
Fast Median Filtering

Algorithms

for Mesh Computers

Steven L. Tanimoto

Technical Report 95-03-05

March, 1995

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195



Fast Median Filtering Algorithms for

Mesh Computers

Steven L. Tanimoto

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

March 22, 1995

Abstract

Two fast algorithms for median �ltering of images using parallel

computers having 2-D mesh interconnections are given. Both algo-

rithms assume that an n � n image is loaded onto the mesh with

one processing element per pixel. One algorithm performs median �l-

tering over d � d neighborhoods in O(d

2

) time and works with pixel

values in an arbitrarily large range. This algorithm, while theoret-

ically suboptimal, achieves a lower constant than a previously pub-

lished asymptotically-optimal algorithm and is simpler to program.

The second algorithm assumes that the range of pixel values is lim-

ited and relatively small, and it accomplishes median �ltering in O(d)

time.

Keywords: mesh architecture, median �ltering, parallel algorithm, internal

scanning, overlapping scans, image processing, parallel processing, SIMD.

1 Introduction

1.1 Image Noise Elimination

Images obtained from sensors such as video cameras often contain objection-

able amounts of image noise that distorts the input image. The noise results

1



directly from the physical process of transduction of the image into electrical

signals that takes place in the sensor. Since this noise can be modeled as

independent at each pixel and following a Gaussian distribution, most of the

ill e�ects can be reduced using low-pass �ltering.

Linear �ltering using convolution or moving average methods is often

used. However, it has the undesirable e�ect of smearing the step edges that

occur between objects and the image background. On the other hand, the

method of \median �ltering" manages to reduce the noise while avoiding

most of the edge-smearing (e.g., Huang

(1)

). With median �ltering, each pixel

value is mapped into the median of the pixel values in a neighborhood around

the pixel. In practice, the neighborhood is almost always square and of odd

width. In a typical example, one might use the 5�5 neighborhood, in which

each median would be selected from a population of 25 values.

1.2 Previous Work

On a conventional, single-processor computer, median �ltering requires at

least O(log d) time per element (on average), and an algorithm, and an al-

gorithm using a tree-updating procedure has been presented that requires

O(log

2

d) time per element on average (Gil and Werman

(2)

). If a parallel com-

puter is used, faster algorithms are possible. Using the theoretically ideal,

fully interconnected CREW PRAM (Concurrent-Read, Exclusive-Write Par-

allel Random -Access Machine) it is possible to perform d�d median �ltering

on an n�n image in O(log

2

d) time using O(n

2

log

2

d) processors (Ranka and

Sahni

(3)

). However, this model of computation is not often appropriate for

real-world image-processing situations.

Two-dimensional mesh-connected parallel computers are growing in im-

portance for high-speed image processing. Commercial examples of these

systems include the MasPar MP-1, the Connection Machine CM-2 (though

these systems also have routers for more general but slower interconnectiv-

ity). A number of special chips and systems have also been developed to

support mesh architectures.

The problem of e�ciently performing the median-�ltering operation on

an image using a mesh computer is an interesting one. Several alternative

methods can be used. In the following, we assume that the medians are to be

computed over d � d neighborhoods. If d is odd, then each neighborhood is

centered around the pixel in question. Otherwise, the neighborhood is only

2



approximately centered, with the true center slightly to the east and south

of the pixel in question. Towards the end of his paper on pyramid median

�ltering, Stout presented an interesting and, at O(d), a theoretically time-

optimal algorithm for this problem

(4)

. However, that algorithm requires a

complicated program, and the constant is high due to a need to multiplex

each processing element to simulate several logical ones. Therefore, there

remains interest in �nding fast mesh median �ltering algorithms that can be

implemented easily and which do not have large constants associated with

them.

One approach to e�cient and simple algorithms is to limit the pixel depth.

An algorithm is given by Miller and Stout

(5)

for binary images (one bit per

pixel) requiring two steps, the �rst taking O(n) time to assign to each PE the

number of black pixels to its left in its row, and the second taking O(d) time

to compute a kind of discrete line integral of this value around the perimeter

of each pixel's neighborhood. The second algorithm presented below also

takes advantage of a limited-pixel-depth assumption.

1.3 The Mesh Architecture

The algorithms presented here use the following model of a computer. (This

model architecture is referred to here as a \two-dimensional mesh numeric

machine" or 2DMNM.) There is an array of n�n processing elements (PEs).

Each PE except those in row 0, row n � 1, column 0 and column n � 1 is

connected to four neighbors. That is, PE

ij

is connected to PE

i�1;j

, PE

i+1;j

,

PE

i;j�1

, and PE

i;j+1

. There is a central control processor which interprets

program instructions. The control processor is essentially a standard Von

Neumann architecture with its own memory and computing ability, but it

is also connected to the array of processing elements. Some instructions

are broadcast to the PEs, whereas the others are executed directly on the

control processor. Those broadcast to the PEs are performed immediately

by all PEs (except those in a disabled state). The architecture is thus

a single-instruction-stream/multiple-data-stream distributed memory struc-

ture. Each PE has an accumulator register (the \A" register) and a local

memory. The register and memory are presumed to be large enough to hold

standard integers and oating-point numbers. The PEs communicate with

each other whenever a RECEIVE instruction is broadcast to them. For ex-

ample, the RECEIVE NORTH instruction causes each PE to read into its

3



own A register the value of the A register of its northern neighbor. Each

PE on the northern border of the array (i.e., in row 0) receives a 0, since

it has no north neighbor. Each PE is is presumed capable of conventional

arithmetic and logical operations. For example ADD X causes the memory

location referred to by X to be added to the contents of the A register with

the result stored in the A register. Since the 2DMNM has a single instruction

stream and multiple data streams, it is classi�ed as an SIMD architecture

under Flynn's taxonomy.

In addition to the broadcasting of instructions, the control processor com-

municates with the PE array by sensing whether all of the A registers are

simultaneously zero or not. A special instruction, JALLZ L causes the con-

troller to jump to location L if all A registers contain zero. This capability

is sometimes called \Global OR."

2 Sorting and Finding Medians

Before describing the two new algorithms of this paper, some related algo-

rithms are given to provide a context for the two. Note that any median

�ltering program needs a policy on how to handle neighborhoods at the bor-

ders of the array. In this paper it is assumed that the 2DMNM model's

assumption that north, east, west or south communication brings in zeros

from outside the array leads to acceptable results. Thus no special-case pro-

cessing for borders is provided in any of the algorithms discussed here.

2.1 Use of Sorting

One approach to median �ltering requires sorting the pixel values within

every d � d neighborhood. If we wish to use an O(n) mesh sorting method,

this can be done as follows. First we partition the mesh into a nonoverlapping

set of d � d submeshes. There is thus an array of submeshes that is m�m

on a side, where m = bn=dc. Two example partitions are shown in Fig. ??.

In O(d) time, we independently sort the m

2

groups of d

2

values, using one of

the well-known mesh-sorting techniques (for example that of Thompson and

Kung

(6)

). If we are using the snaking row-major order and an odd value of

d, then the median value ends up at the pixel where it belongs. Otherwise,

the median can be routed to where it belongs in O(d) time.

4



(a) (b)

Figure 1: (a) Partition of an n � n mesh into an m � m array of d � d

submeshes, with n = 24, m = 6, and d = 8, and (b) partition when d is not

a divisor of n and partition is shifted to permit other pixels to be centers of

submeshes (here, n = 24, m = 4, and d = 5).

Since a singlem�m partition only gives rise tom

2

medians, it is necessary

to shift the partitioning and repeat the sorting d

2

times, so that every pixel

can receive the median over its neighborhood. The time required for this

algorithm is thus O(d

3

).

A simpler, non-mesh sorting algorithm actually yields better performance.

For this scheme, �rst we route the d

2

values of each pixel's neighborhood to

the pixel, storing them in d

2

local memory locations. Next we sort these

values in parallel at every PE. A reasonably e�cient means of doing this

is to emulate a bitonic sorting network (at each PE). The ordering of all

compare-exchange operations here is independent of the data values, and

so it works well on the SIMD 2DMNM. The time required for this sorting

is proportional to the number of compare-exchange modules in the sorting

network. For sorting d

2

values, we need a network with O(d

2

log

2

d) modules.

After sorting, the medians are then immediately accessible in local memory.

The time complexity for this approach is O(d

2

)+O(d

2

log

2

d) = O(d

2

log

2

d).

5



2.2 Finding a Median on a 2DMNM-�

Let us now consider some methods for computing medians that avoid sorting.

Given a 2DMNM with a special controller register called SIGMA which

is automatically updated at all times to contain the sum of all the A register

contents, we can �nd the median value over an imageX using a binary search

process. The 2DMNM-� is a 2DMNM which contains a register SIGMA

whose contents are maintained as

� =

n�1

X

i;j=0

A[i; j]:

The pixel values for the image X are assumed to be integers in the range

from 0 to MAXVAL. In practice, MAXVAL is very often 255. To compute

the median, the following algorithm may be used.

const MAXVAL 255;

plural int x;

int test, incr, i;

test := 0; incr := MAXVAL / 2;

for i := 0 to log2 MAXVAL do

begin

A := 0;

if x > test then A := 1;

if Sigma > N/2 then test := test + incr;

incr := incr / 2;

end

output test

On a 2DMNM (without the special Sigma register), it is possible to simulate

a 2DMNM-� by using a reduction scan in O(n) time. Thus, we can �nd the

global median on a 2DMNM in O(n log MAXVAL) time. Taking MAXVAL

as a constant, this reduces to O(n) time.

Now in order to �nd many medians over small neighborhoods, the mesh

can be partitioned (as above) into an m�m array of submeshes, each of size

d � d. By running the m

2

submeshes in parallel, we can �nd m

2

medians

in parallel with this approach in O(d) time. (Note that the values of test

6



must be broadcast within each submesh using a scan, but this is an O(d)

operation, and it does not increase the asymptotic complexity.)

If we do the obvious thing and repeat this median-�nding d

2

times, we

obtain the median-�ltered image in O(d

3

) time. This is as slow as the �rst

method that used mesh sorting. We can reduce the time by carefully \over-

lapping" the scans required to �nd the counts of pixels in each neighborhood

above the test value.

3 The Internal Scanning Algorithm

Before describing the full median-�ltering algorithm based on \internal scan-

ning," let us consider a simpler algorithm that computes, for each pixel, the

median in a 1 � d window around it.

3.1 One-Dimensional Median Filtering

The horizontal median �ltering problem is to compute, for each pixel f(i; j)

the median of the values f(i; j + k) where k = 0; 1; : : : ; d� 1.

This problem is solved by the following algorithm. The image data is

shifted horizontally to 2d � 1 di�erent positions, so that each PE can com-

pare its own value to each of the others within the d neighborhoods that it

contributes to. The PE creates two binary vectors of length 2d�1 in its own

local memory as follows:

� The PE places the value 1 in G[q] if the q

th

value seen is greater than

the home value; otherwise it places 0 in G[q].

� The PE places the value 1 in L[q] if the q

th

value seen is less than the

home value; otherwise it places 0 in L[q].

Next, each PE scans through its list G creating a new list of length d. The

r

th

element NG[r] of this list stores the number of values greater than the

home value within the r

th

d-element neighborhood. The PE then scans list

L to create list NL similarly. Next, each PE scans the lists NG and NL

creating a new binary-valued list M of d elements. It places a 1 in M [r]

if NG[r] < d=2 and NL[r] � d=2. This means that the home value is the

median of the r

th

neighborhood to which it belongs.

7



Finally, the medians are communicated to their destinations in a loop.

� For r = 1 to d do begin

If M[r] = 1 then set A register to home value (i.e., LOAD X).

Shift A registers' contents West (i.e., RECEIVE EAST).

This algorithm requires O(d) communication steps and O(d) computation

steps to perform its internal scanning. Thus it requiresO(d) time. Since 
(d)

time is required to propagate the inuence of each data item in a window to

the site where the median must end up, this algorithm is time-optimal.

3.2 An Example

Let us consider an example of 1-D median �ltering with the internal scan-

ning algorithm. Figure ??a illustrates a sequence of numbers assigned to

PEs, one per PE. Taking d = 5, the diagram also shows the westmost and

eastmost neighborhoods to which the highlighted pixel in the center belows.

The highlighted pixel has value 3. The algorithm proceeds to determine for

this highlighted PE (and, respectively, for all other PEs) which of the �ve

neighborhoods have this PE's value as the median. In Figure ??b, the results

for this PE and four of its neighbors are shown, and it can be seen that the

highlighted PE has given its value to three of the neighbors.

The following charts illustrate the computation of the arrays stored in-

ternally at each PE.

value G[q] L[q] Scan(G;+)[q] Scan(L;+)[q]

2 0 1 0 1

7 1 0 1 1

6 1 0 2 1

1 0 1 2 2

3 0 0 2 2

8 1 0 3 2

4 1 0 4 2

2 0 1 4 4

8



d

... ...72 6 1 3 8 4 1 2

d

... ...3 6 4 3 3

(a)

(b)

Figure 2: One-dimensional median �ltering with internal scanning: (a) initial

data layout, and (b) �nal results.

r NG[r] NL[r] M [r]

1 2 2 1

2 3 1 0

3 3 1 0

4 2 2 1

5 2 2 1

The name \internal scanning" derives from the fact that the bulk of

the computation in this algorithm consists of each PE scanning through its

arrays located in its local memory to determine the neighborhoods for which

its pixel value is the median.

9



3.3 Two-Dimensional Internal Scanning

The extension of the above method to two dimensions is straightforward.

Each PE

u;v

holds one pixel of the image X, namely x

u;v

. The relative layout

of the PEs mentioned below is illustrated in Figure ??.

PE

PE

PE

PE

u,v

u+d-1, v+d-1

u-d+i+1,v-d+j+1

u-(d-1)/2,v-(d-1)/2

d

2d-1

Figure 3: Relationships of various processing elementswithin a (2d�1)

2

block

of neighborhoods for the internal scanning algorithm. The central pixel value

x

u;v

is potentially the median for any of d

2

neighborhoods in its vicinity. The

PE in the lower right serves as the agent for x

u;v

. It examines all the x values

within the larger (2d � 1)

2

block and then performs \internal scanning" to

to determine which PEs to send x

u;v

to.

Step 1: Each PE loads its A register with its pixel value from the image X, and

then the A registers are shifted d � 1 cells to the east and d � 1 cells

to the south. This brings each pixel value x

u;v

to PE

u+d�1;v+d�1

.

Step 2: The A registers are reloaded with the original pixel values. Then the

data is again shifted among A registers, but this time in a scanning

10



pattern over a (2d� 1)� (2d� 1) square to the east and south. In this

manner, each PE

u+d�1;v+d�1

sees each of the pixels within all the d� d

neighborhoods to which the pixel x

u;v

belongs. The order of scanning

is raster order. In the course of this scanning, the PE constructs two

binary vectors each of length (2d�1)

2

in its local memory. Each may be

organized as a two-dimensional array G[s; t] and L[s; t]. When the PE

looks at the st

th

data element x

0

= x

u�d+s+1;v�d+t+1

in this scanning, it

sets G[s; t] = 1 if x

0

> x

u;v

and 0, otherwise. Similarly it sets L[s; t] = 1

if x

0

< x

u;v

and 0, otherwise.

Step 3: From these each PE (e.g., PE

u+d�1;v+d�1

) creates a pair of integer arrays

NG[s; t] and NL[s; t], each of dimensions d � d. There are d

2

PEs in

the neighborhood of PE

u;v

which potentially have x

u;v

as their median,

and it is up to PE

u+d�1;v+d�1

to determine who they are. Array NG

gives for each of these potential recipients, the number of elements in

the neighborhood of PE

u;v

, that are greater than x

u;v

, and NL gives

the number that are less than x

u;v

. To compute NG and NL, the

PE

u+d�1;v+d�1

creates temporary arrays GTEMP[s; t], and LTEMP[s; t]

of dimensions (2d�1)�d which contain the number of elements greater

than (less than) the home value x

u;v

in the t

th

1 � d neighborhood in

the s

th

row. Then NG[s; t] is computed by a vertical summing process

on GTEMP, adding the �rst d values in each row, and then successively

adding a new value and subtracting an old one.

Step 4: Next, the PE

u+d�1;v+d�1

constructs M [s; t], where

M [s; t] =

(

1; if NG[s; t] < d

2

=2 and NL[s; t] � d

2

=2;

0; otherwise.

It does this by making a single scan through its arrays NG and NL.

Step 5: Finally, the mesh scans (externally) in a d � d pattern again to create

the median-�ltered image. During this scan, which can be considered

as controlled by a nested pair of loops with descending indices s and

t, each PE loads its value into its A register (i.e., at the s

th

row, t

th

column), whenever it �nds that M [s; t] = 1. At the end of the scan,

all A registers have values, and each value is the median for a d � d

11



neighborhood including the PE and extending d� 1 rows to the north

and d� 1 columns to the west.

Step 6: Finally, the median values are brought to the centers of their neighbor-

hoods by performing (d � 1)=2 RECEIVE EAST instructions and the

same number of RECEIVE SOUTH instructions.

The time required by this algorithm is the sum of the times of each of

the six steps. The �rst step requires O(d) time, and each subsequent step

requires O(d

2

) time. Therefore, the overall time required for this algorithm

is O(d

2

).

Looking at the computation in more detail gives us an idea of the con-

stants involved. In the �rst step, 2d � 2 communication operations are per-

formed. In the second step, each PE looks at 4d

2

� 4d + 1 values requiring

4d

2

� 4d communication operations, and it makes two comparisons for each

value. In the third step, the computation of GTEMP and LTEMP each use

(3d � 3)(2d � 1) or 6d

2

� 9d + 4 addition and subtractions. The computa-

tion of NG and NL use d(3d � 3) or 3d

2

� 3d additions and subtractions.

Step four makes two comparisons for each of d

2

values. Step �ve performs

d

2

�1 communication operations and d

2

comparisons, and Step six uses d�1

communication operations.

The totals are 5d

2

� d � 5 communication steps, 11d

2

� 8d + 2 com-

parisons, and 18d

2

� 24d + 8 additions/subtractions. A small number of

LOAD, STORE and control instructions are also needed, but these do not

contribute signi�cantly to the overall time. The additions and subtractions

as well as the step-�ve comparisons are on values in the range from 0 to d

2

,

which could allow e�cient bit-serial implementations on mesh implementa-

tions with narrow word size, such as the MasPar MP-1 (which has 4-bit wide

ALUs). The comparisons of step 2 are on pixel values, typically limited to

8 bits each, also permitting fast execution on narrow-word machines. With

this algorithm, median �ltering with a 5 � 5 neighborhood can thus be ex-

pected to take in the vicinity of 1000 machine instructions to complete on

a 2DMNM, assuming one PE per pixel. A parallel mesh that achieves one

million 2DMNM instructions per second can therefore be expected to require

approximately a millisecond to complete the 5�5 median-�ltering operation.

12



4 The Overlapped Scanning Algorithm

4.1 Overlapped Reduction Scans

Suppose we have a uniform test value of, say, 27. Each PE tests whether its

pixel value is above 27. If true, it stores a 1 in a variable called Above. If false,

it stores a zero there. For each d� d block in the image, we need to compute

the sum of the Above values over the block. This is easily accomplished

in O(d) time by a set of overlapping reduction scans. To compute these

reductions, with the 2DMNM, we proceed as follows. Each PE sets its Count

variable to zero. Now we repeat d times to get row sums: read the Count

variable of the west neighbor PE and add Above to it. Next each PE sets

its ColCount variable to zero, and we repeat d times to get column sums

of the row subtotals: read the ColCount value of the North neighbor PE

and add Count to it. At the completion of this loop, each PE's ColCount

variable contains the number of PEs (in the d�d block of which the PE is the

southeast corner) whose pixel value is above 27. This procedure is described

in a more program-like notation later.

4.2 Adaptations to the 2DMNM

In order for the overlapping to work out successfully, it is necessary that each

PE in the whole mesh sets its Above value using the same test value as the

others. This make it di�cult, in the search for the medians, to employ the

binary search strategy (used in our earlier algorithm for the 2DMNM-�), and

leads to a linear search through the set of possible pixel values. With the

assumption that this set is not too large, and that its size may be considered

a constant, we end up with an O(d) time median �ltering algorithm.

Were we to try to continue with binary search for the median within each

d by d block, we would �nd that each PE would have to compare its test

value against d�d separate values in each iteration of the binary search, and

this would suggest that a minimum of d

2

time would be required to get the

pixel values to the PEs.

What saves us is the assumption that the number of bits per pixel in the

image is a constant. This is equivalent to the assumption that the number of

possible pixel values is a constant. This permits us to perform a separate set

of overlapping count-reduction operations for each possible pixel value in a

13



total of O(d) time, with the actual selection of the median done either during

the main loop or after all these reductions are complete. The result is that

median �ltering of an n � n image on an n � n with a d � d neighborhood

can be accomplished in O(d) time. The following algorithm summarizes this

approach. (Note that output pixels near the borders get somewhat low values

due to the assumption that o�-image neighbors have value zero; in practice,

some extra work to handle border pixels di�erently may be desirable). The

nature of overlapping scans is illustrated in Figure ??, and is detailed in the

pseudocode algorithm description below.

...

...
...

... ...
...

...
...

(a) (b)

Figure 4: Computation of overlapping scans over d�d blocks: (a) horizontal

phase, which computes hcount[i; j] =

P

d�1

l=0

above[i; j � l], and (b) vertical

phase, which completes the computation of count[i; j] =

P

d�1

k;l=0

above[i �

k; j � l].

/* Compute the median-filtered version of input image x,

using d by d blocks. Assume x is stored one pixel per PE.

Output is put in "median". */

Procedure MedianFilter(x, d, median);

plural int x, median, above, count;

plural boolean known;

int d;

14



known := false;

For i := 0 to MAXVAL do

begin

above := 0;

If x > i, then set above := 1;

OverlappingBlockCount(above, d, count);

If not known and count < d*d / 2, then

begin

median := i;

known := true;

end;

end

/* Now put medians back in centers of d by d blocks... */

ShiftImage(median, -d / 2, d / 2);

Return;

Procedure OverlappingBlockCount(above, d, count);

/* produce counts of the "above" variable over each d by d block,

leaving the count at the lower right corner of each block */

plural int rowcount;

rowcount := 0;

For i := 0 to d

rowcount := above + RECEIVE(WEST, rowcount);

For i := 0 to d

count := rowcount + RECEIVE(NORTH, count);

Return;

Procedure ShiftImage(x, dx, dy);

plural int x;

int dx, dy, i;

for i := 0 to abs(dx) do

if dx > 0 then x = RECEIVE(WEST, x)

else if dx < 0 then x = RECEIVE(EAST, x);

for i := 0 to abs(dy) do

if dy > 0 then x = RECEIVE(SOUTH, x)

15



else if dy < 0 then x = RECEIVE(NORTH, x);

Return

The principal result for this section is that median �ltering on a mesh

(particularly a 2DMNM), using d � d neighborhoods, even with a simple

algorithm in comparison to that of Stout

(4)

takes only O(d) time. However,

if the pixel depth is large, then the constant for this algorithm may be high

enough to make another algorithm or a shortcut method attractive for some

applications.

5 Operation Counts

In order to present a more practical comparison of these algorithms than

is a�orded by the simple use of big-O notation, a table of operation counts

is provided. These values are not derived from an actual implementation,

but they are justi�ed estimates of the numbers of instructions that would be

executed on a sensibly programmed mesh computer as represented by the

2DMNM model. The table is shown in Figure ??. The following paragraphs

explain the basis for these counts.

Algorithm

Internal
Sorting

Miller &
Stout

Internal
Scanning

Overlapping
Scans

1-bit 2-bit 4-bit 8-bit

2571 N/A

d=3

1-bit 2-bit 4-bit 8-bit

2577 N/A

d=5

1-bit 2-bit 4-bit 8-bit

2583 N/A

d=7

346 2529 ~6000

602 1869 3826

41 73 265 4105 55 95 395 5155 69 117 405 6165

Figure 5: Table of justi�ed estimates of the numbers of instruction executions

needed by di�erent mesh algorithms for median �ltering.

The internal sorting algorithm provides a baseline of comparison for the

other algorithms. The counts for the internal sorting algorithm are derived

from the following assumptions. The data from the neighborhood of each

16



pixel is collected by its PE using a spiral scan that requires 2d

2

� 1 instruc-

tions. In the case of d = 3, nine values are collected and this instruction

count here is 17. Next the values are sorted by simulating a bitonic sorting

network. For d = 3 this network is for eight inputs, and the nineth input is

inserted with an extra stage of comparison and exchange operations. Each

compare/exchange operation requires 10 instructions on the 2DMNM, in-

cluding setting up the comparison, conditionally disabling the PE, doing the

exchange via the A registers and temporary memory locations, and reset-

ting the PE. For d = 3, the bitonic sorting network with the extra insertion

stage involves 32 compare/exchange operations. For d = 5, there are 25

values to be sorted and a simple sorting network requires approximately 248

compare/exchange operations. The total count for d = 5 is estimated at

10 � 248 + 49 = 2529. When d = 7, the sorting network must be consider-

ably larger, and 6000 instructions is a conservative estimate of the instruction

count.

The algorithm of Miller and Stout

(5)

works only on binary images. It

requires that row scans be performed across the entire image; using 5 in-

structions per column on a n = 512 image, 2560 instruction executions are

needed to complete the scans. Then the algorithm computes \line integrals"

around the neighborhoods, and this requires 3d + 2 instruction executions.

For d = 3; 5; 7 these counts are 11, 17, and 23, respectively. The total counts

are 2571, 2577, and 2583, respectively.

The operation counts for the internal scanning algorithm can be deter-

mined by counting elementary operations in each of the six steps and adding

them up. Step 1 requires 2d� 1 operations, step 2 needs 14(2d � 1)

2

opera-

tions, step 3 takes 18d

2

�12d+2 operations, step 4 uses 8d

2

operations, step

5 consumes 5d

2

operations, and step 6 adds d� 1 operations. The totals are

d = 3 : 5 + 350 + 128 + 72 + 45 + 2 = 602

d = 5 : 9 + 1139 + 392 + 200 + 125 + 4 = 1869

d = 7 : 13 + 2366 + 800 + 396 + 245 + 6 = 3826

The overlapping scans algorithm requires 2

b

iterations, where b is the num-

ber of bits in each pixel. Each iteration involves a call to OverlappingBlockCount

requiring d operations and 10 operations to test whether or not the PE has

the median. The counts are given in the table.

17



6 Shortcuts

Median �ltering with larger neighborhoods becomes computationally more

expensive. However, it is possible in practice to get results nearly as good as

those for median �ltering without expending as much time.

One good way to reduce the time required for median �ltering is to do

something analogous to the kernel decomposition that is often done for con-

volution. For example, instead of computing medians over the 25 values in

a 5 � 5 neighborhood, one may compute row medians and column medians

in two, serial steps, each dealing with only �ve values. The results are not

generally identical to to the 5�5 median operation, but usually good enough.

Two �ve-element sorting operations require far fewer Compare-Exchange op-

erations than does one 25-element sorting operation. Less data movement is

involved as well.

7 Discussion

There are a number of interesting questions that remain open regarding me-

dian �ltering on mesh computers. One is whether e�cient mesh methods

for weighted median �ltering can be developed

(7;2)

. Another is whether some

combination of neighborhood decomposition and mesh communication could

be used to reduce the O(d

2

) time of the internal scanning algorithm without

complicating the algorithm unduly by necessitating tree manipulations as

used by Ranka and Sahni

(3)

and Gil and Werman

(2)

, or multiple sort steps

as used by Stout

(4)

.

8 Acknowledgements

The author thanks the anonymous referee who suggested the inclusion of the

table of operation counts and several clari�cations in the narrative. Some

of this research is based on insights gained working under NSF Grant IRI-

8605889 and support from the NASA/CESDIS program.

18



9 References

1. Huang, T. S. 1981. Two-Dimensional Signal Processing II: Transforms

and Median Filters. Berlin: Springer-Verlag.

2. Gil, J., and Werman, M. 1993. Computing 2-D min, median, and

max �lters. IEEE Trans. Pattern Analysis and Machine Intelligence,

Vol. 15, No. 5, pp.504-507.

3. Ranka, S., and Sahni, S. 1991. E�cient serial and parallel algorithms

for median �ltering. IEEE Trans. Signal Processing, Vol. 39, No. 6,

pp.1462-1466.

4. Stout, Q. F. 1983. Sorting, merging, selecting, and �ltering on tree and

pyramid machines. Proceedings of the 1983 International Conference

on Parallel Processing, pp.214-221.

5. Miller, R., and Stout, Q. F. Parallel Algorithms for Regular Architec-

tures. MIT Press: To appear.

6. Thompson, C. D., and Kung, H.-T. 1977. Sorting on a mesh-connected

parallel computer. Communications of the A. C. M., Vol. 20, pp.263-

271.

7. Brownrigg, D. R. 1984. The weighted median �lter. Communications

of the Assoc. for Computing Machinery, Vol. 27, No. 8, pp.204-208.

19


