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Abstract

When static analysis of a sequential loop fails to yield reliable information on its dependence structure,

a parallelizing compiler is left with three alternatives: it can take the conservative option of emitting code

for a sequential execution; it can optimistically emit code to speculatively execute the loop as a DOALL

[6, 7]; or it can emit inspector-executor code to determine the actual dependence structure at runtime

and to respect it in a parallel execution [8, 9]. The �rst approach is certain to yield a slow execution.

The second approach gives very good results when the loop can in fact be executed as a DOALL, but is

of no help otherwise.

In this paper we concentrate on the �nal approach, runtime parallelization through the inspector-

executor method. We have two goals in this work. The �rst is to expand the class of loop to which

the approach may be applied by removing restrictions on the loop dependence structures that it can

handle. To achieve this goal, we introduce new forms of the inspector and executor that together remove

all restrictions on the loop dependence structure. Thus, we show how to parallelize a class of loop that

previously would have compelled the compiler to emit sequential code.

Our second goal is to improve the performance of the inspector-executor approach through specializa-

tions applicable when static analysis yields some (weak) information about the array indexing functions

used in assignments. We validate our work through a set of examples designed to illustrate the funda-

mental performance tradeo�s characterizing the specialized implementations, using results taken from

executions on 32 processors of a KSR1.

1 Introduction

To parallelize a sequential loop at compile time, a compiler must compute a parallel schedule of the iterations

based on a static analysis of loop-carried dependences. Some loops, however, may contain parallelism not

detectable in this way. For example, in sparse matrix computations, array subscripts often involve indirection

arrays and thus defy static analysis [6, 9].

There are two basic approaches that can be taken to parallelizing such loops: speculative execution as

a DOALL [6, 7]; and the inspector-executor method [8, 9]. While the former yields good results when the
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loop is in fact executable as a DOALL, it will fail in other cases, and sequential execution of the loop will

be required.

In this paper we examine the second approach, the inspector-executor method. Like much of the previous

work in this area [3, 9], we focus on implementations for shared address space multiprocessors.

do i = 1, n

x[i] = F(x[g(i)], ...)

enddo

(a) Source Loop: Restricted Form

do i = 1, n

x[f(i)] = F(x[g(i)], ...)

enddo

(b) Source Loop: General Form

Figure 1: Sequential Source Loop

Let us call the sequential loop to be parallelized the source loop. Figure 1(a) (adapted from [8]) shows the

form of the source loops addressed in previous work [8, 9]. (Since we are concerned only about loop-carried

dependences, statements not causing such dependences are omitted. Similarly, we have shown a singly

nested loop for simplicity only; the techniques are applicable to more general loop nesting structures.) That

work assumes that the indexing function used in assignment is the identity function, i.e., the assignment

made in iteration i is to element i of the array. This restriction means that the loop has no loop-carried

output dependences, and that x[i] is written by iteration i (only). These two observations make possible

the inspector and executor algorithms in [9], shown here in Figure 2. To parallelize the source loop, the

compiler generates two pieces of code: an inspector and an executor . At run time, the inspector examines

loop-carried dependences and computes a parallel schedule. The executor then performs the loop iterations,

using the parallel schedule provided by the inspector.

/* wf is initially all zero */

do i = 1, n

wf[i] = max(wf[g(i)],...) + 1

enddo

do w = 1, W

doall i such that wf[i] = w

if (g(i)<i) t1 = x2[g(i)] else t1 = x1[g(i)]

...

x2[i] = F(t1, t2, ...)

enddo

enddo

x1 = x2

(a) Basic Inspector (b) Basic Executor

Figure 2: Current Inspector and Executor for Runtime Parallelization

In Figure 2(a), the inspector computes a wavefront schedule respecting ow dependences only. While

output dependences in the source loop are prohibited, antidependences are not. Thus, antidependences

must be handled by the executor (Figure 2(b)). The key to doing this is using two arrays for x. Notice that

because output dependences are prohibited, the source loop writes each element at most once. Before an

element is written, it contains an \old" value; afterwards, a \new" value. Arrays x1 and x2 store the old

and new values respectively. The executor writes computed values only into x2. When it reads an element,

it accesses either x1 or x2 depending on whether the sequential loop would read the old or new value. After

each loop execution, x2 is copied to x1 to prepare for another execution.

Figure 1(b) shows a more general form of the source loop. Here the indexing function used in assignment

is not the identity function, but instead is a general function, f(i). Because nothing is known statically about

the form of f(i), we cannot assume that there are no output dependences in the loop, as is required by the

current technology. Finding an inspector-executor method for this more general source loop structure is one
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goal of our work. To do this, we propose a new form for the inspector-executor, in which the inspector takes

into account all forms of dependence and the executor merely executes iterations according to the inspector's

schedule.

A second goal of our work is to investigate ways of improving performance of the inspector-executor

method. We do this by specializing the implementations based on weak information about the array indexing

functions that may be available to the compiler statically. Additionally, because we have introduced a new

form for the inspector-executor method, we also examine the fundamental performance trade-o�s between

it and the traditional inspector-executor approach.

Section 2 describes the two approaches in more detail. Section 3 discusses their performance implications

qualitatively. Section 4 reports measurement results. Section 5 concludes this paper.

2 Extending the Applicability and Improving Performance

We begin this section by presenting a new inspector-executor formulation that allows general dependences

of the form shown in Figure 1(b). We refer to the traditional approach as approach A, and our new method

as approach B. In subsequent subsections, we show how to improve the performance of the type B inspector-

executors by specializing them to take advantage of restricted forms of the indexing function f(i). We also

show how to extend the type A approach for these specializations, borrowing some ideas from the type B

approach. The �nal result is a single approach (type B) for the most general form of the loop, and type A

and type B approaches for the more restricted forms. The tradeo�s between the two approaches (when both

apply) are examined in the remainder of this paper.

2.1 Approach B: Inspector Handles All Dependences

Figure 3 shows the type B inspector and executor for the most general source loop (Figure 1(b)). Com-

pared with its type A counterpart in Figure 2(a), the type B inspector uses two new arrays: lr, to detect

antidependences, and lw, to detect ow and output dependences.

lr[i] records the last wavefront that reads x[i]. Suppose there is an antidependence from iterations k

to l, which means that iteration k reads x[g(k)], iteration l writes x[f(l)], g(k) = f(l), and k < l. If the

inspector assigns iteration k to, say, wavefront w, it updates lr[g(k)] such that lr[g(k)] � w. When it

later comes to iteration l, it chooses a wavefront that is, among other things, after wavefront lr[f(l)] (i.e.,

lr[g(k)]). This ensures that iteration l is executed after wavefront w and hence iteration k, thus respecting

the antidependence. A similar explanation applies to lw.

Because it handles more general loops, the type B inspector is clearly more complicated than the type

A inspector. On the other hand, the type B executor is simpler, since in the type B scheme the executor is

not concerned with enforcing any dependences. Moreover, the type B approach assumes nothing about f(i)

and can therefore be used for any f(i).

2.2 Specializing for Performance

In this subsection we consider opportunities to simplify the type B approach (and so improve its performance),

and to slightly extend the type A method. We do this by specializing each approach based on the information

available about the indexing function f(i), which controls which element of array x is written by iteration i.
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/* wf,lr,lw are initially all zero */

do i = 1,n

w = max(lr[f(i)],lw[f(i)],lw[g(i)],...) + 1

lw[f(i)] = wf[i] = w

lr[g(i)] = max(lr[g(i)],w)

...

enddo

do w = 1,W

doall i such that wf[i] = w

x[f(i)] = F(x[g(i)],...)

enddo

enddo

(a) Type B Inspector: General f(i) (b) Type B Executor

Figure 3: Type B Approach

We consider four cases: f(i) is the identity function, f(i) is strictly monotonic, f(i) is a general invertible

function, and f(i) is a general function.

Case 1: Identity Function f(i) = i

This is the base case for the type A approach. Its inspector and executor are shown in Figure 2.

Figure 4(a) shows the type B inspector specialized for this case. In comparison with the general type B

inspector, the array lw has been replaced with the array wf of the original (type A) inspector: because f(i) is

the identify function, it is known a priori that element i is written by iteration i (only), and so determining

the time of the last write to element i is equivalent to determining the wavefront to which iteration i is

scheduled. For a similar reason, checking lw[f(i)] is unnecessary.

/* wf,lr are initially all zero */

do i = 1,n

wf[i] = max(lr[i],wf[g(i)],...) + 1

lr[g(i)] = max(lr[g(i)],wf[i])

...

enddo

/* wf,lr,lw are initially all zero */

do i = 1,n

w = max(lr[f(i)],lw[g(i)],...) + 1

lw[f(i)] = wf[i] = w

lr[g(i)] = max(lr[g(i)],w)

...

enddo

(a) Type B Inspector: f(i) = i (b) Type B Inspector: Invertible f(i)

Figure 4: Specialized Type B Inspectors

Case 2: Strictly Monotonic f(i)

We assume that f(i) is statically known to be strictly monotonic increasing, a common example being

an a�ne function with a positive coe�cient (i.e., f(i) = ki + c where k > 0). The case for decreasing is

analogous and therefore omitted. Figure 5(a) shows the type A executor .

Compared with the earlier algorithm (Figure 2(a)), the type A inspector needs an additional array lw.

In the earlier algorithm, wf [i] carries two pieces of information: iteration i is executed in wavefront wf [i];

x[i] is written in wavefront wf [i]. They are synonymous if f(i) = i, but this no longer holds. Thus, in the

present algorithm (Figure 5(a)), lw[i] stores the second piece of information | the wavefront that writes

x[i].

As for the executor (Figure 5(b)), since f(i) is strictly monotonic, the loop writes each element at most

once and thus we can use the existing technique of storing old and new values in two arrays. When the

executor reads x[k] in iteration i, it must decide which array to access depending on whether the sequential
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/* wf, lw initially all zero */

do i = 1, n

wf[i] = lw[f(i)] = max(lw[g(i)],...) + 1

enddo

(a) Type A Specialized Inspector

do w = 1, W

doall i such that wf[i] = w

k = g(i)

if (k<f(i)) then t1 = x2[k] else t1 = x1[k]

...

x2[f(i)] = F(t1, t2, ...)

enddo

enddo

x1 = x2

do w = 1, W

doall i such that wf[i] = w

k = g(i)

if (f_inv[k]<i) then t1 = x2[k] else t1 = x1[k]

...

x2[f(i)] = F(t1, t2, ...)

enddo

enddo

x1 = x2

(b) Type A Executor: Strictly Monotonic Increasing f(i) (c) Type A Executor: General Invertible f(i)

Figure 5: Specialized Type A Inspectors and Executors

loop would write x[k] before or after iteration i. Suppose iteration j writes x[k] (i.e., k = f(j)). The executor

needs to know only whether i < j, not j itself. Since f(i) is strictly monotonic increasing, i < j if and only

if f(i) < f(j). Thus, the executor simply compares f(i) and k, without �nding j. An important point is

that, compared with the existing executor algorithm (Figure 2(b)), there is no new overhead as the array

subscripts must be computed and a comparison done anyway.

In a type A executor, assuming f(i) to be strictly monotonic simpli�es the decision on which array to

access for read operands. As the type B executor needs not make this decision, the assumption has no e�ect

and so does not result in a new, specialized form of the inspector and executor.

Case 3: Invertible f(i)

Figure 5(a) and (c) show the type A inspector and executor in this case. As f(i) is invertible, each array

element is written at most once. Therefore, the type A inspector needs not be changed and, as before, we

can store old and new values of x in two arrays. However, to decide which array to read, the type A executor

needs an explicit mapping (namely f

�1

(i)) indicating which iteration writes a given element. Array f inv

stores this mapping.

Looking up f inv is a non-trivial executor overhead because it involves an extra memory operation per

read reference. Also, computing f inv is a preprocessing overhead in addition to the inspector itself. Both

overheads can be avoided if f

�1

(i) can be statically and symbolically determined, but this seems unlikely

except for a�ne f(i) (which would be strictly monotonic and thus fall under case 2).

When f(i) is statically determined to be invertible, we can use the type B inspector in Figure 4(b). It

di�ers from the fully general type B inspector in that it needs not check the time of the last write of element

f(i) (i.e., lw[f(i)]) when it places iteration i in a wavefront: since the indexing function f(i) is invertible,

the current write to element f(i) must be the only write.

Case 4: Unrestricted f(i)

An unrestricted f(i) may cause multiple writes to the same element. It is unclear how to handle this with

the type A approach. Conceivably, there could be multiple arrays for multiple versions of x. The executor

would need other data structures to decide which version each iteration should access to read the correct
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value, that is, the one that the same iteration would read in the sequential execution. The overheads of

storage management, deciding which version to read, and keeping track of and looking up the additional

data structures are likely to be much larger than those we have seen so far.

The case of unrestricted f(i) is the base case for the type B approach (Figure 3), which has no di�culty

in dealing with it.

3 Comparing Performance of the Two Approaches Qualitatively

In the previous section we introduced a new inspector-executor scheme with the primary goal of extending

the class of loops that could be handled. We also discovered specializations of both the existing (type

A) approach and the new (type B) approach for cases in which both are applicable. In this section, we

contrast the performance implications of the two approaches in terms of several issues. First, we examine

the potential advantage of the type B executor over the type A, based on the latter's need to execute code

enforcing antidependences. Next, we discuss the impact of respecting antidependences in the inspector's

schedule on schedule depth, and so on performance.

3.1 Executor Overheads

As discussed earlier, under approach A we store data in two arrays. The executor (Figure 2(b)) writes results

into one, and copies it to the other after loop execution. For each element read, the executor must decide

which array should be accessed. By contrast, under approach B, the executor (Figure 3(b)) needs none of

these, and therefore generally has less memory and runtime overheads.

Although under approach A we must allocate memory for the extra array, we can often avoid or reduce

copying. Copying is unnecessary if the loop writes every element it reads. Successive executor invocations

can alternate the roles of the two arrays: one invocation reads old values from x1 and writes new results

to x2; the next reads x2 and writes x1. If the compiler cannot ascertain whether the loop writes every

element it reads (because, for example, array subscripts are not known statically), copying can be reduced

by copying the entire x1 to x2 once and for all before the �rst executor invocation, and alternating usage

of the two arrays in subsequent invocations. After the initial copying, corresponding elements in x1 and x2

that the loop does not write will always contain identical values. The executor can access either array for

these values.

Under approach A, the overhead of deciding which array to access grows linearly with the number of

elements read by the loop. How signi�cant it is depends on how the decision is made. In the simple cases (see

Figure 2(b) for f(i) = i and Figure 5(b) for strictly monotonic f(i)), it is just a comparison with no extra

memory operations; the comparison's operands are needed for array indexing anyway. However, in more

general cases (e.g., Figure 5(c) for invertible f(i)), extra information has to be fetched from data structures

in memory, which can be a signi�cant overhead.

3.2 E�ect on Parallel Schedule

Under approach A, the schedule respects only ow dependences; for B, it respects antidependences as well.

For any given source loop, the schedule under approach B therefore has at least as many wavefronts as

that under approach A. Deeper schedules do not necessarily increase execution times proportionally, but do
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increase the total synchronization overhead (because there are more wavefronts) and the potential for load

imbalance within wavefronts (because each has, on the average, fewer iterations).

However, in many common cases, schedules for the two approaches are identical. Obviously, they are

identical if the loop contains only ow dependences, as in sparse lower-triangular solve. A less obvious case

is when an antidependence between two iterations always implies a ow dependence. In this case, a schedule

respecting the ow dependences automatically respects the antidependences as well. An example is using

successive overrelaxation (SOR) [1, 5] to solve a sparse linear system with a symmetric coe�cient matrix

1

.

Such linear systems may arise from �nite elements analysis in structural engineering or numerical solution

of elliptic partial di�erential equations using �nite di�erence [5].

In addition to depth, the schedules computed under the two approaches also a�ect executor cache behav-

iors di�erently in ways that are highly loop-speci�c. Because memory access times are increasingly important

determinants of overall performance, this e�ect can have a pronounced inuence on the relative costs of ap-

proaches A and B. However, because the reference pattern is highly sensitive to the speci�c problem, the

e�ect is data dependent, and in our experience does not favor either approach with regularity.

4 Experimental Measurements

We now present measurement results illustrating the performance tradeo�s discussed earlier. In doing so, we

are of course limited to cases in to both approaches A and B apply. It is important to remember, however,

that a primary motivation for the development of approach B was that it extends the class of loop to which

runtime parallelization can be applied beyond what is possible following approach A.

Our source loop is one iteration of the successive overrelaxation (SOR) algorithm for solving a sparse linear

system [1]. ([6] list a number of applications taken from the Perfect Benchmarks that defy static analysis, and

to which the inspector-executor approach is applicable.) The dependences in the SOR application depend

on the sparsity structure of the coe�cient matrix, thus making compile-time parallelization impossible.

Because our goal is to understand the inuence of the fundamental distinctions between the type A and type

B approaches, rather than to report their running times on a speci�c problem, we used synthetic coe�cient

matrices in our examples. By doing so, we were able to isolate and control problem characteristics that

might inuence the comparison of the two approaches, such as the depth of the parallel schedules resulting

from each approach and the total amount of work to be done by the executors. Figure 6 shows relevant

characteristics of the matrices we used.

The experiments were run on a Kendall Square Research KSR1 shared-memory multiprocessor [2] running

OSF/1. All programs were written in C using KSR1's pthreads and the source loop was manually transformed

into di�erent inspectors and executors. We employed a runtime restructuring technique we have developed

[4] to reduce the adverse cache e�ects of runtime parallelization under both approaches. Timings are for 32

processors on one ring.

For approach A, we compared the array copying costs with iteration execution times. Also, we compared

inspector and executor performance under approaches A and B for two cases: f(i) = i and f(i) given by an

indirection array statically known to be invertible

2

. For approach B, the executor in Figure 3(b) was used

1

In this loop, each iteration computes a component of the solution vector (x). Given the coe�cient matrix B, iteration k

reads x[l] (written by iteration l) if and only if b

kl

6= 0. As B is symmetric, b

kl

6= 0, b

lk

6= 0, and hence iteration l reads x[k]

if and only if iteration k reads x[l]. Each antidependence implies a corresponding ow dependence (and, in this example, vice

versa).

2

Indirection arrays often contain input-dependent data that defy compiler-time analysis. For our purpose of performance

comparison between approaches A and B, however, we assume compile-time knowledge of an invertible f(i) so that there is a

type A executor that can be used.
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Schedule Depth

Name Order # Nonzeros Type A Type B

M1 100000 1145000 20 20

M2 100000 1147500 20 40

M3 100000 1148750 20 80

M4 100000 1149375 20 160

N1 40000 458000 20 20

N2 40000 459000 20 40

N3 40000 459500 20 80

N4 40000 459750 20 160

O1 100000 290000 20 20

O2 100000 575000 20 20

O3 100000 765000 20 20

O4 100000 955000 20 20

Figure 6: Characteristics of Sparse Coe�cient Matrices

in both cases. For approach A, the base executor (Figure 2(b)) was used in the �rst case and the executor

for invertible f(i) (Figure 5(c)) in the second.

4.1 Array Copying

Figure 7 shows the array copying costs and iteration execution times (for f(i) = i) under approach A. As

expected, copying cost are roughly the same for all matrices in series O, whereas iteration execution times

increase with the number of nonzeros. Also, the copying costs are small relative to iteration execution times.

Noting that copying can often be avoided or reduced (see Section 3.1), we conclude that array copying is not

a main concern in the tradeo� between approaches A and B.

O1 O2 O3 O4
Matrix

0

50

100

150

200

T
im

e 
(m

s)

Execute iterations
Copy Array

Figure 7: Costs of Array Copying vs. Iteration Execution

4.2 Cost of Executing Iterations

We now look at iteration execution times

3

for both approaches in two cases: f(i) = i (executors shown in

Figure 2(b) and Figure 3(b)) and f(i) given by an indirection array (executors shown in Figure 5(c) and

Figure 3(b)). Figure 8 shows the results.

Consider the execution times for f(i) = i (Figure 8(a)). We �rst focus on matrices M1 and N1, for

which the schedules under approaches A and B have the same number of wavefronts. (In fact, they happen

to be identical.) Therefore, the two executors su�er roughly the same synchronization overhead and load

imbalance. The type B executor runs 10{15% faster than the type A executor because the former needs not

3

In our experiments for approach A, the array was copied, although the timings exclude copying. Omitting the copying

would a�ect our timings by creating a data access pattern di�erent from that of a \real" type A executor, which does the

copying.
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(a) f(i) = i (b) f(i) is an indirection array

Figure 8: Type A vs. Type B Executors

decide which array to access for each element read. The di�erence in data access pattern

4

may also have

played a role, but its e�ect is not entirely clear.

Next, we look at the trend within each matrix series in Figure 8(a). As the di�erence in the depths

of the two schedules increases, the performance advantage of the type B executor decreases and is �nally

negated

5

. The executor su�ers larger synchronization overhead between wavefronts and potentially greater

load imbalance within wavefronts because there are more wavefronts and, on the average, fewer iterations

per wavefront. If, however, there are many iterations per wavefront, both e�ects will diminish because the

absolute synchronization cost would be a small percentage of the per-wavefront compute time, and having

more iterations available for scheduling simpli�es load balancing. This is evident from comparing the results

for series M and N.

Figure 8(b) shows the execution times of the executor for invertible f(i) (Figure 5(c) and Figure 3(b)),

where f(i) is given by an indirection array. For M1 and N1, the type B executor is about 40% faster than

the type A executor. This di�erence is larger than for f(i) = i because, for each element read, the type

A executor must look up an array f inv (see Figure 5(c)), while the type B executor does not. This extra

memory read has poor locality since its reference pattern is determined by the coe�cient matrix's irregular

sparsity structure. As the depth of type B schedules increases (within each matrix series), however, the

performance advantage of the type B executor is again gradually o�set by synchronization costs and load

imbalance.

Finally, we assess the importance of identifying optimization opportunities. Figure 9 compares the execu-

tion times of the simpler executor for f(i) = i, and the more complicated but general executor for invertible

f(i), where f(i) is given by an indirection array. The indirection represented an identity mapping. If this

were known statically, the compiler would have generated the �rst, simpler executor. Executor performance

for approach A is sensitive to whether the compiler can exploit such opportunities. In our experiments, the

second, overly general executor takes 30% to 50% longer than the simpler one (see Figure 9(a)). As for

approach B (Figure 9(b)), one form of executor handles all kinds of loop uniformly.

4.3 Inspector Performance and Overall Execution Time

Figure 10 shows the inspector execution times. (All inspectors ran sequentially.) As expected, the type B

inspector, being more complicated, takes substantially longer (roughly 70% in most cases we measured).

4

Although the schedules are identical, the data access patterns are di�erent because the type A executor reads some values

from one array and some from the other, whereas the type B executor always reads the same array.

5

Although the matrices in each series represent nominally the same amount of work, they lead to di�erent access patterns

and thus execution times. We are interested only in how the di�erence between approaches A and B for each matrix varies.
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Figure 9: Importance of Identifying Optimization Opportunities
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Figure 10: Inspector Performance: A vs. B
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Figure 11: Overall Execution Time: A vs. B

Often the source loop is executed many times with the same dependence pattern [8, 9]. In these cases,

the inspector is executed once and each executor invocation reuses the same schedule. Figure 11 illustrates

how the overall execution time depends on the number of executor invocations. In this example, the type B

executor is faster than the corresponding type A executor. If the executor is executed many times, approach

B will have a shorter overall execution time than approach A. The exact cross-over point is problem-speci�c.

Sometimes the type B executor is slower than the corresponding type A executor, in which case approach B

will always take longer overall.

5 Conclusion

In this paper, we have extended the applicability of runtime parallelization by generalizing the class of loops

that can be handled e�ciently. We examined two approaches to handling general dependences. In approach

A, the inspector computes a schedule that respects ow dependences but leaves the handling of anti- and

output dependences to the executor. In approach B, the schedule is guaranteed to respect all dependences;

the executor needs only follow the schedule.

For each approach, we found optimizations that can be applied to special circumstances. We compared

their performance qualitatively and reported measurements on a KSR1. Overall, approach B is more general

and exible, while approach A often has better performance, at least for simple dependence patterns. A

compiler wishing to use runtime parallelization for loops that defy a su�ciently accurate static dependence

analysis should probably employ both approaches, choosing between them depending on the characteristics

of the loop.
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