fixed Price: When requested, a selling agent S

i

always o�ers (1 +

�)value(S

i

), and accepts any o�er above that price; a buying agent B

j

always o�ers (1 � �)value(B

j

), and accepts the lowest o�er below that

price. Here � denotes a �xed pro�t margin (e.g., 5%) that the agent

commits to.

� Fixed Offer: An agent makes the same o�er as in the Fixed Price

strategy, but the acceptance condition is relaxed. A selling agent S

i

accepts any o�er above value(S

i

), and a buying agent B

j

accepts the

lowest o�er below value(B

j

).

The intuition behind the next two strategies suggests that an agent will

gain utility by trying to bias the sales price in their favor. A seller starts by

suggesting a high price and monotonically lowers it; buyers do the opposite.

Speci�cally, sellers suggest initial o�ers based on the negotiation history with

the opponent, while buyers use previous deal prices as an upper bound for the

current negotiation. For brevity, we only detail the selling strategy below:

� Monotonic Concession: When requested for an initial o�er, a selling

agent S

i

o�ers (1 + �)value(S

i

) if it has never dealt with the opponent

(typically � = 50%). It o�ers the price of the most recent deal, if it

recently converged with the opponent. Otherwise, it must have failed

to reach agreement with the buyer. In this case, S

i

sets � to a number

in [:01; :05] and o�ers max((1 � �)o�er(S

i

; last); value(S

i

)). In each sub-

sequent round, S

i

accepts any o�er above value(S

i

), or makes a counter

o�er by reducing the last o�er price by a �xed percent (e.g., 2%) (but

not below value(S

i

)).
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� Tit for Tat: This is an adaptive version of theMonotonic Concession

strategy. In round n an agent makes a concession of its price by as

much as its opponent made in round (n� 1). I.e., for a selling agent S

i

o�er(S

i

; n) = (1�concession(B

j

; n�1))o�er(S

i

; n�2), where B

j

denotes

S

i

's opponent, and concession(B

j

; n�1) =

o�er(B

j

;n�1)�o�er(B

j

;n�3)

o�er(B

j

;n�3)

. The

action of a buying agent is symmetric.

The �nal strategy is based on the idea that a seller might gain market share

if it knew what the other sellers were charging. The utility of this information

might be so great that a seller should invest (i.e., by sending messages) in order

to learn it. The basic idea is to start out with a pro�table price. Meanwhile,

try to buy from all other sellers, trick them into revealing their best selling

price, and adjust the price to be just lower than the best price one's competitor

is o�ering. This strategy only applies to sellers because the economic model

is demand limited (since sellers have in�nite supply, buying agents don't care

what other buyers are willing to pay).

� Undercut Competitor: When requested from a buyer, a selling agent

S

i

initially o�ers price(S

i

) = (1+�)value(S

i

) where � = 50%; this price is

updated as S

i

�nds out more about the price its competitors are o�ering.

S

i

accepts any buyer's o�er above value(S

i

).

Meanwhile, S

i

tries to buy from all other sellers, bargaining hard to

�nd out how low the competitors will go. S

i

always o�ers value(S

i

).

Whenever a competitive seller S

j

o�ers price(S

j

) < price(S

i

), S

i

adjusts

price(S

i

) = max((1 � �)price(S

j

); value(S

i

)). If a competitive seller S

k

does not lower its price for n (e.g., 4) rounds, S

i

aborts the negotiation

with S

k

. S

i

aborts negotiations with all competing sellers after a preset

time limit.

2

5 Experimental Results

Each experiment consists of a series of tests, while each test corresponds to a

speci�c parameter setting (e.g., value for discount rate and cost per message).

Since mixed strategies (i.e., those involving randomness) are common, and

the agents' valuations and demand are also randomly generated, the pro�t

measured in a single run is often noisy. To ensure statistically signi�cant

2

These safeguards were designed to ensure an agent would not't spend too much when

\spying" from its competitors.
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results, we run 200 trials per test. For each test, we report the average value

obtained in the trials as well as 90% con�dence intervals.

At the beginning of each trial we create an economy of k � n buyers and

k � m sellers, where n and m are the number of buying and selling strate-

gies, respectively, and k is a constant | we create k buyers or sellers for each

strategy. In our experiment, n = 4, m = 5 (the Undercut Competitor

strategy is for sellers only), and k = 2. Valuations for buying agents are ran-

domly generated from a Gaussian distribution, but all sellers are assigned the

same valuation in a trial to facilitate comparison. The demand of the buying

agents is also randomly generated (from the normal distribution N(100; �)).

Since each transaction is restricted to one widget, buyers must go through a

number of negotiations to complete their transactions. Each trial is simulated

for a preset number of cycles (e.g., 1000). To compare di�erent strategies inde-

pendent of the speci�c demand and valuation, we normalize the pro�t received

by a selling agent, S

x

, in a trial:

pro�t-percent(S

x

) =

pro�t(S

x

)

P

km

i=1

pro�t(S

i

)

(2)

over all k �m selling agents in the economy.

5.1 Experiment 1: Strategy Performance as a Func-

tion of Discount Rate

In our �rst experiment, we �x the cost per message, c, and see how the strate-

gies perform as the discount rate, r, varies. Figure 1 shows the mean perfor-

mance result (with 90% con�dence intervals), when c = 1:0.

3

Figure 1 yields two important lessons. First, theUndercut Competitor

strategy performs signi�cantly better than its competitors. Second, the ad-

vantage accrued by Undercut Competitor diminishes as the discount rate

increases. We elaborate on these points below.

TheUndercut Competitor strategy shows a signi�cant lead among the

�ve strategies. By using the information it \spies" from its competitors, the

agent is able to o�er a slightly lower price and thus attract more than 57%

of the sales in every test. The Fixed Price and Fixed Offer strategies

attract around 12% of the sales each. By committing to a �xed pro�t margin,

their performance is relatively stable compared with the other strategies. In

3

The results in this section all refer to the selling strategies. The curves did not change

signi�cantly for other values of c.
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discount rate (r)
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Fixed Offer
Fixed Price
Monotonic Concession
Tit for Tat

Figure 1: Strategy performance as a function of discount rate

fact, their performance almost matches the Undercut Competitor strat-

egy when the discount rate is signi�cantly large. TheMonotonic Concession

strategy and Tit for Tat strategy yield the lowest market share (9%) and

the lowest performance. We suspect that these two strategies do not interact

well with all buying strategies.

simulation cycles

pr
of

it 
pe

rc
en

t (
%

)

50 100 150 200 250

0
20

40
60

80
10

0

Undercut Competitor
Fixed Offer
Fixed Price
Monotonic Concession
Tit for Tat

Figure 2: Performance of the Undercut Competitor strategy improved as

it gathered information on it's competitors

While Undercut Competitor is dominant given a small discount rate,

it loses its edge as r grows. We suspect that this is due to the fact that

Undercut Competitor only beats the other strategies once it has gained

information about their o�ering prices. This means that a disproportion-

ate share of Undercut Competitor's pro�t is gained late in the simulation
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cost per message (c)
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Monotonic Concession
Tit for Tat

Figure 3: Strategy performance as a function of cost per message

(Figure 2). This makes sense in classical economic terms|Undercut Competitor

is making an investment (by gathering information) which pays o� after a time

delay. A high discount rate always biases against delayed returns.

5.2 Experiment 2: Strategy Performance as a Func-

tion of Cost Per Message

In our second experiment, we �x the discount rate, r, in order to see how the

strategies perform as the cost per message, c, varies. Figure 3 shows the mean

performance result (with 90% con�dence intervals), when r = 0:03.

As one can see, the cost per message, c, is not as a crucial factor as the

discount rate, r. This matches expectations since c is only a linear factor

whereas r is an exponential factor (Equation 1). The surprising fact is that

Undercut Competitor performs better as message cost increases. Since

Undercut Competitor agents send more messages (in their attempt to

learn the asking price of their competitors), one might expect them to degrade

as c rises.

Actually, the explanation is quite simple. As Figure 4 shows, an increase

in the cost per message deteriorates the absolute performance of all strate-

gies. However, in the case of Undercut Competitor, the overhead due to

message cost is a small percentage of a relatively large pro�t. In contrast,

the overhead hurts the other strategies more seriously since it represents a

larger proportion of their (smaller) pro�t. As a result, the gap between the

Undercut Competitor strategy and the other strategies enlarges as the

message cost increases.
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cost per message (c)
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Figure 4: Ratio of message cost & sale pro�t as cost per message varies

6 Related Work

In Section 2 we describe relevant work from the �eld of economics, but there

has also been considerable work on negotiations in the distributed AI com-

munity [1] as well. Davis and Smith's contract net protocol [4] provides an

auction mechanism for agent negotiation using coordinated dialogue interac-

tions comprising announcement, bidding, and award of contracts. Sandholm

re�ned the bidding and awarding process using marginal cost calculations [15].

Shoham and Tennenholz claim that a society of automated agents re-

quire social laws to constrain their behavior; they present a general model

of social law in a computational system and investigate its properties [17].

Shoham [16] advocates a computational framework called agent-oriented pro-

gramming (AOP), where agents are de�ned in terms of beliefs, capabilities,

decisions, and obligations. Agents communicate with each other via message

passing, where message types (request, inform, promise, etc.) are drawn from

the speech act theory [3]. Sidner extended AOP and proposed an arti�cial

negotiation language that models human negotiations of collaboration [18].

Although we implemented our bargaining strategies in plain Common Lisp,

we could have easily expressed them in the AOP framework instead.

Rosenschein and Zlotkin have applied economic and game theory to formal

analysis of protocols for automated negotiation among agents [11]. They

proposed evaluation schemes for protocols in terms of e�ciency, stability, and

simplicity. For example, the Vickrey auction mechanism (best bid wins, gets

second price) is attractive since it provides no incentive for an agent to un-

derbid or overbid [12]. Rosenschein and Zlotkin also identi�ed the connection
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between protocols and domains, and categorized domains into a hierarchy of

task-oriented domains, state-oriented domains, and worth-oriented domains.

In addition, they address the case of incomplete information and consider the

design of deception-free protocols. Our model of electronic commerce can be

seen as a simple form of worth-oriented domain. However, unlike Rosenschein

and Zlotkin, we allow explicit utility transfer. Since buyer and seller objectives

are inherently adversarial, we conjecture that no stable, distributed protocol

exists for the domain.

There are many existing approaches that we might adopt to make our bar-

gaining agents more intelligent and sophisticated. For example, Kraus et al.

built an agent that played the game of Diplomacy [8], which involved nego-

tiation of sophisticated military agreements. It may be possible to adapt her

structure and some of her negotiation heuristics into an automated bargaining

agent. We might also adopt Gmytrasiewicz et al.'s recursive modeling method

so our agent could use its predictions of other agents' responses when planning

its actions [5,5]. In addition, Kraus et al. presented a strategic model of nego-

tiation that takes time into account during the negotiation process [9]. Such

mechanism could be applicable to our experiments as they get more dynamic

and time-sensitive.

7 Conclusion

In this paper, we advocated a new challenging domain for AI applications,

and made the �rst steps towards building an intelligent bargaining assistant

for electronic commerce. We reviewed the literature in economics and game

theory, presented a simple model of electronic commerce and a negotiation pro-

tocol, and developed several bargaining strategies under this model. To evalu-

ate the bargaining strategies, we developed a general experimental framework

and evaluation scheme. Our preliminary results show that complex, adaptive

strategies (such as Undercut Competitor) can perform signi�cantly bet-

ter than simple discounting approaches. While an increased discount rate di-

minishes some of the advantage accrued by Undercut Competitor, it still

dominates the other strategies tested. Perhaps surprisingly, theUndercut Competitor

strategy's relative performance increased with higher message cost | despite

the fact that it sent more messages than other strategies.

Since our investigation has just begun, we make no claims about the opti-

mality of Undercut Competitor or other strategies. While complex adap-

tivity appears useful, there may exists simple, parasitic strategies which per-

form still better. We do believe, however, that our work provides a useful
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framework for future investigation. We are devising additional strategies and

will evaluate their performance. We are also planning several new experiments.

For example, we will measure how the performance of strategies varies as the

economy becomes supply limited rather than demand driven; the optimal be-

havior is very di�erent in these two cases so an adaptive strategy could be

quite interesting. We will also consider the case in which product valuations

vary dynamically and new agents are created as simulation progresses.

We also wish to consider more elaborate protocols and analyze their stabil-

ity and convergence properties. At present, one agent can only communicate

an o�er or acceptance to another. It would be more interesting if buyer B

1

could tell seller S

2

that \Seller S

3

is only charging $N per widget." In fact, a

seller might be willing to pay for this type of information (since similar infor-

mation was useful in the Undercut Competitor strategy). Furthermore,

an independent agent might be willing to pay for this information and sell it

to others.

This leads to the idea of building a consumer reports agent. We hope to

develop pricing formulae for determining the utility of accurate information

about the valuation of adversarial agents. Generalizing the protocol to allow

pricing of information in addition to widgets raises questions about the form

of contracts agents can make with each other, and many knowledge represen-

tation issues are involved.
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