
Cost Effective Fault Tolerance for Network Routing

by

William Yost

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

1995

Approved by___

(Chairperson of the Supervisory Committee)

Program Authorized

to Offer Degree___

Date__

Master’s Thesis

In presenting this thesis in partial fulfillment of the requirements for a Master’s degree at

the University of Washington, I agree that the Library shall make its copies freely available

for inspection. I further agree that extensive copying of this thesis is allowable only for

scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any

other reproduction for any purposes or by any means shall not be allowed without my writ-

ten permission.

Signature___________________________________

Date_______________________________________

University of Washington

Abstract

Cost Effective Fault Tolerance for Network Routing

by William Yost

Chairperson of the Supervisory Committee: Professor Carl Ebeling

Department of Computer

Science and Engineering

As the size of interconnection networks for multicomputers increases, it becomes clear that

some degree of fault tolerance will be required in order to maintain system reliability at an

acceptable level. The interconnection networks contain large numbers of relatively unreli-

able components. However, cost and performance concerns mandate that the addition of

fault tolerance to the network have an unobtrusive impact on network design. The target

design space requires reasonable reliability while avoiding exorbitant additional costs.

Because routing messages around failed components may require non-minimal routes, it

makes sense to examine routers which, by design, allow packets to take non-minimal

routes. However, to provide for effective and efficient fault tolerance, a unified, coherent

scheme for fault management is required. Chaotic routing, a non-minimal adaptive routing

scheme, is augmented with a limited amount of hardware to support fault detection, iden-

tification, and reconfiguration so that the network can maintain reliable operation in the

presence of faults. The Express Broadcast Network is introduced; a low overhead control

network orthogonal to the data network that can, in general, provide for fine-grained control

of the network, and specifically, provides for global control and synchronization of fault

management procedures for Chaos. A high-level design is presented in which fault toler-

ance is greatly enhanced by the addition of functionality to targeted blocks while maintain-

ing the structure of Chaotic routing and avoiding large incremental costs.

 i

Table of Contents

List of Figures.. iii

List of Tables.. iv

1 Introduction...1
1.1 Fault Tolerance...1

1.2 General Implementation of Fault Tolerance...2

1.3 Network Redundancy Management ...3

1.4 Fault Tolerant Chaotic Routing ..5

2 Chaotic Routing ..7
2.1 Fault Tolerance...10

2.2 Shortcomings of the Basic Chaos Router...10

3 Motivation...12
3.1 Fault Model ..12

3.2 Fault Detection ...14

3.3 Fault Coverage ...15
3.3.1 Router Datapath Coverage..17
3.3.2 Routing Decision Logic Coverage..18
3.3.3 Router Control Logic Coverage..19
3.3.4 Link Coverage...19
3.3.5 Network Coverage ..19

3.4 Reliability Estimation For a Chaos Routing Network ...20
3.4.1 Failure Rate Estimation for Hard Faults ...20
3.4.2 Failure Rate Estimation for Soft Faults ..23
3.4.3 Potential Network Problems ...24
3.4.4 Summary...25

4 Communication and Network Synchronization..26
4.1 Broadcast Networks ...27

4.2 The Express Broadcast Network ..28

4.3 Implementation...30
4.3.1 Basic Network Implementation ..31
4.3.2 Network...31
4.3.3 Synchronization ..32
4.3.4 Multiple Wire Channels..34
4.3.5 Bit-serial Messages ...35
4.3.6 Bidirectional Channels..36
4.3.7 Performance ..37
4.3.8 Synchronous/Asynchronous Behavior..40

4.4 Applications ...41
4.4.1 System Startup ..41
4.4.2 Global Flow Control ...41
4.4.3 Application Barriers and Eurekas ...42
4.4.4 Control ..42

4.5 Control and Synchronization of the Fault Tolerant Chaos Router ...42
4.5.1 Chaos Overview..43

 ii

4.5.2 Error Detection..44
4.5.3 System Drain...44
4.5.4 Diagnostics..46

5 Fault Tolerant Architecture ...48
5.1 Design Principles..48

5.2 Implementation...49
5.2.1 Fault Detection..49

5.2.1.1 Data Error Checks ...50
5.2.1.2 Channel Protocol Checks ..53
5.2.1.3 System Drain ...56

5.2.2 Diagnostics..62
5.2.2.1 Off-line Testing ...62
5.2.2.2 On-line Testing..65
5.2.2.3 Test Coverage..65

5.2.3 Reconfiguration and Routing Algorithm Modifications...66
5.2.3.1 Local Reconfiguration ...66
5.2.3.2 Global Reconfiguration ...70

5.3 Summary of Hardware Costs for the Fault Tolerant Architecture ...73

5.4 Reliability of the Fault Tolerant Architecture ..76

6 System Operation..80
6.1 Putting It All Together..80

7 Conclusions...83
7.1 Summary ..83

7.2 Future Work..86

Bibliography ..88

 iii

List of Figures

Figure 1: Mesh-connected interconnection network, with expansion of basic node.8

Figure 2: Two-dimensional Chaos router data path. ..9

Figure 3: An EBN broadcast. ..30

Figure 4: Synchronization delay. ...33

Figure 5: Network diameter vs. number of faulty links. ..38

Figure 6: Network diameter increase due to faults. ...40

Figure 7: Fault tolerant Chaos router state transition table. ...43

Figure 8: System drain timing and delays. ...46

Figure 9: System drain times for a 16 x 16 node torus network.58

Figure 10: System drain times for a 32 x 32 node torus network.59

Figure 11: Example of unreachable node. ...61

Figure 12: Fault diagnostic testing. ..63

Figure 13: Use of the functional channel list in routing. ...67

Figure 14: Bypass of linear obstacles. ...69

Figure 15: Extended linear obstacles. ..69

Figure 16: Livelock caused by concave region. ...71

Figure 17: Planar adaptive routing global reconfiguration. ...72

Figure 18: Network mapping example. ...73

 iv

List of Tables

Table 1: Chaos network fault classes. .. 17

Table 2: Chaos chip reliability parameters. ... 21

Table 3: Maximum diameter of 2-dimensional mesh networks with random faults. 39

Table 4: Hardware implementation costs. ... 75

Table 5: Network error syndromes. ... 77

Table 6: Chaos network fault coverage. .. 79

Table 7: Reliability comparison - baseline vs. fault tolerant 1024 node network. 79

 v

Acknowledgements

Many people have helped me in my years at the University of Washington. In particular I

would like to thank Carl Ebeling who kept me on track, Larry Snyder who introduced me

to chaotic routing and provided great support in the development of my research topic and

Kevin Bolding whose insight into network routing provided direction to my work and

whose day-to-day support kept me moving toward my goal.

Last but not least I would like to thank my family for bearing with me during this extended

but rewarding process.

1

1 Introduction

As multicomputers grow larger, maintaining system reliability and availability at accept-

able levels becomes increasingly important and difficult. Because of the sheer number of

components and links in a large multicomputer with hundreds or thousands of processing

nodes, the probability that a failure will occur in the system becomes too large to ignore.

Even a single faulty component may generate a fanout of errors that affects the whole sys-

tem. As an integral and important element of a multicomputer system, the reliability of the

interconnection network makes a vital contribution to system reliability. If a design is not

fault tolerant, it can only be as reliable as its weakest link, as the reliability of such a system

is the product of the reliability of all system elements. Simply using highly reliable compo-

nents will not provide a lasting, scalable solution. At some point as the scale of the network

increases, the reliability will drop below acceptable levels. To maintain reliability as the

system scales requires that fault tolerance be designed into the system.

The effect of fault tolerant design is to improve the reliability of the fault tolerant block or

module beyond that of its components by maintaining functionality even in the presence of

faults that cause individual components to fail. Because multiple failures must occur before

thare is any loss of functionality, the reliability of the fault tolerant block ends up higher

than the simple product of the reliability of all components. Fault tolerance that is built into

the system can localize fault effects and allow smooth operation to continue without dis-

ruption. With proper fault and redundancy management, a fault that directly affects only a

small fraction of the resources of an interconnection network can be isolated and the integ-

rity of the larger system maintained. Ordinary scheduled maintenance can then be used to

repair failures without a cost in system availability.

1.1 Fault Tolerance
Fault tolerance encompasses a number of different functions. A fault may generate an error

which is an action in variance from that which would have occurred if the system were

fault-free. The fault tolerant system mustdetect the error and respond. It maymask the fault

and then simply move on or it may engage in faultidentification. A component identified

as faulty may bereconfigured out of the system to deactivate the fault. The system may then

incrementally lose performance or aspare may be available to replace the function of the

faulty component. Arecovery procedure may be necessary to restore the system state to

match that of a fault-free system.

2

For the purposes of this study, “fault tolerant routing” is defined as a means of providing

for the reliable delivery of messages within a network. The goals of fault tolerant routing

are fourfold:

1. Provide reliable message delivery between all pairs of nodes that have a nonfaulty path

connecting them.

2. Detect when a fault has occurred, and alert the operating system.

3. Provide mechanisms to reconfigure the network around faults to ensure continued, reli-

able service to all nonfaulty areas of the network.

4. Provide for recovery mechanisms that allow the computation to proceed in a reliable

manner even after interruption by fault management procedures.

Cost is an important parameter for a general purpose computer. Full implementation of the

goals of fault tolerant routing requires a commitment of resources that is probably not cost-

effective for the ordinary user. The motivation for this study is to determine means of

approaching as closely as possible the goals of fault tolerant routing while avoiding exor-

bitant additional cost.

1.2 General Implementation of Fault Tolerance
Fault tolerance is implemented through the use of redundant resources. Fault detection and

identification require that a good value (real or implicit) be available with which to compare

a block or module output. A simple parity bit appended to a data word provides a limited

amount of detection capability by expanding the space of data values and implicitly split-

ting it into “good” and “bad” sets. More complicated parity schemes can be used to provide

error correction coding (ECC) which splits the expanded space of coded data values into

implicit sets of “good”, “bad” and “correctable” values such that data can be recovered

from a faulty code word [Tang & Chien 69]. Master/shadow checking blocks provide

explicit comparisons against presumed “good” values, thereby providing fault detection.

Triple modular redundancy (TMR) and N-modular redundancy (NMR) take this idea fur-

ther and vote three or more module outputs to generate an output value consistent with the

majority of voters. Depending upon system needs, modules that lose the vote can be per-

manently reconfigured from the system or simply masked from the transaction in question

[Sieworek & Swarz 82].

Reconfiguration implies the existence of redundant resources in the system. It would make

no sense to be able to reconfigure a system to eliminate faulty components if the resulting

system is unable to fulfill its allotted tasks.

3

Recovery must occur after the detection of an error if the fault has not been masked and the

system state has been altered in error. This process requires some variety of information

redundancy. If the operands of a transaction are preserved until the transaction is reliably

completed then a simple retry may suffice for recovery. For example, an addition can be

repeated if the operands are still present in memory, or a network transmission can be

repeated if the source maintains a copy of the message. Periodic checkpointing of a system

provides for coarser grained information redundancy.

Existing fault tolerant multicomputers have used various styles of redundancy. The Vulcan

architecture from IBM [Stunkel et al. 94] uses the master/shadow checking pair concept,

duplicating every switch element and most elements within the processing nodes. Honey-

well has modified the Intel Touchstone machine to make it suitable for space operations.

Their strategy uses software implemented fault tolerance in which the task environment in

a node is periodically captured and replicated in another node. Additional nodes are set

aside as spares to replace failed nodes. This approach does not add redundancy so much as

it limits functionality in order to redefine baseline resources as redundant elements in the

system.

1.3 Network Redundancy Management
Interconnection networks for large multicomputers are generally highly redundant. When

each routing node is connected to three or more links, there will usually be multiple possi-

ble paths from point to point across a network. The algorithm used for routing messages

affects the manner in which redundant paths may be utilized. An algorithm that allows for

the use of alternative paths through the network will by nature be fault tolerant, to some

extent, as it will be able to maintain network functionality in the presence of faults.

In an oblivious routing algorithm, the path a message takes through the network is deter-

mined by the relationship between the source and destination addresses. There may be mul-

tiple possible paths but an oblivious router will choose only one, generally a minimum

length path. A typical implementation of an oblivious routing algorithm is a dimension

order router. Dimension order routing orders the dimensions of a network and forces mes-

sages to traverse the network in that order. A message will not be routed in a given dimen-

sion until all dimensions ordered before that dimension have been fully routed. Oblivious

routers are of low complexity and are relatively simple to implement while providing rea-

sonable performance. However, the algorithms do not provide any means by which redun-

dant network paths can be used to bypass faulty components. A faulty network link in a

dimension order router will cut communication between all nodes whose connecting path

4

must cross that link.

A minimal adaptive routing algorithm allows one of multiple minimum length paths to be

chosen based on local conditions. A minimal adaptive router will determine the set of prof-

itable directions based upon its own location and the message destination. The message will

be routed onto a profitable link or, if none are available, the message will wait until a prof-

itable link becomes available. A minimal adaptive router will seamlessly route around a

faulty link if an alternative profitable direction is available. If such an alternative is not

available, then the message is blocked. A fault does not necessarily break communication

between two nodes using the faulty link because alternate paths may exist that branch

before the faulty component is reached. However, some nodes will definitely lose commu-

nication, specifically those on opposite sides of the faulty link for which the link lies in the

only routable dimension.

Non-minimal adaptive routing algorithms allow the router to choose any direction to route

a message. However, for the sake of performance, the algorithm will usually choose a min-

imal route if possible. Only if no minimal route is immediately available will a non-mini-

mal route be selected. Even though no path is ruled out algorithmically, in reality, only

minimal paths or subpaths will be selected as long as they are available. In a regular, fault-

free network, congestion causing contention for links will be the only reason for a packet

to be routed along a non-minimal path. The non-minimal path will eventually move the

packet clear of the congested area from which point it can then proceed along a minimum

length path.

In a faulty network, an unresponsive link or node appears as congestion thatnever clears

enough to allow a message to pass. This can trigger a non-minimal routing decision that is

made without any explicit knowledge of faults but is based only upon a tabulation of the

available links.

Non-minimal adaptive routers have a clear advantage over minimal and oblivious routers

because of their flexibility in redundancy management that will extend the usability of the

network in the presence of faults. However, they cannot handle all faulty situations. As will

be shown, faults can create obstacles of significant extent that will be difficult or impossible

to handle, even for a non-minimal adaptive router with enhancements for fault tolerance.

Because of the need for high performance and scalability and due to the difficulty in gath-

ering timely information from beyond the immediate neighborhood, non-minimal adaptive

routing algorithms generally use local information in making routing decisions. Livelock

becomes possible when the local strategy allows for a return to minimal routing before the

5

obstacle is cleared. The message may then get routed back into the blocked region, a

sequence that can cycle over and over.

However, to even approach this state of affairs is beyond the fault handling capability of

oblivious or minimal adaptive routers. The problem is not due to a characteristic of non-

minimal adaptive routing as such but arises with any algorithm dependent on local infor-

mation in a sufficiently faulty network. Source routing, in which an arbitrary path is prede-

termined based on global knowledge of the network configuration, can route messages

across an arbitrary network configuration that results from a series of faults. However, such

an algorithm is static with respect to a given message and requires prior knowledge of the

network. The resultant lack of adaptivity does not allow for dynamic fault handling.

The need for non-minimal routing in a faulty network is independent of the basic routing

algorithm incorporated into the network. Therefore, in order to provide robust fault toler-

ance in interconnection networks that utilize other than non-minimal routing algorithms,

some sort of additional exceptional mechanism that allows for non-minimal routing must

be added. It follows that a non-minimal adaptive router will have an advantage as the basis

for fault tolerance, requiring the minimum amount of incremental circuitry and effort to

implement a fault tolerant design.

1.4 Fault Tolerant Chaotic Routing
Chaotic routing, a non-minimal adaptive packet routing scheme, is the subject of this

design study. While the Chaotic routing algorithm provides for a robust basis for network

redundancy management, the use of such an algorithm is not a sufficient condition for fault

tolerance. It will be shown that the addition of a small amount of circuitry, interconnect and

functionality can greatly enhance the fault tolerance of a Chaotic network. Fault detection

is provided along with mechanisms that support fault diagnostic procedures. A method for

network reconfiguration that marks faulty and out-of-service links is defined. The routing

algorithm is modified to account for inoperative links and to compensate as smoothly as

possible for the resulting nonuniformities in the network. The interaction that is required

between router, network interface and system software in order to provide for effective

fault management is defined.

Local information is used to detect errors caused by faults. However, the actual fault may

be remote to the detecting node. A corrupted packet may not be detected until it has reached

its destination, long after proximity to the actual fault has been lost. Fault identification and

diagnosis requires a global approach if it is to be effective. The Express Broadcast Network

6

(EBN), a low overhead control network orthogonal to the data network is introduced. The

EBN provides a mechanism for fine-grained global control of the interconnection network

that has very low latency and low cost in network resources while providing highly reliable

service. In the fault tolerant Chaotic routing network, the EBN is used for the synchroniza-

tion and control of global fault management procedures.

The effectiveness of the enhancements which make up the fault tolerant Chaotic routing

architecture are examined and it will be shown that reliability can be improved by an order

of magnitude or more at a cost that is but a small fraction of the cost of the basic Chaotic

routing network.

7

2 Chaotic Routing

Multicomputer networks usually consist of a set of nodes connected by a regular set of

point-to-point communication channels which form a high bandwidth local network. An

example of the structure of a typical network, in this case a two-dimensional mesh, is

shown in Figure 1. Each node consists of a router and processing node. The processing

node contains the processor, network interface and memory.

Chaotic routing is an implementation of a packet-switched communication network. A

packet-switched network splits messages into blocks of fixed maximum size called packets.

Smaller sizes can generally be accommodated. The packet becomes the unit of communi-

cation and has an existence within the network that is independent of the other packets that

make up the message. The message is reassembled by the network interface at the destina-

tion processing node. Packet switching efficiently deals with a heterogeneous communica-

tion environment, in this case a computer network in which messages of widely varying

lengths will be passed and in which some nodes will be very active while others will use

the network much less intensely. Packet switching smooths out the network traffic flow by

allowing for the sharing of network links. During the transmission of a long message,

packet switching allows other message streams to compete for and alternate control of com-

mon network resources.

Chaotic routing uses a non-minimal adaptive routing algorithm [Konstantinidou 91]. Cha-

otic routing’s identifying feature is the use of randomness to provide probabilistic protec-

tion from livelock. This simplifies the routing logic by removing the need to

deterministically guarantee message delivery. Chaotic routing has been shown to be dead-

lock and livelock free on hypercube and many other types of networks including allk-ary

d-cubes.

An examination of the Chaos router data path for a two-dimensional router, shown in Fig-

ure 2, demonstrates the function of Chaotic routing. The main router elements are the input

and output frames, the crossbar and the multiqueue. Each input and output frame and mul-

tiqueue slot is a fifo buffer capable of holding one full fixed-size (20 flit) packet, 20 flits

being the maximum packet length for this network. There is one input frame and one output

frame for the positive and negative direction in each dimension plus an injection (input)

frame and an ejection (output) frame for the router/processor interface for a total of five

frames of each type. Simulation showed five multi queue slots to be optimal for 256 node

two-dimensional mesh or torus networks. [Bolding 93].

8

During basic operation, a packet entering a router input frame is routed through the crossbar

to an output frame in a direction that makes positive routing progress. This routing decision

is generated by a minimal adaptive algorithm that allows a choice of any profitable direc-

tion for routing. The packet header is updated as the packet exits the router to reflect

Figure 1: Mesh-connected interconnection network, with expansion of basic node.

Processing Node
Router

Network
Channels

Network
Interface

Memory

CPU

9

progress through the network. Virtual cut-through allows a packet to be routed as soon as

its header is received and decoded but before the packet is fully received and buffered by

the router. This may result in a packet being spread across several routers.

The multiqueue is a central buffer which stores packets that the router is not able to profit-

ably route. The deadlock prevention protocol for the channels may also cause the entry of

packets into the multiqueue. Packets in the multiqueue are given preference over packets

in the input frames when a packet is to be selected for routing to a free output channel.

When the routing load is moderate, the multiqueue buffering smooths the flow of packets

through the router and allows the minimal routing algorithm to be effective even during

transient periods of congestion. Whenever the multiqueue becomes full and no packet in

the multiqueue can be profitably routed, the non-minimal routing algorithm activates. A

packet is selected from the multiqueueat random to be routed out the next available output

channel. This process of performing non-minimal routes is called “derouting”.

The ability to deroute packets as needed eliminates any node-to-node dependencies that can

contribute to deadlock. The packet exchange protocol defined by [Konstantinidou 91] guar-

antees that given a finite number of bidirectional channels in each node, no channel will

ever deadlock. Together, these two characteristics make chaotic routing deadlock-free.

Figure 2: Two-dimensional Chaos router data path.

•••
+X Output Frame

•••
-X Output Frame

•••
+Y Output Frame

•••
-Y Output Frame

•••
Ejection Frame

•••
+X Input Frame

•••
-X Input Frame

•••
+Y Input Frame

•••
Injection Frame

•••
-Y Input Frame •••

Queue Slot 1

•••
Queue Slot 2

•••
Queue Slot 3

•••
Queue Slot 4

•••
Queue Slot 5

Main
Xbar

Queue
Input
Xbar

MultiQueue

dec

inc

dec

inc

10

Livelock freedom in the chaos router is probabilistically, but not deterministically, guaran-

teed. It has been shown for all finite-sized networks that the probability a packet remains

undelivered aftert seconds goes to zero ast increases [Bolding 93] [Konstantinidou 91].

The proof follows from the combination of a finite chance at each step of a packet being

routed closer to its destination together with the finite nature of the network. As the number

of routing steps increases, the chance of continued failure to reach the destination drops to

zero. Bolding has also shown through simulation studies that for most networks the proba-

bility at any step of being profitably routed is generally greater than 0.90. This places a rea-

sonable limit on delivery time for networks of practical extent.

2.1 Fault Tolerance
The combination of redundancy in the network together with the non-minimal routing algo-

rithm provides for a natural degree of fault tolerance in the Chaos routing network. A per-

sistently unresponsive link or router will not allow the output frames in the routers

connected to the faulty component to empty. A router will simply treat such a frame as it

would any unavailable frame and will route packets in other profitable directions, or lack-

ing such a direction, will buffer the packets in the multiqueue. Ultimately, such a packet

will either be routed in a profitable direction that later becomes available or it will be der-

outed. In any event, the unusable channel will be bypassed. At each step in the network, a

new routing decision process for the packet will be made.

The nonuniformity in the network caused by a failed component can create an island of

congestion that affects neighboring routers. As the network adapts to the congestion, pack-

ets will be derouted by routers not actually touching the failed component. The effect will

be like water flowing around a rock in a river. The greater the flow, the farther upstream the

perturbation to the even flow will extend. Packets that are within the congested area will be

delayed as they work their way around the obstacle.

2.2 Shortcomings of the Basic Chaos Router
While faults can be bypassed either through alternate minimal routes or by derouting, a

more efficient scheme for fault management is desired. Derouting, in particular, is only

activated to extend the network performance when more efficient mechanisms lose their

effectiveness due to the traffic demands on the network. To depend on the derouting mech-

anism to avoid faulty components places portions of the network permanently in its most

11

inefficient operational regime. A means of incorporating knowledge of identified faulty

components into the routing decision would help maintain good performance in the pres-

ence of faults.

Packets in an output frame connected to a faulty, unresponsive component will not be able

to progress through the network because the only way for the packet to exit the frame is

through the unresponsive component. This is necessary if the basic mechanism for avoiding

faulty components is to work. The faulty direction must appear congested, i.e. the output

frame must be full. A more robust scheme should provide an alternate method of mimick-

ing congestion without requiring that a packet be sacrificed.

The paradigm of “fault as congestion” does not cover all fault manifestations. Packet data

can be corrupted or a packet can be dropped without causing any network backup that

would appear as congestion. Transient faults can disrupt reliable packet delivery in ways

that don’t affect the routing decision process. The number of possible fault effects that can

be handled needs to be expanded through improved fault detection methods. Closely asso-

ciated are fault diagnostic procedures that provide the inputs for a network reconfiguration

procedure. In other words, a unified set of fault management procedures is needed for fault

tolerance to be enhanced.

12

3 Motivation

Although extremely high reliability is desired in computer systems, no system can be built

that will operate with 100% reliability. Failures may be hard (permanent) or soft (transient)

and may occur for many different reasons including the following:

•Physical wear-out.

•Marginal specification and implementation that results in electrical problems.

•Latent manufacturing flaws not caught by screening and testing.

•The effects of the outside and system environment.

•Human error.

A balance must be struck between the need for reliability and the willingness and ability to

devote the necessary resources to achieve that goal. The reality is that the interconnection

network is a small part of the overall multicomputer system and a small investment in

resources may be all that is available to devote to enhanced network reliability. Large gains

in network reliability will translate into small improvements in system reliability. While

this doesn’t mean that the reliability of the routing network can be ignored, it does mean

that the routing network will receive only a small piece of any marginal resources or design

effort that can be dedicated to fault tolerance. Also working against fault tolerance in the

router are the performance requirements. Maximum throughput and minimum latency are

strong requirements, therefore any additions to the router must avoid increasing cycle time

or pipeline depth. The result is that the design space of interest avoids wholesale changes

to the network, carefully picking the spots in which the maximum return can be achieved

with only incremental cost. Working in favor of this design space is the natural redundancy

of the network which can be utilized to provide fault tolerance without the addition of

redundant resources to the network.

3.1 Fault Model
The single sequential fault model that is used to analyze the hazard due to network faults

assumes that faults will occur at a rate much slower than the response time of the network

to a detected error. The single fault assumption precludes consideration of an arbitrary col-

lection of faults that, at an extreme, could reroute the network into a different configuration

or reorganize a set of transistors inside a chip into a new and different circuit. The single

fault assumption does not eliminate consideration of complex errors caused by the fanout

13

of effects from a single fault. Transient errors are included in this fault model definition

along with permanent faults. An upset due to a transient error is usually the result of a bit

flip or the improper reception of data by a storage element due to operating or environmen-

tal conditions.

A study of transient upsets in a microprocessor [Elder et al. 88] defines three categories of

error response: bit errors, word errors and complex errors. A bit error is the result of a data

register bit flip. A word error is the result of a bit flip in a register holding an address or an

address pointer. A complex error is harder to characterize simply but is caused by an upset

in the control logic and results in a change in the operating sequence or in the control out-

puts of the device. The complex error can include manifestations of the other error types.

This characterization of errors turns out to be convenient in defining the errors due to rout-

ing network faults. In a routing network, a bit error results from an error that affects the

packet data. A word error affects the routing control resulting in the misroute of a packet.

A complex error affects the control or sequence of operation.

Within the interconnection network, faults may occur in either the links or the routers. Link

faults are usually caused by connector problems as the wires in cables and circuit boards

are generally highly reliable. A link fault will corrupt the signal on one or more lines. A

corrupted data line results in a bit error. A corrupted control line can generate a complex

error.

Within the router chip, a single hard fault may be represented as an open or shorted line or

as a faulty transistor. An upset can be represented as a bit flip in a latch. Faults or upsets

within the router data path will generally be manifested as bit errors. In the routing decision

logic, data joins the control path and word errors can be generated as can bit errors and com-

plex errors. In the router control logic, complex errors will be prevalent.

The single fault scenario includes macro problems that fault such global systems as the

power supply or the clock. This category also includes gross physical problems from a sin-

gle source. An example of such a failure would be an unmated connector or connector fail-

ure that disconnects an entire link(s). Another example would be a router die that is cracked

due to physical stresses. This type of problem will generally have catastrophic effects on

the link or router and generate errors of all three categories.

Network failures can be categorized in a more symptomatic manner without reference to

fault location. Data in a packet can be corrupted resulting in bit errors. Channel control can

fail to observe protocol or channel control can follow contextually incorrect protocol, i.e.

14

packet can be stretched or truncated resulting in complex errors. Channels can lose syn-

chronization resulting in errors of all types. Packets can be misrouted resulting in word

errors. Packets can be dropped or multiple copies of packets can be propagated resulting in

complex errors. These symptoms may appear in combination. For example, a dead channel

can manifest itself as the corruption of data, failure of channel control to observe protocol

and/or dropped packets.

3.2 Fault Detection
Fault detection, the process of recognizing that a fault has occurred, is the first step in fault

management. Strictly speaking, faults, which are in the physical domain, are not detected.

Errors, which exist in the information domain, are detected when circuit conditionsactivate

the fault and cause improper behavior. For the purpose of this study the terms “fault detec-

tion” and “error detection” can be used interchangeably. Fault detection can be closely

related to the physical faults. A scheme with tightly coupled cross-checking redundant

blocks would put the detection mechanism in close proximity to the physical fault. How-

ever, the approach used in the fault tolerant Chaotic routing architecture depends upon the

detection of errors at a more abstract level. This approach turns out to be significantly less

costly but is only marginally less effective at fault detection than duplication with cross-

checking.

Fault detection mechanisms within the Chaotic routing network are described later in detail

but can be enumerated quite simply:

Both a checksum and parity are generated for all packets in the network. Parity protects

routing information in the packet header and is checked and updated in each router. The

checksum protects the remaining static packet data and is checked in the destination node.

A channel protocol checker is used to provide a sanity check on transactions. This includes

a timeout counter to detect unresponsiveness, a flit counter that detect packets of greater

than maximum length and a context checker on the channel control signals that checks for

inappropriate actions.

Packet reordering buffers located in the network interface are used to detect late, dropped

or duplicate packets. Packet reordering is required because of the potential for out-of-order

packet delivery that exists in a non-minimal packet router. Normal behavior assumes timely

and coordinated delivery of packets in a multipacket message. Exceptional behavior, as

manifested by missing or extra packets, indicates a possible system malfunction.

15

Single packets that encompass an entire message will not be processed by the reordering

buffers and therefore, if missing, will not be detected via any interconnection network hard-

ware. Any detection will be at the system level by means of a higher level mechanism. This

can be through a protocol that requires an acknowledgement of message receipt or by

means of a timeout or sanity check that depends upon an understanding of the software con-

text such that the absence of the message indicates a problem.

Undeliverable packets within the network will eventually be detected when a system drain

occurs as part of the fault management procedures. The system software uses the evidence

provided by such packets to determine that some nodes may be unreachable.

3.3 Fault Coverage
Fault coverage is the average of the probabilities that failures within a fault class will be

detected weighted by the probability of occurrence of each fault class. Fault coverage is an

important factor in the estimation of the reliability of a fault tolerant system. The operative

assumption is that an uncovered fault may lead to a partial or full system failure while a

covered fault will be detected and the situation will be corrected, leaving the system func-

tional. Other issues, such as the amount of redundancy available in the system, may enter

into the reliability equation. However, for a large multicomputer with a highly redundant

interconnection network in which large numbers of faults will not be allowed to accumu-

late, fault coverage becomes the key issue. Reliability is typically defined as R(t) = e-λt with

λ equal to the failure rate. The following equation relates coverage to the failure rate of the

fault tolerant system and thus to the reliability:

λFT = (1 - coverage) xλbaseline

Thus, if coverage of 0.9 is achieved then the failure rate of the fault tolerant system will be

10% of the baseline failure rate. For coverage of 0.99, the failure rate will drop to 1% of

baseline.

The determination of fault classes is somewhat arbitrary but depends upon locality, func-

tionality and expected response to faults. The router chip encompasses three fault classes

and the links represent a fourth. The probability that failures will occur within each fault

class is implementation dependent and can only be estimated based on some assumptions

as to fault behavior.

An examination of the Chaos router chip, considering transistor count, die area and the

amount of wiring, shows it to be roughly 75% datapath, 10% routing decision logic and

16

15% control logic. A tabulation of the storage bits within the Chaos router chip shows that

each router contains 15 fifos, each of which holds 20 flits of 16 bits for a total of 4800 bits.

There are approximately 500 other storage bits within the router that are assumed to be dis-

tributed between the routing decision logic and the control logic in the 10:15 ratio sug-

gested above. This associates about 90% of the storage bits with the datapath. A reasonable

approximation for the effectiveness of fault tolerance in the router considers hard and soft

faults within the datapath, routing decision logic and control logic as different fault classes.

Estimates for fault coverage in these classes can then be applied and overall system cover-

age determined.

Faults within the Chaos router chip are assumed to occur randomly across the entire chip.

This means that for each fault class, hard faults within that class will occur in proportion to

the number of devices and amount of routing associated with that fault class. Soft faults will

occur in proportion to the number of storage bits that can be associated with a fault class.

Within the network links, there is assumed to be some physical separation between data and

control bits in order to minimize complex errors due to shorting faults between data and

control lines. Faults will occur with a uniform distribution across the link signals. On the

Chaos router chips, about 80% of the pins are associated with connections to network links.

The connection points from chip to board and from package to die bonding pad are gener-

ally recognized as failure prone locations. Faults in the Chaos router chip from the die on

out can be associated with the network link fault class based on the high associativity of

chip connections with the link signals and the expectation that faults on either will be man-

ifested as errors of a similar nature.

The distribution of the probability of occurrence of router faults versus link faults is diffi-

cult to estimate but turns out to be a moot point because of the similarity in coverage num-

bers that will be generated between the link class and the classes associated with the router

circuitry. Basic connector reliability is high relative to that of a complex integrated circuit

such as the router chip. However, in a large network, the connectors are probably the com-

ponents most subject to mechanical damage, human error and stress as described in Section

3.4.3, which could skew the fault distribution in the direction of the link class. Table 1 sum-

marizes the network fault classes.

17

3.3.1 Router Datapath Coverage

The datapath consists of input, output and multiqueue fifos along with the crossbar and

associated routing that joins these blocks together. Faults in the datapath will generally

show up as bit errors. Bit errors are detected with high probability by means of both check-

sum and parity. Coverage for bit errors anywhere in the system is near 100%. This holds

for both hard and soft faults. It is possible but with low probability under the single sequen-

tial fault assumption that the checksum or parity detection can be defeated by a single fault

that generates a common mode error within the datapath. However, multiple bits would

have to be affected for the corrupted data word to be aliased into a word with no apparent

errors.

Table 1: Chaos network fault classes.

Fault Class
% of
router

Router - hard faults

datapath 75

routing decision logic 10

router control logic 15

Links

data lines 80

control lines 20

Router - soft faults

datapath 90

routing decision logic 4

router control logic 6

18

3.3.2 Routing Decision Logic Coverage

Routing decision logic takes packet header data which contains routing information and

generates control signals which control the path of the packet through the router. For pack-

ets which get buffered in the multiqueue, a data base is generated and maintained in the

scoreboard where it is used to determine the future routing of the packet. The routing deci-

sion logic consists of the header decode logic, which determines the direction a packet will

follow through the crossbar, and the multiqueue scoreboard. When a fault simply alters

data, the result will be a word error, unless changing the data removes a pointer to the

packet in which case the result will be a dropped packet, a complex error. In a similar man-

ner, a fault can create a pointer to a phantom packet. Since routing decisions are time and

context dependent, a word error will not necessarily appear as unusual behavior. Many

word errors will remain unobtrusive though a few will generate detectable problems. For

example, if a router always routes packets away from the local delivery channel or the sole

remaining channel to another router, the lack of delivery will be eventually be detected. The

diagnostic procedures have a good chance of detecting word errors. Routing decision logic

faults can generate other types of errors. Bit errors can be generated as data words collide

in the crossbar due to faults in the crossbar control logic. Complex errors and bit errors

result from truncated or stretched packets. The effect of faults in random logic depends

completely upon the low level implementation of the circuitry and is difficult to predict but

an assumption that the effects of some faults in the routing decision logic could fanout into

the router control and result in large scale control problems is prudent. This type of error is

likely to result in various types of complex errors, in particular channel control problems.

Any coverage estimate for word errors must be qualified. Most word errors will be harmless

and continued operation of a router that is nominally faulty but still active may actually

have less negative impact on the network than would removal of the router from the system

via reconfiguration. The ability of the network to function in the presence of router word

errors could be considered an inherent form of fault tolerance. A soft fault that results in a

word error should have no lasting impact because the packet is unaltered, routing informa-

tion in the packet header is consistent with the packet location, and the packet can proceed

from its new location without encountering the same problem again. The mechanisms for

detection by the reordering buffers and for the detection of undeliverable packets within the

network by means of a system drain should catch most word errors that actually interfere

with successful packet delivery but detection latency may become an issue.

Complex error coverage will depend upon the manner in which the problem is manifested.

19

Truncated or stretched packets should be detected via bit error detection mechanisms. Mul-

tiple or dropped packets will not be detected by the routing network because the routers

have no context from which to base a judgement concerning the correctness of the exist-

ence or lack of existence of a packet. That task is reserved for the network interface or the

operating system. It is expected that most faults affecting channel control will result in

clearly improper behavior. Byzantine behavior due to faults in which an error is manifested

as behavior that is improper for the specific situation but not outside the realm of legal

activity as determined by the channel protocol checker, is possible but is expected to be

rare.

3.3.3 Router Control Logic Coverage

The router control logic has overall control of the sequencing of the router operations. This

involves controlling the ordering and sequence of dimensions that are visited along with

many housekeeping tasks such as fifo control and channel control. Faults in the router con-

trol logic will be manifested as all three of the error types. In particular, control of the fifos

can result in bit errors while channel control can result in complex errors.

3.3.4 Link Coverage

Link failures will probably be detected as bit errors in proportion to the number of data bits

in the link. Chaos uses 16 data bits and 4 control bits per link, therefore the 80% of single

line or pin faults that result in bit errors will be easily detected and covered. Errors involv-

ing open or shorted control bits may result in complex errors with the attendant lower cov-

erage. Catastrophic failures involving the loss of the entire link because of connector failure

will be easily detected.

3.3.5 Network Coverage

The major problem encountered in this analysis of coverage concerns the relationship

between the error detection mechanisms in the fault tolerant Chaos routing network and the

bit, word and complex error classifications considered in the discussion of the various fault

classes. Fault classes are physical classifications of the network while the error detection

occurs in the information domain and the mapping between the two is complex. Fault injec-

tion and simulation can provide an explicit mapping but that cannot be done using a high-

level conceptual design. Error detection and its effectiveness is discussed in Section 5 and

a conservative mapping of error detection into fault coverage is described.

20

3.4 Reliability Estimation For a Chaos Routing Network
The following sections provide an analysis of the base failure rate for the Chaos routing net-

work. This information can be combined with the fault coverage estimates for the fault tol-

erant network to provide a reliability comparison of the base routing network versus the

fault tolerant network in absolute terms.

3.4.1 Failure Rate Estimation for Hard Faults

The following calculations use the reliability estimation equations and data defined by Mil-

Hdbk-217F [MH217 91]. This handbook is generated through the compilation and analysis

of large amounts of reliability data on all types of electronic components. Formulae to cal-

culate expected failure rates for various part types are defined and the various factors incor-

porated into the formula such as environment, part complexity, package type, etc. are

tabulated. Reliability is defined as R(t) = e-λt which assumes an exponential distribution of

fault arrival times with constant failure rateλ. This distribution also defines the Mean Time

To Failure (MTTF) as 1/λ. The reliability of a system is defined as Rs = e-[∑λi]t = e-λst,

whereλs is the summation of the individual failure rates of all system components. The

estimates given in the handbook always trail current technology because of the retrospec-

tive nature of the data. However, they give a good relative baseline and order of magnitude

estimate. For this example a 1024 node mesh network is assumed. Only the reliability of

the network components is considered in this analysis, not the reliability of the full parallel

computer.

The Chaos chip is a custom designed 1.2 micron feature size CMOS device. It is contained

in a 128 pin PGA and the die itself is approximately 1.0 cm2. It contains about 75,000 tran-

sistors which translates into about 20,000 gate-equivalents. This falls between two 217F

categories, “Gate/Logic Arrays and Microprocessors” and “VHSIC like microcircuits and

VLSI CMOS (60,000 gate +)”. The calculation using the “Gate/Logic Array and Micropro-

cessors” formula gives a higher failure rate so it is used as a conservative approach. The

expected failure rate calculations are shown below.

For Gate/Logic Arrays and Microprocessors, the formula is as follows:

λ = (C1πT + C2πE)πQπL failures/106 hours where:

C1 is the die complexity failure rate.

C2 is the package failure rate.

πT is the temperature factor (junction operating temperature).

21

πE is the environment factor.

πQ is the quality factor.

πL is the learning factor.

For the Chaos chip the values for these parameters are shown in Table 2. When appropriate,

a range of values is given. Many of the parameters are insensitive to changes in the chip.

The significant variables turn out to be the operating temperature, the quality screening

level and the maturity of the design. Ignoring the screening level for which improvement

carries a very high price, the high and low failure rates for the chip are within a factor of

three of the baseline rate.

The reliability of the circuit board components also affect the system reliability. Consider

a system built using backplanes containing 16 routers. Each board will have 100 pin PCB

connectors for each of 16 processing node boards. There will be 16 additional 100 pin PCB

connectors for external connections. A PC board has 5000 plated through holes. A 1024

node system requires 64 such boards.

For a 100 pin PCB connector, the formula is as follows:

λ = λbλKλPλE failures/106 hours where:

λb is the base failure rate.

Table 2: Chaos chip reliability parameters.

Parameter Low Baseline High Discussion

C1 0.16 0.16 0.16 10,001≤ # gates< 30,000
With the Chaos router having 20,000
gates, this parameter is insensitive.

C2 0.053 0.053 0.053 The baseline value is for a 128 pin chip.
The next step comes at 180 pins.

πT 0.16 0.35 0.71 T = 35°, 55°, 75° C.

πE 0.5 0.5 0.5 Baseline is “Ground, Benign”, a lab or
business environment

πQ 2 10 10 Heavy screening vs. commercial quality

πL 1 2 2 Part in production 2, 0.1, 0.1 years

λ (failures/
106hours)

0.104 1.65 2.80

22

λK is the mating/demating factor.

λP is the active pin factor.

λE is the environment factor.

Values are as follows:

λb = 0.00028 (connector temperature = 30° C.)

λK = 2.0 (0.5 to 5 cycles/1000 hrs.)

λP = 25 (100 pins)

λE = 2.0 (Ground, Benign environment, not Mil Spec quality)

λ = 0.028 failures/106 hours

For a PC board with 5000 plated through holes, the formula is as follows:

λ = λb(N1πC + N2(πC + 13))πQπE failures/106 hours where:

λb is the base failure rate.

Ν1 is the quantity of wave soldered PTHs.

Ν2 is the quantity of hand soldered PTHs.

λC is the complexity factor.

λQ is the quality factor.

λE is the environment factor.

Values are as follows:

λb = 0.000041 (Printed wire board)

Ν1 = 5000

Ν2 = 0

λC = 1.8 (5 layer board)

λQ = 2.0 (not Mil Spec quality)

λE = 1.0 (Ground, Benign environment)

λ = 0.738 failures/106 hours

Therefore, for each board, the failure rate is as follows (ignoring sensitivities except for the

Chaos chip) :

λBoard = 16 x λChaos + 32 xλConnector + λInterconnect

23

= 26.4 + 0.896 + 0.738 = 28.03 failures/106 hours (λChaos baseline).

= 44.8 + 0.896 + 0.738 = 46.43 failures/106 hours (λChaos high).

For the full network:

λNetwork = 64 x λBoard

= 1.79 failures/103 hours (λChaos baseline).

= 2.97 failures/103 hours (λChaos high).

By far, the greatest component of the failure rate is associated with the router chip. The

overall MTTF is 557 hours for the baseline network and 337 hours for the network using a

less reliable Chaos chip.

3.4.2 Failure Rate Estimation for Soft Faults

The occurrence of transient errors in a system has been estimated at anywhere from 6 times

the hard error rate [Iyer & Hsueh 90] to 30 or more times the hard error rate [Siewiorek et

al. 78]. While many causes of transients are known, transients, by definition, are ephemeral

and troubleshooting can be difficult. Among the causes are electromagnetic interference

(EMI) from the system or outside environment, power supply instability, marginal paramet-

ric characteristics at a device level that results in data ambiguity, failure to meet device

setup and hold requirements, single event upsets (SEU) caused by the decay of radioactive

materials in device packaging or from environmental (cosmic ray) radiation and subtle

design flaws or protocol errors that create data conflicts.

For a rough order-of-magnitude analysis, the Chaos routing network is treated as a large

distributed SRAM and the reliability with respect to transient upsets is calculated. The

comparison is very rough because of technology differences. SRAMs have a specific tech-

nology dependent sensitivity because of their utilization of sense amps and signal swings

that are a fraction of full rail values. In contrast, the Chaos router latches utilize non-array

type full rail logic. However, other comparisons work in favor of the SRAM in this com-

parison. The Chaos router uses dynamic latches rather than static. The SRAM is monolithic

and the interconnect is very carefully designed and controlled whereas the Chaos network

is distributed and subject to outside influences. Problems such as clock skew are of utmost

importance for Chaos.

Each Chaos router contains 4800 bits of storage in its fifos. In a 1024 node network the total

number of bits is 4,915,200. State bits and other latched values are disregarded. A repre-

sentative value of 10-8 errors/bit-hour for the bit error rate is assumed. The calculation is

24

performed for a full network and for a network with buffers 1/3 full. Unless the network is

fully saturated with packets, a good percentage of data buffer upsets will have no effect

because they will occur on empty buffers. The results are consistent with the expected rate

of transients relative to the hard failure rate. The estimation givesλ = 16.4 failures/103

hours for the 1024 node network that is 1/3 full yielding an MTTF of about 61 hours, 11%

of the MTTF of 557 hours for hard failures. For the network that is full, λ = 49.2 failures/

103 hours yielding an MTTF of about 20 hours, 3.6% of the MTTF for hard failures.

3.4.3 Potential Network Problems

The previous sections have abstracted the potential failures into estimates of failure rates.

Here some of the potential design problems specific to large networks that can contribute

to unreliability are described.

A large network is by nature a physically distributed system. The sheer number of chips,

boards, links, connectors and other components becomes enormous. The example that was

analyzed had 1024 nodes organized into 64 racks of 16 nodes each. Tying the system

together is a difficult task. Maintaining a stable, uniform environment is a key issue. Timing

issues and clock skew are accentuated by the distributed nature of the system. The normal

parametric distribution across a large number of parts can result in some outlying parts

whose marginal performance affects the system. This effect is multiplied by power supply

variations and power dissipation hot spots that can create “fast” or “slow” regions of the

system. Clock distribution and synchronization, which require careful design at the chip or

board level, are even more important and difficult for a large system. The Chaos router was

built with a cycle time of 15ns. The goal for the next version is 6ns. Other router designs

using more aggressive technology have a 2ns or 3ns cycle time. The dual trends toward the

growth in system size and the increase in clock rate combine to shrink the margin of error

in system timing.

Human error is difficult to quantify as a reliability factor but must be considered as a source

of unreliability. If a small computer malfunctions, one of the first things to check is the

power and all of the connections. In a larger network, the number of connectors to mate and

boards to seat is much larger and a bad connection may affect only a fraction of the system.

In fielded systems, when failures are examined and boards and black boxes pulled because

of some indication of failure, it is common for the result of the examination to be “No Fail-

ure Found.” It is suspected that bad connections, whether caused by humans or by environ-

mental conditions, are the source of many of these problems and the simple act of

25

manipulating the connectors and reseating the boards as part of the troubleshooting process

alleviates the failure. Failures due to such factors as electrostatic discharge (ESD) can also

be attributed to improper handling and human error.

Dutton [Dutton 89] in a discussion of connector reliability, states that 15% of automobile

breakdowns can be attributed to connector problems. While the automotive environment is

far more harsh than a scientific computing environment, some of his observations have gen-

eral relevance. Connector unreliability occurs as pins tend to back out of the socket and

contacts tend to spread, causing reduced contact which can result in intermittent problems

that are particularly difficult to trace. In an automotive environment, these problems are the

result of repeated mating cycles which are largely due to routine maintenance or diagnostic

checks. In other words, the basic unreliability of a system may tend to exacerbate and create

additional reliability problems. The addition of fault tolerance and diagnostic capability to

a network may actually lower the base component failure rate by avoiding some of the

physical manipulation that can degrade the system.

3.4.4 Summary

The failure rate for the fault tolerant network is not the component failure rate but the rate at

which failures occur that are not masked by the fault tolerance, resulting in full or partial sys-

tem failure. The baseline MTTF of the network for hard faults is estimated at 557 hours or

about 23 days. The MTTF for soft faults is much less. The addition of fault tolerance to the

interconnection network could improve the reliability to the point that regularly scheduled

maintenance could be used to repair network faults without any unscheduled loss of system

operating service.

26

4 Communication and Network Synchronization

In a multicomputer system, the most efficient algorithms are those that can be distributed

across many nodes in order to take advantage of as much processing power as possible. The

latency of the interconnection network adds significant overhead to a computation, reduc-

ing the efficiency of computations with many inter-node dependencies. So it is with fault

tolerance. Diagnostic procedures that perform fault identification are quite simple and effi-

cient when concerned only with the health of the immediate neighborhood of a router

within the network. As with the Chaos routing algorithm, which uses only local information

in making routing decisions, fault detection circuitry that works strictly with local informa-

tion provides many advantages. Locality avoids a large amount of communication over-

head and simplifies fault management procedures. Fault tolerance is more robust without a

master fault tolerance controller that, itself, would have to be fault tolerant in order to avoid

single point system failure scenarios. This type of design scales well as the multicomputer

system grows. It also enhances fault containment should a particular fault result in an error

that escapes from the node. An error that propagates away from the faulty node will quickly

reach a node that is physically unaffected by the fault. Because the local nature of fault

detection requires no byzantine agreement between nodes, that node will also be logically

unaffected by the fault. Therefore, the fault detection capability in that node will be work-

ing at full speed, providing maximum probability of fault detection.

While localized fault management has much to offer, the network has a global nature that

cannot be ignored. The paths that packets travel through the network may pass through

routers remote from both source and destination. The traffic load that is applied to a node

depends on the node’s local environmentand on global traffic patterns. The global nature

also has an impact on fault detection and management. Diagnostic procedures generally

require that the system under test be in a known initial state. However, any attempt to

locally set the network state will be immediately perturbed by traffic from outside of the

local region. It can also be the case that local diagnostics may only be of limited use. A

missing packet may be anywhere in the network while a packet may not be detected as cor-

rupted until it has moved far from the source of the problem. However, this doesn’t invali-

date the concept of local control of fault management. Through network-wide

synchronization of the local procedures, the net effect can be of a global, but distributed

procedure. This requires an efficient broadcast mechanism through which network syn-

chronization and control can be maintained.

27

4.1 Broadcast Networks
Broadcasting in a distributed network is a complicated problem. Typically networks that

are optimized for data transmission have very high bandwidth and relatively low latency in

order to deliver messages efficiently between processing nodes. The network design and

associated routing algorithms tend to be optimized to provide the best service for the pass-

ing of data between processors. Unfortunately, data networks do not necessarily provide

good service for control messages, which have different network needs.

Data messages need networks that provide high-bandwidth, reasonably low latency, and

reasonably reliable delivery for point-to-point communication. Routing algorithms

designed for moving data usually send a single copy of a message through a single (possi-

bly dynamic) network path. Failures in the network may cause loss of communication

between nodes and loss of data until the faults are detected and the operating system recon-

figures the network.

On the other hand, control messages require little bandwidth, but need very low latency and

extremely reliable delivery for broadcast (one-to-all or all-to-all) communication. Control

messages may be used to signal network barriers, changes in network configuration, the

onset or termination of computation, or warning of network errors. They should be able to

reach all connected nodes in a network in a timely manner regardless of faulty links. When

control messages are sent across a network optimized for data transmission, they are treated

in the same manner as all other messages. They are therefore likely to experience large

delays in times of high congestion and they are subject to being lost by the network due to

component failure. Designing a network to give priority to control messages over data mes-

sages helps alleviate the problem of congestion, but does not help when components fail.

Also, most data networks do not directly support broadcast, so the broadcast of system con-

trol messages must be accomplished by a multitude of single-destination messages. There

is also the fundamental philosophical and practical problem of using a network to control

the test of suspect components which make up that same network. This situation exempli-

fies the Byzantine Generals Problem [Lamport et al. 82] in which malfunctioning compo-

nents may pass conflicting information to various parts of the system.

In order to provide efficient transmission of control messages, a separate network, either

physical or virtual, is needed. A small number of currently produced parallel machines have

multiple networks for different functions. The Thinking Machines CM-5 computer

includes three distinct physical networks: a data network, a control network, and a diagnos-

tic network [Leiserson et al. 92]. The Fujitsu AP1000 also has three networks, one for data,

28

one for control broadcasting, and one for synchronization [Ishihata et al. 91]. However, the

additional hardware needed to build three separate high-bandwidth networks is very costly.

The interconnection network, in its quest for high bandwidth and low latency, is usually

designed to fully utilize available network resources (wires and pins). Therefore, a practical

but alternate broadcast network must minimize such usage in order to avoid having a neg-

ative impact on network routing performance. IBM’s Vulcan architecture uses a virtual

broadcast network built on top of the data network’s links to implement its fault-tolerance

mechanisms [Stunkel et al. 94], avoiding completely the use of additional scarce resources.

Unfortunately, adding a virtual network on top of the existing network complicates the crit-

ical path of the network routers. Thus, a low-cost, but physically separate control network

is needed for a large-scale machine. The need for such a network for use in the control of

fault tolerant Chaotic routing led to the design and development of the Express Broadcast

Network, an inexpensive low-bandwidth, low-latency network which is extremely redun-

dant and optimized for the broadcast of system-wide control and synchronization signals.

4.2 The Express Broadcast Network
The Express Broadcast Network (EBN) is designed to meet the critical requirements of a

network to transmit system control messages, while costing very little to implement. The

supported features are as follows:

•Low latency.

•Broadcast ability.

•Very high reliability.

•Performance independent of the data network load.

•Scalability.

•Reliability and performance nearly independent of failures in the network.

•Low implementation cost.

In order to achieve these features at a low cost, the network is restricted as follows:

•Very low bandwidth.

•Synchronous operation (It is not necessary that a global clock exists, but each node

must be able to consistently count the passage of time.)

•Broadcast-only operation -- no single source/single destination operation.

29

The primary function of the EBN is as a broadcast network. A typical implementation of a

broadcast network utilizes a common bus across the entire network or subset thereof. While

this physical configuration is simple and best case performance is near optimal, it requires

a complicated protocol to resolve contention and performance can drop sharply as the load

grows. In addition, the common bus leaves the system vulnerable to faults. For these rea-

sons, the EBN is implemented as a set of point-to-point links. This creates natural fault tol-

erance and reliability through redundancy and greatly simplifies channel protocol while

maintaining good performance under all reasonable situations and acceptable worst case

performance.

A simple method of implementation is to build a static tree structure into the network,

where each node has in-degree one and out-degree of greater than one. A spanning tree

could then be defined and each node would act simply as a repeater, copying its input mes-

sage onto each of its outputs. Two limitations to this design limit its usefulness: each link

is a single point of failure, and the tree has only one statically-determined source node. A

failure on a link causes loss of communication to all of its descendants. Furthermore, the

only node that can broadcast in this tree is the single source node. Cray Research’s T3D

uses a special network to implement barrier synchronization and broadcast primitives using

static trees [Cray Research 93]. This allows multiple source nodes, but still suffers from sin-

gle-point failures. To avoid these problems, the EBN incorporates a dynamic redundant tree

structure.

Each node in the network maintains a ‘‘listening’’ mode, checking the incoming links for

messages. Any node may become the root of the broadcast tree as the need arises. When a

node desires to broadcast a message to the network, it simply sends a message to each of

its neighbors and internally notes that it has generated a broadcast message. Each of the

receiving nodes then marks itself as having received a message and copies the message to

each of its remaining neighbors. This process dynamically constructs a new broadcast tree

that touches each connected node. A node may receive copies of a message from more than

one direction at once, which is explicit evidence of redundant minimum length paths in the

tree. A node which has already received a message ignores any subsequent messages. All

nodes in the network eventually receive the broadcast message. Moreover, the broadcast

mechanism will automatically take advantage of the redundancy in the network, expanding

around any number of faulty links to eventually reach all connected nodes in the network.

This is illustrated in Figure 3, in which the broadcast reaches the entire network despite the

presence of faults. The path redundancy is not limited to fault-free minimum length paths.

30

In a faulty network with all minimum length paths blocked between two nodes, the propa-

gation scheme automatically reorganizes the tree and extends its depth as needed using

alternate paths.

The EBN has, in its simplest form, two basic communication primitives:eurekas andbar-

riers. Eurekas [Cray Research 93] are one-to-all broadcast messages and are used when the

entire network is waiting for a single event. Barriers are used when the network is waiting

for all nodes to experience a common event. Barriers can be implemented by having all

nodes broadcast eureka messages if they havenot experienced the event. When no mes-

sages are broadcast, the barrier is complete. Synchronization details for these are presented

in Section 4.3.3.

4.3 Implementation
The EBN, consistent with the low amount of bandwidth needed for control messages and

the requirement that the implementation costs be kept low, can be implemented using only

Figure 3: An EBN broadcast. A message originates from the black node which propagates
the message to all of its neighbors. This illustration shows a broadcast that has spread four
hops. As the broadcast message wavefront spreads, it bypasses faulty links (marked with
X’s) to reach the entire network.

31

a single wire per link. While space (additional wires) and time (time encoded messages)

can be balanced to provide greater bandwidth and a greater variety of messages, the single

wire implementation can provide full EBN functionality. An implementation utilizing a

pair of unidirectional wires on each link which allows only single bit messages is described

as are extensions to multiple wire, multiple bit, and bidirectional wire implementations.

4.3.1 Basic Network Implementation

The EBN is constructed using broadcast nodes to join links. These nodes may be connected

together inany shape that maintains connectivity of the network, regardless of the shape of

the independent data network. The EBN routing algorithm is unaffected by the network

shape. The connectivity of the EBN may be increased over the data network in order to

minimize broadcast latency, or reduced in order to cut costs. However, for the sake of ease

in physical layout, the network configuration of the EBN is envisioned to be the same as

that of the data network so that the EBN wires can be bundled together with the data net-

work wires. Moreover, because the EBN requires only a small amount of logic, the simplest

approach is to design the EBN into the data network routing chips that are requisite in a

parallel machine.

4.3.2 Network

In the most basic implementation, the nodes are connected with unidirectional wires (single

source/single destination). To establish bidirectional communications between two nodes,

two separate wires must be used. A set of unidirectional wires connecting each node and

its associated processor is also necessary. Depending upon the desired functionality, a small

number of control lines on the processor link may also be needed.

The EBN function is very simple. At reset, each router enters an inactive state. Each router

‘‘listens’’ to each incoming link. The router switches to theactivestate whenever any EBN

input, including from the processor, becomes active. In the active state, the router rebroad-

casts the incoming message to all of its neighbors by driving all outgoing links, including

the processor link, to the active value. Every processor that is connected by the network is

notified of the active state within a predictable amount of time that is independent of the

data network load. The active state is actually a sequence of states. There may be one or

two different transitions out of a given router state. When a choice of transitions is needed,

a fixed window in time is defined, during which the EBN can signal through assertion or

lack of assertion which transition will occur. Alternately, a single transition may occur at

an indeterminate time, signaled by assertion of the EBN. Or a single transition may be

32

timed without EBN input. The sequence of states will eventually lead back to the inactive

state.

Since the work required at each EBN node is limited, a message in the EBN should propa-

gate through each node with minimal delay. A pipelined design might implement this as

two cycles: one for transmission across the wire and one for the broadcast. The maximum

broadcast delay, the time for the assertion of the EBN by any node to propagate across the

network, is bounded by the product of the node delay and the diameter of the network.

The broadcast delay across the network allows for the possibility that there may be multiple

broadcasts from separate sources active across the network at a given time. Fortunately,

with single bit messages, this does not present a problem because all messages received in

a given state are interpreted the same way, regardless of their source node. It is only neces-

sary that a method for the maintainance of network synchronization be followed so that

messages will be interpreted by all nodes in the same manner.

4.3.3 Synchronization

Because the single wire EBN can only broadcast a single bit message, every node in the

network must remain in at least loose synchronization in order to agree on the interpretation

of a message on the EBN. The EBN itself is used to keep the machine synchronized. Each

EBN node keeps track of the state of the network according to a predetermined set of state

transitions, synchronized by the EBN. Because the propagation of the broadcast message

is sequential and not instantaneous, synchronization is maintained by allowing time for the

network to settle between broadcast messages. For example, the network starts with each

node in the inactive state. When a broadcast is initiated on the EBN, each node switches to

an active state as it receives the message. Each node that receives the broadcast will be

tightly synchronized with the originating node but with a phase delay proportional to the

distance from the originating node. After entering the active state, each node executes a

fixed delay before any new transition is initiated. The required length of this delay depends

upon the situation.

Define aNetwork Delay as the worst-case delay across the network. Consider the case in

which EBN assertion (or lack of assertion) at a fixed time selects one of two possible state

transitions. When the network is waiting for an assertion from an unknown source, it must

wait at least two Network Delays in order to account for the phase delay across the network

plus the broadcast delay of the EBN. This is illustrated in Figure 4. Node N changes state

based upon a broadcast that it receives one Network Delay after the broadcast was initiated.

33

A node in the new state initiates a eureka broadcast if some condition is met at the time of

the state transition. Node N responds to the change of state with a eureka broadcast which

takes one additional Network Delay before it is received by Node 1.

However, if the transition to the current state was timed or was signalled by an EBN asser-

tion and the next state transition is to be driven by another EBN assertion at an indetermi-

nate time, then the delay in the current state can be short. Since the delay to the next state

transition is not fixed and the transition itself is predetermined, there is no need to synchro-

nize the transition to the previous transition as was the case with the previous example. The

EBN can be asserted and the state transition can take place almost immediately; as soon as

the condition that drives the transition is met. The other nodes will make the transition with

Figure 4: Synchronization delay. Each node must wait a period equal to the phase delay
plus the broadcast delay.

1

N

• • •

•
•
•

• • •

•
•
•

1) Router 1 enters state A.
2) Router N enters state A, asserts EBN.
3) Router 1 receives EBN broadcast, moves to state B.

time

Network
Delay

Network
Delay

1 2 3

Phase
Delay

Broadcast
Delay

34

whatever phase delay exists between them and the initiating node. There need only be

enough delay to avoid conflict between the successive assertions of the EBN. During this

delay, the node accepts no EBN inputs and drives no EBN outputs. This is because the EBN

may still be asserted by neighbor nodes with trailing phase. Temporarily disabling the EBN

in this manner ensures that EBN broadcasts from neighboring nodes that have not yet made

the state transition will not cause unwanted state transitions in nodes with leading phase.

The proper phasing of events and state transitions is of particular importance in enhanced

versions of the EBN in which multiple messages must be sorted by priority and filtered

before a transition may be made. During the delay period, any action indicated by the mes-

sage is performed. After the delay expires, the node, depending upon the protocol and the

assertion or lack of assertion of a new synchronizing signal on the EBN, either returns to

the inactive state and executes another delay in order to ensure that all nodes are inactive

or makes a transition to another active state.

While the router will control the EBN along with the data network routing process, the node

intelligence remains within the processing node. The function of the EBN is limited to pro-

viding communication services and maintaining network synchronization. EBN message

content is generated by the processing node. While the router and processing node are con-

nected by a standard EBN link, there is private communication associated with the EBN

that is required between the two because of the fault detection functions within the router.

Information generated by the router is used by the processing node in assessing whether or

not to assert the EBN. This can require the use of additional dedicated control lines between

the router and the processing node.

4.3.4 Multiple Wire Channels

The use of single wire channels limits messages to single bit messages. The content of these

messages depend upon the state of the network at the time that the message is sent. More

complex control schemes will require a greater choice of messages that may be sent when

in a given network state. The use of multiple wire channels makes this possible. The num-

ber of distinct messages that can be sent from a given state is the number of distinct values

that can be sent on the wires,w for log w wires.

However, the extension to multiple wires introduces a new problem. A simplifying assump-

tion used in the design of the single wire EBN is that the meaning of a message is indepen-

dent of its source: all messages mean the same thing. That is no longer the case, since two

sources could simultaneously be broadcasting different messages in the multiple wire

35

scheme. Prioritizing the messages solves this problem. A strict ordering of all possible mes-

sages must be made, so that a message is given strict precedence over all messages of lower

priority. Whenever a node receives and forwards a message, it will continue to listen for

messages of higher priority arriving on any of its incoming links. If a message arrives at a

node that has already received a message of lower priority, the new message will be broad-

cast by the node just as if the first message had never been received. All nodes, including

the sources of lower-priority messages that are preempted will ultimately receive the high-

est priority message. These sources can save their original messages for rebroadcast at a

later time.

One problem remains: higher-priority messages may preempt others at any time, poten-

tially extending by a significant amount the overall broadcast delay before the network set-

tles. This can be fixed by constraining the generation of new messages. Not until a state

transition occurs is the initiation of a new message possible after a node has received a

broadcast message of any priority from another node. This reduces the worst-case time for

the completion of a broadcast to proportional to twice the diameter of the network since the

node farthest away from a broadcasting node may source a higher priority broadcast just

before the original broadcast reaches it. Each of these broadcasts takes time proportional to

the diameter of the network to complete, so the total operation is proportional to twice the

diameter. Thus, each EBN node will have to maintain itself in “listening” mode for a long

enough period to ensure that the current message will not be preempted before the node can

make the transition to a new state.

4.3.5 Bit-serial Messages

Messages may be extended by time encoding the bits on each signal wire, an orthogonal

process to extending the number of wires. Effectively, it is simply a tradeoff of time versus

space in order to achieve a greater space of possible messages on the EBN. Time encoding

allows an extended serial broadcast in the one-to-all broadcast mode, while the comparable

extension in space, greatly extending the number of wires in the link, is clearly not feasible.

A hybrid solution, with multiple wires and multiple bit messages, is also a legitimate exten-

sion of the EBN. One-to-all broadcast messages have a two phase structure. In the first

phase, a node wishing to broadcast a one-to-all message broadcasts a setup message. Any

collision of messages will be resolved through means of priority bits encoded into the setup

message. At the end of phase one, a single node has established broadcast rights to the

entire network, and all nodes are listening for that message. Each node will have marked as

the parent direction the channel from which the broadcast request that ultimately prevailed

36

was received. This sets up a pseudo-static tree for the ensuing one-to-all data broadcast.

Any node that received more than one instance of the same broadcast signal on the same

cycle may resolve the conflict arbitrarily in setting a parent direction. The second phase

consists of the broadcast of the data portion of the message to the entire network, which

will take place without conflict. When the source node relinquishes control at the end of the

one-to-all broadcast, the network returns to the inactive state.

The lack of control lines associated with the EBN makes it necessary that a multiple bit

message be either of fixed length or that there be a termination sequence to flag the end-of-

message. Synchronization becomes complicated because of the possibility that messages

of different priority will arrive at a router out of phase and on different channels. Any router

may update the message that it propagates and set a new parent direction if it receives a

new, higher priority message, therefore it is possible for a router to be the recipient of an

overlapping stream of new messages from which it must decide on one to propagate. It will

resolve this situation by propagating any fully received message of higher priority than any

message either previously propagated or currently waiting to be propagated. Messages

received while the router is in the process of propagating another lower priority message

will be buffered for the next open propagation slot. The buffer will be dynamic with only

the highest priority message preserved while all others are dropped. This protocol can result

in a lot of frantic activity if multiple messages are active in the network. But with new mes-

sage injection inhibited in any router that has received or injected a message into the net-

work and with the damping of lower priority messages, the highest priority message will

make monotonic progress across the network with only minimal incremental delay due to

contention.

4.3.6 Bidirectional Channels

By using bidirectional wires, which can be driven by either connected node, the number of

wires needed to build the EBN can be halved. The termbidirectional as used here refers to

half-duplex wires, which can be driven in only one direction at a time. A protocol must be

enforced in order to ensure that data is not lost by driving both ends of a wire at the same

time. Since there is no explicit hardware on the network which arbitrates mastership of the

bidirectional channel, the lines are driven by open collector outputs in the nodes along with

passive pull-ups, avoiding the physical hazard of having two active drivers of opposite

sense on the line. The logical hazard of two messages driven onto the same line is only a

problem if the node is in a state in which a number of different messages are possible. The

problem is easy to detect. A router will not initiate transmission across a link that is already

37

in use, therefore, any collision that occurs will involve in-phase messages. A router that has

a message to propagate that is of higher priority than the message it is currently in the pro-

cess of receiving will wait until the message is fully received and then will utilize the cycles

that immediately follow to reply with its own message.

Because the EBN connections to the node are I/O ports, the node can monitor its own out-

going transmission. If the received transmission does not shadow what was transmitted,

then the node concludes that the other side of the link is transmitting in synch and a colli-

sion is detected. While it is possible that the message from one side of the link will be

uncorrupted, it is not possible for both sides to see uncorrupted messages from colliding

messages except in the trivial case in which the messages are the same. At the end of the

transmission, there will be a dedicated cycle in which either side can pull down the line as

a sign that there has been a collision. Both sides will see this signal and initiate a protocol

that forces and alternates mastership of the link to one end at a time. This temporarily cre-

ates a virtual unidirectional link which allows for the resolution of link ownership conflicts.

The choice of using bidirectional channels is orthogonal to the choice of using multiple

wire channels or multiple bit messages. Any combination can be utilized. Because the mes-

sage collision problem arises only when there is a choice of messages that can be sent, it is

not a problem when single wire, single bit networks and protocols are used.

4.3.7 Performance

The Network Delay on the EBN is proportional to the diameterd of the network whered

is defined as the longest minimum distance between any two nodes in the network,taking

faulty components into account. For single bit networks, broadcast is bounded byds, where

s is the delay incurred during each hop that a message takes. For multiple bit or multiple

wire networks where collisions must be arbitrated, maximum broadcast delay is on the

order of2ds.

The effect of multiple bit messages on performance is simply to multiplys by a constant

factor proportional to the number of bits in a message. The granularity introduced by the

need to wait for the complete transmittal of the current message before a new, higher pri-

ority message can be propagated provides a constant cost term. Therefore, neither of these

effects will cause more than a constant factor change in performance.

The value ofd is variable, depending upon network configuration. For any network, the

greatest possible value ofd is N, the number of nodes in the network. However, most net-

works have a much smaller diameter. For example, ann-dimensional mesh with no faulty

38

components has a diameterd=nN1/n. When components fail and are configured out of the

network, the diameter may grow. However, because the EBN sends messages on all possi-

ble paths from source to destination, the diameter stays near the minimum for small num-

bers of faults.

To gauge the effect of faults on the diameter of a network, the following experiment was

performed: Randomly-placed link faults were injected into a two-dimensional mesh net-

work. After each new fault was injected, the network diameter was determined. The results

show that the network diameter initially tends to increase as minimum length paths between

nodes become blocked. However, as the number of faults increases, the point is reached

where the next fault cuts the path that determinesd and disconnects the two nodes con-

nected by that path. The diameter of the resulting subnetworks is less than the network

diameter prior to the last injected fault. The results are not monotonic from that point and

the diameter may go up or down with each new injected fault. Eventually, though, the diam-

eter begins to shrink, dropping to a value of zero when all links are faulted and the mesh is

totally disconnected. A plot of the network diameter versus the number of faults injected

from one experimental run is shown in Figure 5.

Figure 5: Network diameter vs. number of faulty links. This experiment is for an 8 x 8
node mesh network.

0

5

10

15

20

25

0 20 40 60 80 100 120

E
ffe

ct
iv

e
D

ia
m

et
er

Number of Injected Faults

64-Node Mesh Effective Diameter with Random Faults

39

Statistics related to the maximum network diameter achieved in a series of experimental

runs of this type are tabulated in Table 3. The results show that the maximum network

diameter for two-dimensional meshes under the condition of random faults is roughly pro-

portional toN1/2, the length of the mesh in each dimension. This is significant because of

the need to delay state transitions for a period proportional to the network diameter. The

required delay will therefore grow slowly relative toN. Based on the experimental results,

it appears that assuming a maximum network diameter of5N1/2 gives a sufficient worst

case margin. The experiment was repeated, faulting routers instead of links. This is the

equivalent of injecting four simultaneous and correlated link faults. The maximum network

diameter achieved was 15% to 30% less than for link faults due to earlier disconnection of

the network.

Consideration must be made of the potential effects of correlated faults. As shown by the

experiment which faulted nodes instead of links, simply applying faults in close proximity

will not cause an increase in network diameter beyond that observed under random injec-

tion. Even if the faults are carefully selected, it takes a significant number to increase the

Table 3: Maximum diameter of two-dimensional mesh networks with
random faults. The mean maximum diameter,dmax, and standard deviation,
σ, are reported for 100 trials. Thedmax + 3σ column indicates the number
that bounds the actual maximum 99.8% of the time.

Number
of Nodes

N

Mean Max
Diameter

dmax

Standard
Deviation

σ
dmax + 3σ (dmax + 3σ)/N1/2

16 8.9 1.5 13.4 3.4

64 21.8 3.5 32.2 4.0

100 28.9 4.7 43.0 4.3

144 35.8 5.4 52.1 4.3

196 42.8 6.7 63.0 4.5

256 49.7 7.0 70.8 4.4

400 61.9 8.4 87.0 4.3

576 76.5 11.9 112.3 4.7

784 92.8 14.9 137.6 4.9

1024 109.5 14.9 154.1 4.8

40

diameter of the network to5N1/2. For a fault to cause the network diameter to increase, it

has to force the minimum path between two nodes to backtrack (make negative progress).

Intuitively, it would take more than3N1/2 directed, not random, faults to increase the net-

work diameter to5N1/2. An example of this type of fault pattern which creates a snake pat-

tern across the network is shown in Figure 6 for an 8 x 8 mesh network. In this example it

requires 27 faults to increase the diameter to 40. For the case of a general mesh network

with sideN1/2 and following this pattern of faults, it would take7/2N1/2-1 faults to increase

the diameter to5N1/2. Any problem that could generate such a set of correlated faults would

have to be global, not local. The expectation for systems utilizing the EBN is that periodic

maintenance and repairs will be performed and the fault rate will be such that large numbers

of faults cannot accumulate.

4.3.8 Synchronous/Asynchronous Behavior

The EBN does not require that the end nodes of each link be synchronized, but synchronous

Figure 6: Network diameter increase due to faults. A message originating in source node
S must make5 x 8 = 40hops to reach destination node D. The arrow defines a minimal
path. X’s mark faulty links. In this example it takes27 faults to increase the network

diameter from14 (= 2N1/2-2) to 40 (= 5N1/2).

S

D

41

behavior will simplify the protocol. It is necessary that each node have a means to count

the passage of time because of the need to delay state transitions for a period proportional

to the end-to-end delay across the network. In an asynchronous system, timed state transi-

tions by the router state machine controller will have to be made robust, possibly through

the use of a synchronizing signal on the EBN. Asynchronous behavior will require more

complicated protocols on the links that will allow for internal synchronization of a received

message by the EBN node. The difficulty of implementing an asynchronous protocol on

bidirectional lines will probably limit the usefulness of that implementation option.

4.4 Applications
The Express Broadcast Network has a wide variety of potential applications. A number of

applications in which the EBN can be used to facilitate system startup, global flow control,

fast barriers, and general control for networks are described. Section 4.5 describes the

actual use of the EBN in the fault tolerant Chaos router.

4.4.1 System Startup

When a parallel computer system is initiated, one of the necessary functions involves the

dissemination of configuration and partitioning control information by a master node. This

is a situation in which the one-to-all broadcast mode could greatly simplify the problem. A

master node can simply broadcast the configuration information to all nodes. This requires

the use of one of the multiple bit transmission protocols described in Sections 4.3.4 and

4.3.5.

4.4.2 Global Flow Control

When traffic gets heavy, packet latency rises and at some level of traffic, throughput can

drop. The data network is too slow for effective global flow control and any attempt to use

it for such a purpose as the traffic load rises will only contribute to the traffic problem. The

EBN can be used to provide effective fine-grained flow control for the network. Assertion

of an EBN signal can slow or stop message injection. The flow-control algorithm itself is

fairly arbitrary. For example, at some predetermined load level, a barrier could be initiated.

In a non-minimal router, the need to deroute could be a trigger. An alternative trigger would

be some level of utilization of router packet buffering. A router receiving a flow-control

message could slow down or stop packet injection. The perceived load at the router receiv-

ing the flow control message could be a factor into the decision to stop injection. The flow-

42

control barrier could have a timeout so that it would expire after a set period or it could take

an explicit command to lift the barrier. The EBN simply provides a rapid and efficient

means of implementation of the selected algorithm.

4.4.3 Application Barriers and Eurekas

The barrier and eureka functions of the EBN could be made available to software applica-

tions in order to expedite their function. Software barriers can be used to provide many use-

ful functions involving synchronization. Eurekas can be used when parallel processes are

attempting to solve the same problem using different mechanisms: the first process to com-

plete signals all of the others by means of a eureka broadcast.

4.4.4 Control

The selection of a master node for control of certain functions, such as described previously

with respect to system startup, could be simplified through use of the EBN. Each node is

assigned a unique priority level. When the network moves to a state which requires that a

master node be selected, each router listens for another router to ping on the EBN to

announce that it has taken mastership. A fixed period is designated during which the highest

priority router pings on the EBN if it is present and active. If the period passes without a

ping, then a new period commences during which the next highest priority node pings. This

continues until an active node is found to assume mastership. The fault tolerant nature of

the EBN ensures that all connected nodes receive the highest priority ping, selecting a mas-

ter in a consistent manner. If the network has become separated by faults, each separate

connected block of components selects its own master by means of this algorithm.

4.5 Control and Synchronization of the Fault Tolerant Chaos Router
The EBN had its genesis in the need by the fault tolerant Chaos router for a broadcast mech-

anism that combines efficiency and fault tolerance with low cost. Given the goals of the

fault tolerant Chaos design, system performance had to be preserved along with hardware

resources and, therefore, network overhead dedicated to synchronization and control of

fault management procedures had to be severely limited. The EBN allows this goal to be

met. The Chaos router uses the the basic one wire EBN to implement a broadcast network

for the control of fault management procedures. For the targeted design, the one wire EBN

has sufficient functionality. Had the enhancement of general purpose network control also

been considered for this design, the EBN functionality required for fault tolerance could

43

have been smoothly folded into an extended EBN design of more general utility.

In this section, a general description of the flow of fault management activity within the

fault tolerant Chaos router is provided. Figure 7 shows the state transition diagram associ-

ated with the fault management procedures. The sections that follow describe the specifics

of the state transition diagram and the role of the EBN in providing global synchronization

for these procedures. The router state machine sequence depends upon control from the

processing node along with input from the EBN which provides global context. A detailed

description of the mechanisms involved in the fault management activity is included in Sec-

tion 5.

4.5.1 Chaos Overview

During normal router operation, the router state machine is idle. However, fault detection

mechanisms are active on every cycle. Any node that detects an error generates a network

broadcast which kicks each receiving node into the system drain procedure. Packet injec-

Figure 7: Fault tolerant Chaos router state transition table. The role of the EBN in fault
management procedures is illustrated.

Diagnostics Decision

Delay

Network
Clear

System
Drain

Error
Detect

Propagate

Normal
Operation

Drop
Packets

Delay

Timed
Transition

Timed
Transition

EBN:
Error-
Detected
eureka

EBN:
System drain
barrier incomplete
& timeout

EBN:
System drain
barrier
complete

EBN:
Run-diagnostics
eureka

EBN:
~eureka

Timed
Transition

Delay

Delay

Delay

EBN:
System drain
barrier incomplete
& ~timeout

Timed
Transition

2 x Network
Delay

2 x Network
Delay

44

tion is inhibited and the network is emptied. If any error is still outstanding at this point, the

network moves into a round of diagnostic tests. Otherwise, with no error pending, the net-

work returns to normal operation. When diagnostics are completed, the network is recon-

figured to remove faulty components from use. Finally, fault management terminates and

normal operation is resumed. The Chaos router utilizes both types of EBN communication

primitives, eurekas and barriers, to control the router state machine and the fault manage-

ment procedures. The router also demonstrates the various types of state transitions that can

be generated using the EBN: timed with the selection of transitions determined by the EBN

input, timed with a predetermined transition (no EBN input), and untimed, triggered by the

EBN.

4.5.2 Error Detection

The fault management procedures are idle while the router is in theNormal Operation state.

The router state machine maintains the Normal Operation state until anerror-detected

eureka broadcast is received on the EBN. Any node that detects an error can initiate the

eureka. The error-detected eureka is similar in function to theglobal faulting mechanism

in the Vulcan architecture [Stunkel et al. 94]. The eureka forces an untimed transition into

theError Detect Propagate state that implements a short delay. The delay is needed to

ensure that any ensuing EBN traffic trails the broadcast wavefront created by the error-

detected eureka signal. Initiation of the error-detected eureka comes from the processing

node which drives the EBN to its associated router. The router has error detection capabil-

ity, but detection of an error by the router results in a private communication on the router-

processing node channel. The processing node maintains final control over the initiation of

the error-detected eureka broadcast. From the Error Detect Propagate state, a predeter-

mined and timed transition into theSystem Drain state is made when the delay expires.

4.5.3 System Drain

In general, the system drain ensures an upper bound on the transit time of a packet through

the network. As a fault management procedure, the system drain is used to flush out any

“wandering” packets and to set a known state into the network. This stage of the fault man-

agement procedure empties the routing network in order to create uniform empty and idle

conditions across the network in preparation for diagnostic procedures. Injection of new

packets into the data routing network is disabled, however, routing of packets already in the

network continues. Preferably, the network will empty without intervention through normal

packet delivery but packets will be removed from the network by direct action if necessary.

45

The EBN barrier function is used to detect the completion of the system drain. Implemen-

tation of the barrier requires a pair of closely linked states. These states cycle in a repeating

sequence that first tests for the condition that allows the loop to terminate, then clears the

network in preparation for a subsequent repeat of the test if the condition has not been met.

In the System Drain state, a router asserts the EBN if a packet header is present in the router.

The conditional test, or barrier condition, is that the barrier is not completed until all pack-

ets are removed from the network. At the end of two Network Delays, the router checks the

barrier condition and moves into theNetwork Clear state. This is a situation (see section

4.3.3) in which the combination of phase delay plus broadcast delay makes an extended

wait necessary in order to maintain network synchronization. Two Network Delays are

required because the sole packet in the network may be resident in a router that entered the

System Drain state one Network Delay after the first router that did so. This scenario is

illustrated in Figure 8. A router that has a packet header present at any time while in the

System Drain state will assert the EBN for the remainder of the delay period in order to

guarantee that the EBN assertion will be visible and uniform to all routers when the delay

expires and the condition is checked. Lack of assertion of the EBN at that time, is an indi-

cation that the barrier is completed and the system is drained.

The Network Clear state prepares the network for the next test of the barrier condition, The

router deasserts and disables the EBN for twice the delay incurred by each hop from router

to router. One such delay is the time it takes for neighboring routers with a trailing phase to

also move into the Network Clear state. It then takes those neighboring routers one more

such delay to halt assertion of the EBN to all of of their neighbors including those routers

with a leading phase. By temporarily disabling the EBN in this manner, it is ensured that

when a router reenables the EBN, there will be no neighboring routers still asserting the

EBN as part of the previous test of the barrier condition. The procedures performed in the

System Drain state and the Network Clear state together implement the barrier function.

A timeout period is used to handle the situation in which the network contains undeliver-

able packets. If the system drain barrier is not completed after a period of time such that

with high probability all deliverable packets have been delivered, then the timeout kicks the

network into theDrop Packets state. Here, all packets that are not stuck are delivered to

their current node. Any remaining packets are then noted and dropped. The transition out

of the Drop Packets state is a timed transition, with enough time allowed for a router that

has full buffers to deliver or drop all packets.

46

4.5.4 Diagnostics

Once the network is emptied, either through the graceful completion of the system drain or

by forcibly dropping packets, theDecisionstate is entered. To be decided is whether or not

to move into the diagnostics mode. Once again, the EBN is used in the eureka mode; any

node that deems it necessary to run the diagnostics asserts a eureka. Again, a two Network

Delay wait is required to allow the router with the greatest phase delay sufficient time to

propagate a eureka back to the router with the most advanced phasing. The eureka broad-

cast drives the system into theDiagnostics state. In this state, each node runs diagnostic

Figure 8: System drain timing and delays.

1

N

• • •

•
•
•

• • •

•
•
•

time

Network
Delay

Network
Delay

1) Router 1 asserts EBN (error-detected eureka), enters Error Detect Propagate state.
2) Router 1 enters System Drain state.
3) Router N receives error-detected eureka, enters Error Detect Propagate state.
4) Router N enters System Drain state, asserts EBN (packet in router).
5) Router 1 receives EBN barrier message from Router N. Router 1 decision: Is system drained?
6) Router N decision: Is system drained?

1 2

3 4

5

6

Network
Delay

47

tests which enable the processing node to conclude on the health of its connecting links and

neighboring routers. Bad channels are marked as inactive by the processing node. The new

configuration is reported to the system software which can force additional network recon-

figuration if global problems with the new network configuration need to be addressed. A

timed transition is made to theNormal Operation state in which another short delay is

counted off to avoid any conflict on the EBN with any ensuing error-detected eureka signal.

48

5 Fault Tolerant Architecture

The fault tolerant Chaotic routing network requires close interaction between hardware and

software. A layered, hierarchical approach is used in which the hardware feeds information

to application software which processes the data and in turn, supplies the system software

with a higher level abstraction of the state of the system. While most of the detailed hard-

ware design for the purpose of fault tolerance is directed at the Chaos router, the network

interface design is also critical in providing system fault tolerance. The following section

states some of the guiding principles that direct the design of the fault tolerant Chaotic rout-

ing network. Following that is a detailed description of the mechanisms that are used to

implement fault tolerance.

5.1 Design Principles
As described earlier, a key issue in the design of the fault tolerant Chaotic routing network

is the need to minimize increases in the cost of the system while avoiding the wholesale use

of scarce network resources such as pins, wires, router circuitry and network throughput.

This has several important ramifications:

•Specific points in the system are targeted as locations at which additional circuitry

can enhance fault tolerance. The targeted locations provide for significant coverage

of faults but with only an incremental amount of additional hardware. The approach

is to take the macroscopic view and detect the high level error syndromes rather than

the microscopic view which would place detection mechanisms in closer proximity

to the fault locations. The general approach of using system-wide redundancy, which

would provide for greater fault coverage, was rejected because of its cost.

•Since the amount of available resources is limited, a fundamental principle of com-

puter design, “optimize the common case”, guided this design. Fault detection, the

mechanisms of which are active during every cycle, is implemented in hardware.

Hardware is also used to implement the enhancements to the routing algorithm which

improve routing performance in a degraded network, another operation that may need

to be performed every cycle. The fault management procedures, in particular the diag-

nostics and network reconfiguration, are rare events and are left to software.

•Software was rejected as the mechanism for the implementation of fault tolerance. It

tends to use a significant fraction of system processing power and network bandwidth

while not providing the fine granularity of detection that the hardware architecture

49

can provide. A comprehensive implementation in software such as SIFT [Wensley et

al. 78] provides for the redundant execution of tasks in separate processors with voted

results. This approach can be effective but it goes well beyond the scope of the net-

work fault tolerance that is the focus of this study. Smaller scale utilization of soft-

ware methods, such as a reliable end-to-end data link transmission protocol in which

packets are acknowledged by the recipient, are more relevant to this discussion. The

use of such a protocol can cause the network traffic to double and, while providing

for reliable message passing, does not obviate the need for additional means of fault

management in the form of diagnostic procedures and mechanisms for network

reconfiguration. However, the use of reliable data link transmission protocols is

orthogonal to the fault tolerant architecture and can be implemented on a case-by-case

basis to provide for additional reliability as needed.

•The architecture does not attempt to maintain the original network configuration

through the use of spares to replace failed components. As faults accumulate, the net-

work and computer gracefully degrade as functionality is lost. Functions that had

been assigned to faulty or blocked nodes must be distributed among the remaining

healthy nodes.

•Policy decisions are deferred to software control rather than built into the router. This

removes complexity from the hardware and maintains flexibility in the system. For

example, fault detection by the router results in a private communication to the pro-

cessing node which, in turn, chooses whether or not to assert an error-detected eureka

signal.

5.2 Implementation
The major issues in the implementation of the fault tolerant architecture are communication

and synchronization, fault detection, diagnostics, reconfiguration and routing algorithm

modifications to account for failed components. Communication and synchronization were

discussed in Section 4. A discussion of the other topics follows.

5.2.1 Fault Detection

Perfect zero-latency fault detection would require duplication of all circuitry with a com-

parison of each node value. Besides being exorbitantly expensive, such close coupling

leaves the circuitry vulnerable to common-mode errors. A better solution performs higher

level comparisons of block and chip outputs. This provides near-complete fault coverage

but still requires more than 100% overhead in circuitry. The point-detection approach used

50

in the fault tolerant Chaotic routing network provides very good coverage while minimiz-

ing the cost of additional circuitry. While the number and variety of faults that may occur

is enormous, there are a limited number of ways in which a fault may be manifested as an

error. Therefore, the number of fault detection mechanisms required is also limited.

A two-fold approach is used for fault detection. The first set of fault detection mechanisms

take advantage of the fact that the links are chokepoints upon which all communication

with neighboring routers must take place. Any failure within a node that causes an error to

escape the node will have a good chance of being detected by a neighboring node that mon-

itors the content and form of all communications. A detectable error on a data link will be

manifested either as a packet whose content is corrupted or as a communication that does

not follow acceptable protocol.

The second set of fault detection mechanisms detects failures that do not create explicit

communication errors but are detectable through an examination of the larger context in

which the network message stream exists. This type of failure is manifested by such prob-

lems as late or missing packets or misdelivered packets.

5.2.1.1 Data Error Checks

Packet data errors are easily detectable through use of error control coding methods. These

methods provide redundancy for the data by coding data words into code words that contain

more bits than strictly required to hold the information. The simplest example of error con-

trol coding comes from the addition of a single parity bit to each data word. This guarantees

detection of a single bit error in the code word.

Through the use of additional parity bits, error detection can be extended to multiple erro-

neous bits and error correction can be implemented. Hamming codes are a well known

example of error correcting codes. Chen describes a number of codes having extended error

detection and correction capability [Chen & Hsiao 84]. A code can generally be tailored to

provide the desired error detection and correction capability.

Cyclic redundancy checks (CRCs) are a commonly used form of error control coding. They

are useful because they can detect all single errors in a code word, burst errors up to a given

length and many other patterns of errors, depending upon the particular implementation of

the code. Another convenient feature is that an encoder/decoder in the form of a linear-

feedback shift register (LFSR) is quite simple to implement. This implementation uses seri-

alized data making such coding feasible for end-to-end checks but not for on-the-fly check-

ing by intermediate routers on the routing path.

51

An alternate method uses a checksum. The checksum for a block ofs words is formed by

summing modulo-n all s words withn arbitrary. Coverage increases with largern to the

point that the sum of thes words is guaranteed to be less than or equal ton. The combination

of the checksum and thes data words forms a code word. The checksum is suited for appli-

cations in which data is transferred in blocks so it is a good fit for packet routing architec-

tures. The checksum is efficiently implemented by feeding a stream of data operands into

an adder/accumulator. This scheme is also appropriate for end-to-end checks.

A packet in the Chaos routing network is split between dynamic and static sections. The

first flit (16 bits) of the header is divided into an X displacement field and a Y displacement

field (for a two-dimensional router). The data in these fields are dynamic, with an increment

or decrement operation performed at each hop to represent the progress that the packet is

making through the network. The remaining flits in the header and all payload data flits that

contain message content are static. Separate error detection mechanisms are used for the

dynamic and static sections of the packet.

A packet with corrupted data in the X and Y displacement fields will end up being mis-

routed. This in itself is not a disaster because the header contains fields that store the source

node and destination node identifiers. Only the displacement fields in the header are actu-

ally read by the router and the remaining header space is loosely defined in the basic Chaos

router, depending upon the needs of the network interface. However, the fault tolerant

architecture requires that the source node and destination node identifier fields be included

in the header. Cranium, a network interface designed for use with Chaos [McKenzie et al.

94], specifically defines these header fields as a source of information used for error detec-

tion. Using these fields, the processing node to which the packet is misdelivered will be able

to determine that the delivery is in error and it can choose to reinject the packet, send a mes-

sage to the source node requesting retransmittal, assert an error-detected eureka or simply

drop the packet. However, in the interest of minimizing fault latency and eliminating

unproductive network traffic, the Chaos router incorporates a mechanism for the early

detection of this type of error. Simple parity is used to protect the displacement fields. The

parity bit can be generated with minimal delay using a four level XOR tree. If the router

detects a parity error, the result will be the immediate delivery of the packet to the process-

ing node. This is similar to theexception eject mechanism in the R2 router in which a packet

is delivered to the current node when the actual destination appears to be unreachable

[Davis et al. 94].

There is one bypass to this procedure. Since any packet is subject to being derouted, the

52

packet with the parity error may end up being derouted to another node while waiting to be

delivered. In this situation, the normal header update will take place as the packet is routed

and new parity correctly corresponding to the updated but corrupt displacement informa-

tion will be generated and saved in the packet. This eliminates the possibility of early detec-

tion by other routers which would force early delivery. However, given that the situation is

pathological, this exception will have little effect on network traffic. Consideration was

given to forcing an improper parity bit into the header as it was updated as a means of prop-

agating the error such that the router at the next hop would be able to detect the error and

have a chance to remove the packet from the network. However, since the adverse effects

of allowing the error to remain temporarily latent are small, that option was not imple-

mented.

An alternate approach is to prevent packets that are to be delivered to the current node from

entering the multiqueue, thereby eliminating derouting as a possibility. This approach has

negative performance implications because the channel associated with the input frame in

which the packet resides will stall if there is any delay in gaining access to the delivery

channel. However, it is a safe option. There are no dependencies to deadlock the router/pro-

cessing node link so the stall will eventually terminate. A solution is to limit only those

packets with parity errors in the header from the multiqueue. This maintains the efficient

approach for the common case.

A different error detection mechanism is applied to static packet flits. A complication with

any data error detection scheme is that the virtual cut-through feature in the Chaotic routing

algorithm allows a packet to be spread across a number of routers at any given time. Even

if error control coding is done on a per-flit basis, by the time a given flit is checked, earlier

error-free flits in the packet may have already left the router and it will be impossible for

the router to respond to the error. Because of this, error detection in the static flits is left to

the destination processing node. The parity check on the dynamic displacement fields of the

header does not face this problem because that check is only performed on the initial packet

flit.

The checksum appears to be the cost-effective choice for the static packet flits. The check-

sum requires only one or two additional flits, depending upon the error coverage desired.

As a packet is delivered, the stream of flits can be fed into the checksum generator. An

equivalent data-flow implementation for a CRC would require that each bit position be fed

into a separate CRC encoder/decoder. This scheme would stretch the packet length by one

flit for each extra bit required by the CRC code. An alternate, off-line generation scheme

53

for the CRC could be designed that would be less costly in flits but the advantage and sim-

plicity of the on-line data-flow scheme would be lost.

The choice of coding method for the static flits is a parameter which depends upon the net-

work interface implementation and the amount of protection desired from the code. It is

possible that error correction coding (ECC) may become a viable choice in a harsh envi-

ronment with a relatively high rate of data error generation. ECC provides for fault masking

by enabling the recovery of the correct data word from a code word with a limited number

of bits in error. The use of ECC would lower the data word error rate relative to the code

word error rate, thereby decreasing the amount of intervention required to assure reliable

packet delivery. The use of ECC would require some additional hardware in the network

interface to decode the correct data word from the received code word but the largest cost

lies in the extra parity bits required to implement ECC which directly translates into a lower

network data bandwidth.

5.2.1.2 Channel Protocol Checks

Channel protocol is designed to adhere to three basic rules that govern channel ownership

arbitration [Bolding 93]. The rules are designed to provide some “fairness” in establishing

ownership of the channel and to force ownership to alternate. The three rules are:

1. A packet may be transmitted only if the receiving side has room available in its input

frame.

2. If only the non-owning side can transmit a packet, ownership is yielded to that side.

3. One side may transmit two consecutive packets only if the other side has no transmittable

packets.

The problems involved in designing an effective channel protocol checker derive from the

fact that much of the information that drives the protocol is known only to one side of the

transaction. For example, the state of the input and output frames are known only to the

router in which they reside. Therefore, if a router fails to yield channel ownership, it may

be due to a fault or it could simply be that the input frame of the channel owner is not avail-

able to receive a new packet. Most control sequences turn out to fall within the space of

possible legal behavior. Thus, fault detection based on channel protocol checks is limited

to recognition of a small number of unambiguously faulty control sequences along with

several “sanity” checks.

In the channel protocol, the router which does not own the channel signals to the owner 1)

54

whether or not it wants the channel and 2) whether or not it has an input frame available. If

the non-owner wants the channel, then its output frame must be full. The only way for that

to change is if a transmission across a channel empties the output frame. If the router has

an input frame available, the only way for it to become unavailable is for it to be filled by

a transmission across the channel. An error is indicated if the nonowner changes its signals

to indicate that it no longer wants the channel or that it no longer has an input frame avail-

able, without the event of an appropriate transmission across the channel.

At the end of a packet transmission, the router that is channel owner signals to the non-

owner 1)the end-of-message signal (EOM), 2) whether or not the router is giving up own-

ership of the channel and 3) if the router is keeping ownership, whether or not the router is

going to transmit a new packet. An error is detected if the channel owner attempts to send

a new packet to a router that does not have an available input frame.

The sanity checks are related to the amount of time that an output frame must wait until

granted channel ownership and to the length of the transmission. There is a bounded wait

for an output frame to take control of a channel because of the three rules above in combi-

nation with a limit on the amount of time that a packet may stay in an input frame before it

is sent to the multiqueue. This bound gives force to the rules above. If a packet could legit-

imately become blocked in an input frame, that router could legally retain ownership of the

channel in question for an indefinite length of time. By rule 1, the router could not receive

packets on that link thereby rendering nontransmittable any packets on the other end of the

link. Therefore, by rule 3, the router could retain ownership and simply continue transmit-

ting new packets. However, due to the bounded wait, either channel ownership will switch

from time to time or a violation of channel protocol will be detected.

The sanity check involving packet length is necessary because the end of a packet transmis-

sion is marked only by the assertion of the EOM signal. Otherwise, the transfer of a flit of

data is assumed each clock cycle. If the EOM is faulted or affected by a fault such that the

receiver never sees the signal, then without some limiting mechanism, the receiver could

generate a packet of potentially unbounded length. Because the Chaos router assumes a

maximum length packet of 20 flits, a problem of this nature can be detected by counting

flits in each packet reception. If a packet does not terminate after the twentieth flit, the

router will terminate the transmission and flag an error to the processing node.

The description of the channel protocol checks to this point has had an implicit assumption

that data will be asserted on the channel to match the control signals. This means, for exam-

ple, that in the case in which a router erroneously maintains ownership of a channel, it will

55

simply continue to transmit packets out that channel. However, in the the presence of faults,

data assertion may not match what the controls indicate. The two sides of the channel may

not be synchronized as to the state of the channel and situations can arise in which both

sides transmit or receive. Out-of-phase receptions can occur in which undriven flits are pad-

ded onto the head or tail of a packet and real flits are missed. This type of problem would

generally corrupt the packet data and should be detected by a data error detection mecha-

nism even if the channel protocol checks do not detect the situation.

In general, control failures that change the form of the channel communication will result

in corrupted packets which are easily detected. A detection problem occurs when improper

control does not result in corrupted packets but instead either delays or blocks the smooth

transmission of packets across a channel. The sanity checks provide for a high-level fall-

back position which will detect most channel failures of this type. The context-type checks

may also be able to detect problems of this nature. Ultimately, what will not be detected is

“malicious” behavior in which fault detection is not triggered but the channel activity is

slowed to the point that performance is hindered. While it is desirable to eliminate as many

“latent” faults as possible from the network, this situation will not necessarily be less favor-

able than the response to an identified faulty channel which would be to shut the channel

down entirely. Ultimately, such malicious behavior is likely to be caught if and when diag-

nostics are entered for other reasons. The highly regimented diagnostic phase puts specific

and rigorous demands upon the channel activity.

While overall error coverage is acceptable with the limited amount of fault detection related

to channel protocol, there are improvements that can make the channels more robust or

minimize error detection latency. The basic design for the Chaos router channel architec-

ture is as follows: All channel control is multiplexed onto 4 signal lines per channel. Two

belong to the channel owner and two to the receiver. The lines are bidirectional and control

over them is switched whenever the channel owner is switched. It is possible that due to

faulty control, both routers on a channel may assert a given control line. Though this is

clearly faulty behavior, it will not necessarily be detected because any conflict in signal lev-

els will be an analog effect which the digital logic may not notice.

The simplest way to improve coverage is to replace the bidirectional channel control lines

with two sets of unidirectional lines. This is done by statically associating a pair of lines

with each router instead of dynamically associating a pair of lines with the channel owner

and a pair with the nonowner. This eliminates the scenario that has both sides driving the

same line at once and prevents the possible subsequent masking of failures. Similarly, by

56

using two unidirectional sets of lines for the data instead of a single set of bidirectional data

lines, the channels are made less susceptible to faults. However, this has added costs due to

the need for additional control lines. This cost is multiplied by the number of channels into

the router making this an expensive change.

Increasing the number of control signals in each channel could provide additional informa-

tion that could be used to disambiguate certain situations that could be indicative of faulty

behavior. Passing the state of the input and output frames of a router across a channel to the

other router would provide some redundancy and context to the other control signals. How-

ever, as previously stated, channel expansion is a costly choice.

5.2.1.3 System Drain

The system drain provides for fault detection of the second type in which the message con-

text is required in order to determine that an error has occurred. In fault management pro-

cedures, the system drain has two general purposes: to save user messages before beginning

diagnostics, and to set up the network in a known state for the diagnostics that follow. The

system drain is also used to confirm suspicions of missing packets.

The need for such an error detection mechanism arises because of the adaptive nature of

the Chaotic routing algorithm. Because packets that belong to the same message will not

necessarily take the same path across the network and may be delivered out of order, it is

necessary that the packets be reordered in proper sequence before the message is delivered

to the destination processor. This function is performed by the network interface. All pack-

ets contain a message and sequence number which identifies their relationship to a larger

message. The general procedure has the network interface placing delivered packets that

are part of a larger message into a reordering buffer. When all holes in the sequence of pack-

ets are filled, the message can be delivered. Given that packet delivery in a Chaotic routing

network is not guaranteed to occur within any fixed amount of time, it is possible that a

missing packet simply took a longer or slower path through the network than did its fellow

packets. The other possibility is that the packet in question was dropped, misdelivered or is

stuck behind some obstacle created by faults in the network.

There needs to be a limit such that the network interface does not have an unbounded wait

to determine whether the missing packet will ever be delivered. One possibility is to clear

the portions of the reordering buffer that have an intact message segment. A hole in the

sequence prevents any packets later in the sequence from being cleared. An overflow of the

buffer indicates that a packet is late well beyond the network latency of the other packets

57

in the message. Another mechanism used in Cranium [McKenzie et al. 94] is a watchdog

timer which signals an alarm if the entire message has not been delivered within a fixed

period after transmission begins. This protocol requires that there be a fixed maximum

length for multipacket messages. The detection of a missing packet can be used to trigger

an error-detected eureka signal which in turn leads to a system drain. Since the drain results

in the delivery of all deliverable packets in the network, all missing packets that are simply

late will be delivered. Because packets are injected into the network in sequential order, all

holes in the reordering buffer should be filled when the system drain terminates in the

absence of faults. An unfilled hole confirms that a packet has been lost. If the system drain

results in the delivery of all missing packets and no other errors are pending, then diagnos-

tics can be bypassed and the network can return to normal operation.

The implementation of the system drain requires the addition of a number of utilities to the

Chaos routing network. To initiate the system drain requires that packet injection from all

processing nodes be disabled. This step doesn’t require any extra hardware because the

error-detected eureka signal that initiates the overall procedure is propagated by the EBN

to the processing node which in turn suspends packet injection at the source for the duration

of the system drain. The processing node stays synchronized with the router during these

procedures, monitoring and driving the EBN as appropriate at synchronization points.

The system drain timeout, needed to guarantee termination of the system drain, requires

simply that a counter be available to count cycles during the drain. The choice of a timeout

period requires analysis of the situations that may be encountered. Experimental data relat-

ing system drain time versus the population of packets within the network shows that the

expected drain time for a network under typical experimental load conditions should be

well under 10,000 cycles. Figures 9 and 10 show system drain times for 256 node and 1024

node torus networks as a function of the number of packets in the network. The experimen-

tal results are close to linear in the number of packets.

The highest network population tested in these experiments gave an average population of

between 7 and 8 packets per router. Linear extrapolation of the data to a completely full net-

work (15 packets/router) gives drain time estimates of 4600 cycles for the 256 node net-

work and 4700 cycles for the 1024 node network under hot-spot traffic conditions. The

numbers end up very similar because of the way in which experimental parameters interact.

The controlling constraint on drain time in both networks is the router/processing node

channel bottleneck in the nodes that are defined as hot spots. The backup of packets trying

to reach the hot spot processing node has to serially cross the bottleneck. In the 256 node

58

network, the probability that a packet in the network has a hot spot node as its destination

is 4x the probability of that in the 1024 node network because there are only 1/4 the number

of nodes in the 256 node network. However, there are 4x the number of nodes in the 1024

node network to inject packets so in absolute terms, the number of packets backed up

behind the controlling bottleneck is about the same in each case and matching drain times

are observed.

Figure 9: System drain times for a 16 x 16 node torus network. Packets are injected with
uniform random destinations in the top figure, and with traffic containing ten ten-times
hotspots in the lower figure.

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800

D
ra

in
 T

im
e

(c
yc

le
s)

Network Population (packets)

256-Node Torus Drain Times

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

400 600 800 1000 1200 1400 1600 1800

D
ra

in
 T

im
e

(c
yc

le
s)

Network Population (packets)

256-Node Torus Drain Times (Hotspot traffic)

59

An alternate analysis uses the Cranium network interface design to determine a bound on

the size of the backup across the bottleneck link. Cranium requires that any multipacket

message be set up by an exchange of control messages between source and destination

before transmission of the message can begin. A limit of 16 such messages can be active at

one time in a given network interface. Message length is limited to 2 Kbytes which trans-

lates into sixty four 20-flit packets (2 bytes/flit, 16 payload flits/packet). Therefore, the total

Figure 10: System drain times for a 32 x 32 node torus network. Packets are injected with
uniform random destinations in the top figure, and with traffic containing ten ten-times
hotspots in the lower figure.

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000

D
ra

in
 T

im
e

(c
yc

le
s)

Network Population (packets)

1024-Node Torus Drain Times

600

800

1000

1200

1400

1600

1800

2000

2200

2400

1000 2000 3000 4000 5000 6000 7000 8000

D
ra

in
 T

im
e

(c
yc

le
s)

Network Population (packets)

1024-Node Torus Drain Times (Hotspot traffic)

60

number of packets in the network at any time associated with multipacket messages that

have a specific node as destination is limited by 16 x 64 = 1024. Add 10% to account for

single packet messages headed toward that destination node and another 10% to account

for transmission overhead and inefficiency in setting up a continuous stream of packets

across the router/processing node bottleneck and an estimate for the maximum system

drain time is determined:

System drain time = 1024 packets x 1.1 x 1.1 x 20 cycles/packet = 24,781 cycles

An upper bound on the drain time can be calculated using the pathological case in which

the network is entirely full and all packets have the same node as the destination. Given a

1024 node network with 15 buffers/router and 20 flit packets, the drain time is as follows:

System drain time = 1024 nodes x 15 packets/node x 20 cycles/packet = 307200 cycles

This calculation does not account for any inefficiency in setting up a continuous packet

stream. The result is far greater than the more realistic estimates but even so, assuming a

cycle time of 15ns, the drain only takes 4.6ms. This is not exorbitant assuming that the

period between invocations is on the order of at least minutes. The drain time will also

shrink linearly with cycle time allowing technology advances to improve performance. A

realistic bound will depend upon the network interface implementation and the application

load on the system but it should be at least an order of magnitude or more below the upper

bound. Network performance will not be sensitive to the selection of a timeout period

because normal system drain completion will in most cases preempt the drain timeout.

Only in pathological cases or in the presence of a fault will the timeout be activated.

In a faulty network, the drain time may be unbounded. Consider the situation in Figure 11

in which faults make a network node unreachable. Any packets in the network that have

that node as a destination will be undeliverable and the system drain will not be able to

gracefully complete. For this type of case and for those pathological cases in which nodes

may be deliverable but network load and traffic pattern prevent a full drain from completing

within the timeout period, a means to clear packets from the network after the timeout

expires is required.

The first phase of clearing the network is accomplished by delivering to the local process-

ing node all packets received after the timeout. The mechanism is the same as that used for

packets that have bad parity in their headers. The routing decision logic marks the packet

as being at its destination node which results in its immediate delivery.

The second and final phase takes place after all deliverable packets from the first phase have

61

been delivered. At that point the only packets remaining in the network will be in the mul-

tiqueue or output frames, presumably blocked by a faulty component. The packet and the

datapath do not need to be touched but the multiqueue scoreboard and the output frame con-

trol that indicates that a packet is present both need to be cleared. Any router which clears

a packet in this manner will report that information to the processing node as evidence of a

detected error.

Fault detection by means of the system drain depends upon a knowledge of the context of

the network message stream. In the fault tolerant architecture, the network interface has an

expectation that packets associated with multipacket messages will arrive with some

degree of timeliness. However, this does not work for single packet messages in the net-

work. From the network standpoint, they have no context and therefore late or missing

packets of that type cannot be detected by the network or network interface. Actually, all

messages of any type have a context but that is to the software process involved in the com-

munication. Out of all single packet messages, some will not be significant and won’t be

missed, some may be expected by the applications with which they are to communicate and

are therefore detectable if missing and some may be important but unscheduled and there-

fore not missed if not received. Though the desire to eliminate the overhead of a reliable

data link transmission protocol is one motive for the design of a fault tolerant routing net-

work, this architecture is not able to completely eliminate that need. The use of such a reli-

able protocol on a spot basis as a software overlay on the fault tolerant hardware

architecture can provide added reliability.

An understanding of the distribution of message sizes in a multicomputer workload is

needed to gauge the significance of the problem of context-free messages. In [Cypher et al.

93] the communication requirements of a number of scientific computing applications run-

ning on multicomputers was examined. It was shown that 48% of the messages passed were

Figure 11: Example of unreachable node. The center node is unreachable due to faulty
links which are indicated by the X’s.

62

16 bytes or less long. These messages would fit in a single packet. However, if the observed

distribution of messages were to be packetized with 32 data bytes/packet, then less than 1%

of all packets would be self-contained messages not associated with a larger packet stream.

This indicates that the fault detection mechanisms associated with the system drain process

and the network interface will provide high coverage for context-type errors.

The network interface has several additional error detection duties. A packet that is deliv-

ered to other than the desired destination node, either in error or as the result of a detected

parity error in the header, will be detected by the network interface when the destination

node field in the header is read.

The issue of detection of multiple copies of a packet generated in error is a more difficult

problem. If the packets are part of a multipacket message, then extra copies can be detected

by the reordering buffer. But, for single packet messages, the error is not covered. This is a

pathological situation, however, because the Chaos network does not maintain duplicate

copies as part of a reliable transmission protocol. It is far more difficult to postulate that

extra copies somehow are generated than it is to assume a failure which fails to eliminate a

duplicate copy in a system that creates such copies as a matter of course.

5.2.2 Diagnostics

Simple, local algorithms for diagnostic tests were selected both for the sake of efficiency

and to avoid byzantine problems in which some form of distributed agreement must be

reached among possibly faulty components.

5.2.2.1 Off-line Testing

Once the system is drained, the diagnostic procedures can proceed. The goal of these pro-

cedures is to identify as many different faults as possible using a quick distributed algo-

rithm. The strategy is to exercise router function in a controlled manner such that much of

the data path is tested allowing associated errors to be identified while counting on the

channel protocol checks to catch and identify errors other than data errors in the routing

process. The finite nature of the test and the limited number of injected packets during the

procedure allow for guaranteed completion of the test within a fixed period. The procedure

is straightforward and simple: All nodes inject test packets destined for each of their neigh-

bors. When a node receives a test packet, it returns an acknowledgment message to the

sender. This tests the path shown in Figure 12(a) in both directions. If the message is not

returned, or is returned corrupted, it may be due to failure of the link, one or both routers,

or the processing node to which the test packet was sent. A node that performs a test in

63

which it does not receive a good reply will simply flag the target link as bad. The routers

and nodes will be exercised by more than one packet, since each node is connected to more

than one link, and all links along with a good portion of the datapath are tested. The con-

trolled set of messages and the expected response establishes a context that allows identi-

fication of the faulty components.

While many faults will result in straightforward, unambiguous diagnoses, some errors may

result in more byzantine diagnoses with apparently inconsistent results. For example, a link

may be marked as bad on one side but good on the other. This situation will resolve itself

quickly as a router will not communicate across a link that it has marked as unusable. This

lack of communication will be detected by the neighbor router as a failure to maintain pro-

tocol with the eventual result that the neighbor router will also mark the link as unusable.

A faulty router may be so marked by some of its neighbors but not by others. The fault may

only affect some channels or it may have been latent in the diagnostic tests performed

across some channels but not others. This is not unexpected and routers are expected to

operate even if only partially functional. Network configurations in which obstacles of

greater than simply local scope are generated can arise as a result of the distributed local

reconfiguration carried out based on the diagnostic results. This situation is dealt with by

system software as discussed in Section 5.2.3.

The basic diagnostic procedure can be extended to provide for greater datapath coverage.

By extending the testing to two-hop paths as shown in Figure 12(b), more of the virtual cut-

through router datapath can be exercised. This extension also allows for some flexibility in

the reconfiguration decision. If the processing node is dead, then the single-hop test results

Figure 12: Fault diagnostic testing. (a) One-hop testing path, which requires nodes to be
functional for the link to pass the test. (b) Two-hop testing path allows links to pass the
test even if nodes fail.

Router Router Router RouterRouter

(a) (b)

Processing
Node

Processing
Node

Processing
Node

Processing
Node

64

will cause each of the neighbor nodes to mark the link to the dead node as unusable. This

will render useless a router attached to a dead or missing processing node. The two-hop

testing allows the router to remain active even with a dead or missing processing node. If

a node sends a message to a neighboring node as part of the diagnostics and receives no

answer but does receive an answer to a message sent over the same link as part of a two-

hop test, then the node can mark the neighboring processing node as dead but the associated

channel may remain as a routable direction. This approach is conservative of hardware and

also maintains the usefulness of the fault tolerant architecture in a network that is by intent

less than fully populated with processing nodes.

This procedure can be extended with tests of more than two hops, however, the test quickly

becomes unwieldy. The number of syndromes that must be decoded based upon test results

grows extremely quickly. It is also undesirable to allow extended paths through routers

without active processing nodes. Because the diagnostics have a strict locality of scope, the

number of such nodes with inactive processing nodes must be limited in order to maintain

reliability. A conservative approach would prohibit active routers with inactive processors

in adjacent nodes. This is a policy decision that does not require hardware support by the

router.

Additional test extensions can be used to exercise the datapath through the multiqueue. Vir-

tual cut-through can be disabled and packets received by input frames can be routed into

the multiqueue. This will exercise the multiqueue fifos. While it cannot be guaranteed that

all crossbar switches will be exercised, most paths should be covered.

There are complications with this test design. Packets are not derouted out of the injection

node so packets that are part of a one-hop test will traverse only the link under test. How-

ever, in many cases, a packet that is a part of a two-hop test has more than one choice of

directions by which it may be minimally routed. Therefore, the targeted link under test will

not necessarily be traversed by that packet. A fix would be to flag the header displacement

field in the test packet to indicate which dimension should be routed. Another fix would be

to hardwire a sequence into the router such that when in diagnostic mode, the router would

route the stream of injected packets in predetermined directions. However, both schemes

would affect the critical path through the router by adding complexity to the header decode

and routing decision logic. The second proposal also eliminates flexibility and some of the

software control over policy by fixing in hardware what had been strictly a software func-

tion. Two-hop testing can still be performed without having to add logic to the routers if

paths are only allowed in a single dimension. This guarantees that the first hop will be

65

across the desired link while there are no constraints on the second hop. Minimal routing

will take the packet directly to the destination but derouting is possible, increasing the

length of the route. A return acknowledgement from the destination would still indicate that

the target link had functioned, even if the second hop actually turned into multiple hops.

This scheme does not achieve the datapath coverage that would be achieved with the full

two-hop test but still provides some of the benefits and does not require any router modifi-

cations.

Fairness in access to the network is not an issue because the test is finite and enough time

is allotted for all packet injection to take place. However, packets in output frames that do

not progress across their link will be dropped in order to avoid blocking the progress of

other injected test packets. The resulting lack of an acknowledgment for the dropped packet

provides direct evidence of the identity of faulty components.

5.2.2.2 On-line Testing

The diagnostics described above are run only when the system has been drained and is in a

special off-line diagnostic state, triggered by one of the fault detection mechanisms. In

order to provide more timely fault detection, on-line diagnostics were considered. The

nodes would inject test messages to each of their neighbors, as in the basic diagnostic pro-

cedure above, only during normal network operation. If no response were received within

some specified time period, the node could generate an error-detected eureka signal and the

network would eventually enter the off-line diagnostic procedures as needed. This idea,

unfortunately, has all of the complications of the off-line testing and more. The major new

problem has to do with indeterminate delivery time during on-line operation. This creates

issues involving the determination of whether a message is late or lost which could limit

the effectiveness of the test. Due to the complexity of the problem, on-line diagnostics do

not appear to be a practical addition to the router.

5.2.2.3 Test Coverage

The diagnostic tests described above provide simple and basic tests of the routing network.

The tests will find most static failures in network links, and will detect when nodes fail

enough to upset the testing protocol. Router failures are not covered fully. Because the test-

ing path does not guarantee coverage all of the possible message paths through the router,

some faults may escape the test. Moreover, only a rudimentary test of the router’s ability to

correctly route packets is made. Transient faults cannot be found through any form of stan-

dard diagnostic testing, and this scheme is no exception to that, though transient errors will

66

be detected by the fault detection scheme.

The health of the processing node is a key issue in the determination of the health of the

network. The network diagnostics provide only a minimal test of the processing node func-

tion. Additional diagnostics for the processing node will be required for the sake of system

reliability but that is beyond the scope of this design. However, the network configuration

will be a vital input to processing node diagnostics. Built-in self-test is a possible approach

but a more robust approach has neighboring nodes testing each other [Somani & Agarwal

92]. This process is similar to the network diagnostics but is far more comprehensive. The

nodes apply test vectors to their neighboring nodes and then vote on the individual health

of neighboring processing nodes. The network configuration map provides a baseline input

as to the eligibility of nodes to participate in this process. In turn, the results of the process-

ing node diagnostics will be applied to the network configuration map.

5.2.3 Reconfiguration and Routing Algorithm Modifications

Reconfiguration marks a network resource as no longer functional. The routing algorithm

needs to incorporate this information into the routing decision such that only functional

components are used to route packets and network obstacles created by failed components

can be smoothly avoided.

5.2.3.1 Local Reconfiguration

The processing node controls the local configuration by means of a configuration register

located in the router. The processing node can write a configuration vector to that register

which indicates whether each channel is usable or faulty. The routing algorithm uses this

information in the determination of possible routes. This capability is useful for flagging

faults and for marking network nonuniformities. Using the example of a mesh, the edge

channels that are unconnected must be marked as unusable so that the routing algorithm

does not attempt to route packets in those directions. Control of the configuration vector

allows the processing node to dynamically reconfigure components out of the system.

However, reconfiguration is only done under controlled circumstances such as during sys-

tem initialization and after fault diagnostics when the network is empty. Restricting recon-

figuration in this manner avoids the problems associated with changing the router

environment while routing decisions are in process.

When fault diagnosis is complete, each processing node uses the test results to determine

the status of the channels connected to its router and writes that status to the router config-

uration register. The configuration register contents act as a functional channel mask which

67

is used to eliminate dead channels from routing decisions. This is a simple task for the

router hardware. When a new packet arrives at the router, a list of directions which profit-

ably route the packet is generated. This list is dependent only upon the contents of the dis-

placement field in the packet header. The list of profitable channels is then logically

AND’ed with the functional channel mask to generate the list of profitableand functional

channels for use by the routing decision logic. Figure 13(a) shows an example of how this

list is generated.

A No Routeback criterion is implemented to improve routing performance, particularly in

the presence of faulty links. This criterion removes the channel on which the packet was

received from the list of profitable and functional channels unless that channel is the only

remaining functional channel. In a fault-free network, the only time this criteria will acti-

vate is when a packet is derouted in which case the return direction will be profitable but

will not be entered onto the list of profitable and functional channels. In the Post Office

router [Davis 92], this criterion is implemented when derouting as a means of breaking up

cycles in heavily loaded networks in which a packet gets sent back and forth between two

Figure 13: Use of the functional channel list in routing. Packet is currently in node S and
needs to get to node D. Dark arrow signifies route. Lighter arrow signifies deroute. (a)
Example in which profitable and functional route is available. (b) Example of fast derout-
ing. Packet entered node S on South channel.

S

N S E W P

D

0 01 1 1

1 10 0 0

0 00 0 0

0 00 1 0

Profitable
Channel List

Functional
Channel List

Profitable &
Functional List

Fast Derouting
List

N S E W P

0 01 1 1

0 11 0 0

0 01 0 0

S

D

(a) (b)

68

routers, eating up bandwidth. In the Chaos router, as will be shown, this criterion also turns

out to improve routing performance in a network with dead channels.

If the packet’s list of profitable and functional channels is empty, then the packet in the

basic Chaos router will never cut-through to an output frame. It will be shunted to the mul-

tiqueue where it will wait until it is derouted out a nonprofitable channel. The fault tolerant

Chaos router implements a utility calledfast derouting that enables the packet to be der-

outed without accumulating delay as it would while waiting for an ordinary deroute. In fast

derouting, the list of channels sent to the routing decision logic is set to the functional chan-

nel mask with the No Routeback criterion applied. The packet will not be delivered to the

processing node using fast derouting. The logic to implement fast derouting is quite simple

so it will have slight impact on the critical path for packets through the router. Fast derout-

ing creates a short cut which avoids the normal mechanism by which packets are derouted

around faults. Packets do not have to wait in the multiqueue to be randomly derouted in

order to detour around faults and packets will not get stuck behind faults because, unlike

ordinary derouting, fast derouting doesnot require traffic pressure to activate. Figure 13(b)

shows an example of fast derouting.

The advantage that the No Routeback criterion provides in the presence of faults is shown

in Figure 14. Dead links have created an obstacle that the basic Chaos routing algorithm

will find almost impossible to bypass. A packet has reached node A on its way to destina-

tion node D. The packet will be derouted to node B or node C because there is no profitable

route possible. In Figure 14(a) the No Routeback criterion is not in effect and from either

of nodes B or C there is one profitable route, back to node A. In the absence of traffic pres-

sure that can force another deroute from node B or node C beyond the obstacle, the packet

will be livelocked, even with fast derouting. Next, consider the situation with the criterion

in place as shown in Figure 14(b). From node B or node C there will be essentially a 50/50

chance that the next hop will take the packet to node E or node F respectively, from which

profitable routes can be made that lead beyond the obstacle. The criterion gives a finite

chance of escape from obstacles that extend linearly for even greater distances. If three der-

outes are required to bypass the obstacle, then the second deroute will occur in the direction

needed to bypass with probability 0.5 and the third will also occur with probability 0.5 for

a total probability of 0.25 that the obstacle will be bypassed. Figure 15 shows this scenario.

The same pattern is followed for larger obstacles.

69

Figure 14: Bypass of linear obstacles. Dark arrow signifies route. Lighter arrow signifies
deroute. Fraction associated with link denotes probability of deroute in that direction (a)
Example in which No Routeback criteria is not implemented. (b) Example in which No
Routeback criteria is implemented.

A

B

C

D A

B

C

D

0.5
0.5

0.5

0.5

(a) (b)

E

F

Figure 15: Extended linear obstacles. Dark arrow signifies route. Lighter arrow signifies
deroute. Bypass of obstacle becomes more difficult but remains feasible as obstacle
increases in size.

D

0.5
0.5

0.5

0.5

A

0.5
0.5

0.5

0.5

70

5.2.3.2 Global Reconfiguration

In order to preserve information on faults for the long term, each node must communicate

fault data to a central node that acts as controller for the configuration. Since a single con-

troller may be faulty, a set of redundant controllers can be used. Each controller constructs

a map which charts the health of all components in the network. This information can be

used for several purposes:

•Global information on faults is saved so that it can be taken into account when the

system is reconfigured after a system reboot.

•Fault identification can be communicated to the system.

•The system administrator can be alerted about new faults.

•Dead or unreachable nodes can be reconfigured out of the system completely. Dead

nodes should never be the destination of any messages.

•Messages destined for dead nodes can be removed.

With knowledge of system status with respect to faults, efficient operation of the network

can be maintained despite the presence of many faulty components.

Certain combinations of faults present obstacles that the Chaotic routing algorithm cannot

reliably avoid, even with the modifications described above. If the obstacle creates a con-

cave faulty region of the network, as shown in Figure 16(a), then the routing algorithm will

not be able to clear the obstacle and reliably deliver the packet except through the basic der-

outing mechanism with all its attendant inefficiencies. The problem lies in the fact that

escaping such a region through intent requires a sequence of deroutes and the specific

avoidance of certain locally profitable but globally unprofitable routes. To intentionally

avoid a profitable route would require that a routing history be carried with the packet. This

is contrary to the principles of the Chaos algorithm which uses only local information about

the current state of the network. The mechanism for avoidance of linear obstacles requires

no extended state but only knowledge of the direction in which the router was entered in

order to function but that is not sufficient when confronted by concave faulty regions.

Extension of the Chaos algorithm to incorporate a routing history was rejected because of

the large increase in complexity required to incrementally extend the performance of the

network.

The system software can provide some relief for this type of situation. The network map

that is generated can be used to identify concave regions. Since there are no spares to

71

replace faulty components in the concave region, the only way to mitigate the problems

caused by such a region is to close off the region such that the new boundaries of the obsta-

cle are at least locally linear if not convex. This is shown in Figure 16(b). The central con-

troller can send messages telling the appropriate nodes to mark certain links as dead. The

nodes within the concave region end up isolated and unusable but the resulting configura-

tion will be routable. This fix is costly in network resources so its usefulness will be on a

spot basis, enabling the user to put off repair of the system when small concave regions

form.

The problem of handling concave regions was addressed in a discussion of planar adaptive

routing by Chien with a similar solution [Chien & Kim 92]. However, Chien defines a local

algorithm that reconfigures the network to eliminate concave faulty regions. without net-

work intervention. If a node has channels that are marked as faulty in each of two dimen-

sions, then that node marks all of its channels as faulty. This algorithm is appealing because

the use of a local algorithm is philosophically in tune with the Chaos routing algorithm and

local distributed algorithms tend to be robust with respect to fault tolerance. However, this

algorithm eliminates more components than required for the Chaos fault tolerant architec-

ture to remain functional. Consider the situation in Figure 17(a). The local reconfiguration

algorithm would close off nonfaulty nodes as shown in Figure 17(b). Figure 17(c) shows

that the Chaos routing algorithm with the “no routeback” feature avoids the obstacle with-

Figure 16: Livelock caused by concave region. Dark arrow signifies route. Lighter arrow
signifies deroute. (a) Example in which concave region is not modified. (b) Example in
which concave region has been blocked off (shaded region).

D D

(a) (b)

72

out any extra intervention into the system configuration. Since reconfiguration, local or glo-

bal, requires that the system software have a capability to repartition the tasks undergoing

computation which in turn requires that the network be mapped, this mapping and partition-

ing procedure can simply be extended to handle the global reconfiguration. The cost in per-

formance is slight because reconfiguration should be a relatively rare event. Rarer still is

the scenario in which concave faulty regions form.

The central node that maps the network may not be able to maintain communication with

all connected nodes. The preliminary network map that it creates will have three states for

components: known good, known bad, and unknown. Consider the situation in Figure

18(a). When node A attempts to map the network it may not receive any status information

from nodes in the vicinity of node B. The solution to this problem is to divide and conquer,

Node A can delegate mapping responsibility for subregions to other nodes that may be able

to establish communication with nodes that node A cannot reach. In this scenario, node A

delegates mapping responsibility to node C which is able to extend the known region. How-

ever, the status around node B remains unknown. Node C then delegates to node D which

can communicate with node B and map the surrounding concave region. Node D can close

Figure 17: Planar adaptive routing global reconfiguration. (a) Original configuration. (b)
After planar adaptive routing reconfiguration. (c) Chaotic routing bypasses the obstacle
without any additional global reconfiguration.

(a) (b) (c)

D

73

off the concave region around node B which results in a configuration with all known

boundaries shown in Figure 18(b). All nodes that remain connected in this configuration

will be able to communicate. In the general case, each new delegation will not necessarily

extend the known region, however, the delegation process can be performed progressively

until all components have known status.

The ability to use system software to configure the system allows for the hot replacement

of system components. If a board needs to be swapped, the network connections to that

board can be disabled and the board removed without having to shut down the remainder

of the system. The active nodes need to be informed which node is to be replaced so that

all old communications can be completed and all new communications inhibited. Once the

replacement board is installed, the replacement node is rebooted and communication to the

rest of the system is reestablished.

5.3 Summary of Hardware Costs for the Fault Tolerant Architecture
The following is meant to be a rough order-of-magnitude analysis of the implementation

costs of the fault tolerant Chaos architecture. Representative values used for the gate equiv-

alent cost of structures such as registers and counters are meant to be generic in nature and

are not associated with a specific choice of chip fabrication technology. The basic Chaos

Figure 18: Network mapping example. (a) Node A is unable to map the region around
Node B. (b) After delegation of mapping authority, entire network is mapped and con-
cave faulty region has been closed off (shaded region).

A

(a) (b)

B

C

D AB

C

D

74

router as fabricated uses a mixture of standard cells and custom blocks which further con-

fuses the issue. The basic router has about 75,000 transistors which translates into 20,000

gates as a baseline value. Estimates for the various circuit structures defined in the fault tol-

erant architecture are shown in Table 4.

The listed structures within the router amount to a total of 2572 gate equivalents. Adding

20% for glue logic makes the total about 3100. This adds 15.5% to the original gate count.

The extra cost to provide full fault detection coverage through duplication of circuit blocks

as done in the Vulcan design is 100%. The cost of reconfiguration and redundancy manage-

ment is on top of that.

The cost to the Network Interface comes to about 4300 gates though as a communications

coprocessor, the functions involved should probably be considered as part of the baseline

design. The cost in wiring on the circuit board comes to one wire/link which adds 5% to the

link hardware cost but less on an overall board wiring basis. On a packet basis, the archi-

tecture requires three added flits/packet. Two are associated with the checksum with one

associated with required header fields. These flits are not necessarily extra as the basic

router assumes a number of overhead flits in each packet, however, for the sake of a con-

servative analysis these flits can be considered a cost of the architecture. The cost in

throughput then is three flits out of twenty or 15%. The cost in clock speed cannot accu-

rately be estimated without carrying the design through a gate level implementation, how-

ever, the architecture was designed under the principle that the critical paths would not be

significantly lengthened.

75

Table 4: Hardware implementation costs.

Mechanism Discussion
Gate
Cost

Router Chip:

Error detection
Data error checks

Parity
Channel protocol checks

Flit counter on input frames
Output frame timeout counter

Channel controller checks

System drain
Timeout counter
Logic to drop packets

Reconfiguration
Configuration register
Routing decision logic

Fast derouting
No routebacks

EBN
Input latch
Controller
Delay counter

Total

15 XOR (4 gates) X 5 channels

5 bits (14 gates/bit) X 5 channels
8 bits X 5 channels
8 bit register (10 gates/bit) to hold program-

mable value for output timeout
Incremental addition to controller state

machine - (2 bits of state + 20 gates) X 5
channels

20 bit counter + 20 bit register
Random logic

9 bits (5 links + 4 routers)
Random logic

1 bit X 5 channels
3 bits of state + random logic
2 X Network Delay = 2 X 5 X 16 for 1024

node system => 8 bit counter

300

350
560
80

200

480
200

90
50

50
100
112

2572

Network Interface:

Error detection
Data error checks

Checksum
Lost packet check

Total

Adder/Accumulator - 32 bits (16 gates/bit)
16 bit counter X 16 channels + 16 bit register

512
3744

4256

Circuit Board: 1 wire/link

76

5.4 Reliability of the Fault Tolerant Architecture
The effectiveness of the fault detection mechanisms in fault tolerant architecture is shown

by the results summarized in Table 5. The parity/checksum mechanism can only be

defeated by multiple faults and error coverage is near 100%. For the contextual errors, 99%

of packets are covered and a reliable end-to-end transmission protocol can provide cover-

age for the rest. For the channel protocol, coverage of overt errors is 100%. However, faulty

channel behavior can mimic legal behavior and therefore some failures may escape detec-

tion. The sanity checks and other error detection mechanisms provide assurance that such

undetected failures will be subtle, perhaps causing suboptimal routing performance, but

will not result in corrupted data, loss of packets etc. Such failures that escape detection

should be rare and should they occur, the resiliency of the network should still allow for

continued network operation.

As discussed in Section 3, the translation of error coverage into fault coverage is necessary

for the determination of system reliability. Fortunately, the fault classes that contain the

router datapath and the data lines in the links are almost exclusively associated with the bit

error class of errors. The translation of error coverage for corrupted data into fault coverage

for the bit error class is essentially one-to-one.

The translation of error coverage into fault coverage for word and complex errors is more

problematic. Faults in the routing decision logic fault class and the router control logic fault

class may generate bit errors which are well covered. However, word and complex errors

will also be generated and that coverage is harder to define. It is not that the coverage is

low; there should be a good correlation between the high error coverage shown and the

overall fault coverage. The high error coverage implies the coverage of word and complex

errors will also be high. It is simply the mapping of those errors into the error detection

scheme that is difficult to define.

77

Table 5: Network error syndromes.

Error Detection Mechanism Coverage

Packets with acceptable format but
corrupted data.

Parity/Checksum High

Packets with bad format:
Truncated

Stretched:≤ 20 flits long
> 20 flits long

Checksum

Checksum
Sanity check

High

High
Full

Context Violations:
Misdelivered

Misrouted

Extra copies

Dropped packet

Network Interface

Network Interface

Network Interface/
Reordering Buffer

Reordering Buffer

Full

Late packets may be
noted

High for multipacket
messages

High for multipacket
messages

Channel Protocol Violations
Channel ownership transfer

Never

Slow

Transmission when nonowner is unable
to receive packet

Impossible control sequence:
Previously full input frame empties or
previously empty output frame fills
without transaction across channel

Loss of synch between channel
controllers or between data and control.

Sanity Check

Reordering Buffer

Protocol checker

Protocol checker

Parity/Checksum/
Protocol checker

Full

Packets may be noted
as missing if bottle-
neck forms

Full

Full

High

78

For this analysis a conservative range of coverage values is used to analyze reliability

improvement. The range of 0.95 - 1.0 is used for fault classes that are associated almost

completely with bit errors. The range of 0.5 to 0.9 is used for the other fault classes. The

value 0.5 was chosen simply to show that even with very poor coverage, the overall results

will still be favorable. The value 0.9 is on the low end of a reasonable but conservative esti-

mate. Table 6 takes the definition of fault classes from Table 1 and adds the coverage infor-

mation. The overall coverage for hard faults in the router chip range from 0.83 to 0.97. For

hard faults in the links, the range is 0.86 to 0.98. The total coverage for hard faults is the

average of these values and gives a range of 0.84 to 0.97. There is actually a weighting fac-

tor involved in this operation but it was ignored because the two ranges of coverage to be

merged are very close and the relative weighting is difficult to determine. For soft faults the

coverage ranged from 0.9 to 0.99.

Using the relation:

λFT = (1 - coverage) xλbaseline

the failure rate and the reliability of the fault tolerant network can be compared to the base-

line network. This is shown in Table 7 for a 1024 node network. The improvement to reli-

ability achieved by the fault tolerant architecture is on the order of two orders of magnitude

for the conservative but reasonable estimate. An overall MTTF that is on the order of hun-

dreds of days provides enough reliability such that the failure rate associated with the inter-

connection network is probably down in the noise relative to the overall multicomputer

failure rate.

79

Table 6: Chaos network fault coverage.

Fault Class Percentage Coverage Weighted Coverage

Low Moderate Low Moderate

Router - hard faults

datapath 75 0.95 1.0 0.71 0.75

routing decision logic 10 0.5 0.9 0.05 0.09

router control logic 15 0.5 0.9 0.07 0.13

Coverage - Router hard faults 0.83 0.97

Links

data lines 80 0.95 1.0 0.76 0.80

control lines 20 0.5 0.9 0.10 0.18

Coverage - links 0.86 0.98

Coverage - all hard faults (router+links/2) 0.84 0.97

Router - soft faults

datapath 90 0.95 1.0 0.85 0.90

routing decision logic 4 0.5 0.9 0.02 0.04

router control logic 6 0.5 0.9 0.03 0.05

Coverage - Router soft faults 0.90 0.99

Table 7: Reliability comparison - baseline vs. fault tolerant 1024 node network.

Baseline
Network

Coverage Fault Tolerant Network
MTTFFT :
MTTFbase

λ MTTF

λ MTTF Low Mod
erate

Low Mod-
erate

Low Mod-
erate

Low Mod
erate

Hard
Faults

1.79 x
10-3

557 0.84 0.97 0.286
x 10-3

0.054
x 10-3

3497 18520 6.3 33.2

Soft
Faults

16.4 x
10-3

61 0.90 0.99 1.64 x
10-3

0.164
x 10-3

610 6100 10 100

Overall 18.2 x
10-3

55 1.93 x
10-3

0.218
x 10-3

518 4587 9.4 83.4

80

6 System Operation

It has been shown how software interacts with the network hardware in the fault tolerant

architecture to provide a fault tolerant capability to the system. Most of the software pro-

cedures described fall into the category of local applications. It falls to the system software

to tie the various mechanisms and procedures into an effective system.

The fault tolerant architecture provides a basis for effective fault detection and identifica-

tion and efficient redundancy management. However, referring back to the goals of fault

tolerant routing, the procedures and mechanisms described to this point do not by them-

selves provide for reliable message delivery. Packets in the network can become corrupted

or lost. Information redundancy is necessary if the loss of a message is to be avoided. How-

ever, this design avoids schemes in which the hardware maintains copies of packets within

the network. A reliable data link transmission protocol, in which the sender maintains a

copy of the packet until it is acknowledged, can be used on a spot basis to aid in the detec-

tion of network failures. But this solution, which provides for reliable message delivery, is

deliberately excluded from the general case because of the performance costs involved. A

checkpoint/rollback solution turns out to have a nice implementation using the EBN, does

not affect any critical paths and can be tuned to an appropriate frequency depending upon

the actual system error rate observed.

The following section contains a high level overview of the system fault tolerance.

6.1 Putting It All Together
When the multicomputer is initialized, the latest system configuration needs to be restored

so that all components previously marked as dead remain so marked. Old and identified

faults must be isolated quickly to avoid having the equivalent of multiple faults applied to

the system at once. Each node will maintain a configuration vector in local non-volatile

memory. This vector will be applied to the router to restore the latest local configuration. If

the router is unable to correctly apply the vector or the vector is in error, then a channel may

activate in error. Such an activation will not be enough to restore a faulty channel because

the neighboring node must also restore the channel in order for service to be restored. Oth-

erwise, the error detection mechanisms on the channel will eventually detect a lack of

response which will shut that channel down via an alternate means.

The central node or nodes that generate the network map will have final say over the initial

configuration. A new map is generated which is compared to the old map. The two maps

are merged with only those components alive in both maps left alive in the composite map.

81

Appropriate messages are sent to individual nodes telling them to mark certain links as

dead. Finally, configuration and partition control information is disseminated across the

network. An enhanced EBN could be used to efficiently perform this task as described in

Section 4.4.1.

Restoration of a previously faulty but repaired network component to active status requires

intervention by the system software. If the repaired component is simply a link that had

been marked as inoperative by the nodes at both ends, then messages directing those nodes

to relabel the link as in service are all that is required. If the repaired component is an entire

node that had previously been isolated, then all neighboring nodes of the repaired node

must be informed that the connections to the repaired node should be restored to service.

The repaired node must initialize in a state that allows communication with its neighbors

so that it can receive current system configuration and partitioning information. In particu-

lar, if the repair is done to a hot system, then the system software must dynamically repar-

tition the system when the repaired component comes on line.

Once the system commences computational activity,checkpointing is periodically under-

taken. In combination with arollback procedure, checkpointing provides the information

redundancy that ultimately provides for reliable message delivery. The dynamic reconfig-

uration capability of the network requires a dynamic repartitioning capability which in turn

requires that a “good” computational state be available. Hence, checkpointing becomes

imperative to avoid the situation in which the only known “good” state is the initial state.

Checkpointing provides a snapshot of the system state such that computation can be

restarted from an intermediate “good” state if the computation is corrupted by an error.

Instead of rolling back the computation all the way to the start, the checkpoint enables the

preservation of the uncorrupted results of earlier phases of the computation so that they do

not have to be recalculated. The amount of state that must be preserved depends upon the

specific process in progress. Checkpointing can be facilitated through use of the EBN. The

EBN barrier function can be used to establish the condition for initiation of the checkpoint.

The EBN barrier can be used again to mark completion of the checkpoint.

The rollback is an integral part of the procedure for handling transient errors. The diagnos-

tics and reconfiguration procedures are required for the identification of hard failures and

for redundancy management, however, transient error management requires only detection

and recovery. For those errors that cannot be cleared by a lightweight response such as a

request for retransmission, the rollback provides a heavyweight fallback recovery method.

82

There are different amounts of activity required to perform a rollback depending upon the

circumstances. If reconfiguration has not disconnected pieces of the network, then a simple

rollback in which each node restores its own checkpointed state can be performed. Because

the architecture allows for nodes to become isolated from the rest of the system, there must

be some node-to-node redundancy of checkpoint data so that the computational state can

be recovered even if the physical network configuration has changed between the time at

which the checkpoint was performed and the rollback time.This situation requires a more

complex rollback procedure. The state from the isolated node must be doled out to the

remaining nodes followed by a dynamic repartitioning of the computation across the mul-

ticomputer system.

Error detection is performed almost without intervention by the system software. The

router state, as defined in Section 4.5, is monitored by the processing nodes so that they may

track the fault management procedures and intervene as required. Intervention by the sys-

tem software will only occur at the tail end of the process. From a high-level viewpoint, the

system drain that results from an error-detected eureka is simply low-level network flow

control which temporarily slows the system but does not have a direct effect on overall sys-

tem function. When the drain is complete, any of the processing nodes can drive the system

into the diagnostic procedures which are run as local applications. Only in compiling the

network map at the end of the diagnostics and performing any global reconfiguration does

the system software enter the process. The decision to rollback the computation is contin-

gent on the results of the diagnostics and the type of errors detected. If a message is lost or

corrupted and the destination node is unable to request a retransmission, then the result will

be a rollback. A reconfiguration of the network that results in the loss of a node or nodes

will also automatically result in a rollback. A reconfiguration that shuts down links but does

not disconnect the network makes a more difficult decision necessary. A failure detected by

means of the diagnostics does not necessarily imply that data has been lost or that the com-

putation state is corrupted. However, it is an indirect indication of such a problem and the

safest choice in this situation is to rollback. Reconfiguration will be an infrequent event so

the performance cost of the rollback in this situation will be slight. Errors in which data is

not lost or can be recovered outside of the rollback and in which diagnostics do not uncover

any new failures do not require a rollback.

The local configuration vector needs to be kept up-to-date. Any change to the vector, either

generated by the diagnostics or directed by the system software will require an update of

the vector in non-volatile memory. This is also the case for the network configuration map.

83

7 Conclusions

The following summarizes the contents of this thesis. Also included is a discussion of some

directions for future research.

7.1 Summary
A design that greatly enhances the fault tolerance of a Chaotic routing while avoiding large

added costs has been presented. As an adaptive non-minimal packet routing algorithm,

Chaotic routing provides a natural means by which obstacles can be avoided. Faulty com-

ponents mimic congestion and when congestion is detected, the Chaos router responds by

derouting packets in a non-minimal direction to avoid the congested region. However, this

places the router in its most inefficient operational regime. In addition, other types of errors

resulting from faults may be manifested other ways, with symptoms such as dropped or cor-

rupted packets. Hence, the basic router cannot provide for robust fault tolerant routing.

The design space of interest for this study was defined. The twin constraints of cost and per-

formance drive the design for fault tolerance into the space of maximum added reliability

for the least cost rather than extremely high reliability combined with high added costs. A

single sequential fault model for the network was defined. Estimates of the failure rate of

the basic Chaotic routing network were made. For hard faults, a MTTF for the network of

557 hours was estimated. For soft faults, a MTTF of 61 hours was estimated.

The fault tolerant architecture selected uses procedures and algorithms for fault manage-

ment that are distributed and local but synchronized across the network. An efficient broad-

cast mechanism for network synchronization is necessary. The Express Broadcast Network

was presented as a dedicated broadcast network that provides highly reliable fault tolerant

service with low cost, low latency and performance independent of the data network load.

The eureka and barrier functions which form the basic network primitives provide for effi-

cient network control of many possible applications. The basic EBN can be implemented

as a single wire per network link. Extensions to the EBN provide for synchronous one-to-

all broadcasts. In the fault tolerant Chaotic routing architecture, the basic EBN implemen-

tation provides for control and synchronization of the network fault management proce-

dures.

The basic fault management procedure in the Chaos routing network performs fault detec-

tion every cycle. A detected error forces the system into a system drain procedure in which

packet injection is inhibited and all packets delivered or removed from the network. Diag-

nostics are performed to determine which links or processing nodes may be faulty. System

84

reconfiguration, in which newly diagnosed faulty components are disabled, follows. A roll-

back may be necessary to restore a known good state to the system. The system then returns

to normal operation.

Fault detection within the Chaotic routing network depends upon the use of a limited num-

ber of detection mechanisms at carefully selected spots within the router. A comprehensive

scheme in which all circuitry is duplicated and outputs compared was avoided because of

the cost. The selected mechanisms fall into two categories: 1) those that detect explicit

errors that escape from a node, specifically form and content errors in packets, and 2) con-

text errors in which packets may be late, missing, duplicated or misdelivered. The first cat-

egory includes parity/checksum checks which guard against corrupted data and channel

protocol checks which check such things as the length of packets and the protocol followed

by the channel control signals.

The second category is associated with the reordering buffers within the network interface

between the router and the processing node. Missing packets that are part of a multipacket

message are detected when a hole appears in the contents of the reordering buffer. This

mechanism does not detect missing single packet messages. However, that problem was

analyzed and single packet messages were found to comprise less than 1% of network traf-

fic under a typical work load. This means that the spot use of a reliable end-to-end trans-

mission protocol utilizing buffering and message receipt acknowledgments would have

only a small effect on network performance.

The system drain ensures an upper limit on packet delivery time within the network and

sets the network into a known, empty state before the onset of diagnostics. Packet injection

is inhibited by the drain and packets already in the network are allowed to proceed. As the

network clears, obstacles caused by congestion will disappear and delayed packets will

eventually be able to proceed. Faults may prevent the delivery of some packets within the

network so, after a timeout period, packets that remain in the network are dropped.

Network diagnostics are designed to identify as many faults as possible using a quick dis-

tributed algorithm. The router is exercised in a controlled manner which exercises most of

the router data path and all of the network links. Each node injects packets destined for each

of its neighbors. When a node receives such a packet, it will in turn respond with an

acknowledgment packet back to the original sender. Failure of an acknowledgment to

return or the return of a corrupted packet is evidence of a fault.

Each node compiles the results of the local diagnostics and marks, in the router’s internal

85

configuration register, whether or not its links and neighboring nodes remain operational.

This information is then used as a mask for all subsequent routing decisions made by the

router. The system software also compiles the local configuration information from each

node into a overall network configuration map. At that level, large obstacles that present

routing problems can be identified and global network reconfiguration performed in order

to remove routing bottlenecks.

The local map maintained by the node is used in several ways. Packets will not be routed

in directions with unavailable resources even if that direction is part of a minimal path in

the fault-free network. If no minimal path remains operational, then fast derouting will

route a packet out an alternate non-minimal path without requiring entry into the router

multiqueue. This eliminates the extra latency associated with buffering in the multiqueue.

If at the end of the diagnostics it is determined that a node has been lost to the system or if

a packet has been lost in an unrecoverable manner, a rollback will be performed to return

the system to a known good state. Otherwise the network will simply return to the normal

operating mode and resume packet injection and routing activity.

The cost to implement the fault tolerant architecture has been estimated to be an additional

15% in router gate count. The cost in added wiring amounts to one additional wire or 5%

per link. The cost in network clock rate is small as the critical paths through the router are

largely unaffected by the modifications. The cost in throughput is 15% as an outside esti-

mate because of the number of flits in a packet dedicated to fault tolerance. However, the

basic Chaos router assumes a small number of overhead flits in each packet so this cost may

not actually represent a real increase.

A translation of error coverage into fault coverage is necessary for the calculation of net-

work reliability. While the translation is difficult to define precisely, high error coverage

should correlate with high fault coverage. Conservative estimates of fault coverage show

that the network MTTF improves from one to two orders of magnitude.

For hard faults, estimated MTTF improved from 557 hours to 18520 hours; a factor of 33.2.

For soft faults, MTTF improved from 61 hours to 6100 hours; a factor of 100. Overall

MTTF for hard and soft faults together went from 55 hours to 4587 hours; a factor of 83.4.

In summary, a design has been presented that provides for significant improvements in net-

work reliability, can be implemented with only incremental changes to the basic Chaos

architecture, has benign effects on fault-free system performance and only requires a frac-

tional increase in the network cost associated with hardware resources.

86

7.2 Future Work
The design of the fault tolerant Chaotic routing architecture provides a framework for a

reliable network implementation. However, there remain issues worth investigating, many

associated with the details of carrying the design to a lower level of abstraction while some

result from the limitations imposed on the design by the need to avoid costly changes to the

basic design. Among the issues:

•Improved diagnostics. The diagnostics described center around data errors and

faulty links. Coverage of router failures is more problematic. The test patterns used

for fault diagnosis do not provide full coverage of the router data path and leave much

of the router control untested.

•Error control coding . While this study makes a proposal for the use of a checksum

to protect packet data, the choice will really depend upon the application and imple-

mentation. Codes can be tailored for most any need and an examination of error rates

and failure modes that corrupt data will provide better insight into the amount of pro-

tection required from an error control code.

•EBN fault tolerance. While the EBN is inherently reliable due to the redundancy of

the network, it has failure modes that need to be avoided. The physical implementa-

tion will require some sort of protection in order to locally contain failures. For exam-

ple, the addition of a mechanism such as a heartbeat would allow for low-latency

detection of a faulty EBN link.

•Enhanced router fault detection. There are additional means by which internal

router faults can be detected without requiring brute force duplication. For example,

the addition of parity to the packet as it passes through the router datapath could pro-

vide for an internal end-to-end check and low latency fault detection. Controllers can

be built with extra state bits that expand the state space and provide the equivalent of

parity. An examination of the trade-offs relating design effort and router area versus

better fault coverage and improved reliability could be worthwhile.

•EBN studies. While the basic EBN network was simulated and debugged as part of

the fault tolerant architecture design, simulation studies of the enhanced version have

yet to be performed. Undoubtedly there remain many details to wring out.

•Effects of system scaling. The utility of global fault management procedures

depends upon the the network failure rate which is a function of the individual com-

ponent failure rates along with the size of the system. Global procedures remain prac-

87

tical as long as such procedures use only a tiny fraction of system computational

resources. If this condition cannot be met, then an alternate scheme which limits the

scope of such procedures will need to be developed.

•System implementation. Ultimately, reliability is a historical measure. Unless a

system is actually built, there is no guarantee that all failure modes have been consid-

ered or that the trade-offs performed in a paper design have a legitimate basis. Some-

where in architectural and conceptual studies there needs to be an empirical basis for

the decisions and choices that are made.

88

Bibliography

[Allen et al. 94] J. Allen, P. Gaughan, D. Schimmel, S. Yalamanchili. Ariadne - An Adap-

tive Router for Fault-tolerant Multicomputers. InProceedings of the International Sympo-

sium on Computer Architecture, pages 278-288, 1994.

[Bhagwat et al. 94] P. Bhagwat, P. Mishra, S. Tripathi. Effect of Topology on Performance

of Reliable Multicast Communication. InProceedings of the Conference on Computer

Communications, pages 602-609, 1994.

[Blough & Pelc 93] D. Blough, A. Pelc. Diagnosis and Repair in Multiprocessor Systems.

In IEEE Transactions on Computers, pages 205-217, February 1993.

[Bolding 93] Kevin Bolding. Chaotic Routing: Design and Implementation of an Adaptive

Multicomputer Network Router. PhD dissertation, University of Washington, Seattle, Wa.,

July 1993.

[Chen & Hsiao 84] C.L. Chen, M. Y. Hsiao. Error-Correcting Codes for Semiconductor

Memory Applications: A State-of-the-Art Review. InIBM Journal of Research and Devel-

opment, pages 124-134, March 1984.

[Chien & Kim 92] A.A. Chien, J. H. Kim. Planar-Adaptive Routing: Low-cost Adaptive

Networks for Multiprocessors. InProceedings of the International Symposium on Com-

puter Architecture, pages 268-277, 1992.

[Cray Research 93] Cray Research.Cray T3D System Architecture Overview Manual,

1993.

[Cypher et al. 93] R. Cypher, A. Ho, S. Konstantinidou, P. Messina. Architectural Require-

ments of Parallel Scientific Applications with Explicit Communication. InProceedings of

the International Symposium on Computer Architecture, pages 2-13, 1993.

[Dally et al. 94] W. Dally, L. Dennison, D. Harris, K. Kan, T. Xanthopoulos. The Reliable

Router: A Reliable and High-Performance Communication Substrate for Parallel Comput-

ers. InProceedings of the Parallel Computer Routing and Communication Workshop,

pages 241-255, 1994.

[Davis 92] A. Davis. Mayfly: A General-Purpose, Scalable, Parallel Processing Architec-

ture. InLisp and Symbolic Computation, pages 7-47, May 1992.

[Davis et al. 94] A. Davis, R. Hodgson, I. Robinson, L. Cherkasova, V. Kotov, T. Rokicki.

89

R2: A Damped Adaptive Router Design. InProceedings of the Parallel Computer Routing

and Communication Workshop, pages 295-309, 1994.

[Dutton 89] T. Dutton. Connector Failure - A Terminal Problem? InIEE Colloquium on

“Connectors on Vehicles”, pages 3/1-6, 1989.

[Elder et al. 88] J.Elder, J. Osborn, W. Kolasinski, R. Koga. A Method for Characterizing

a Microprocessor’s Vulnerability to SEU. InIEEE Transactions on Nuclear Science, pages

1678-1681, December 1988.

[Garcia-Luna-Aceves 88] J. Garcia-Luna-Aceves. Reliable Broadcast of Routing Informa-

tion Using Diffusing Computations. InProceedings of the Global Telecommunications

Conference, pages 615-621, 1992.

[Hopkins et al. 78] A. Hopkins, T. Smith, J. Lala. FTMP - A Highly Reliable Fault-Tolerant

Multiprocessor for Aircraft. InProceedings of the IEEE, pages 1221-1239, October 1978.

[Ishihata et al. 91] H. Ishihata et al. Third generation message passing computer AP1000.

In Proceedings of the International Symposium on Supercomputing, 1991.

[Iyer & Hsueh 90] R. Iyer and M. Hsueh. Analysis of Field Data on Computer Failures. In

Journal of Computer Science & Technology, pages 99-108, Vol. 5 No. 2 1990.

[Kim et al. 94] J. Kim, Z. Liu and A. Chien. Compressionless Routing: A Framework for

Adaptive and Fault-tolerant Routing. InProceedings of the International Symposium on

Computer Architecture, pages 289-300, 1994.

[Konstantinidou 91] S. Konstantinidou. Deterministic and Chaotic Adaptive Routing in

Multicomputers. PhD dissertation, University of Washington, Seattle, Wa., May 1991.

[Lee & Shin 94] S. Lee and K. Shin. Interleaved All-to-All Reliable Broadcast on Meshes

and Hypercubes. InIEEE Transactions on Parallel and Distributed Systems, Vol. 5 No. 5

pages 449-458, May 1994.

[Lamport et al. 82] L Lamport, R Shostak, M Pease. The Byzantine Generals Problem. In

ACM Transactions on Programming Languages and Systems, pages 382-401, July 1982.

[Leiserson et al. 92] C. Leiserson et al. The network architecture of the connection machine

CM-5, InProceedings of Symposium on Parallel Algorithms and Architectures, pages 272-

285, 1992.

[McKenzie et al. 94] N. McKenzie, K. Bolding, C. Ebeling, L.Snyder. CRANIUM: An

Interface for Message Passing on Adaptive Packet Routing Networks. InProceedings of

the Parallel Computer Routing and Communication Workshop, pages 266-280, 1994.

90

[MH217 91] MIL-HDBK-217F. Military Handbook, Reliability Prediction of Electronic

Equipment. 1991.

[Olson & Shin 88] A. Olson, K. Shin. Fault-Tolerant Routing in Mesh Architectures. In

IEEE Transactions on Parallel and Distributed Systems, pages 1225-1232, November

1994.

[Ramanathan & Shin 88] P. Ramanathan, K. Shin. Reliable Broadcast in Hypercube Mul-

ticomputers. InIEEE Transactions on Computers, pages 1654-1657, December 1988.

[Siewiorek et al. 78] D. Siewiorek, V. Kini, H.Mashburn, S. McConnel, M. Tsao. A Case

Study of C.mmp, Cm*, and C.vmp: Part 1 - Experiences with Fault Tolerance in Multipro-

cessor Systems. InProceedings of the IEEE, pages 1178-1199, October 1978.

[Siewiorek & Swarz 82] D. Siewiorek, R. Swarz.The Theory and Practice of Reliable Sys-

tem Design.Digital Press, 1982.

[Somani & Agarwal 92] A. Somani, V. Agarwal. Distributed Diagnosis Algorithms for

Regular Interconnected Structures. InIEEE Transactions on Computers, pages 900-906,

July 1992.

[Stunkel et al. 94] C. Stunkel, D. Shea, B. Abali, M. Denneau, P. Hochschild, D. Joseph, B.

Nathanson, M. Tsao, P. Varker. Architecture and Implementation of Vulcan. InProceedings

of International Parallel Processing Symposium, pages 268-274, 1994.

[Tang & Chien 69] D. Tang, R. Chien. Coding for Error Control. InIBM Systems Journal,

pages 48-86, Vol. 8 No. 1,1969.

[Wang & Schwartz 93] C. Wang, M. Schwartz. Identification of Faulty Links in Dynamic-

Routed Networks. InIEEE Journal on Selected Areas in Communications, pages 1449-

1460, November 1994.

[Wensley et al. 78] J. Wensley, L. Lamport, J. Goldberg, M. Green, K. Levitt, P. Melliar-

Smith, R. Shostak, C. Weinstock. SIFT: Design and Analysis of a Fault-Tolerant Computer

for Aircraft Control. InProceedings of the IEEE, pages 1240-1255, October 1978.

