
Simultaneous Place and Route

for Wire-Constrained FPGAs

Darren C. Cronquist

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

Technical Report 95-03-01

March, 1995



Simultaneous Place and Route for Wire-Constrained FPGAs

Darren C. Cronquist

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

Abstract

Simulated annealing placement algorithms which use minimumwire length metrics based on

rectilinear approximations fail to accurately account for an FPGA's routing resources since the

number of logic block interconnections could be limited, causing certain placements to rely on

resources which may not exist. In this paper we present a simulated annealing-based placement

algorithm which performs a simple but e�ective route after each swap. We will show that,

on wire-constrained FPGAs, our algorithm is a better evaluator for a given placement than

the faster wire length metrics. In particular, on the Triptych 3-input RLB 4 � 16 array the

algorithm achieves �nal delays ranging from 3.5% to 21.5% faster than delays yielded by a cost

function tailored for the architecture. In addition, the algorithm demonstrates its adaptability

by producing even better results on the most recent variant of the Triptych architecture. Finally,

we will show that our method can be implemented without an unreasonable increase in execution

time.

1 Introduction

A �eld programmable gate array (FPGA) consists of an array of con�gurable logic blocks linked

via a prede�ned but programmable interconnect. Most of today's FPGA tools separate the func-

tions of technology mapping, placement, and routing into self-contained programs, despite the fact

that their success is highly dependent on one another. To take advantage of this interdependency,

research has focused on merging these tools into one cohesive unit. In 1991, Beetem introduced a

Penalty-Driven Iterative Improvement scheme for simultaneously placing and routing FPGAs con-

taining cells used for both logic and routing [1]. In 1992, Schlag et al. presented a routability-driven

algorithm for technology mapping of LUT-based FPGAs [9]. In 1993, Nag and Roy introduced an

incremental placer for row-based FPGAs which analyzes post-layout timing and routability in-

formation to obtain better placements [8]. In 1994, Togawa et al. proposed a method for the

simultaneous place and route of symmetrical FPGAs based on hierarchical bi-partitioning [13].

This paper introduces a simulated annealing based placement algorithm for wire-constrained FP-

GAs which uses fast but informative routes during placement to incorporate wirability information

into the cost function.

Simulated annealing, introduced by Kirkpatrick et al. in 1983 [5], is an algorithmic technique used

to solve optimization problems. Applications of this process to placement have been well-studied

[11] and have been shown to produce good results at the cost of long run times. To implement

a simulating annealing-based placement algorithm, a cost function that accurately evaluates the

routability of a given placement must �rst be determined. Then, a random perturbation of the

1



current state, such as the swapping of two logic blocks, produces a proposed solution which is

either accepted or rejected according to an acceptance function. A commonly used function for

acceptance is e

��C=T

where �C is the change in cost and T , the temperature, is a control variable.

To obtain a low-cost solution, the temperature is initially set to a high value, allowing almost all

placements, including those with a high cost increase, to be accepted. As the temperature slowly

decreases, a lower acceptance rate forces some cells to become �xed in a good location on the array.

At very low temperatures, almost all cells are stationary and only solutions which do not increase

the cost are accepted. The simulated annealing algorithm produces close to optimum results since

it explores the state space of a problem without becoming trapped in local minima. By the time

the temperature reaches zero, a value close to the global minimum is reached. As a matter of fact,

with a properly chosen cooling schedule and a su�cient amount of execution time, the simulated

annealing process is guaranteed to yield a global minimum [7].

Success of a simulated annealing-based placement algorithm is dependent on the cost function's

ability to accurately evaluate the routability of the current placement. The optimal method would

be to perform a detailed route for every proposed placement to determine such factors as congestion,

total wire length, and length of the critical path. Unfortunately, a typical anneal may involve

hundreds of thousands of swaps, and hence any computation done on a per swap basis must be

fast. As a result, most simulated annealing cost functions are based on quickly computed metrics

such as the total wire length or semiperimeter (approximates the cost of wiring a source to its set

of sinks by one half the perimeter of the enclosing rectangle). Not surprisingly, such simplistic cost

functions fail to take into account the complexity of the target architecture in terms of the location

and density of the routing resources. As a result, additional metrics often are incorporated into the

cost function to allow for better conformity to a particular architecture.

Our method performs a route on a per swap basis by constructing an approximation to the minimum

cost steiner tree linking a signal's required connections. The minimum cost steiner tree problem

can be phrased as follows: given a graph G = (V;E), a weight for each edge in E, and a subset T

of V , �nd a subtree of G containing all vertices in T such that the sum of the edge costs in the

subtree is a minimum [14]. The set of points in this subtree are steiner points and will be denoted

by S. Karp proved this problem to be NP-hard for undirected graphs [4], and hence no polynomial

time solution is known to exist. Since an undirected graph is a special case of a directed graph, the

problem remains NP-hard for directed graphs.

2 Simultaneous Place and Route

Routing on a per swap basis yields information about which wires in the current placement have

the highest demand for use. Since these congested wires directly e�ect routability, incorporating

a corresponding penalty into the placer's cost function better leads to routability. We propose

a simultaneous place and route algorithm which determines congestion information by approxi-

mating the minimum cost steiner tree. Our method is derived from Takahashi and Matsuyama's

polynomial time approximation algorithm to the minimum steiner tree problem [12] as described

in section 2.1. After discussing the directed graph model for representing the FPGA, we introduce

our modi�cations to this algorithm and describe the resulting cost function metrics in section 2.3.

2



Finally, sections 2.4 and 2.5 examine methods for improving the running time and make compar-

isons to the semiperimeter calculation. In our analysis of the running time for approximating the

minimum steiner tree, we let n = jV j, y = jSj, and z = jT j.

2.1 Minimum Cost Steiner Tree Approximation

In 1980, Takahashi and Matsuyama proposed an approximation algorithm for computing the mini-

mum cost steiner tree which guarantees a result within a factor of 2� 2=z of the optimum, where z

is the number of nodes which must be connected. Hence, for all z, this algorithm produces a steiner

tree whose cost is no worse than twice the minimum cost steiner tree. The complete algorithm is

presented in �gure 1 for an undirected graph G = (V;E), a set of required connections T , and an

initially empty set of steiner points S. By using Dijkstra's algorithm for computing the shortest

1. Move any node from from T to S.

2. Determine an (s; t) pair such that s 2 S, t 2 T , and there

exists a path from s to t which is minimum over all pairs.

3. Add to S all vertices along a minimum path from s to t and

remove t from T .

4. If jT j > 0 then goto 2.

Figure 1: Approximating a Minimum Cost Steiner Tree

paths, the algorithm can be completed in O(zn

2

) time.

2.2 The Architecture Description

An FPGA's architecture is speci�ed via a directed weighted graph G = (V;E) of the routing

resources. Each node in V represents a wire in the array, and each edge in E represents a possible

connection (typically via a programming bit). In addition, each node has a non-negative weight

representing the cost of using the wire during the search for shortest paths (discussed in section

3.1). The architecture description also de�nes the height and width of the array and speci�es which

wires represent inputs and outputs (for logic blocks and pads).

2.3 The Routing Algorithm: MST-SPAR

The MST-SPAR (Minimum Steiner Tree - Simultaneous Place and Route) algorithm constructs an

approximation to the minimum steiner tree for each signal's network { its source wire and set of sink

wires. For a particular placement, every signal in the array has a unique source wire (a global input

pad or logic block output) and a list of sink wires (global output pads, logic block inputs). This

collection of wires is the set of required connections, T . Because these connections have to be valid

for a given circuit, at least one path must exist from a signal's source wire to each of its sink wires.

Then, to guarantee reachability between the S and T sets, the �rst step in �gure 1 is modi�ed

to move the unique source wire from T to S instead of an arbitrary node. In addition, during

3



the construction of the steiner set S, MST-SPAR maintains a count on the number of conicts {

di�erent signals sharing the same wire { in the entire array. Now, when multiple minimum paths

exist between the S and T sets, the tie-breaker becomes the path with the fewest conicts in its

�rst wire (�nding the path with the minimum conicts over all wires would increase the run time

by a factor of y). The complete algorithm is presented in �gure 2.

Delete current steiner set S for sig, decrementing conicts.

Let S contain solely the source wire of sig.

Let T equal the set of sink wires of sig.

Repeat

Find wires s 2 S and t 2 T with a least conicted minimum path over all pairs.

Insert each wire along this path into S, incrementing conicts.

Remove t from T .

Until T is empty

Figure 2: MST-SPAR Algorithm for Signal sig

The process of creating steiner trees yields two valuable cost function metrics. The Resources is

the total wire length of all steiner trees and is comparable to a semiperimeter calculation (which

attempts to estimate the size of a network's wire length). The other metric, the Sharings, is the

total number of wire conicts and helps analyze the local routability of the array. Both of these

measures are incorporated into the cost function to provide an accurate assessment of the overall

routability (section 3.3 discusses a possible cost function). Since the �nal placement is handed o�

to a delay-optimizing router, the number of �nal conicts does not have to be zero. The goal of

MST-SPAR is not to produce a routed placement but instead a routable placement. However, if

the number of wire conicts happens to be zero, and if the timing constraints happen to be met,

then the router need not be run.

In many ways, the shortest path constraint on routing a node in S to a node in T may seem

counter-intuitive, primarily since the placer is unable to balance wire usage by routing around highly

congested areas. Instead, it forges ahead along shortest paths creating wire conicts. However, the

key to MST-SPAR is that the annealing process, not the routing, relieves this congestion by �nding

placements which reduce the cost and hence have fewer conicts.

As with Takahashi and Matsuyama's algorithm, the running time of MST-SPAR is O(zn

2

). Unfor-

tunately, a typical FPGA description contains so many nodes that this computation is too expensive

to be performed on a per swap basis. Hence, in the next section we show how the running time

can be reduced by precomputing the shortest paths.

2.4 Improving the Running Time

Since the FPGA's routing structure is represented as a directed graph with nonnegative weights

(section 2.2), the shortest paths from a node to a set of sink nodes can be computed via Dijkstra's

algorithm. Moreover, because these shortest paths are �xed, a table of shortest paths from every

node to every sink node can be precomputed prior to placement. As a result, the placer can build

4



the steiner tree faster by indexing this precomputed table of shortest paths. Now, selecting the

least conicted minimum path can be done by looking at all pairs (s; t) such that s 2 S and t 2 T

in O(yz) time. Thus, the algorithm is reduced from O(zn

2

) to O(yz

2

). This improvement can be

quite substantial since a typical signal has both y � n and z � n. In section 3.2, the amount of

resources required to precompute the minimum paths is parameterized in terms of the height and

width of the array.

2.5 Comparison to the Semiperimeter Algorithm

The great advantage of the semiperimeter method is its simplicity. To determine the perimeter

of a rectangle enclosing the source and sink wires, only one pass needs to made over the list of

wires while the minimum and maximum coordinates are determined. The perimeter can then be

computed directly. Hence, the semiperimeter method is O(z), which is O(yz) times faster than

MST-SPAR.

3 Algorithm Implementation

Prior to applying MST-SPAR to a speci�c architecture, several steps of preparation must be com-

pleted. First of all, a �le containing a directed weighted graph of the FPGA's routing resources

(section 2.2) is created. Determining weights for the nodes in the graph is discussed in section 3.1.

Next, this graph is used to build a table of shortest paths from every wire to every sink (section

3.2). Finally, the best algorithmic parameters are determined in order to produce a cost function

closely associated with the routability of the speci�ed architecture (section 3.3).

3.1 Choosing Node Weights

The architecture description speci�es a weight for every wire in the FPGA in order to give the

placer information about the cost of using a particular node in the graph. This weighting can

be used in situations in which a preference needs to be given to certain wire types. It may try

to predict the real delay of using a particular wire in an attempt to reduce the critical path.

For example, if a long wire spanning 8 blocks has more transmission gate fanouts than a wire

connecting two adjacent blocks, the real-time delay of using the long wire would typically be higher.

Hence, an architecture description with a higher weight on long wires than on nearest neighbors

would encourage the placer to prefer the low-delay connections. Another possibility is having the

weightings deter certain routes. For example, an architecture may have some wires which should be

used only when absolutely necessary, such as a bus-based FPGA in which at least one logic block

input is restricted to nearest neighbor connections. If a required signal is not produced at a nearest

neighbor, a potentially costly logic block route-through is permissible. Thus, heavily weighting the

route-through wires prevents their use in a steiner tree unless necessary.

5



3.2 Storing the Shortest Paths

Although the computation of the shortest paths is potentially time consuming, it can be performed

once for an architecture description and then stored in a binary �le. The size of this �le depends

on the array's dimensions, wire count, symmetry, and functional unit input permutability. The

following analysis of the resources required for the shortest paths assumes a generic Width�Height

array with x-inputs per functional unit and ignores the pad structure. We de�ne the following:

Storage is the total amount of bytes required on disk or in memory, Wires is the total number of

wires in the FPGA, and Sinks is the number of sink wires in the FPGA. Since minimum paths

from all nodes to all sinks must be stored,

Storage = C

1

WiresSinks,

where the constantC

1

is the number of bytes of storage required for each source/sink pair. Assuming

one functional unit per logic block, the number of sink wires is

Sinks = x(Width)(Height).

Finally, the total number of wires is simply

Wires = C

2

(Width)(Height) +B

c

Width+ B

r

Height,

where C

2

is the number of wires per logic block, and B

r

and B

c

are the number of bus wires per

row/column respectively. If all variables are constant except the array dimensions, then

Storage = O(Width

2

Height

2

)

with a constant of xC

1

C

2

on the Width

2

Height

2

term. For our experiments on the Triptych

architecture (described in section 4.1), C

1

= 6, C

2

= 15, and x = 3. Hence the amount of resources

required is approximately 270Width

2

Height

2

bytes. Thus, a 4� 16 array requires approximately

a megabyte of disk and memory while an 8 � 64 array requires over 65 megabytes! Fortunately,

by taking advantage of architecture speci�c attributes, the resources required can be signi�cantly

reduced. For example, for LUT based architectures, the inputs to a function can be interchanged

by modifying the function computed by the LUT. Hence, using one sink per LUT reduces the

resource requirements by a factor of x. In addition, many FPGAs have symmetries within the

architecture making the computation of the shortest path from every wire to every sink redundant.

For example, if an architecture is symmetric along any diagonal, horizontal, or vertical bisector, the

storage requirements are cut by a factor of 2. For the Triptych architecture, the LUT optimization

was performed, yielding a minimum paths �le consuming approximately a third of a megabyte.

3.3 Selecting a Cost Function Based on Resources and Sharings

Our experiments with MST-SPAR have shown that a simple linear combination of the global

metrics Resources and Sharings produces an e�cient cost function. Thus, the total cost of a given

6



placement is denoted by:

Cost = w

r

Resources+ w

s

Sharings

where the constants w

r

and w

s

are the resource and sharing weightings respectively. In some sense,

these values de�ne a trade-o� between reducing wire usage and reducing wire conicts. For example,

if w

s

=w

r

= 5, the placer can reach a state equivalent in cost to its current placement by performing

a series of swaps which eliminates one conict while consuming �ve more wires. Alternatively, it

could reduce the wire usage by �ve at the cost of creating one wire conict. Because this trade-o� is

dependent on the amount and location of wires, the optimal values for w

r

and w

s

are architecture

dependent. The best w

s

to w

r

ratio for Triptych was found to be between 2 and 4. For the

experiments in section 4, we use w

s

=w

r

= 3.

4 Experimental Results

The performance of MST-SPAR is examined on two variants of the Triptych architecture (described

in section 4.1). A relative performance is achieved by comparing the results of MST-SPAR's

placements and routes against results from two other algorithms based on quick wire-length metrics

(section 4.2). Tests are run on a variety of both combinational and sequential circuits with a wide

range on LUT utilizations (section 4.3). Section 4.4 discusses how each algorithm handles the global

inputs and outputs. Finally, sections 4.5 and 4.6 show results of experiments varying the target

architecture, the benchmarks, and the number of iterations per temperature drop (the run time)

for the three di�erent cost functions. Values for these parameters are chosen to reveal information

about routability, critical path delay, and running time.

4.1 The FPGA Architectures

FPGAs with a limited set of routing resources best illustrate the bene�ts of the MST-SPAR al-

gorithm. As a result, tests are run on two versions of a highly wire-constrained FPGA, Triptych

[2]. Both arrays are 4� 16, have 64 RLBs (routing and logic blocks), one 3-input LUT per RLB,

one latch per RLB, 16 vertical segmented buses in each column, and nearest neighbor connections.

The bottom four rows of a 4 � 16 is shown (without globalIO pads) in �gure 3. A key aspect of

the Triptych array is that every other logic block processes its inputs and outputs in a di�erent

direction. For example, the bottom left RLB in �gure 3 takes inputs from the left and produces

outputs on the right (in the direction of the arrows), while its northern and eastern neighbors do

the opposite. Since there are no horizontal buses, this architecture relies on the RLBs to be used as

routing resources by \routing-through" signals (i.e. any signal, even one not required by the LUT,

can enter and exit the RLB). The most wire-constrained version of Triptych was the original design

which provided only 3-inputs per RLB. Since the LUT mappings typically have an average number

of inputs close to three, the RLB inputs are often entirely dedicated to LUT signals, limiting the

ability to perform route-throughs. In addition to the original model, we run tests on the latest

version of Triptych which increases the route-through capability by adding an extra bus input and

7



(3,2)(2,2)(0,2) (1,2)

(3,1)(0,1) (1,1) (2,1)

(2,0)(0,0) (1,0) (3,0)

(1,3) (3,3)(0,3) (2,3)

Figure 3: Bottom 4 rows of Triptych 4� 16 3-input RLB array

output to each RLB. Throughout the remainder of this paper, the 3-input RLB Triptych array will

be referred to as TriptychV3 and the 4-input RLB array as TriptychV4.

4.2 Three Algorithms: Semi, Trip3, and MST-SPAR

For both test architectures, MST-SPAR is compared against two cost functions based on fast

wire-length metrics. The �rst, Semi, is a naive semiperimeter algorithm with no knowledge of

the directional nature of the Triptych array. The second is Trip3 { a cost function speci�cally

tailored for the Triptych 3-input RLB array by incorporating an architecture speci�c semiperimeter

calculation, density function, and local routability metric. In essence, this cost function preserves

precious routing resources in highly congested areas by spreading empty RLBs throughout the

array. All three annealers use a cooling schedule that performs a least squares approximation to

predict the largest temperature drop that lowers the average cost by no more than a standard

deviation [3]. A result of this method is that the number of iterations (swapings) per temperature

drop is directly related to the run time of the algorithm. Hence, in order to vary the run times,

the experiments parameterize the number of iterations. Once the three annealers have �nished, all

�nal placements are routed on a performance-driven negotiation based router [6].

Figure 4 shows three �nal placements for each of the three algorithms on the \squar5" ISCAS

benchmark (described in section 4.3). The leftmost grid shows how Semi, without knowledge of

the routing resources, simply tries to place all of the signals as close together as possible. As a

matter of fact, the entire right column of the array remains empty! In sharp contrast, the center grid

demonstrates how Trip3 spreads empty RLBs throughout the array to better provide for routability.

Finally, the rightmost grid shows how MST-SPAR achieves a combination of these two extremes

8



out1 [8] [15]

[20] [15] out4 [47] [13]

[31] [32] out2 [16] [37]

out3 [34] [36] [10] [22] out5 out5 [20]

[12] [8] out7 [47] [13] [16] nn10 [22] [29]

[29] [16] [45] [17] [34] [18]

nn10 out1 [44] [40] [37] out0 [17] out3

[18] [17] [42] [25] [41] [41] [25]

out0 [15] nn70 nn7 out6 [39] [34] nn70

[22] out5 [25] out3 [39] [42] [31]

out2 [13] out6 [29] out4 [32] [45]

[20] [10] [41] [12] [42] [36]

[47] [37] [40] [31] [36] out6 out7 [44] out2

out4 [39] out0 [44] [10] [12]

[18] [32] [45] [40] [8]

nn10 out7 out1

Figure 4: Three Final Placements: Left is Semi, Center is Trip3, and Right is MST-SPAR

by having several dense areas interspersed with empty RLBs. For the three anneals in �gure 4,

Semi's placement didn't come close to routing (the router's lowest number of wire conicts was

nine), Trip3's placement routed with a delay of 58.5ns, and MST-SPAR's placement routed with

a delay of 49.5ns. The placements shown in �gure 4 were the best (minimum delay) from four

separate runs each with a di�erent random seed.

4.3 Benchmarks

Since both of the target architectures have 64 3-input LUTs, benchmarks were chosen with LUT-

utilizations ranging from 21 used LUTs to 58 (table 1). These circuits were taken from ISCAS93

and mapped to 3-input LUTs with the synthesis tool SIS [10]. To ensure a quality mapping,

four di�erent SIS scripts were run on the benchmarks, each using combinations of script.algebraic,

script.rugged, and full simplify. The best mappings (fewest cells) were chosen for all circuits accept

s349d, s349f, s386a, s386f, and s386g. These �ve benchmarks were arti�cially created (using a

process based on the Fiduccia-Matteyses algorithm for partitioning) to produce benchmarks with

high LUT-utilizations.

4.4 Handling Global Inputs and Outputs

Our initial tests used a �xed assignment of global input and output signals to Triptych's pads.

Unfortunately, the Trip3 algorithm wasn't designed to take advantage of a �xed pad assignment.

Thus, in order to prevent the global inputs and outputs from skewing the results against Trip3,

no global signals are �xed prior to placement. Instead, pad assignments for all global signals are

determined by the router to best satisfy the routing constraints. Both MST-SPAR and Trip3

take advantage of this by assuming that the pads can take on any global signal. In Trip3 this is

accomplished by swapping both the logic block and pad signals during the annealing process. MST-

SPAR handles the unassigned pads by adding two arti�cial nodes to the graph: node GlobalInputs

9



Table 1: Benchmarks

Used Used Global Global Avg. Inputs

Benchmark LUTs Latches Inputs Outputs per LUT

pm1 21 0 16 13 2.52

x2 22 0 10 7 2.77

beecount 23 3 3 4 2.57

cu 25 0 14 11 2.64

mux 28 0 21 1 2.82

cmb 28 0 16 4 2.46

misex1 28 0 8 7 2.75

dk15 29 2 3 5 2.79

sqrt8 31 0 8 4 2.81

squar5 34 0 5 8 2.79

bbara 36 4 4 2 2.64

ex4 38 4 6 9 2.58

s386a 42 3 12 7 2.86

opus 45 4 6 6 2.71

misex2 48 0 25 18 2.75

s349d 50 11 6 10 2.72

s349f 55 13 8 9 2.71

s386f 56 4 12 7 2.80

f51m 56 0 8 8 2.70

s349g 58 13 10 10 2.64

fans-out to all of the global input pads while node GlobalOutputs is a fanout of all of the global

output pads. Prior to running MST-SPAR, all global input signals are given GlobalInputs as a

source node, and all global output signals are given GlobalOutputs as a sink node (these assignments

induce no conicts). As a result, MST-SPAR gives a preference for pad assignments by �nding a

placement which yields a low number of pad conicts. However, as with Trip3, the ultimate choice

for pads lies with the router. Unlike MST-SPAR and Trip3, Semi does not take advantage of the

uncommitted global IOs. Instead, when computing its bounding box, it simply ignores all nodes

associated with a global IO.

4.5 Results: Triptych 3-input RLB Array

We begin our tests with the highly wire-constrained TriptychV3 architecture (section 4.1). As an

initial experiment, we �x the number of iterations at 8192 and run tests on the �rst 13 benchmarks

in table 1. Each algorithm is executed four times with four random seeds on all benchmarks. For

the tests which routed, table 2 lists the average number of wires used per test, the average �nal

delay per test, and the minimum �nal delay over all tests (both in ns and normalized to MST-

SPAR). For the tests that failed to route, the average minimum number of conicts obtained by

the router is reported (a circuit routes if and only if the number of wire conicts is zero).

Semi failed to route 11 of the 13 circuits, MST-SPAR failed on three, and Trip3 failed on only two.

The semiperimeter's poor performance is clearly due fact that it doesn't consider the limitations of

the routing resources. Placing all of the signals in one dense area (as in �gure 4) doesn't account

for Triptych's RLBs which can be used for both logic and routing. For the 11 benchmarks in which

10



Table 2: Results TriptychV3 with 8192 iterations per temperature drop

Routed Circuits No Route

Avg Minimum

Avg Final Final Avg

Used Delay Delay Min

Benchmark Algorithm # Wires (ns) ns Norm # Con.

pm1 MST-SPAR 4 309 32.6 29.5 1.00 0 {

Semi 1 368 48.0 48.0 1.63 3 1.0

Trip3 4 344 36.9 34.0 1.15 0 {

x2 MST-SPAR 3 324 45.3 39.5 1.00 1 2.0

Semi 0 { { { { 4 2.7

Trip3 4 367 51.6 48.0 1.22 0 {

beecount MST-SPAR 4 282 31.4 29.5 1.00 0 {

Semi 1 333 39.5 39.5 1.34 3 1.3

Trip3 4 334 34.7 33.0 1.12 0 {

cu MST-SPAR 4 356 40.0 35.5 1.00 0 {

Semi 0 { { { { 4 3.5

Trip3 4 392 42.7 39.5 1.11 0 {

mux MST-SPAR 3 409 52.1 49.5 1.00 1 1.0

Semi 0 { { { { 4 9.0

Trip3 4 435 62.1 56.5 1.14 0 {

cmb MST-SPAR 4 358 44.0 40.5 1.00 0 {

Semi 0 { { { { 4 4.7

Trip3 4 416 52.7 45.5 1.12 0 {

misex1 MST-SPAR 4 420 64.0 56.5 1.00 0 {

Semi 0 { { { { 4 6.7

Trip3 4 460 67.5 58.5 1.04 0 {

dk15 MST-SPAR 3 401 41.0 36.5 1.00 1 2.0

Semi 0 { { { { 4 5.2

Trip3 4 452 43.9 38.0 1.04 0 {

sqrt8 MST-SPAR 0 { { { { 4 2.2

Semi 0 { { { { 4 14.0

Trip3 2 502 99.5 99.5 N/A 0 1.5

squar5 MST-SPAR 2 468 52.5 49.5 1.00 2 1.0

Semi 0 { { { { 4 8.7

Trip3 3 524 63.6 58.5 1.18 1 1.0

bbara MST-SPAR 1 449 52.0 52.0 1.00 3 1.7

Semi 0 { { { { 4 16.5

Trip3 0 { { { { 4 3.5

ex4 MST-SPAR 0 { { { { 4 1.5

Semi 0 { { { { 4 13.0

Trip3 1 561 97.0 97.0 N/A 3 1.0

s386a MST-SPAR 0 { { { { 4 8.2

Semi 0 { { { { 4 40.5

Trip3 0 { { { { 4 22.0

11



both Trip3 and MST-SPAR succeeded in routing, MST-SPAR out-performed Trip3 in every case.

The minimum �nal delay for MST-SPAR was anywhere from 3.5% to 21.5% faster than that of

Trip3. Similarly the average delay (over the trials which routed) was faster for all 11 benchmarks.

This reduction in delay could be related to MST-SPAR's low wire usage. For these 11 benchmarks,

MST-SPAR used anywhere from 9.5% to 18.4% fewer wires on average than did Trip3. These

results are not surprising after looking once again at �gure 4. In order to obtain better routability,

Trip3's cost function spreads empty RLBs throughout the array to be used as routing resources.

However, placing these empty RLBs is highly dependent on the circuit parameters such as the

number of used LUTs, number of IOs, and the total number of source/sink connections which

must be made. On the other hand, MST-SPAR explores not only the routing structure during

the annealing process, but also the attributes of the benchmark itself. Since it is performing a

route after each swap, it can better predict where the congested areas will appear at route time.

Moreover, because the placer's routes approximate minimum cost steiner trees, the router requires

fewer wires and in turn produces routed circuits with a faster delay than that of Trip3.

Table 2 showed the performance that can be gained by using MST-SPAR. However, for a fair

evaluation, the run times of the algorithms must �rst be examined by varying the number of

iterations per temperature drop. Table 3 shows how the performance of MST-SPAR and Trip3

Table 3: Results on TriptychV3 and benchmark \cmb"

Routed Circuits No Route

Iter Anneal Avg Min

per User Avg Final Final Avg

Temp Time Used Delay Delay Min

Algorithm Drop (min) # Wires (ns) (ns) # Conicts

MST-SPAR 512 1.4 2 380 44.2 41.0 2 2.0

1024 1.8 2 361 44.0 40.5 2 1.0

2048 3.3 4 371 43.2 38.5 0 {

4096 6.2 2 371 49.0 46.5 2 1.5

5120 7.5 3 363 46.3 43.0 1 1.0

6144 9.1 4 364 45.1 43.0 0 {

8192 11.7 4 358 44.0 40.5 0 {

Trip3 1024 0.4 4 432 54.7 51.5 0 {

2048 0.8 4 435 56.0 52.5 0 {

4096 1.0 4 417 53.2 50.5 0 {

6144 1.8 4 417 53.1 50.5 0 {

8192 2.2 4 416 52.7 45.5 0 {

12288 3.7 4 420 53.1 43.5 0 {

16384 4.3 4 424 48.7 43.5 0 {

varies with running time (Semi was excluded from these tests because of its failure to produce

routable placements). Even for small run times, MST-SPAR out performs the Trip3 algorithm in

terms of delay. MST-SPAR's lowest delay (38.5ns) was 13% faster than Trip3's lowest and was

actually discovered in less time (3.3 minutes vs. 3.7 minutes). As a matter of fact, only one running

time, 6.2 minutes, didn't outperform Trip3's best minimum of 43.5ns.

An issue raised by table 3 is routability. It seems that by equalizing the running time, the MST-

SPAR algorithm produces better results than Trip3 at the cost of less routability. To analyze this

12



issue further, a more challenging benchmark, \squar5", is analyzed over di�erent run times in table

4. As expected, both algorithms have some di�culty routing the benchmark, although Trip3 does

Table 4: Results on TriptychV3 and benchmark \squar5"

Routed Circuits No Route

Anneal Avg Min

User Avg Final Final Avg

Time Used Delay Delay Min

Algorithm Iter (min) # Wires (ns) (ns) # Conicts

MST-SPAR 512 2.5 1 543 64.0 64.0 3 3.3

1024 3.5 0 { { { 4 1.7

2048 7.0 1 530 52.5 52.5 3 2.0

4096 14.1 0 { { { 4 2.2

5120 16.7 1 491 47.5 47.5 3 1.3

6144 20.7 0 { { { 4 2.0

8192 27.5 2 468 52.5 49.5 2 1.0

Trip3 1024 0.4 2 548 69.5 62.5 2 1.0

2048 0.9 2 560 66.5 65.0 2 1.0

4096 1.8 2 525 60.0 59.5 2 1.0

6144 2.4 4 521 61.7 54.0 0 {

8192 3.5 4 524 63.5 58.5 0 {

12288 4.7 3 524 63.6 58.5 1 1.0

16384 6.7 4 524 58.4 54.5 0 {

much better than MST-SPAR. As a matter of fact, Trip3 places and routes 21 of the 28 trials while

MST-SPAR only places and routes 5. As with the \cmb" benchmark from table 3, MST-SPAR

yields a lower minimum delay than Trip3 on almost all of the placements which route. Moreover,

the results in table 4 seem to show that routability of MST-SPAR's placements is not related

to the running time. These experiments indicate a trade-o� between the MST-SPAR and Trip3

algorithms. On a circuit with a low LUT utilization, MST-SPAR should be used since it yields lower

�nal delays even at comparable running times. However, on a circuit which pushes an architecture's

resources to the limit, either algorithm could be used depending on whether routability or delay

is the most important criterion. If routability is the main concern, one could repeatedly run the

Trip3 algorithm hoping to obtain a reasonable delay. On the other hand, if a low �nal delay is

required, MST-SPAR could be run repeatedly hoping to �nd a placement which routes. Because

of MST-SPAR's longer run time, more trials of the Trip3 algorithm can be executed. However,

the experiments seem to indicate than even many successful place and routes on Trip3 do not

outperform MST-SPAR in terms of delay. A related issue is the fact that the cost function could

be changed on di�erent trials. For example, MST-SPAR could vary the w

s

and w

r

parameters prior

to the execution of each trial in hope of �nding a ratio which better leads to routability. Similarly,

trip3 could vary its density and local routability weightings in an attempt to achieve a better delay.

This could potentially improve the performance of both algorithms in terms of routability and

delay.

13



4.6 Results: Triptych 4-input RLB Array

To examine the adaptability of the MST-SPAR algorithm, experiments are run on the 4-input RLB

variant to the Triptych architecture, TriptychV4. Because higher utilizations can be achieved with

this architecture, the last eight benchmarks from table 1 are tested, and the results are listed in

table 5 for 8192 iterations per temperature drop and 4 trials per test. MST-SPAR performed the

Table 5: Results on TriptychV4 with 8192 iterations

Routed Circuits No Route

Avg Minimum

Avg Final Final Avg

Used Delay Delay Min

Benchmark Algorithm # Wires (ns) ns Norm # Con.

s386a MST-SPAR 4 731 47.0 43.5 1.00 0 {

Semi 4 816 63.7 57.0 1.31 0 {

Trip3 4 811 57.9 54.5 1.25 0 {

opus MST-SPAR 4 748 73.0 67.0 1.00 0 {

Semi 4 799 90.0 84.5 1.26 0 {

Trip3 4 827 90.3 83.5 1.25 0 {

misex2 MST-SPAR 0 { { { { 4 6.2

Semi 0 { { { { 4 9.0

Trip3 0 { { { { 4 11.2

s349d MST-SPAR 4 818 46.6 42.5 1.00 0 {

Semi 4 871 58.9 43.0 1.01 0 {

Trip3 4 890 57.0 50.5 1.19 0 {

s349f MST-SPAR 4 900 49.7 44.0 1.00 0 {

Semi 4 936 64.5 58.5 1.33 0 {

Trip3 0 { { { { 4 4.0

s386f MST-SPAR 1 912 52.0 52.0 1.00 3 2.0

Semi 0 { { { { 4 4.5

Trip3 0 { { { { 4 22.2

f51m MST-SPAR 2 931 192.5 181.0 1.00 2 1.5

Semi 0 { { { { 4 2.2

Trip3 0 { { { { 4 7.2

s349g MST-SPAR 3 917 52.7 48.5 1.00 1 2.0

Semi 3 959 62.1 54.0 1.11 1 2.0

Trip3 0 { { { { 4 10.0

best by placing and routing 7 of the 8 benchmarks, while Semi placed and routed 5 of 8 and Trip3

only 3 of 8. In addition, MST-SPAR had minimum �nal delays faster than the other two algorithms

on all benchmarks. As a matter of fact, MST-SPAR even had the fewest wire conicts for the trials

which didn't route. The fact that the Semi algorithm outperforms Trip3 was unexpected since the

semiperimeter calculation has no knowledge of either the directional nature of the Triptych array or

the global IOs. This result implies that changes to the Triptych architecture have made the Trip3

algorithm ine�ective. A possible explanation is that Trip3's cost function metrics were designed to

�nd a good placement for empty logic blocks in order to provide a certain level of routability. Since

the TriptychV3 architecture had a maximum LUT utilization of around 60% (table 2 shows that

\ex4" was the highest utilized circuit to place and route), the Trip3 algorithm could be relying on

the existence of these empty RLBs. With TriptychV4's additional RLB input and output leading

14



to routable LUT utilizations of over 90%, the placement problem has dramatically changed. Now

that empty blocks are no longer required in congested areas, even the semiperimeter algorithm is

able to place and route over half of the benchmarks.

As with the TriptychV3 architecture, the running times of the algorithms on TriptychV4 must be

analyzed prior to making �nal conclusions about performance. First, an easily routable circuit,

\opus", is examined with results shown in table 6. Clearly, MST-SPAR outperforms the other two

Table 6: Results on TriptychV4 and benchmark \opus"

Routed Circuits

Anneal Avg Min

User Avg Final Final

Time Used Delay Delay

Algorithm Iter (min) # Wires (ns) (ns)

MST-SPAR 512 3 4 773 82.5 77.0

1024 5 4 765 81.0 73.5

2048 10 4 764 81.5 72.5

4096 17 4 754 74.5 73.5

5120 22 4 739 75.7 72.0

6144 27 4 750 80.2 77.0

8192 35 4 748 73.0 67.0

Semi 1024 1 4 823 89.0 80.0

2048 1 4 826 95.2 81.0

4096 2 4 786 86.1 76.5

6144 3 4 793 81.6 76.0

8192 4 4 799 90.0 84.5

12288 5 4 773 82.5 77.0

16384 6 3 799 85.0 81.0

Trip3 1024 1 4 842 98.5 92.0

2048 1 4 843 93.2 80.0

4096 2 4 829 88.4 82.5

6144 3 4 801 83.7 69.0

8192 4 4 827 90.2 83.5

12288 6 4 821 86.6 81.0

16384 7 4 819 89.0 80.5

algorithms even at lower run times. As a matter of fact, only 2 of the 7 MST-SPAR run times

produce a minimum �nal delay slower than Semi's minimum delay over all run times (76.0ns).

Furthermore, a long run time (35 minutes) for MST-SPAR yielded a �nal delay 13% faster than

Semi's best while a short run time (5 minutes) yielded a �nal delay 3% faster. These results for the

minimum �nal delay do not extend to Trip3 since one of the 28 trials \got lucky" and produced a

delay of 69ns { a full 21ns below the average delay over all Trip3 trials and 9.5ns below the second

lowest trial. However, the average �nal delays show that MST-SPAR still outperforms Trip3 (in

the context of run time). As a matter of fact, all average �nal delays from MST-SPAR were faster

than the lowest average �nal delay for Trip3 (83.7ns).

As a last experiment, we address the issue of routability and running time on the TriptychV4

architecture by looking at the benchmark with the highest LUT-utilization, \s349g", in table 7.

Both MST-SPAR and Semi successfully placed and routed 15 of the 28 trials. Not only did Trip3

fail to place and route 26 of the 28 trials, but it also had many wire conicts in these unroutable

15



placements. Once again, MST-SPAR outperformed both Semi and Trip3 in terms of delay. For all

run times, MST-SPAR's average �nal delay was faster than both Semi (59.8ns) and Trip3 (61.5ns).

In addition, 4 of the 7 run-times had better minimum delays than the lowest minimum delay for

Semi (52.0ns). Furthermore, an examination of all run times shows that MST-SPAR produced a

minimum delay (42.5ns) that was 24% faster than Semi and 45% faster than Trip3.

Table 7: Results on TriptychV4 and benchmark \s349g"

Routed Circuits No Route

Anneal Avg Min

User Avg Final Final Avg

Time Used Delay Delay Min

Algorithm Iter (min) # Wires (ns) (ns) # Con.

MST-SPAR 512 4 1 942 57.5 57.5 3 8.0

1024 6 2 938 46.0 42.5 2 4.0

2048 12 2 941 53.7 52.0 2 2.5

4096 20 1 918 58.0 58.0 3 1.6

5120 29 3 934 51.0 48.5 1 1.0

6144 31 3 933 59.0 55.0 1 2.0

8192 45 3 917 52.7 48.5 1 2.0

Semi 1024 1 1 970 71.0 71.0 3 2.3

2048 2 0 { { { 4 1.5

4096 2 3 954 63.0 52.0 1 1.0

6144 3 3 957 59.8 53.0 1 1.0

8192 5 3 959 62.1 54.0 1 2.0

12288 5 2 960 70.5 53.0 2 2.0

16384 7 3 952 67.0 61.0 1 1.0

Trip3 1024 1 0 { { { 4 12.7

2048 1 0 { { { 4 12.7

4096 2 1 991 65.5 65.5 3 11.0

6144 3 0 { { { 4 9.5

8192 4 0 { { { 4 10.0

12288 6 0 { { { 4 4.5

16384 9 1 976 61.5 61.5 3 7.3

5 Future Work

Since the experimental results for MST-SPAR are very promising, there are many possible avenues

for further exploration. The most obvious is to examine how the algorithm extends to larger FPGA

arrays such as an 8�32 or a 16�64. In particular, how do the extra resource requirements (section

3.2) a�ect the performance and run time? Can these time and resource requirements be reduced

by partitioning the large arrays into smaller ones, while maintaining performance?

In addition to focusing on the array size, it would be interesting to examine MST-SPAR's perfor-

mance on an FPGA with primarily bus-based routing resources. A key question is whether or not

the steiner tree algorithm selects the best \steiner buses" when multiple sinks are fanouts of the

same bus.

16



The experiments in section 4 showed that the MST-SPAR algorithm produced better timing results

than both Semi and Trip3 despite the fact that the algorithm does no critical path analysis. Since

MST-SPAR actually performs routes during placement, it could also do a quick analysis of the

critical path after each route and incorporate the results into the cost function. An interesting

experiment would be to determine a quick and productive critical path metric and analyze its

a�ects on MST-SPAR's run time and performance.

6 Conclusion

MST-SPAR has been shown to be an e�ective algorithm for placement on wire-constrained FPGAs

such as Triptych. This simulated annealing-based placement algorithm reroutes signals on a per

swap basis in order to provide the cost function with vital routing statistics such as wire usage and

wire conicts. The experimental results on two versions the Triptych FPGA show that MST-SPAR

yields lower critical path delays than two other algorithms based on simple wire length metrics. In

particular, for a set of benchmarks mapped to the Triptych 3-input RLB 4� 16 array, MST-SPAR

produces placements with �nal delays ranging from 3.5% to 21.5% faster than delays yielded by a

cost function tailored for the architecture. Furthermore, the experimental results show that even

when its running time is reduced, MST-SPAR still produces placements with faster delays. In

addition, the adaptability of MST-SPAR was demonstrated by showing similar performance results

on a variant of the Triptych FPGA without making any algorithmic modi�cations. Hence, not

only is MST-SPAR an attractive placement algorithm because of its performance, but also because

its adaptability allows for an architecture to evolve without requiring major modi�cations to the

placement tools.

7 Acknowledgments

I would like to thank Larry McMurchie for his numerous valuable discussions and both Carl Ebeling

and Gaetano Borriello for their suggestions and support.

17



References

[1] J. F. Beetem, \Simultaneous Placement and Routing of the LABYRINTH Recon�gurable

Logic Array," The International Workshop on Field Programmable Logic and Applications,

1991, pp. 232-243.

[2] S. Hauck, G. Borriello, and C. Ebeling, \TRIPTYCH: An FPGA Architecture with Integrated

Logic and Routing," Proceedings of the 1992 Conference on Advanced Research in VLSI and

Parallel Systems, March 1992, pp. 26-43.

[3] M. D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, \An E�cient General Cooling Sched-

ule for Simulated Annealing," IEEE International Conference on Computer-Aided Design,

1986, pp. 381-384.

[4] R. M. Karp, \Reducibility Among Combinatorial Problems," in R. E. Miller and J. W.

Thatcher (eds.) Complexity of Computer Computations, Plenum Press, New York, 1972, pp.

85-103.

[5] S. Kirkpatrick, C. Gelatt, and M. Vecchi, \Optimization by Simulated Annealing," Science,

220/4598, 1983, pp. 671-680.

[6] L. McMurchie, C. Ebeling, and G. Borriello, \An Architecture-Adaptive, Performance-Driven

Router for FPGAs," TR #94-05-01, University of Washington, May 1994.

[7] D. Mitra, F. Romeo, and A. L. Sangiovanni-Vincentelli, \Convergence and Finite-time Be-

havior of Simluated Annealing," Proceedings of the 24th Conference on Decision and Control,

1985, pp. 761-767.

[8] S. Nag and K. Roy, \Iterative Wirability and Performance Improvement for FPGAs," Pro-

ceedings of the 30th ACM/IEEE Design Automation Conference, 1993, pp. 321-325.

[9] M. Schlag, J. Kong, and P. Chan, \Routability-Driven Technology Mapping for LookUp Table-

Based FPGAs," TR #UCSC-CRL-92-06, University of California at Santa Cruz, February

1992.

[10] E. Sentovich et al., \SIS: A System for Sequential Circuit Synthesis," Electronics Research

Laboratory Memorandum No. UCB/ERL M92/41, Dept. of Electrical Engineering and Com-

puter Science, University of California, Berkeley, CA, May 1992.

[11] K. Shahookar and P. Mazumder, \VLSI Cell Placement Techniques," ACM Computing Sur-

veys, Vol. 23, No. 2, June 1991, pp. 143-220.

[12] H. Takahashi and A. Matsuyama, \An Approximate Solution for the Steiner Problem in

Graphs," Math. Japonica, Vol. 24, 1980, pp. 573-577.

[13] N. Togawa, M. Sato, and T. Ohtsuki, \A Simultaneous Placement and Global Routing Al-

gorithm for Symmetric FPGAs," The 2nd International ACM/SIGDA Workshop on Field-

Programmable Gate Arrays, Session 8, 1994.

[14] P. Winter, \Steiner Problem in Networks: A Survey," NETWORKS, Vol. 17, 1987, pp. 129-167.

18


