
The Chinook Hardware/Software

Co-Synthesis System

1

Pai Chou, Ross Ortega, Gaetano Borriello

Department of Computer Science and Engineering

University of Washington, Box 352350

Seattle, WA 98195-2350

Technical Report 95{03{04

March 14, 1994

1

This work was supported by by the ARPA/CSTO Microsystems Program under

an ONR monitored contract (N00014-91-J-4041). The authors' email addresses are

fchou,ortega,gaetanog@cs.washington.edu.



The Chinook Hardware/Software Co-Synthesis System

Pai H. Chou, Ross B. Ortega, Gaetano Borriello

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

March 14, 1995

Abstract

Embedded systems are becoming more commonplace and are being designed by larger num-

bers of designers with ever tighter constraints on design time. Unfortunately, computer aided

design tools for embedded systems have not kept pace with these trends and are still fundamen-

tally identical to those used twenty years ago. The Chinook co-synthesis system, under devel-

opment at the University of Washington, addresses the automation of the most time-consuming

and error-prone tasks in embedded controller design, namely: the synthesis of interface hard-

ware and software needed to integrate system components; the migration of functions between

processors and/or custom logic; and the co-simulation of system speci�cations before, during,

and after synthesis. In this paper, we describe the principal elements of the Chinook system

and discuss its application to a variety of embedded designs.

Category of interest: (C) Hardware-software Co-design.



The Chinook Hardware/Software Co-Synthesis System 1

1 Introduction

Embedded system designers, in varied industry segments that include consumer electronics, auto-

motive control, and medical equipment, are facing increased pressure to create products quickly

and inexpensively. This trend is coupled to the increasing levels of integration, performance,

and programmability achievable in o�-the-shelf integrated circuits including microprocessors, pro-

grammable logic, and devices such as LCDs, network interface controllers, and speech generators.

Designers �nd using these devices to be advantageous because of their low cost and the way in

which they facilitate rapid realization of designs not only for prototyping but for production as

well. In fact, with embedded controllers now found in everything from consumer electronics and

automobiles to smart credit cards and medical equipment, many products have declining lifetimes

that make custom integrated circuits a less economically viable option.

The job of the embedded system designer has also changed. In addition to time to market

constraints, the designer must worry about correctness and cost e�ectiveness of the implementation.

Thus, designers have a need to explore a large design space of potential solutions, yet no integrated

CAD tools are available to help them with this task. The design must be quickly de�ned and

simulated and then mapped onto the cheapest combination of components. Unlike general-purpose

computers embedded systems are designed and optimized to provide speci�c functionality. Thus,

the most time consuming and error-prone task in embedded system design is precisely the detailed

mapping of the abstract functional speci�cation onto the target components. In fact, the process

is so time-consuming that many designers �x the target architecture and system components well

before a complete evaluation of the �nal system and perform only one mapping. This often leads

designers to over-design their systems with faster processors or larger capacity logic devices then

really needed, thereby increasing the cost. If the target architecture were to prove inadequate due

to performance or capacity constraints, designers would face a costly re-mapping process.

It is clear that design exploration tools to automate the mapping process and thus provide faster

feedback on design decisions are sorely needed. Many design automation tools and frameworks

have been proposed to address a few of these problems. These tools either look at high-level

speci�cations but do not assist with the actual implementation, or they help with individual parts

of the implementation but do not provide a system view. Examples of the former include behavioral

simulators and formal speci�cation languages while examples of the latter include compilers, board

layout tools, and logic synthesis systems. Recently, tools for dealing with the hardware and software

portions of the system have been proposed, but these have not addressed the system integration

issues that dominate the design cycle.

2 Taxonomy of Hardware/Software Co-design

The �eld of hardware/software co-design of real-time embedded systems can be organized along

three principal dimensions: the implementation technology, the application domain, and the aspect

of the design cycle.



The Chinook Hardware/Software Co-Synthesis System 2

2.1 Technology

An embedded system may be implemented with a number of technologies, including o�-the-shelf

components, programmable logic, and full-custom or semi-custom ASICs. Examples of such tech-

nologies include interface controllers, FPGAs, standard processor cores, or cores that are either

custom designed or enhanced with custom datapath and I/O logic. The choice of technologies has

a signi�cant impact on the price/performance of the embedded system. ASICs provide higher per-

formance but can be expensive to design and are di�cult to modify once fabricated. FPGAs and

processors are reprogrammable and can be used to quickly prototype a system. Because they are

available in large quantities, they often have competitive price/performance ratios to custom logic.

Increasingly, more functionality is being moved into software because microprocessors can deliver

the desired performance, obviating the need for much custom logic. Thus, the design burden is

shifting to software and increases pressure to automate tasks such as device driver generation and

scheduling to meet real-time constraints.

2.2 Domains

Embedded systems can be divided into two principal domains, control-dominated and data-
ow,

based upon the characteristics of the application. In the data-
ow domain, data is sampled at

regular intervals and processed in the same order. The behavior of the system remains the same

over time. In each time step, a set of mathematical operators are applied to a window of data

samples. Digital signal processing (DSP) systems are the canonical example for the data-
ow

domain. Control dominated-systems span a much wider range and are characterized by complex

conditional or modal behavior rather than math-intensive computations. An example of a control-

dominated system is a network controller or avionics control system. Of course, many systems

contain elements of both domains but usually one or the other dominates the designer's attention.

2.3 Design Problems

The problems in embedded systems design include speci�cation of behavior and timing constraints,

partitioning, interfacing, scheduling, code-generation, analysis, simulation and debugging. Point

tools either exist or are being contemplated for all these aspects of the design process. We focus

our discussion of this dimension on control-dominated applications.

Speci�cation captures the behavior and requirements of a design. This is for the most part done

informally using a mixture of natural language documents, pseudo-code, and block diagrams. This

approach has made design maintenance, upgrading, and retargeting very time intensive and some-

times impossible. Several formal speci�cation methods have been proposed including �nite state

machines [4], Petri nets [18], and CSP [15]. Today's tools lie somewhere in the middle { speci�ca-

tions are written in a high-level programming or hardware description language that is simulatable.

This enables some early validation of the design. There is still no accepted formalization of the

timing and performance constraints that are critical in many embedded applications. Without

these constraints explicitly represented, designers must devise and validate software schedules and

interactions between components by hand. Simulators can help with this task but are limited to

the tests performed explicitly. Formal veri�cation or synthesis techniques are needed to guarantee

that constraints are satis�ed.



The Chinook Hardware/Software Co-Synthesis System 3

Partitioning is the process of determining the components on which to implement portions of

system functionality. This may be a split between a processor and auxiliary logic or between a set

of processors. Attempts at automating partitioning have included simulated annealing algorithms

[9] and hardware to software migration [12] but have for the most part ignored the problems of

interfacing and communication between the parts. In fact, designers spend a large fraction of the

time in interfacing system components to each other and the operating environment (including

user interfaces) because it is where the bulk of errors lie. Yet, interfacing remains one of the least

addressed areas in many co-synthesis tools. The interfacing task may involve both hardware and

software aspects of the interface as well as low level timing concerns that may require glue logic.

Interface generation has been described in [20], though the synthesis of interface software is not

addressed.

Other aspects of the embedded system design cycle include retargetable code-generation (for

di�erent o�-the-shelf processors as well as custom designed ones). Performance estimation of soft-

ware is of critical importance and is required if partitioning to meet timing constraints is to be

done with con�dence. Analysis tools are needed to predict execution times, and possibly the size,

of code fragments. Finally, simulators, debuggers, and pro�lers are needed to evaluate the �nal

design at a detailed level.

3 The Chinook Co-Synthesis System

At the University of Washington, our approach to the co-synthesis of real-time reactive embedded

systems is embodied in Chinook, a tool that generates complete design speci�cations given a single

high-level speci�cation of the desired system functionality. Several features distinguish Chinook

from other work in this area. Each is motivated by the observations and concerns outlined in the

previous two sections. Using the taxonomy of section 2, Chinook is intended for control-dominated

designs constructed from o�-the-shelf components. It addresses the aspects of the design process

whose automation will provide the most bene�t to designers in terms of shortening the design

cycle, permitting more design space exploration, and automating tasks that are error-prone or

cumbersome.

The following elements of the Chinook system are where the principal innovations lie. It is

important to note that what makes Chinook unique is the combination of these elements rather

than any single one.

� Single speci�cation. A designer writes one speci�cation in a single speci�cation language

with explicit timing/performance constraints rather than separate netlist, hardware descrip-

tion, and software languages all with implicit constraints. This is key to the retargetability

and maintainability of the design.

� One simulation environment. The high-level speci�cation of the design can be simulated

directly to help debug the designer's intent as well as operational aspects of the design. The

�nal synthesized result, and any intermediate steps, can be simulated in the same environment

and augmented with additional tools (e.g., debuggers and pro�lers for software).

� Comprehensive software scheduling. Chinook synthesizes the appropriate software ar-

chitecture for the timing requirements of the system: low-level partitioning to ensure signal-



The Chinook Hardware/Software Co-Synthesis System 4

Verilog
Specification

parser

Processor &
Device Libraries

driver
synthesizer

scheduler

comm.
synthesizer

interface
synthesizer

code
generator

netlist

program

Behavioral
Simulation

Structural
Simulation

Mixed
Simulation

Figure 1: The Chinook Co-Synthesis System

ing constraints are satis�ed (possibly by synthesized hardware modules), static �ne-grained

scheduling to tailor device drivers, and customized dynamic schedulers and interrupt handlers.

� Interface synthesis. Interface hardware and software between system components (in-

cluding peripheral devices as well as multiple processors) is automatically synthesized with

appropriate changes re
ected in interprocessor communication and device drivers.

� Complete information for physical prototyping. Chinook generates a complete netlist

for assembling the system and complete code for its processors to run. After co-synthesis, the

system is ready to be assembled and evaluated in its intended environment.

The Chinook co-synthesis system consists of the parser, the processor/device library, the

device-driver synthesizer, the interface synthesizer, the communication synthesizer, the scheduler,

and the simulator (see Figure 1). The parser accepts a system description in annotated Verilog. In

addition to a behavioral speci�cation, it also contains a structural speci�cation that instantiates

the principal components of the system, including processors, peripheral devices, and standard

interfaces. The device library contains detailed generic speci�cation of device interfaces (in the

form of timing diagrams and Verilog code) and models for their simulation (in C). For processors it

contains speci�cations of their interfaces as well as timing schemas for software run-time estimation

[19]. The device-driver synthesizer compiles the timing diagrams and Verilog device drivers into

customized code for the given processor and makes low-level partitioning decisions to meet signaling

constraints. The interface synthesizer allocates I/O resources to connect a processor to the periph-

eral devices it will control, and customizes the access routines to re
ect these assignments. The

communication synthesizer generates the hardware and software needed for interprocessor commu-

nication. With all resources allocated, the scheduler generates C code to meet real-time constraints

in software. The C code is compiled by a processor-speci�c compiler. Chinook also outputs the

netlist, including the necessary glue logic, to construct the desired system.

Chinook does not attempt does not attempt several tasks. It does no high-level partitioning

of functionality between hardware or software or between processors. Instead, it assumes that

designers involved in design exploration are in a better position to make these assignments at the

module and/or task level. Chinook does not compile code to the target processor(s). It assumes

not only the existence of the appropriate C compilers but also that these will be able to provide



The Chinook Hardware/Software Co-Synthesis System 5

the scheduler with feedback on the expected run-time of code fragments. Finally, in its focus on

real-time reactive systems, it assumes that caches are not employed.

4 Speci�cation

The single Verilog �le provided as input to Chinook contains both behavioral and structural con-

structs. The behavioral style imposed by Chinook enables the expression of real-time reactive

behavior as well as facilitating partitioning. The structural component merely lists the proces-

sors, peripheral devices, and communication interfaces that will be used. That is, the principal

components of the system to which the designer would like to evaluate a mapping of the desired

functionality. Chinook expects the designer to tag tasks and/or modules with the processor that is

preferred for their implementation. The implementation of untagged modules/tasks is assumed to

be in hardware. This separation of functionality from components allows the designer to quickly

explore the design space by instantiating di�erent processors and alternative peripheral devices

without modifying the behavioral speci�cation. All interactions with the devices and interfaces are

speci�ed using a procedural abstraction layer. As long as two interfaces (e.g., SCSI and PCMCIA)

support the same access routines (e.g, read and write) they can be easily interchanged.

To model the reactive behavior of control-dominated applications, we organize the control

states of the system as a set of modes. Each mode de�nes a behavioral regime, that is, how the

system should respond to its inputs. A mode also de�nes a scope for a set of timing constraints

that must be satis�ed while the system is within that mode but not necessarily when it is operating

outside of it. Modes are similar to the hierarchical states of [14] in that they can capture both

sequential and concurrent behavior.

Chinook allows the speci�cation of real-time requirements in terms of minimum and maximum

separation between I/O events, namely events between system components or between the system

and the environment. At the low level, the constraints may correspond to setup and hold times, or

simply the sequencing constraints between successive I/Os. At the high level, min/max separation

can also be used to express response times to system inputs and rate constraints on performance

[8].

In a given mode, the system's responses are de�ned by a set of handlers. Conceptually, they

are event-triggered routines, but their activation conditions are checked by a time-triggered loop.

Handlers respond by generating I/O events and/or causing a mode transition. A handler consists

of a trigger condition and a body. The trigger condition is an event expression consisting of inputs

from the environment and other handlers. When the trigger condition evaluates to true, the handler

body is executed. For example, a network interface chip may signal that a message is pending and

this triggers a handler to read that message. Note that the handler body can be in software,

hardware, or a combination of the two, depending on its tag and the ability of the processor to

meet the timing constraints in the handler. From a speci�cation point of view, a handler is executed

atomically, but may be interleaved by the scheduler.



The Chinook Hardware/Software Co-Synthesis System 6

5 Scheduling

Embedded systems have timing constraints at di�erent levels. Their interaction with the devices

and the environment must respect not only low-level signaling constraints but also performance

requirements such as rate and response time constraints. To satisfy these high-level constraints,

designers have used process-based scheduling techniques based on operating systems concepts [17, 3].

These techniques are coarse-grained, priority-driven, and dynamically preemptive. They assume

that the processor does not perform I/O directly and the processes are independent of each other.

Since all timing constraints are coarse-grained, overhead incurred by the executive during pre-

emption can be dismissed. However, many embedded systems must perform direct I/O and meet

�ne-grained timing constraints. These constraints are much more di�cult to meet because the

scheduler cannot a�ord to incur much, if any, run-time overhead, and at the same time must han-

dle uncertainties in the execution delays. Instead, Chinook statically schedules all low-level I/O

and high-level operations as grouped in modes. A customized dynamic scheduler may be generated

for the larger modes (i.e., those at the top of the mode hierarchy).

Chinook uses a static, nonpreemptive scheduling algorithm to meet min/max timing con-

straints on �ne-grained operations with delay ranges [6]. It determines a serial ordering for the

operations, and inserts delays to meet minimum constraints, if necessary. Because the complexity

of the problem is NP-hard, we employ heuristic ordering functions to help the exact algorithm

quickly �nd a valid and short schedule. Experimental results show that our best heuristic consis-

tently outperforms a heuristic that solves the same problem inexactly [13].

At the high level, rate constraints are speci�ed on a reference event between successive itera-

tions, and response times are constraints on the time it takes to do a mode transition. In statically

scheduling the software, Chinook �rst converts handlers within a mode into a single handler contain-

ing their bodies, possibly using unrolling, and then schedules this single partially-ordered handler

by interleaving [8]. Note that a mode transition may be triggered by one of the handlers before other

handlers run to completion, and the scheduler must maintain the integrity of all handler states. We

do not use critical regions to achieve atomic execution because they disable interleaving, which is

necessary when servicing devices with long separation between sequential events. Instead, Chinook

allows the user to de�ne safe points in the handlers, where potential mode transitions can safely

occur [5]. All parallel handlers must reach their safe points before a mode transition is allowed to

take e�ect.

6 Interface Synthesis

Interface synthesis is the realization of communication between components via both hardware and

software elements. Chinook handles a wide range of interface synthesis problems. At the lowest

level, Chinook synthesizes device drivers directly from timing diagrams. It generates customized

code for the particular processor being used, and separates out the portions that cannot be imple-

mented in software by synthesizing the required external hardware. For processors with general

purpose I/O ports, Chinook employs an e�cient heuristic for connecting devices and processors

using minimal interface hardware. For processors without I/O ports, Chinook automatically imple-

ments the interface using memory-mapped I/O including allocating address spaces and generating

the required bus logic and instructions.



The Chinook Hardware/Software Co-Synthesis System 7

These synthesis solutions require knowledge about the interfaces of the processors and the

devices, which are captured in the libraries. A processor is de�ned by its I/O resources, built-

in functionality (e.g., serial-line controller, timer, etc.), and detailed architecture templates (e.g.,

down to the speci�c resistors and capacitors required for power-up reset). A device description

contains interface information including ports and skeletal access routines that encapsulate timing

diagrams. After successful interface synthesis, Chinook updates the access routines by binding the

device ports to the processor's I/O ports or memory bus, and taking into account any intervening

glue logic that it may have synthesized. By managing these connectivity details and generating

the interface across the hardware/software boundary, the interface synthesizer completes the design

and enables simulation and evaluation at the �nal implementation level.

6.1 Driver Synthesis from Timing Diagrams

At the most detailed level, device interfaces are described in data sheets in the form of timing

diagrams. They show the sequences of signaling events that make up I/O transactions across

the interface. These timing diagrams are usually annotated with timing requirements, timing

delays, and timing guarantees. The �rst of these three are requirements imposed on the user of

the interface, while the second two are timing promises made by the device as long as the user

conforms to the requirements. When new devices are added to the device library, these constraints

and their corresponding timing diagrams are entered via a waveform editor [11]. Chinook parses

these waveforms and synthesizes the device driver code by choosing a linear schedule of controller

events, and inserting additional interface glue logic where necessary [22].

6.2 I/O Port Allocation

Many processors used in embedded systems include I/O ports that can be used to directly sense and

manipulate the processor's environment. These ports can be accessed from software like registers

thus providing a low-cost and straightforward interfacing mechanism. Chinook provides a port

allocation scheme that uses the minimal amount of glue logic. Furthermore, device access routines

are customized to re
ect the assignments of pins [7]. The key idea is that an I/O port may be able to

service multiple devices without glue logic and without performance penalties. These devices have

interfaces that are able to isolate themselves from the shared bus, and become active only when the

appropriate control signals, or guards, enable them. Thus, a guarded interface of a device can share

the same I/O port with other devices because their interfaces cannot be active at the same time.

If necessary, the port allocator inserts glue logic to add guards to previously unguarded interfaces,

so that they can share busses. Chinook can also synthesize ports to create a new interfacing point

for additional devices. Hardware is synthesized to create a new port on the processor's memory

bus. This module decodes addresses and translates them into control signals to read and write the

new I/O pins.

6.3 Memory-Mapped I/O

When I/O ports are too ine�cient (due to multiple instructions to manipulate their values or too

much additional hardware) or are unavailable (as is the case for higher-performance processors),

Chinook synthesizes the interface using memory-mapped I/O. First, many parts, processors as



The Chinook Hardware/Software Co-Synthesis System 8

well as peripheral devices, are designed with memory-mapped I/O in mind. They contain built-

in address matching logic and can be connected to the memory bus with little or no glue logic.

Second, many components without built-in address comparators can still be connected with little

or no glue logic, depending on the available address space the user reserves for I/O. Devices are

allocated portions of the address space of the processor controlling them. If the allocation is done

intelligently (i.e., using one-hot, binary, or Hu�man encodings when possible) the amount of address

matching logic required can be minimized.

Memory-mapped I/O is also a preferred method of interprocessor communication and can be

used to support both point-to-point and shared memory schemes. If we are to allow a designer to

explore mapping of functions to multiple processors, then the mapping tools must automatically

synthesize the interprocessor communication hardware and software. Essentially, the view from one

processor is that the other processors are just more peripheral devices requiring their own device

drivers.

7 Communication Synthesis

Requirements for faster response times and increased modularity frequently guide embedded system

designers to employ multiple processors. These processors are often heterogeneous as cost and

modularity concerns drive designers to tailor processors to speci�c functions. CAD support is non-

existent for these types of systems. There are not even debuggers to support concurrent development

of programs on two identical processors. Designers �nd heterogeneous multiple processor systems

the most di�cult to debug and thus constrain designs unnecessarily just to make debugging tasks

tractable.

Chinook provides support for interprocessor communication by synthesizing the hardware and

software needed to transfer data between processors. A designer tags the procedures and modules

with the processor that should be used to implement them. Chinook then determines the data that

must be transferred and the mechanism to use for those transfers including the interconnections

between the processors, glue logic, and/or bu�ers and memory.

In meeting timing constraints, Chinook will adjust the interface between the software running

on the processors. Consider the case of a fast processor communicating with a slow one. Handshak-

ing with the slow processor may cause the fast one to violate its constraints. Bu�ers can reduce

the load on the fast processor by eliminating direct handshaking. The communication becomes

non-blocking and data may be processed in bursts.

7.1 Interprocessor Communication Synthesis

When considering communication in multiple processor systems, many new issues arise including

predictability, interconnect topology, access to peripheral devices, and communication protocols.

The interconnect topology could be bus-based, point-to-point, or a hybrid scheme. A peripheral

device may only be accessible via a designated processor or many processors may have shared

access. The communication protocol may be contention based or statically scheduled, blocking or

non-blocking, and master-slave or peers. Each choice has impacts on performance, predictability,

and the complexity of scheduling and hardware required. Chinook supports most of these choices,



The Chinook Hardware/Software Co-Synthesis System 9

but by default uses a model suitable for real-time control-dominated applications. It is based on

non-blocking communication among peers with designated peripheral processors. The interconnect

may be either point-to-point or bus-based.

A handler communicates with the environment through device driver calls and with other

handlers via messages. A message is an event that triggers another handler with an optional data

value. Intraprocessor messages are implemented with shared variables. Interprocessor messages

are transmitted via communication channels synthesized with elements from a communication

library that contains bu�ers, FIFOs, arbiters, and interconnect templates. Given a partitioning of

handlers provided by the user, Chinook will synthesize communication channels to satisfy timing

and resource constraints. Once the communication components are chosen, they are connected

to the respective processors using the interfacing techniques in section 6. If there are multiple

communication channels between processors, each channel may be mapped to its own physical

connection or they may share connections.

7.2 Migration between Processors

Keeping in mind Chinook's focus on aiding the designer's exploration of the design space, it is

important that the designer be free to easily allocate functionality to di�erent processors. Through

assignment tags in the high-level speci�cation, a designer can rapidly change the partitioning of

functionality - between two processors, or between a processor and a direct hardware implementa-

tion. Because Chinook synthesizes interprocessor communication channels and optimizes their use,

this task is greatly simpli�ed for the designer. No longer does the designer need to radically alter

code running on one processor and then propagate the changes to the others while keeping track of

all the potential implications on timing requirements and resource access. These adjustments are

made automatically by Chinook.

Migrating functionality is divided into three parts: input parameter sending, control sequenc-

ing, and output parameter receiving. Input and output parameters are mapped to latches or

memory locations which are connected to the processor using the interfacing techniques discussed

earlier. The control sequencing may simply be moved to another processor or be moved to hardware

where it will be instantiated as a �nite-state-machine and data-path. The general solution to this

requires behavioral synthesis but is quite straightforward in most cases involving I/O. The original

software is replaced with routines that pass the inputs, kick-start the hardware or the software

handler on the other processor, and then read back the outputs.

8 Simulation

The design can be simulated at di�erent levels of detail. The initial speci�cation is compatible

with behavioral Verilog and is simulated without exact timing or detailed I/O. As the synthesis

steps re�ne abstract communications and operations into more concrete signals and components,

outputs from intermediate design steps and the �nal implementation can also be simulated with

cycle-level accuracy.

The simulator uses the Verilog-XL Programming Language Interface [2] to communicate with

peripheral device models. The device models are written in C and make X-window calls to visually



The Chinook Hardware/Software Co-Synthesis System 10

/
8

from p2.6
from P2.0

LCD:E

87C51

ALE

P2/

A[8:15]

AD[0:7]

P0/
P1

P3.7/~RD
P3.6/~WR

P3.1/TxD
P3.0/RxD

 

SPEAKER

8

/

RxD

/
6

D

SPKR

TP5087

A[13:8]
A[7:0]

D[7:0]

~WE~OE

RAM

373

CLK

D Q

SLM21602(LCD)

db[7:0] RSERW

/
8

B1
B2
B3

B0

from p2.1

(a)

Network

DRAM

Processor

I/O Devices

I/
O

 d
ri
v
e
r

net driver

m
e

m
 d

r
iv

e
r

proc driver

I/
O

 h
a

n
d

le
r proc handler

net handler

MAGIC

(b)

Figure 2: Examples synthesized in Chinook. (a) Portable Electronic Phonebook. (b) Communica-

tion in the MAGIC system.

represent the simulated device. Each device model exports the same API (application program

interface) for simulation and synthesis. To simulate the speci�cation during the early stages of the

design, the API is bound to a behavioral simulation model. For example, a SCSI device exports

a send routine. During simulation, the user may pop-up a window containing the various �elds

of a SCSI packet. After creating a new packet, the designer selects the send option which calls

the send routine. This enables the user to simulate the environment of the system being designed

in a consistent manner. During structural simulation of the system, the device's pin interface is

modeled by running multiple FSMs to recognize all possible I/O sequencings in parallel. The FSM

that matches the given I/O invokes the corresponding behavioral routine to simulate the device's

reaction to the given waveform.

Chinook uses RTL-level processor models for simulating the �nal system implementation. The

processor model, also written in C, interprets the same machine code that runs on the actual

processor. At this stage, it is possible to execute the software with a debugger (although this

is the synthesized code and not the original Verilog source). The binary code is disassembled

and the registers, program counter, stack, internal memory, and built-in devices are visible in the

processor status window. The processor model faithfully reproduces, within cycle-level accuracy,

the appropriate waveforms on the processor's pins.

9 Examples

Several embedded systems have been designed using the Chinook tools. The following examples

show the type of complexity that the current version supports. They are a portable electronic

phonebook, a node controller for a distributed system, and a mobile de�brillator.

9.1 Portable Electronic Phonebook

The Portable Electronic Phonebook was originally designed by senior undergraduate students.

Taking their implementation, we reverse-engineered a high level speci�cation which was run through



The Chinook Hardware/Software Co-Synthesis System 11

the Chinook tools (see Figure 2a). The generated solution required less hardware than the original

implementation due to the interface synthesis algorithm. We were able to simulate the entire system

at the behavioral and structural levels to validate the design. After building this application in

hardware according to the generated netlist, the system operated correctly upon applying power.

9.2 MAGIC

The MAGIC (Memory and General Interconnect Controller) is a custom node controller for the

FLASH architecture [16]. It communicates with a processor, network, I/O devices and DRAM (see

Figure 2b). We modeled this architecture with three handlers, one for the processor requests, one

for the network requests and one for the I/O requests. Since the DRAM does not initiate activity, it

does not require its own handler. All communication with the DRAM occurs via device driver calls.

We used the MAGIC application to experiment with using a common API for di�erent peripherals.

The speci�cation was written so that it is easy to select a SCSI or Ethernet network interface chip.

This demonstrates that designers can easily explore di�erent high level options and observe their

rami�cations on other parts of the system. Now that we have both SCSI and Ethernet chips and

drivers in the device library, it is straightforward to implement other systems that require these

protocol chips. Using the results synthesized by Chinook, we performed our experiments with the

simulator.

9.3 A Mobile De�brillator

The purpose of the mobile de�brillator is to revive heart-attack victims with a powerful electri-

cal shock. We consider the digital control subsystem containing an extensive interface including

display of ECG waveforms, voice synthesis, digital audio recording, and PC-Card non-volatile stor-

age. Because of the di�culty of guaranteeing that all timing constraints would be respected, the

commercial version of this application was designed with a microcontroller and an ASIC. We are

currently exploring solutions using reprogrammable components.

10 Conclusion

With the increasing availability of inexpensive and powerful microprocessors and FPGAs, designers

of embedded systems are faced with more implementation choices than ever and given less time

to realize their designs. Unfortunately, computer aided design tools are not tracking these trends.

The Chinook co-synthesis system facilitates design space exploration and automates many aspects

of system integration. These are often the most time-consuming and error-prone tasks in the

embedded system design process.

Design space exploration is enabled by the use a single system speci�cation that captures

the reactive real-time behavior of the system and appropriately abstracts interactions with the

environment to enhance retargetability. Since timing requirements are critical for many embedded

applications, Chinook uses static scheduling to guarantee their satisfaction by construction. Several

interface synthesis techniques are employed to interconnect system components. The necessary

interface hardware and software is generated automatically and minimal glue logic is introduced.



The Chinook Hardware/Software Co-Synthesis System 12

At a higher level, Chinook facilitates easy migration of functionality among processing elements and

manages the communication requirements between processors. This enables designers to rapidly

evaluate di�erent architectural templates and partitionings. Simulation is supported throughout the

design cycle from the initial behavioral speci�cation through the �nal structural implementation.

Chinook's output consists of a netlist, logic speci�cation, and code for each processor - all the

elements needed for the construction of the complete system.

We have used to Chinook to synthesize several embedded systems including an electronic

phonebook, SCSI interface to a VLSI chip tester, hand-held logic analyzer, and an infrared net-

work transceiver. We are currently experimenting with its use in evaluating the design spaces for

an automatic de�brillator and a multi-processor I/O subsystem. Future work includes develop-

ing synthesis methods for more e�cient communication using higher level knowledge about the

data
ow and control dependencies of the handlers. For instance, routing data around a proces-

sor may reduce processor load and yield higher performance at the cost of additional hardware.

Ongoing work includes making Chinook more robust and more integrated, especially between the

scheduler and compiler/estimator. In addition, we are investigating techniques to permit partition-

ing between software running on a workstation/PC and functionality in a peripheral device, which

is an embedded system on a board attached to the system bus or other standard interface such as

serial-line or PCMCIA slot.

References

[1] F. Boussinot and R. De Simone. The Esterel language. Proceedings of the IEEE, 79(9), September

1991.

[2] CADENCE Design Systems, Inc. Programming Language Interface Reference Manual. CADENCE

Design Systems, Inc., 1992.

[3] D. Cathey. All things considered... important factors in choosing a real-time development system.

Real-Time Magazine, 2nd quarter 1993.

[4] M. Chiodo et al. Hardware-software codesign of embedded systems. IEEE Micro, 14(4):26{36, August

1994.

[5] P. Chou and G. Borriello. Software scheduling in the co-synthesis of reactive real-time systems. In

Proceedings of the Design Automation Conference, June 1994.

[6] P. Chou and G. Borriello. Interval scheduling: Fine-grained software scheduling for embedded systems.

In Proceedings of the Design Automation Conference, June 1995.

[7] P. Chou, R. Ortega, and G. Borriello. Synthesis of the hardware/software interface in microcontroller-

based systems. In Proceedings of the International Conference on Computer Aided Design, November

1992.

[8] P. Chou, E. A. Walkup, and G. Borriello. Scheduling for reactive real-time systems. IEEE Micro,

14(4):37{47, August 1994.

[9] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for microcontrollers. IEEE Design

and Test of Computers, 10(4):64{75, December 1993.

[10] D. D. Gajski and F. Vahid. Speci�cation and design of embedded hardware-software systems. IEEE

Design and Test of Computers, 12(1):53{67, Spring 1995.

[11] B. Gladstone. Speci�cation of timing in a digital system. ASIC and EDA, pages 46{52, August 1993.

[12] R. Gupta and G. De Micheli. Hardware-software cosynthesis for digital systems. Computers and

Electrical Engineering, 10(3):29{41, September 1993.



The Chinook Hardware/Software Co-Synthesis System 13

[13] R. K. Gupta and G. De Micheli. Constrained software generation for hardware-software systems.

In Proceedings of the Third International Workshop on Hardware/Software Codesign, pages 56{63,

September 1994.

[14] D. Harel. StateCharts: a visual formalism for complex systems. Science of Programming, 8, 1987.

[15] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[16] J. Kuskin et al. The Stanford FLASH multiprocessor. In 21st Annual Internation Symposium on

Computer Architecture, pages 302{313, 1994.

[17] A. K. Mok. The design of real-time programming systems based on process models. In Real Time

Systems Symposium, pages 5{17, 1984.

[18] T. Murata. Petri nets: Properties, analysis, and applications. Proceedings of the IEEE, 77(4):541{580,

April 1989.

[19] C. Y. Park. Predicting Deterministic Execution Times of Real-Time Programs. PhD thesis, University

of Washington, 1992. Technical Report 92-08-02, Department of Computer Science & Engineering.

[20] M. Srivastava, B.C.Richards, and R.W.Brodersen. System level hardware module generation. IEEE

Transactions on VLSI Systems, 3(1), March 1995.

[21] D. E. Thomas and P. R. Moorby. The Verilog Hardware Description Language. Kluwer Academic, 1991.

[22] E. A. Walkup and G. Borriello. Interface timing veri�cation with application to synthesis. In Proceedings

of the Design Automation Conference, June 1994.


