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Abstract

Closed-world reasoning is the process of inferring that a logical

sentence is false based on its absence from a knowledge base,

or the inability to derive it. Previous work on circumscription,

autoepistemic logic, and database theory has explored logical

axiomatizations of closed-world reasoning, and investigated com-

putational tractability for propositional theories. Work in plan-

ning has traditionally made the closed world assumption but

has avoided closed-world reasoning. We take a middle position,

and describe a novel method for closed-world reasoning over the

�rst-order theories of action used by planning algorithms such as

nonlin, tweak, and ucpop. We show the method to be both

sound and e�cient. The method has been incorporated into the

xii planner [22], which supports our Internet Softbot (software
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robot) [13]. In our experiments, closed-world inference consis-

tently averaged about 2 milliseconds, while updates averaged

approximately 1.2 milliseconds.

1 INTRODUCTION AND MOTIVATION

Classical planners such as nonlin [46], tweak [5], or ucpop [40, 47] presup-

pose correct and complete information about the world. Having complete

information facilitates planning, since the planning agent need not obtain

information from the external world | information absent from the agent's

world model is assumed to be false (this is the infamous closed world as-

sumption [43]). However, in many cases, an agent has incomplete informa-

tion about its world. For instance, a robot may not know the size of a bolt

or the location of an essential tool [35]. Similarly, a software agent, such as

the Internet Softbot [17, 14, 13], cannot be familiar with the contents of all

the bulletin boards, FTP sites, and �les accessible through the Internet.

1

What do we mean by incomplete information? In this paper, we focus

on incomplete but correct information about the state of the external world

(see Section 2.1 for a formal description). In contrast to work on relational

database theory [23], we do not assume that all objects in the external world

are known in advance; agents constantly encounter new objects. In addition,

we do not assume that the world is static; agents constantly sense (or cause)

changes to the world. In Section 5, we consider the implications of changes

that the agent fails to sense.

Recent work has sketched a number of algorithms for planning with in-

complete information (e.g., [1, 35, 12, 28, 41]). These algorithms make

the open world assumption | information not explicitly represented in the

agent's world model is unknown. Because they make the open world as-

sumption, none of the above algorithms handle universally quanti�ed goals.

The planners cannot satisfy even a simple goal such as \Print all of Smith's

postscript �les in the /kr94 directory" because they have no way to guar-

antee that they are familiar with all the relevant �les. In addition, these

planners are vulnerable to redundant information gathering when they plan

to \sense" information that is already known to the agent [16]. Since satis-

1

Because our work is motivated by the softbot, most of our examples are drawn from

the Internet and UNIX domains. However, we emphasize that our results are general and

corresponding examples are easily found in physical domains as well.
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fying the preconditions of an information-gathering action can involve arbi-

trary planning, the cost of redundant information gathering is unbounded

in theory and large in practice [22].

We can still salvage a partial notion of complete information, even in the

presence of unknown facts. Many sensing actions return exhaustive infor-

mation which warrants local closed world information (LCW). For example,

scanning with a TV camera shows all objects in view, and the UNIX ls -a

command lists all �les in a given directory. After executing ls -a, it is not

enough for the agent to record that paper.tex and proofs.tex are in /kr94

because, in addition, the agent knows that no other �les are in that direc-

tory. Note that the agent is not making a closed world assumption. Rather,

the agent has executed an action that yields closed world information.

The agent stores the limited information it has about the external world

in a database M, which we refer to as its \incomplete world model." To

represent LCW, we utilize an explicit database of meta-level sentences such as

\I know all the �les in /kr94." The sentences describe the limited instances

over which the information inM is in fact a complete model of the external

world. The information in the LCW database is equivalent to the \closed

roles" found in knowledge-representation systems such as classic [2] and

loom [3], to predicate completion axioms [6, 27], and to circumscription

axioms [33, 32]. Our contributions include:

� A sound and e�cient calculus for answering queries based on the LCW

database. The calculus answers queries such as: if the agent is familiar

with all the �les in the directory /kr94, and with all group-readable

�les on the �le system, does it follow that the agent is familiar with

all the group-readable �les in /kr94?

� A sound and e�cient calculus for updating the LCW database as the

state of the world changes. The update calculus answers questions

such as: if the agent knows the lengths of all the �les in /kr94, and a

�le is added to /kr94, is the agent still familiar with the lengths of all

�les in that directory? What if a �le is deleted from /kr94?

� E�cient algorithms, based on the calculus, for querying a locally com-

plete database of domain propositions (Appendix A). We experimen-

tally evaluate the performance of our query and update algorithms in

the UNIX domain (Section 4).
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1.1 Previous Work

Below, we briey review the large body of related work on circumscription,

autoepistemic logic, and database theory. At the end of this section, we

summarize the key di�erences between this body of work and ours.

The bulk of previous work has investigated the logic of closed world

reasoning (e.g., [26, 10, 44, 34, 29]), and the semantics of theory updates

(e.g., [21, 24, 8]). Results include logical axiomatizations of the closed world

assumption (CWA), exploring the relationship between CWA and circum-

scription, distinguishing between knowledge base revision and knowledge

base update, and more. Although decidable computational procedures have

been proposed in some cases (e.g., [20], and the Minimality Maintenance

System [42]), they remain intractable. Update procedures have been de-

scribed that involve enumerating the possible logical models corresponding

to a database (e.g., [48, 7]), or computing the disjunction of all possible

results of an update [25]. In contrast, we adopt the WIDTIO (When In

Doubt Throw It Out [49]) policy. As [9] points out, this method is easy to

implement e�ciently but has the disadvantage that in the worst case, all

knowledge in the database has to be retracted. We demonstrate experimen-

tally that our update scheme is e�ective in practice.

Levy [30] has pointed out a close relationship between closed-world rea-

soning and the problem of detecting the independence of queries from up-

dates. However, the computational model in the database literature (Dat-

alog programs) is di�erent from our own. Furthermore, tight complexity

bounds for this problem have not been reported in the database literature

(e.g., [31] merely reports decidable algorithms).

Recently, some excellent analyses of computational complexity have emerged

[4, 9], which show that the di�erent approaches described in the literature

are highly intractable in the general case. Stringent assumptions are re-

quired to make closed-world reasoning tractable. For example, Eiter and

Gottlob [9, page 264] show that propositional Horn theories with updates

and queries of bounded size yield polynomial-time algorithms. However, all

positive computational tractability results reported in [4, 9] are restricted to

propositional theories. Motivated by the need for closed-world reasoning in

modern planning algorithms, we have formulated a rather di�erent special

case where the knowledge bases record �rst-order information, queries are

�rst-order conjunctions, and updates are atomic.

In short, there are three fundamental di�erences between the results in

this paper and previous work. First, the bulk of previous work has focused

4



on the logic of closed-world reasoning, not on its computational tractabil-

ity. The thorough analyses of computational complexity in [4, 9] have found

closed world inference and update to be inherently intractable in the gen-

eral case. In fact, previous work has only found tractable algorithms for

restricted classes of propositional theories. Second, we have formulated ef-

�cient closed-world reasoning algorithms for �rst-order theories of the sort

used by modern planners.

2

Finally, we not only show that our algorithms

run in polynomial time (for queries and updates of bounded size), but also

carry out a host of experiments demonstrating them to be e�cient in prac-

tice (Section 4).

1.2 Organization

The paper is organized as follows. Section 2 introduces our calculus for

answering LCW queries in a static universe. In Section 3 we present our

calculus for updating LCW as the world changes. Although our approach is

sound, it is not complete. Section 4 uses empirical techniques to show that

the incompleteness is not burdensome in practice, and that our approach is

fast.

After concluding with a discussion of future work, we present additional

details in two appendices. Appendix A provides pseudo-code algorithms

based on our inference rules, and appendix B proves that our rules, and the

algorithms in Appendix A, are sound.

2 Incomplete Information about the World

We've argued that when acting in complex, real-world domains such as the

Internet, no agent can have complete information. In this section we present

a compact representation for incomplete world models and describe a set of

sound and tractable inference rules for reasoning about local closed world

information. Subsequent sections explain how to keep the representation

consistent as the world changes.

2

Since we consider formulae with an essentially unbounded number of instances, it is

impractical to translate our �rst-order theories into propositional correlates. Furthermore,

as shown in Sections 2.4 and 3, local closed-world reasoning makes essential use of �rst-

order constructs such as uni�cation.
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2.1 Semantics

We begin by formalizing the notion of an incomplete world model. At every

point in time, the world is in a unique state, w, which may be unknown to

the agent. For any ground, atomic sentence ', either w j=' or w j=:' hence

the set of ground facts entailed by the world forms a complete logical theory,

which we denote W. Following [36, 18] and many others, we formalize an

agent's incomplete information with a set of possible world states, S, that

are consistent with its information. Since we assume what information the

agent does have is correct, the current world state, w, is necessarily a member

of S. We say that ' is known to the agent (written S j= ') just in case

8s 2 S; s j= '. We say that the agent possesses complete information when

S and w entail exactly the same set of facts. Incomplete information means

that there are facts, ', such that neither S j= ' nor S j= :'; in this case

we say ' is unknown to the agent.

Thus, we say that an atomic formula, ', has truth value T if S j= ', has

truth value F if it is known to be false, or has truth value U if it is unknown

to the agent.

2.2 Local Closed World Information

We say that an agent has local closed world information (LCW) relative to

a logical formula � if every ground sentence which uni�es with � is either

entailed by S or is provably false:

3

LCW(�) � 8�(S j= ��) _ (S j= :��) (1)

In essence, this de�nition speci�es which parts of the logical theory in-

duced by S are complete (cf. [11] and others). Note that since the theory

induced by S is a subset of the complete theory induced by w, the de�nition

of LCW amounts to a limited correspondence between S and w. If LCW(�)

holds, then all states in S (including w) agree on the extension of �. As a

concrete example, suppose that parent.dir(f,d) means \The parent di-

rectory of �le f is directory d;" then we can encode the fact that an agent

knows all the �les in the directory /kr94 with:

LCW(parent:dir(f ; /kr94))

3

We use italics to denote free variables and write �� to denote the result of applying

the substitution � to the formula �.
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If the agent knows that paper.tex and proofs.tex are in /kr94 then this

LCW formula is equivalent to the following implication:

8f parent.dir(f, /kr94)!

(f = paper:tex) _ (f = proofs:tex)

An LCW formula can also be understood in terms of circumscription [32].

For the example above, one de�nes the predicate P(x) to be true exactly

when parent.dir(x, /kr94) is true, and circumscribes P in the agent's

theory. While our work can be understood within the circumscriptive frame-

work, our implemented agent requires the ability to infer and update

4

closed

world information quickly. Thus, we have developed computationally tractable

closed-world reasoning and update methods, applicable to the restricted rep-

resentation languages used by modern planning algorithms.

2.3 Representing Closed World Information

Below, we explain how our agent represents its incomplete information about

the world, and how it represents LCW in this context. Due to the size of S

(a potentially in�nite set of large structures), the agent cannot represent

S explicitly. Instead we represent the facts known by the agent with a

database, M, of ground literals. Formally, M is a subset of the logical

theory induced by S; if ' 2 M then S j= '. Since the theory induced by S

is incomplete, the Closed World Assumption (CWA) cannot be applied to

M. The agent cannot automatically infer that any atomic formula absent

from M is false. Thus, the agent is forced to represent false facts in M,

explicitly, as sentences tagged with the truth value F.

This observation leads to a minor paradox: the agent cannot explicitly

represent inM every sentence it knows to be false (there is an in�nite num-

ber of �les not in the directory /kr94). Yet the agent cannot make the

CWA. We adopt a simple solution: we represent local closed world infor-

mation explicitly as a meta-level database, L, containing localized closure

axioms of the form LCW(�); these record where the agent has closed world

information. Together, the M and L databases specify an agent's state of

4

Following [24, 25] we distinguish between updating a database and revising it. We

assume that our agent's knowledge is correct at any given time point, hence there is no

need to revise it. When the world changes, however, the agent may need to update its

model to remain in agreement with the world.
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incomplete information about the world (i.e., they correspond to the set, S,

of states).

When asked whether it believes an atomic sentence ', the agent �rst

checks to see if ' is in M. If it is, then the agent responds with the truth

value (T or F) associated with the sentence. However, if ' 62 M then '

could be either F or unknown (truth value U). To resolve this ambiguity,

the agent checks whether L entails LCW('). If so, the fact is F; otherwise it

is U. Appendix A formalizes this intuitive procedure by providing pseudo

code for the Query algorithm. We note, however, that the agent need not

perform inference on M since it contains only ground literals, but it may

need to perform some deduction on its LCW sentences; this inference process

is described below.

2.4 Inferring Local Closed World Information

An agent requires information about the external world w, but only has

direct access to M and L. The agent needs to answer queries such as \Do

I know all the postscript �les in /kr94?" or, more formally, is the following

true:

LCW(parent:dir(f; /kr94) ^ postscript(f))

Correctly answering LCW queries is not a simple matter of looking up

assertions in a database. For instance, suppose the agent wants to establish

whether it is familiar with all the �les in /kr94, and it �nds that it is familiar

with all the �les in all directories. Then, a fortiori, it is familiar with all the

�les in /kr94. That is:

LCW(parent.dir(f; d)) j=LCW(parent.dir(f; /kr94))

In general, we have:

Theorem 1 (Instantiation Rule) If � is a logical formula and � is a

substitution, then LCW(�)j=LCW(��).

5

Moreover, LCW assertions can be combined to yield new ones. For in-

stance, if the agent knows all the group-readable �les, and it knows which

�les are located in /kr94, it follows that it knows the set of group-readable

�les in /kr94. In general, we have:

5

Proofs of the theorems are sequestered in Appendix B.
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Theorem 2 (Conjunction Rule) If � and 	 are logical formulae then

LCW(�) ^ LCW(	) j= LCW(� ^	).

And, also:

Theorem 3 (Disjunction Rule) If � and 	 are logical formulae then

LCW(�) ^ LCW(	) j= LCW(� _	).

The intuition behind these rules is simple | if one knows the contents of

two sets then one knows their intersection. (the Conjunction Rule) and their

union (the Disjunction Rule). Note that the converse of the Conjunction

Rule is invalid. If one knows the group-readable �les in /kr94, it does not

follow that one knows all group-readable �les. The rule LCW(�) j= LCW(�^	)

is also invalid. For instance, if one knows all the group-readable �les, it does

not follow that one knows exactly which of these �les reside in /kr94.

However, if one knows the group-readable �les, and for each group-

readable �le, one knows whether that �le is in /kr94, then one knows the

set of group-readable �les in /kr94. In general, if we know the contents of

set A, and for each member of A, we know whether that member resides in

another set B, then we know the intersection of sets A and B. More formally:

Theorem 4 (Composition Rule) If � and 	 are logical formulae and

LCW(�) and for all substitutions �, if S j= �� implies LCW(	�), then we can

conclude LCW(� ^	).

2.5 Discussion

To make LCW inference and update tractable, we restrict the formulae in L to

conjunctions of positive literals. As a result, we lose the ability to represent

LCW statements that contain negation or disjunction such as \I know the

protection of all �les in /kr94 except the �les with a .dvi extension."

6

Thus M and L form a conservative representation. For any consistent M,

L pair, there exists an S that entails the same set of LCW sentences, but the

converse is false.

This restriction provides signi�cant e�ciency gains. To see this, con-

sider a singleton LCW query such as LCW(parent:dir(f; /kr94)). If L con-

tains only positive conjunctions, the query can be answered in sub-linear

6

Thus, we do not implement the Disjunction Rule, which yields disjunctive LCW sen-

tences. The Disjunction Rule is the only rule in the paper that is described but not

implemented.
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time | examining only singleton LCW assertions indexed under the predi-

cate parent.dir. If negation is allowed, however, then a combination of

multiple LCW sentences has to be explored. For instance, by the Disjunction

Rule, we have that LCW(� ^ 	) ^ LCW(� ^ :	)j=LCW(�). Introducing dis-

junctive LCW sentences into L would make matters even worse. In general,

answering a singleton query, in the presence of negation and disjunction, is

NP-hard. Since our planner makes numerous such queries, we chose to

sacri�ce completeness in the interest of speed.

Moreover, since L is restricted to positive conjunctions, LCW inference

is reduced to the problem of matching a conjunctive LCW query against a

database of conjunctive LCW assertions. Appendix A provides pseudo-code

for the actual algorithms, but the intuition is straightforward. A successful

match occurs when repeated applications of the Conjunction Rule decom-

pose the query into subconjunctions, which are directly satis�ed by the

Instantiation Rule applied to L, or by the Composition Rule applied to L

and M.

In the worst case, we have to consider all possible decompositions, which

is exponential in c, the number of conjuncts in the query. The worst-case

time complexity is, therefore, O(jLj

c

). However, if the number of conjuncts

c is bounded by a constant b, then the match time is a polynomial of order

b in the size of L. In the UNIX domain, we have found that LCW queries are

typically short (c � 2) which, with the aid of standard indexing techniques,

yields extremely fast LCW inference in practice. In our experiments, LCW

queries averaged about 2 milliseconds (see Section 4 for the details).

3 Updating Closed World Information

As the agent is informed of the changes to the external world | through

its own actions or through the actions of other agents | it can gain and

lose information about the world. For example, after executing the UNIX

command finger weld@june, the agent should update M with the newly

observed truth value for (active.on weld june). Similarly, an agent's

actions can cause it to gain or lose LCW. When a �le is compressed, for

example, the agent loses information about its size; when all postscript

�les are deleted from a directory, the agent gains the information that the

directory contains no such �les. This section presents a sound and e�cient

method for updating L, the agent's store of LCW sentences.

Recall from Section 2.5 that togetherM and L approximate the incom-
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plete theory induced by S: some facts are known T, some F, and some are

U. Execution of an action can change both the world state (from w to w

0

)

and the agent's model (from S to S

0

). Since it is useful to refer concisely

to the changes between the theories entailed by S and S

0

, we introduce a

new notation: the � function. For example, suppose that initially the agent

doesn't know whether weld is active on the machine called june, so it exe-

cutes a finger action which observes that weld is active. We describe the

resulting update to the model as �((active.on weld june); U! T).

In this case, only a single atomic formula had its truth value changed.

However, in some cases an unbounded number of atoms change their truth

values; for example, if S j=size(paper.tex, 4713) then numerous atoms

change their truth value when compress paper.tex is executed and the size

of paper.tex becomes unknown: size(paper.tex, 4713) changes from

T to U, while size(paper.tex, 4712) (and many similar atoms) change

from F to U. In this case, we summarize the change with the expression

�(size(paper.tex, x); (T_ F)! U). In general, we de�ne � in terms of

its six primitive cases: T! F, T! U, F! T, F! U, U! T, and U! F.

7

Equation 2 provides the de�nition of one of these cases; the others are

analogous.

�('; U! T) � 8�(S 6j= '�) ^ (S 6j= :'�) ^ (S

0

j= '�) (2)

L can change when the agent executes an action or when the agent is

informed of an exogenous change to the state of the world. We formulate

the update policy as a set of rules and state them as theorems since they are

sound: i.e., they preserve the conservative model invariant: for any sentence

� if M[ L j=� then Sj=�. The general pattern of these theorems starts

with the assumption that the agent has a conservative model of S and claims

that a particular value for L

0

results in a conservative model of S

0

, given an

atomic change of a particular � format. While these update rules are sound,

they are often incomplete; fortunately, they can be computed in polynomial

time as we show in Section 3.5.

We sidestep the rami�cation problem [21] by demanding that updates to

M (such as those caused by action execution) explicitly enumerate changes

to every predicate that is a�ected. Note that this is standard in the planning

literature. For example, a strips operator that moves block A from B to C

must delete on(A, B) and also add clear(B) even though clear(B) can be

de�ned as 8y :on(y,B).

7

A change such as �('; (T _ F)! U) is de�ned as �('; T! U) _�('; F! U).
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By distinguishing between transitions to and from U truth values, L

updates can be divided into four mutually exclusive and exhaustive cases

which we call Information Gain, Information Loss, Domain Growth, and

Domain Contraction. Below, we consider each case in turn.

3.1 Information Gain

An agent gains information when it executes an information-gathering action

(e.g., wc or ls), or when a change to the world results in Information Gain.

In general, if the information in the agent's world model increases, the agent

cannot lose LCW.

Theorem 5 (Information Gain Rule) If the agent has a conservative

model and an atomic change has no e�ects other than �('; U! T _ F) then

L

0

:=L yields a conservative model.

This theorem suggests a simple conservative policy: when an action gains

information, L need not be modi�ed. However, by analyzing the form of the

information gained and exploiting the assumption of correct information,

it is possible to do better. For example, when M is updated to contain

information about the unique value of a variable (e.g., the word count of a

�le), the agent can infer that it has local closed world information. In many

cases, predicates implicitly represent functions. For example, the predicate

word.count is a function from a �le to its word count. In general, we have:

Theorem 6 (Function Rule (after Smith [45])) If the agent has a con-

servative model and an atomic change has no e�ects other than �(P (c); U! T)

for some constant c and some predicate P where

8z; yP (z) ^ P (y) j= (z = y) (3)

then L

0

:=L [ P (x) yields a conservative model.

To use the Function Rule in practice, our agent relies on explicit axioms,

of the form in Equation 3, that indicate which predicates are functional (and

in which arguments). Examples abound in the UNIX domain including �le

properties such as word count, parent directory, user properties such as

logname, home machine, and more. The Function Rule turns out to be very

useful (cf. [35]).

An agent can obtain local closed world information, even when the car-

dinality of a domain is variable (e.g., the �les in a directory) by executing
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an action with universally quanti�ed e�ects. For instance, the execution

of UNIX chmod g+r * in the directory /kr94 provides information on the

group read protection of all �les in that directory, since after the command

is executed, all the �les will be group readable

Theorem 7 (Causal Forall Rule) If the agent has a conservative model

and an atomic change has no e�ects other than �(P(x);F_ T _ U! T) 8x

satisfying Q(x) and L j= LCW(Q(x)) then L

0

:=L [ fP(x) ^ Q(x))g yields a

conservative model.

Universally quanti�ed observational e�ects provide similar information

as summarized by the following proposition.

Theorem 8 (Observational Forall Rule) If the agent has a conserva-

tive model and an atomic change has no e�ects other than�(P(x); U! T _ F)

8

8x satisfying Q(x) and L j= LCW(Q(x)) then L

0

:=L [ fP(x) ^ Q(x)g yields a

conservative model.

This rule can be extended to handle observational actions which provide

LCW on the universe of discourse (i.e. the extension of Q(x)). In addition

it can be combined with the Function Rule to give LCW in situations where

neither rule alone su�ces. For example, since each �le has exactly one size,

after executing the UNIX action ls -la bin, we are able to deduce that we

know the size of each �le in bin:

LCW(parent:dir(o; bin) ^ size(o; l))

3.2 Information Loss

An agent loses information when a literal, previously known to be true (or

false), is asserted to be unknown. When a UNIX �le is compressed, for

example, information about its size is lost. In general, when information

is lost about some literal, all LCW statements \relevant" to that literal are

lost. To make our notion of relevance precise, we begin by de�ning the set

PREL(') to denote the LCW assertions potentially relevant to a positive literal

':

9

8

It is not required that P(x) be initially unknown for all x, merely that its value

afterward, whether T or F, be known.

9

Since the sentences in L are conjunctions of positive literals, we use the notation ' 2 �

to signify that ' is one of �'s conjuncts, and the notation ��' to denote the conjunction

� with ' omitted.
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PREL(') � f� 2 L j 9x 2 �; 9�; x� = 'g

For example, if an agent has complete information on the size of all �les

in /kr94, and a �le lcw.tex in /kr94 is compressed (' = size(lcw:tex; n)),

then the sentence

LCW(parent:dir(f; /kr94) ^ size(f; c)) (4)

is in PREL(') and should be removed from L. Unfortunately, when a �le in

the directory /bin is compressed, the above LCW sentence is still in PREL(')

(x = size(f; c)) even though the agent retains complete information about

the �les in /kr94. Clearly, LCW sentence 4 ought to remain in L in this

case. To achieve this behavior, we check whether the agent has information

indicating that the LCW sentence does not \match" the compressed �le. If so,

the LCW sentence remains in L. In general, we de�ne the set of LCW assertions

relevant to a positive literal ' to be the following subset of PREL('):

REL(') � f� 2 PREL(') j 8�

i

2 (�� x);:(L^M j= :�

i

�)g

where, as in the de�nition of PREL('), 9x 2 �; 9�; such that x� = '.

We can now state our update policy for Information Loss:

Theorem 9 (Information Loss Rule) If the agent has a conservative model

and an atomic change has no e�ects other than�('; T_ F! U) then L

0

:=L�

REL(') yields a conservative model.

Note that compressing a �le foo in /bin does not remove LCW sentence 4.

To see this, let x = size(f; c), � = (foo=f), and �

i

= parent:dir(f; /kr94).

Since foo is known to be in /bin, L ^M entails that :�

i

�. Hence, :(L ^

M j= :�

i

�) is false and � is not included in REL('). Note also that, given

our assumptions (correct information, etc.), information is only lost when

the world's state changes.

3.3 Changes in Domain

Finally, we have the most subtle cases: an agent's model changes without

strictly losing or gaining information. For example, when the �le ai.sty is

moved from the /tex directory to /kr94, we have that the updatedM

0

6=M

but neither database is a superset of the other. When the model changes
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in this way, the domain of sentences containing parent:dir(f; /kr94) grows

whereas the domain of sentences containing parent:dir(f; =tex) contracts.

LCW information may be lost in sentences whose domain grew. Suppose that,

prior to the �le move, the agent knows the word counts of all the �les in

/kr94; if it does not know the word count of ai.sty, then that LCW assertion

is no longer true. As with Information Loss, we could update L by removing

the set REL('). However, this policy is overly conservative. Suppose, in the

above �le move, that the agent does know the word count of ai.sty. In

this case, it retains complete information over the word counts of the �les

in /kr94, even after ai.sty is moved.

More generally, when the domain of an LCW sentence grows, but the agent

has LCW on the new element of the domain, the LCW sentence can be retained.

To make this intuition precise, we de�ne the following \minimal" subset of

REL('):

MREL(') = f� 2 REL(') j :(L j= (�� x)�)g

where, as in the de�nition of PREL('), 9x 2 �; 9�; such that x� = '. We

can now state our update policy for Domain Growth:

Theorem 10 (Domain Growth Rule) If the agent has a conservative

model and an atomic change has no e�ects other than �('; F! T) then

L

0

:=L � MREL(') yields a conservative model.

When the domain of a sentence contracts, no LCW information is lost.

For instance, when a �le is removed from the directory /kr94, we will still

know the size of each �le in that directory.

Theorem 11 (Domain Contraction Rule) If the agent has a conserva-

tive model and an atomic change has no e�ects other than �('; T! F) then

L

0

:=L yields a conservative model.

Our update rules cover all possible truth-value transitions. The rules

guarantee that L does not contain invalid LCW assertions, so long as the

agent is appraised of any changes to the world state. However, for the

sake of tractability, the rules are conservative | L

0

may be incomplete.

For example, when the word count of ai.sty is unknown in the above

example, we might wish to say that we know the word counts of all the

�les in /kr94 except ai.sty. However, we refrain from storing negated

sentences in Lbecause such sentences would slow down LCW inference, as

shown in Section 2.5.
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3.4 Example

Below, we provide an extended example of our LCW update machinery in

action. We will see how the LCW database (L) is updated, relying on the

rules shown in Section 3, as the following command sequence is executed:

ls -al /kr94

ls -al /papers

mv /kr94/kr.ps /papers

compress /papers/kr.ps

Initially, both the model (M) and the LCW database are empty. The execu-

tion of ls -al in the directory /kr94 reveals the �les in the directory and

their size in bytes. Suppose that the �les are kr.tex and kr.ps, and their

sizes are 100 and 300 respectively. In this case, M contains:

parent.dir(kr.tex, /kr94)

size(kr.tex, 100)

parent.dir(kr.ps, /kr94)

size(kr.ps, 300)

The agent is familiar with all the �les in /kr94 and with each �le's size.

This information is recorded in the LCW database as follows:

L = fparent.dir(f, /kr94),

parent.dir(f, /kr94) ^ size(f, l)g

In addition, because the parent directory and size of each �le are unique,

the Function Rule implies that we have LCW on the size and parent directory

of each �le. For brevity, we omit LCW assertions derived from the Function

Rule from the snapshots of L shown here.

The directory /papers is initially empty. Thus, after executing ls -al

in the directory /papers, the agent records LCW information for the directory

/papers, but no updates are made to M.

L = fparent.dir(f, /kr94),

parent.dir(f, /kr94) ^ size(f, l),
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parent.dir(f, /papers),

parent.dir(f, /papers) ^ size(f, l)g

Moving the �le kr.ps from the directory /kr94 to the directory /papers,

results in both Domain Contraction to the directory /kr94, and Domain

Growth to the directory /papers. There is no change to L due to Domain

Contraction. However, Domain Growth could potentially result in state-

ments being retracted from L. This example illustrates the advantage of

having the Domain Growth Rule retract the set of MREL sentences from L,

rather than naively retracting the set of REL sentences. There are two state-

ments in REL:

REL(parent.dir(kr.ps, /papers)) = fparent.dir(f, /papers),

parent.dir(f, /papers) ^ size(f, l)g

In contrast, the MREL of the update is empty, due to the fact that we

have LCW on the size of kr.ps:

MREL(parent.dir(kr.ps, /papers)) = fg

As a result, L remains unchanged after the mv command is executed.

However, note that if we did not know the size of kr.ps when it was moved,

we would have lost LCW on the size of the �les in the directory /papers.

The last action in our example is compressing the �le kr.ps. This action

illustrates the advantage of retracting REL rather PREL in the Information

Loss Rule. After the �le kr.ps is compressed, its size becomes unknown.

The set of PREL statements is:

PREL(size(kr.ps, l)) = fparent.dir(f, /kr94) ^ size(f, l),

parent.dir(f, /papers) ^ size(f, l)g

In contrast, because we know that kr.ps is now in the directory /papers,

the set of REL statements contains only the following:

REL(size(kr.ps, l)) = parent.dir(f, /papers) ^ size(f, l)
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Thus after the compress action is executed, we remove the REL state-

ment from L obtaining:

L = fparent.dir(f, /kr94),

parent.dir(f, /kr94) ^ size(f, l),

parent.dir(f, /papers)g

3.5 Computational Complexity of Updates

As stated above, our motivation for formulating conservative update rules

has been to keep LCW update tractable. We make good on this promise

below. We start by considering the complexity of applying single update

rules:

� Information Gain: Theorem 5 implies that no sentences have to

be retracted from L. LCW sentences may be added by the Function

Rule in time that is independent of the size of L.

10

The Forall Rules

require the agent to compute whether it has LCW over the universe of

the update. The universe is denoted by a bounded-length conjunction

(typically, a singleton such as the �les in the directory /tex). Thus,

Forall Rules take time polynomial in the size of L.

� Information Loss: First, the agent computes the set PREL(�), which

takes time linear in the size of L in the worst case. Next, the agent

computes REL(�) from PREL(�). The time to identify each element

of REL is linear in the size of L, since establishing whether L ^M j=

:�

i

� may require singleton LCW queries. In the worst case, the size of

PREL(�) is linear in the size of L, so computing REL(�) from PREL(�)

could take time quadratic in the size of L, which dominates the time

for the entire update.

� Domain Growth: The agent has to compute the set REL(�) which,

as explained above, is quadratic in the size of L. Computing MREL(�)

from REL(�) is linear in the size of REL, but potentially polynomial

in the size of L, since additional bounded-length LCW queries may be

involved. The agent then removes each element of the set from L,

which takes time linear in the size of the set MREL(�). Thus the whole

operation is polynomial in the size of L.

10

The Conjunction, Composition, and Instantiation Rules are applied in response to

LCW queries, but ignored when L is updated.
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� Domain Contraction: L remains unchanged in this case.

While the application of each individual update rule is reasonably fast,

even in the worst case, we have to consider the possibility of a cascade of

L updates. Will the update rules chain on each other? Are such chains

guaranteed to terminate? Fortunately, we can show that rule chaining is

unnecessary. The intuition is as follows. Chaining could potentially occur

in one of two ways. First, when L shrinks, due to Domain Growth or

Information Loss, a potentially in�nite number of sentences change from

F to U. Thus one might think that the Information Loss Rule (Theorem

9) has to be applied to further retract sentences from L. However, careful

examination of the de�nition of REL shows that this is not the case | all

relevant LCW sentences have already been excised from L. Second, when L

grows due to Information Gain, a potentially in�nite number of sentences

changes from U to F. However, by Information Gain, no statements have to

be excised from L, and the Forall Rules do not yield new LCW sentences as

a consequence.

Thus, in the absence of chaining, the time to perform LCW updates is

dominated by the time to retrieve MREL(�) which is polynomial in the size

of L in the worst case, but much faster when standard indexing techniques

(e.g., hashing on the predicates in �) are used.

3.6 Discussion

The update rules de�ned above comprise a sound, e�cient method for updat-

ingM and L. We believe our rules satisfy the update postulates speci�ed in

[24] and generalized in [8], but have not attempted a proof. Since sentences

in L are restricted to positive conjunctions, the algorithm is incomplete.

Nevertheless, it is easy to see that our algorithm is better than the trivial

update algorithm (L

0

:=fg). In our softbot's domain, for example, our Func-

tion and Forall Rules enable us to derive LCW from a wide range of \sensory"

actions, including pwd, wc, grep, ls, finger, and many more. Further-

more, our update rules retain LCW in many cases. For example, changes to

the state of one \locale" (such as a directory, a database, an archive, etc.)

do not impact LCW on other locales. This feature of our update calculus

applies to physical locales as well.

Below, we are able to make a much stronger claim, that the sets of

sentences retracted by theorems 9 through 11 are, in fact, minimal. Ev-

ery sentence retracted is invalid and must be removed from L to maintain
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soundness. This statement is trivially true for Domain Contraction where

no sentences are retracted. Clearly, we cannot do better than that. The fol-

lowing theorem asserts that each LCW sentence retracted due to Information

Loss is, in fact, invalid.

Theorem 12 (Minimal Information Loss) Let ' be a positive literal and

let A be an atomic change whose only e�ect is �('; T _ F! U). If � 2

REL(') then LCW(�) does not hold after A has occurred.

Remarkably, the same holds for Domain Growth.

Theorem 13 (Minimal Domain Growth) Let ' be a positive literal and

let A be an atomic change whose only e�ect is �('; F! T). If � 2 MREL(')

then LCW(�) does not hold after A has occurred.

Are the update rules for Information Loss and Domain Growth the best

possible? At �rst blush, the answer to this question would seem to be yes,

since the rules are sound and they retract the minimal set of sentences from

L. So what more could we want? However, this observation overlooks the

key fact that inference in our framework is lazy so that when the sentence

' is retracted we e�ectively also retract '� for any variable substitution �.

Above, we claimed that the sentence ' really ought to be retracted, but

we didn't claim that the sentence '� (which is weaker!) is invalid. In fact,

there are cases where such sentences are valid. For example, consider the

case where we have LCW on the size of all the �les in the directory /bin,

but the �le a.out in that directory is compressed. Our update rule for

Information Loss would retract the LCW statement, when, in fact, a weaker

statement that we know the size of all the �les in /bin| except a.out| is

true. Since the sentences in L are conjunctions of positive literals, we have

no way of expressing the above statement.

Ultimately, the test of any mechanism for closed-world reasoning { con-

servative or not { is its impact on the agent's performance. In the next

section we describe preliminary experiments that suggest ours is e�ective in

practice, speeding up execution by a factor of ten in some cases.

4 Experimental Results

In the previous sections we argued that our LCW mechanism is computation-

ally tractable, but incomplete. However, asymptotic analysis is not always
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a good predictor of real performance, and incompleteness is a matter of

degree. To evaluate our LCW machinery empirically, we incorporated LCW

into the xii planner [22] and measured its impact on the performance of

the Internet Softbot [13]. In this section, we address the following questions

experimentally:

� What is the speed of LCW queries and LCW updates as a function of the

size of the LCW database and the size of the LCW formulae?

� Because our LCW database is incomplete, a query may result in the

truth value U whereas in fact, its truth value is F (See the de�nition

of Query in Appendix A). How often does this occur as the database

processes a sequence of queries and updates issued by the xii planner?

� The LCW machinery adds a time overhead to the xii planner, but also

reduces redundant sensing operations. In theory, LCW could speed up

the planner or slow it down. What happens in practice?

4.1 The Experimental Framework

Below, we describe the experimental set-up and address each question in

turn. The goal of our experiment is to measure the performance of our

LCW machinery in a real-world setting. All of our evaluations of LCW are

through queries and updates generated by the xii planner in the course of

satisfying randomly-generated goals in the Softbot domain. We randomly

generate both goals and initial worlds. To make our experiments easier to

control, vary, and replicate, we built a simulation environment that allows us

to generate arbitrary UNIX worlds, which behave exactly as UNIX behaves

in response to actions executed by the softbot. Additionally, the simulation

greatly simpli�es the task of evaluating LCW, as we will discuss in Section 4.5.

Nearly all the of results we report using simulated UNIX worlds are identical

to the results we would obtain if xii were executing in an equivalent, real

UNIX environment.

11

11

The one exception is the report of total time in Figure 2, which does not reect the

time required to execute actions in a UNIX shell. However, the purpose of Figure 2

is to evaluate the impact of LCW on planning, not to measure the performance of the

Internet Softbot. Based on earlier experiments in this domain (see [22]), it seems likely

that accurately reporting execution time would only make our results stronger, since,

without LCW, xii spends a greater percentage of its time executing actions, and execution

is expensive.
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4.2 The Simulation Environment

The simulation environment consists of a current world state w

s

, represented

as a database, which completely speci�es the state of all �les and directories

in the simulation, and an execution procedure that translates an action to

be executed into the appropriate queries and updates on w

s

. In our exper-

iments, w

s

contains up to 80 directories, each directory holding between 5

and 20 �les. The topology of the directory tree is random, each directory

containing at most �ve other directories. Filenames are all of the form dir1,

file2, etc. Other �le attributes, such as size and file.type, are chosen

randomly. Although w

s

doesn't model every aspect of UNIX, it is complete

relative to every action that could be executed in service of the test suite.

The execution procedure simply computes a mapping from an action

to database operations on w

s

. This mapping is trivial; all the required

information is contained in the e�ects of the action. For example, ls -la

dir3 determines, among other things, the size of each �le in dir3, so the

execution procedure handles the execution of ls -la dir3 by querying w

s

for

parent.dir(f, dir3) ^ size(f, n)

and updating M with the results. Similarly, since cd dir11 has the e�ect

current.dir(dir11), this update is done to w

s

as well as M.

4.3 The Goal Distribution

The test suite consists of a series of runs. At the beginning of each run, a

simulated world w

s

is randomly generated, and M and L are reinitialized.

A sequence of 30 goals is then randomly generated, and xii is given the

goals to solve one by one. M and L are left intact between goals, so for

each goal, xii has the bene�t of knowledge obtained in solving the previous

goals. After the 30 goals are completed, a new world is generated, M and

L are emptied, and the process is repeated.

Our goal generator creates either universally-quanti�ed or existentially-

quanti�ed goals. Quanti�cation aside, the two sets of goals are essentially

equivalent, and consist of �nding �les meeting certain properties, and per-

forming certain operations on them. The properties include filename,

parent.dir, word.count, file.type, and others. The updates include

compressing the �les, moving them to a di�erent directory, and �nding out

their size. A typical goal is \Compress all postscript �les in the directory

/dir0/dir1/dir21." In xii's goal language, we have:
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find-out (pathname(pd, "/dir0/dir1/dir21")) ^

8 file(f) in file.type(f, "postscript") ^

parent.dir(f, pd)

satisfy (is.compressed (f))

4.4 LCW Speed

The interesting questions regarding LCW speed are \How fast are queries

and updates on average?" and \How does the time vary as a function of the

length of the LCW formula and the size of L?" The answer to the �rst question

is that across the experiments we've run, queries have consistently averaged

about 2 milliseconds, while updates have been about 1.2 milliseconds. The

average is over 390,000 queries generated by xii in response to the randomly

generated problems described earlier.

In answer to the second question, Figure 1 shows query time as a function

of the length of the query and the size of the L database. The graph shows

the results for query sizes up to four conjunctions; larger queries don't occur

in our experiments. In fact, large queries are uncommon in our domain; even

queries with four conjuncts occur only as a result of user-supplied 8 goals.

The slow growth of query time as a function of jLj is due to the use of

hashing, as opposed to the more expensive linear-time search assumed in

our complexity analysis (Section 3.5). As mentioned earlier, updates are

even faster than queries on average. This is not surprising, as most updates

take time quadratic in jLj whereas queries are polynomial in jLj in the worst

case.

4.5 Completeness

Because our LCW machinery is incomplete, QueryLCW(�) may return \No"

when the agent does in fact have LCW(�). We refer to this event as an LCW

miss. Below, we explain how we measured the percentage of LCW queries

that result in LCW misses.

The problem of detecting LCW misses raises a thorny issue. LCW is a

semantic notion de�ned in terms of S, the in�nite set of possible world

states that are consistent with M. How can we measure, experimentally,

when the agent ought to have LCW, but does not? Comprehending the answer

to this question requires a deep understanding of the formal basis for LCW.

The de�nition of LCW in Section 2.2, combined with the fact that if ' 2 M
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Figure 1: CPU Time for LCW queries as a function of the size of the LCW

database L, and the number of conjuncts in the query. Experiments were run

on a Sun SPARCstation 20; vertical bars indicate 95% con�dence intervals.

Note that even as L grows large, the average query time is approximately

2 milliseconds. Over 90% of the 390,000 queries measured fewer than three

conjuncts.

then S j= ', implies that if LCW(�) then there is a one-to-one correspondence

between instances of � in w and in M. This one-to-one correspondence is

important because it can be tested experimentally.

Thus, to check whether QueryLCW(�) has resulted in an LCW miss, we

do the following: When QueryLCW returns \No," we check whether every

instance of � in the w

s

database in fact appears inM. If so, LCW is possible,

and we report that an LCW miss has occurred. Of course, this mechanism

can over-report LCWmisses. Although LCW(�) is possible, and QueryLCW(�)

failed, it may be that no sensing of � has taken place and we cannot expect

the agent's LCW database to imply LCW(�).

For example, if directory dir1 is empty, then bothM and w

s

will agree

on the extension of parent.dir(dir1, f), even if ls dir1 was never ex-

ecuted. But not knowing whether there are any �les in a directory that

happens to be empty is not the same as knowing that there aren't any, so

this case would be a false miss. We are able to eliminate some of these false
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misses, but not all of them. However, since we are trying to demonstrate the

success of our LCW machinery, we are content to be conservative and over-

state the number of LCW misses. In practice, this conservative approximation

had negligible impact on the results of our experiments.

In our experiments, fewer than 1% of the queries generated by xii result

in misses. The percentage of misses does not vary signi�cantly with the

amount of dynamism (measured as updates to w

s

/queries), or with the

percentage of Domain Growth or Information Loss updates that occur. We

varied the problem distribution so as to test the extreme points of each,

meaning the number of queries and updates of each type were each allowed

to range from 0% to 100% of all operations performed. However, dynamism

is not a measure of how much the world changes on its own (it doesn't), but

a measure of how much the softbot changes the world. Adding an adversary

that was allowed to make arbitrary changes to the world would no doubt

increase the miss rate substantially.

Answering the question of how often misses occur independent of the

xii planner and the Softbot domain is problematic, since we could construct

cases in which all LCW queries are misses, or none are. For example, suppose

we have a directory containing only postscript and T

E

X �les, and we have

LCW on the size of all �les in that directory. Suppose we then compress one

of the postscript �les. By the Information Loss Rule, the LCW we had on the

size of all the �les will be removed from L, whereas if our LCW machinery

were complete, it would retain LCW on the size of all T

E

X �les in the directory.

Now if all queries are of the form \Do I know all T

E

X �les in this directory?"

then every query will be a miss. Perverse cases like this one don't come up

in practice in our domain.

12

However, cases that are perverse in one domain

may be common in another.

4.6 Impact on Planning

We have shown that individual LCW queries are fast, but given that a sig-

ni�cant number of LCW queries are performed during planning, it is still

conceivable that LCW might slow the planner down. We show that this is

not the case, and that in fact it speeds planning considerably by reducing

redundant sensing operations. Figure 2 shows the performance of the xii

planner with and without LCW, solving a sequence of randomly generated

goals, withM and L initially empty. The planner runs faster with LCW even

12

This is due, in part, to the fact that failed LCW queries are likely to be followed by

actions that achieve the desired LCW.
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Figure 2: The massive improvement in the speed of the xii planner due to

LCW reasoning. Times indicated are CPU seconds on a Sun SPARCstation

20; vertical bars indicate 95% con�dence intervals. Each point on the X-

axis represents an average of 10 trials on randomly generated initial worlds.

Progression to the right along the X-axis shows the averaged planning time

on 30 randomly generated goals, given in sequence.

on the �rst goal, since it leverages the LCW information which it gains in

the course of planning. In subsequent goals, xii can take advantage of LCW

gained in previous planning sessions for an even more pronounced speedup.

Without LCW, the planner wastes an enormous amount of time doing re-

dundant sensing. The version of xii without LCW completed only 8% of the

goals before hitting a �xed time bound of 1000 CPU seconds. In contrast,

the version with LCW completed 94% of the goals in the allotted time. The

hypothesis tests for analyzing censored data, described in [15], demonstrate

that our results are statistically signi�cant.
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5 Future Work

Although we have relaxed the assumption of complete information, we still

assume correct information. Since we want our agents to cope with ex-

ogenous events, we are in the process of relaxing this assumption as well.

We are investigating two complementary mechanisms to solve this problem.

The �rst mechanism associates expiration times with beliefs. If an agent

has a belief regarding ', which describes a highly dynamic situation (e.g.

the idle time of a user on a given machine), then the agent should not keep

that belief in M for very long. Thus, after an appropriate amount of time

has elapsed, �('; T_ F! U) occurs automatically. Note that by the Infor-

mation Loss Rule, this update will cause LCW to be retracted as well. This

mechanism is e�ective when the belief about ' expires before ' changes in

the world. However, unless we have extremely short expiration times, we

cannot guarantee this to be the case in general.

Thus, an additional mechanism is required that enables the agent to

detect and recover from out-of-date beliefs. This is a harder problem, be-

cause it involves belief revision, rather than mere update. If executing an

action fails, and the action's preconditions are known, it follows that one

or more of the preconditions of the action were not satis�ed | but which

ones? A conservative approach would retract the ground literals satisfying

the action's preconditions from the agent's model. However, this approach

could discard a great deal of valuable information. We are investigating

more e�cient mechanisms.

Finally, we need to investigate increasing the expressive power ofM and

L. The introduction of negation into L, would enable us to express sentences

such as \I know the size of each �le in /kr94 except paper.tex," which

would make LCW update less conservative. For another example, suppose

that an agent was unfamiliar with the contents of the /kr94 directory, yet

executed chmod g+r * while in that directory. The reasoning mechanism

described in this paper is incapable of inferring that all the �les in /kr94

are group-readable.

13

The LCW sentence

LCW(parent:dir(f; /kr94) ^ group:protection(f; readable))

is not warranted because it implies that the agent is familiar with all the

group-readable �les in /kr94, which is false by assumption.

13

Indeed, this inference is only licensed when the agent is authorized to change the

protection on each of the �les in /kr94; suppose this is the case.
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We could represent the information gained from the execution of chmod

g+r * in /kr94 by introducing the following Horn clause intoM:

parent:dir(f; /kr94)! group:protection(f; readable)

The Horn clause represents the fact that all the �les in the directory /kr94

are group-readable, even though the agent may be unfamiliar with the �les in

/kr94. Although the mechanisms described in this paper don't allow Horn

clauses in the L, this example demonstrates that such an extension would

provide increased expressiveness. Future work should determine whether

this expressiveness comes at great computational cost in terms of LCW e�-

ciency.

6 Conclusions

This paper described a sound and e�cient method for representing, inferring,

and updating local closed world information (LCW) (e.g., \I know the size of

each �le in /kr94") over a restricted �rst-order theory of the sort used by

planning algorithms such as nonlin, tweak, and ucpop. To evaluate our

LCW machinery empirically, we incorporated LCW into the xii planner [22]

and measured its impact on the performance of the Internet Softbot [13]

under a wide range of experimental settings.

Building on the rich body of earlier work on circumscription, autoepis-

temic logic, and database theory, we have provided sound theoretical founda-

tions for closed-world reasoning in planners. Yet we have not had to sacri�ce

computational e�ciency. As our experiments in the Softbot domain show,

LCW queries require approximately 2 milliseconds, while LCW updates require

only 1.2 milliseconds on average. Our method has been tested inside the

xii planner, but it may be incorporated readily into other planning systems.

We hope our results will persuade planning researchers to do so.
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A Algorithms

The theorems presented in Section 2 illustrate the kinds of inference that

an agent can make concerning the closure of its partial model of the world.

Below, we provide concise pseudo-code descriptions of the actual algorithms

based on these theorems. We start with Query, a fast algorithm for deter-

mining the agent's belief in a ground conjunction.

function Query(�, M, L): 3-Boolean

1 let Result := T

2 let LCW := QueryLCW(�, M, L)

3 for each atomic conjunct ' 2 � do begin

4 if :' 2 M then return F

5 else if � 62 M then

6 if LCW then return F

7 else let Result := U

8 end(* for *)

9 return Result

The next algorithm, QueryLCW, determines whether a conjunctive LCW

statement follows from the agent's beliefs as encoded in terms of theM and

L databases.

function QueryLCW(�, M, L): Boolean

1 QLCW*(�, fg,M, L)

function QLCW*(�, Matches, M, L): Boolean

1 if �= fg then return T

2 else if � is ground and Mj=� or Mj=:� then return T

3 else for C 2 L do

4 for �

0

� (�[Matches) such that 9�;�

0

= C� do

begin

5 let NewMatches :=Matches [ �

0

6 if jNewMatches j > jMatches j then

7 if QLCW*(�� �

0

, NewMatches,

M, L) then return T

8 end (* for *)

9 if Matches 6= fg and

8� 2 ConjMatch(Matches,M) QueryLCW(��,M, L) then

10 return T

11 else return F

Note that unlike Query, the QueryLCW algorithm allows variables in its
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� input. QueryLCW calls the QLCW* helper function which calls Conj-

Match in turn. ConjMatch(C,M) performs a standard conjunctive match,

returning a set of bindings, �, such that M j= C�.

We illustrate the operation of QueryLCW with the following simple ex-

ample. Suppose we have:

L = fparent.dir (f1, d1),

length (f2, l2)g

M = fparent.dir (foo, root),

parent.dir (bar, root),

length (small, 5),

length (big, 90000),

protection(small, readable)g

There are only two �les, small and big, and one directory called root.

The agent knows the lengths of all �les, and also knows that �le small

is readable. We pose the query to the agent: \Do you know the parent

directory and read permission of all �les of length 5?"

We call QueryLCW on parent.dir (f, d) ^ length (f, 5) ^ protection

(f, readable). QLCW* is called with � = parent.dir (f, d) ^ length (f,

5) ^ protection (f, readable) and Matches = fg. In the �rst iteration of

the loop at line 3, C = parent.dir (f1, d1). At line 4, �

0

= parent.dir (f,

d), and at line 5, NewMatches = fparent.dir (f, d)g. jNewMatches j >

jMatches j, so QLCW* is called recursively, withM and L unchanged, but

� = length (f, 5) ^ protection (f, readable) andMatches = fparent.dir

(f, d)g. The �rst iteration through the loop at line 3 doesn't result in any

additional matches. The second iteration through the loop, C = length

(f2, l2), �

0

= length (f, 5). NewMatches = fparent.dir (f, d), length

(f, 5)g. jNewMatches j > jMatches j, so QLCW* is once again called re-

cursively, this time, with � = protection (f, readable) and Matches =

fparent.dir (f, d), length (f, 5)g. There are no new matches in L to the

query, so the loop at line 3 terminates without any new calls to QLCW*.

The test at line 9 is true, since Matches is non-empty and a conjunctive

match betweenMatches andM results in � = ff/small, d/rootg. The call

to QueryLCW(protection (small, readable), M, L) succeeds (line 2 of

QLCW*) because the query is ground and entailed byM. The return value
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of T is propagated through all the previous calls to QLCW*, and returned

by the original call to QueryLCW, indicating that the parent directories of

all readable �les of length 5 are known.

Theorem 14 (Soundness) Let M be a set of consistent ground literals

and let L be a set of LCW formulae such that every 	 2 L is a positive

conjunction. If QueryLCW(�, M, L) returns T then LCW(�).

Since the pseudo code for the update algorithms is substantially more

complex we omit it here, but it is available from the authors upon request.

B Proofs

In many of the following proofs we rely on the following two facts:

� L contains only positive sentences.

� The variable substitution � maps a sentence � to a ground sentence

��. Thus, once the truth value of �� is known, we have LCW(��).

Proof of Theorem 1 (Instantiation Rule) Let � be a logical sentence

and suppose LCW(�) holds. Let � be an arbitrary substitution; we need

show that LCW(��) holds. I.e., by de�nition of LCW (Equation 1) we need

show that for all substitutions, �, either S j= ��� or S j= :���. But since

the composition �� of substitutions is a substitution, and since LCW(�) we

conclude LCW(��). 2

Proof of Theorem 2 (Conjunction Rule) Let � and 	 be logical sen-

tences and suppose LCW(�) and LCW(	). Let � be an arbitrary substitution.

We need show [S j= (� ^ 	)�] _ [S j= :(� ^ 	)�] Now, if S j= (� ^ 	)�,

then the proof is complete; so instead assume that S 6j= (� ^ 	)�. This

implies that either S 6j= �� or S 6j= 	�. Without loss of generality, as-

sume that S 6j= ��. Since LCW(�), we conclude S j= :��. But then clearly

S j= :�� _ :	� which means that LCW(�^ 	). 2
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Proof of Theorem 4 (Composition Rule) Let � and 	 be logical

formulae and suppose LCW(�) and 8�;S 6j= �� _ LCW(	�). Let � be an

arbitrary substitution. We need to show [S j= (�^	)�]_ [S j= :(�^	)�].

If S j= (� ^ 	)�, then the proof is complete; so instead assume that S 6j=

(� ^ 	)�. Since LCW(�), either S j= �� or S j= :��. If S j= :��, then

clearly S j= :�� _ :	�, and the proof is complete. If S j= �� then S 6j= 	�

(otherwise, S j= (� ^ 	)�). Furthermore, S j= �� implies LCW(	�) (given),

so S j= :	�. Thus S j= :�� _ :	�, which means that LCW(�^ 	). 2

Proof of Theorem 3 (Disjunction Rule) Follows trivially from the

de�nition of LCW and Theorem 2. 2

Proof of Theorem 5 (Information Gain Rule) It su�ces to prove that

for any formula, �, and literal, ', if LCW(�) holds before action A is executed

and the sole e�ect of A is �('; U! T _ F), then LCW(�) still holds. Suppose

LCW(�) holds and let � be an arbitrary substitution. By Equation 1, we

know that [S j= ��] _ [S j= :��]. Since A has only observational e�ects,

S � S

0

. As a result, for any formula 	 if S j= 	 then S

0

j= 	. Thus, clearly

[S

0

j= ��] _ [S

0

j= :��]. 2

Proof of Theorem 6 (Function Rule) Let A be an action that has no

e�ects other than �(P (c); U! T) for some constant c and some predicate

P where

8z; yP (z) ^ P (y) j= (z = y) (5)

We need show that LCW(P (x)); in other words, we need show that for an

arbitrary substitution �, [S j= P (x)�] _ [S j= :P (x)�]. If � maps x to c,

then S j= P (x)� because M j= P (c) and M is correct. If � does not map

x to c then, by Equation 5 S j= :P (x)�. Either � maps x to c or not, so

LCW(P (x)). 2

Proving the next two theorems requires commitment to a formal action

semantics. Here we sketch an extension to adl, Pednault's [39, 38, 37] state-

transition model of conditional and universally quanti�ed actions, to handle

incomplete information. Formally, each action is modeled as a pair, hC;Oi,

denoting its causational and observational aspects. Following adl [38, p.

357], we de�ne the causational e�ects, C, of an action as a set of pairs

hs

i

; s

j

i | execution of the action in world state s

i

yields state s

j

.

14

14

If executed in a state which does not appear as the left member of a C pair, the result

of execution is an error.
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As mentioned earlier, we model an agent's incomplete knowledge of the

actual world state, w, with the set of states S. Since we assume correct

information, w 2 S. If an agent has incomplete information, then after

executing the action it can only conclude that the world is a member of the

image of C on S: fs

j

j hs

i

; s

j

i 2 C ^ s

i

2 Sg.

When the C pairs denote a function, then the e�ect of execution is

unique, but if C speci�es a relation (i.e., two pairs share a �rst element),

then the e�ect of execution is uncertain. Even if the exact initial state is

known, precise prediction of the unique �nal state resulting from execution is

impossible with this action model. Flipping a coin and executing compress)

are good examples of actions that require relational C. In contrast to ac-

tions which increase uncertainty, if an action's C pairs denote a nonsurjective

function, then execution can decrease uncertainty. For example, executing

rm * reduces the size of S if the contents of the current directory were not

known at the time of execution.

Pednault's theory also needs to be extended to handle information gath-

ering actions, i.e. e�ects which change S without changing w. For example,

suppose that �=turned.on(light53) denotes that the light is on, but S

neither entails � nor :�. The act of scanning the room with a TV camera

and �nding � is false doesn't change the world state, but it does allow dis-

carding from S any state s which entails �. Syntactically, we describe this

action with a uwl observe postcondition [12], but semantically we model

the observational e�ects, O, of an action as a partition over all possible world

states. If two states are in di�erent equivalence classes, then the action's ob-

servational e�ects distinguish between them. In other words, O speci�es the

discriminatory power provided by the execution system | at run time, the

execution system reports which equivalence class resulted. Actions with no

observational e�ects can be modeled with O specifying a single equivalence

class. The action of detecting whether the light is on (described above)

yields a partition with two classes: states entailing � and those entailing

:�. More generally, if A = hC;Oi is an action and S denotes the agent's

knowledge of the world state, and w 2 S is the actual world state, then

after executing A the actual world state will be w

0

where hw;w

0

i 2 C and

the agent's state set, S

0

will be:

fs

j

j hs

i

; s

j

i 2 C ^ s

i

2 S ^ 9O 2 O; w

0

; s

j

2 Og (6)

For example, if S = fs

1

; s

2

g, C = fhs

1

; s

3

i; hs

2

; s

4

ig and O = ffs

1

; s

4

g; fs

2

; s

3

gg

then by executing the action, the agent should be able to deduce complete
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information: either S

0

will equal fs

3

g or S

0

will equal fs

4

g.

We close by noting that the hC;Oi pairs are only a semantic construct.

Since there may be an in�nite number of these pairs, pragmatics dictates

that we describe the actions with a convenient (e.g. �nite) syntax. A precise

de�nition of the mapping between the syntactic constructs of uwl [12] and

the hC;Oi pairs is lengthy, but straightforward. For example, suppose B de-

notes the extension of block(x) and a spray-paint action has a universally

quanti�ed causational e�ect, 8x 2 B green(x) then green must be true

of every block in every state s

j

present in a hs

i

; s

j

i pair in C. Universally

quanti�ed observational e�ects have a similar interpretation. The UNIX ls

-a /kr94 command, for example, provides complete information about all

�les in the /kr94 directory. This corresponds to a hC;Oi pair in which each

equivalence class in O contains states that agree on the extension of the

parent.dir predicate so long as /kr94 is given as the second argument:

8O 2 O 8s

1

; s

2

2 O 8f

if s

1

j= parent.dir(f; /kr94)

then s

2

j= parent.dir(f; /kr94) (7)

More generally, suppose actionA has a single e�ect, namely a universally

quanti�ed uwl observational e�ect of the form \8x when Q(x) then observe

whether P(x) holds or whether :P(x) holds." Action A corresponds to the

pair hC;Oi in which C denotes the identity relation (since the action has

only observational e�ects, and each O 2 O satis�es the following equation:

8s

1

; s

2

2 O 8c

if s

1

j= Q(c) ^ s

2

j= Q(c)

then (s

1

j= P(c)), (s

2

j= P(c)) (8)
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Proof of Theorem 7 (Causal Forall Rule) Let A = hC;Oi be an action

whose execution leads solely to an update of the form �(P(x);F_ T _ U! T)

8x such that Q(x) and suppose that LCW(Q(x)). Suppose that A can be

legally executed in every state in S, and let w

0

and S

0

denote the result of

executing A. Since the only e�ect of A is on P, forall � if s

i

j= Q(x)� and

hs

i

; s

j

i 2 C then s

j

j= Q(x)�. Combining this with the assumption LCW(Q(x))

yields

[S

0

j= Q(x)�] _ [S

0

j= :Q(x)�] (9)

Note that only a universally quanti�ed causational e�ect of A can account

for the quanti�ed update �(P(x); F_ T _ U! T). Thus, forall hs

i

; s

j

i 2 C if

s

i

j= Q(x)� then s

j

j= P(x)� and hence s

j

j= (P(x) ^ Q(x))�. Combining this

with Equation 9 yields

[S

0

j= (P(x) ^ Q(x))�] _ [S

0

j= :Q(x)�]

Since :Q(x) entails :(P(x)^ Q(x)), we conclude that LCW(P(x)^ Q(x)) holds

and the update L

0

:=L [ fP(x) ^ Q(x)g is sound. 2

Proof of Theorem 8 (Observational Forall Rule) Let A = hC;Oi

be an action whose execution leads solely to an update of the form 8x

such that Q(x) �(P(x); U! T _ F). Furthermore, assume that LCW(Q(x)).

Suppose that A can be legally executed in every state in S, and let w

0

and

S

0

denote the result of executing A. As before, we conclude that Equation 9

holds. In this case, however, note that since the only � for P was from truth

value U, only a universally quanti�ed observational e�ect can account for

the �. By Equation 6 all states in S

0

must be a subset of one equivalence

class O 2 O. Combining this with Equation 8 and Equation 9, allows the

conclusion that forall substitutions � of x, either S

0

j= (P(x)^ Q(x))� or else

S

0

j= :Q(x)�. But if S

0

j= :Q(x)� for a speci�c � then S

0

j= :(P(x) ^ Q(x))�

for that speci�c substitution. Hence we have LCW(P(x)^ Q(x)) and thus the

update is sound. 2
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Proof of Theorem 9 (Information Loss Rule) Let � be a conjunction

of positive literals and suppose that LCW(�). Let ' be a positive literal and

let A be an action whose execution leads solely to an update of the form

�('; T _ F! U). To prove that the Information Loss Rule is sound in this

case, we need to show that if LCW(�) no longer holds after executing A then

� 2 REL(') (the set of beliefs removed from L), hence the update correctly

recognizes that LCW has been lost, and L remains conservative. Suppose

that LCW(�) doesn't hold after executing A; then there exists a substitution,

� such that [S

0

6j= ��] ^ [S

0

6j= :��] even though [S j= ��] _ [S j= :��].

Note that since � is conjunctive, � = �

1

^ : : :^ �

n

. There are two cases:

1. (S j= ��). So forall �

i

2 � we know that S j= �

i

�. But since S

0

6j= ��

there exists �

j

such that S

0

6j= �

j

�. Hence execution of A caused

�(�

j

�; T! U). But since we assumed that the only updates produced

by A were of a speci�c form, �

j

� = '. We conclude that � 2 PREL(').

2. (S j= :��). In this case we know that 9�

j

2 � such that S j= :�

j

�

yet S

0

6j= :�

j

�. As above, the restriction on � allows us to conclude

that �

j

� = ' and � 2 PREL(').

To show � 2 REL('), we now need argue that 8�

i

2 (���

j

);M[L 6j= :�

i

�.

Suppose that this is not the case and M[L j= :�

k

� for some k 6= j. Since

M and L are conservative, S j= :�

k

� as well. Furthermore, since the

only change a�ected by action A had � restricted to '

j

, we know that

S

0

j= :�

k

�. But since the falsity of a single conjunct entails the falsity of

the whole conjunction (and � = �

1

^ : : :^ �

n

), we conclude that S

0

j= :��.

But this contradicts our assumption that A destroyed LCW(�). So it must

be the case that 8�

i

2 (�� �

j

);M[L 6j= :�

i

�. Thus � 2 REL('). 2
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Proof of Theorem 10 (Domain Growth Rule) Let � be a conjunction

of positive literals and suppose that LCW(�). Let ' be a positive literal and

suppose A is an atomic action whose only e�ect is �('; F! T). Suppose that

LCW(�) no longer holds after executing A; then there exists a substitution,

� such that [S

0

6j= ��] ^ [S

0

6j= :��] even though [S j= ��] _ [S j= :��]. A

case analysis on the these disjuncts (as in the proof of Theorem 9) yields

that 9�

j

2 � such that �

j

� = ' and that � 2 PREL('). The contradiction

argument from that proof also extends to show that � 2 REL('). Now note

that after execution of A, we have LCW(�

j

�) (since we know that ' changed

to T), but by assumption not LCW(��). Therefore, by the contrapositive of

Theorem 2 (Conjunction Rule), :LCW((���

j

)�). This leads to � 2 MREL(').

2

Proof of Theorem 11 (Domain Contraction Rule) Let ' be a positive

literal and suppose A is an action whose only e�ect is �('; T! F). To show

that the update rule is sound, it is su�cient to prove that for any conjunction

of positive literals, � = �

1

^ : : : ^ �

n

, if LCW(�) holds before executing A

then LCW(�) holds after executing A. If LCW(�) holds before execution then,

for arbitrary �, we know that [S j= ��] _ [S j= :��]. We need to show that

after executing A [S

0

j= ��]_ [S

0

j= :��]. Suppose, on the other hand, that

[S

0

6j= ��] ^ [S

0

6j= :��]. But since the � e�ected by A only made more

atomic formulae false, S 6j= :��. Since LCW(�) holds before executing A, it

follows that S j= �� which means that S j= �

i

� forall �

i

2 �. Now if ' 62 �

then S

0

j= �� (since the truth will be unchanged). So it must be the case

that ' 2 � but that means S

0

j= :��. Either way there is a contradiction.

2
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Proof of Theorem 12 (Minimal Domain Growth) Let ' be a positive

literal and let A be an atomic change whose only e�ect is �('; T_ F! U).

Suppose � 2 REL('). We need to show that LCW(�) does not hold after A

has occurred. Thus it su�ces to show that there exists a � such that S

0

6j= ��

and S

0

6j= :��. Since � is conjunctive, the de�nition of PREL(') dictates

that there exists � 2 � such that �� = '. Since the only change from w to

w

0

is that ' changed its value from true or false to unknown, and since from

the de�nition of REL('), we also have 8�

i

2 (���);:(L^M j= :�

i

�), i.e.

all other conjuncts may be true in w, it follows that �� may be true in w

0

.

Let M

0

denote the state ofM after the update due to A, and let S

0

denote

the possible states of the world after the update due to A. Since �� may be

true in w

0

, we have that S

0

6j= :��. Furthermore, since M

0

6j= ',M

0

6j= ��,

and thus S

0

6j= ��. Therefore, LCW(�) does not hold. 2

Proof of Theorem 13 (Minimal Domain Growth) Let ' be a positive

literal and let A be an atomic change whose only e�ect is �('; F! T). We

need show that if � 2 MREL(') then LCW(�) does not hold after A has

occurred. Since � is conjunctive, the de�nition of PREL(') dictates that

there exists � 2 � such that �� = '. Since � 2 REL('); we know that ��

may be true in w

0

. So, S

0

6j= :��. Since � 2 MREL('), we conclude that

:LCW((�� �)�), meaning that for some  2 �;  � 62 M

0

. Hence M

0

6j= ��,

and since � contains only positive literals we can conclude that S

0

6j= ��.

Therefore, LCW(�) does not hold. 2
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Proof of Theorem 14 Soundness of QueryLCW We use induction on

the number of conjuncts in �.

Case j�j = 0: An invocation of QueryLCW induces a call to QLCW*

where line 1 returns T. This is correct, because the null clause (i.e., a

ground query with zero conjuncts) is unsatis�able by de�nition. Since every

state agrees that the null clause is false, Sj=:� and hence LCW(�).

Case j�j = k � 1: If QLCW* returns T, it must have terminated on

line 2, 7 or 10. But line 2 only returns true when all ground instantia-

tions, namely � itself, are entailed by M. This corresponds directly to

the de�nition of LCW. Line 10 will only return T under conditions matched

by the Composition Rule which is sound by Theorem 4. Suppose instead

that QLCW* terminated on line 7. In this case, � equals the conjunction

of two formulae: �

0

and � � �

0

. Since line 5 checks the conditions of the

Instantiation Rule, Theorem 1 guarantees LCW(�

0

). Since �

0

is nonempty,

the inductive hypothesis guarantees LCW(�� �

0

). So the Conjunction Rule

(Theorem 2) guarantees LCW(�). Since these are the only termination points

for QueryLCW, the algorithm is sound. 2
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