
c

 Copyright 1995

Donald D. Chinn

Packet Routing in Multiprocessor Networks

by

Donald D. Chinn

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

1995

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

In presenting this dissertation in partial ful�llment of the requirements for the

Doctoral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with \fair use"

as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of

this dissertation may be referred to University Micro�lms, 1490 Eisenhower Place,

P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted \the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform."

Signature

Date

University of Washington

Abstract

Packet Routing in Multiprocessor Networks

by Donald D. Chinn

Chairperson of the Supervisory Committee: Professor Martin Tompa

Department of Computer Science

and Engineering

Large multiprocessor systems have the potential to solve large problems by break-

ing them into subtasks and solving them in parallel. When breaking a problem

into subtasks and combining the results, processors must communicate by sending

packets to each other. The time it takes for packets to move across the network that

connects the processors will become more signi�cant as multiprocessor systems get

larger.

The mesh and torus, where processors are arranged in a grid pattern, are popular

networks because of their simplicity and their e�cient use of space when physically

realized. There is a simple algorithm to route packets in these networks, called the

dimension order algorithm. In this algorithm, the path of a packet is �xed once it

enters the network, regardless of any other tra�c in the network.

In an adaptive routing algorithm, the path a packet takes from its source to

its destination may depend on packets it encounters. Minimal adaptive routing

algorithms have the additional advantage that the path each packet takes is a

shortest one.

One benchmark for a routing algorithm's performance is how quickly it can

route an arbitrary static permutation, where each processor is the source for at

most one packet and the destination for at most one packet. For a large class of

minimal adaptive routing algorithms, this dissertation presents an
(n

2

=k

2

) bound

on the worst case time to route a static permutation of packets on an n�n mesh or

torus with nodes that can hold up to k � 1 packets each. This is the �rst nontrivial

lower bound on adaptive routing algorithms. The argument extends to a large class

of dimension order routing algorithms, yielding an
(n

2

=k) time bound.

To complement these lower bounds, this dissertation gives two upper bounds:

an O((n

2

=k) + n) time dimension order routing algorithm and the �rst instance of

a minimal adaptive routing algorithm that achieves O(n) time with constant sized

queues per node.

This dissertation also presents experimental results for two nonminimal routing

algorithms. The results suggest that these algorithms route permutations similar

to the ones in the lower bound above in time that is superlinear in n.

Table of Contents

List of Figures iii

List of Tables iv

Chapter 1: Introduction 1

1.1 Routing with Unbounded Queues : : : : : : : : : : : : : : : : : : : 6

1.2 Routing with Bounded Queues : 7

Chapter 2: A Lower Bound for Minimal Adaptive Algorithms 9

2.1 The Model : 9

2.2 The Construction : 13

2.3 The Lower Bound : 15

2.3.1 Properties of the Construction : : : : : : : : : : : : : : : : : 16

2.3.2 Properties of the Constructed Permutation : : : : : : : : : : 19

2.3.3 Choosing the Constants c and d : : : : : : : : : : : : : : : : 22

2.4 Extensions of the Lower Bound : 24

2.4.1 Other Queue Types : 24

2.4.2 The Torus : 24

2.4.3 h-h Routing Problems : 25

2.4.4 Nonminimal Extensions : 27

2.4.5 Dimension Order Routing : : : : : : : : : : : : : : : : : : : 27

Chapter 3: A Minimal Adaptive Algorithm Using Constant Sized

Queues 37

3.1 The Algorithm : 37

3.2 Correctness : 41

3.3 Queue Size : 45

3.4 Time Analysis : 48

Chapter 4: Experiments on Destination-Exchangeable, Nonmini-

mal Adaptive Algorithms 53

4.1 The Chaos Router : 54

4.2 The Experiments : 57

4.2.1 Experiment 1 : 57

4.2.2 Experiment 2 : 59

4.2.3 Experiment 3 : 62

4.3 A Greedy Hot Potato Algorithm : 64

4.4 Summary and Discussion : 66

4.5 Experimental Data : 67

Chapter 5: Conclusions 69

Bibliography 72

ii

List of Figures

1.1 An 8� 8 mesh. : 2

2.1 The n� n mesh. : 12

2.2 The i-box up to step idn. : 14

2.3 S

t

, S

�

t

, and �(S

0

; t) in Lemma 2.12. : : : : : : : : : : : : : : : : : : 21

2.4 The construction for destination-exchangeable dimension order algo-

rithms and farthest-�rst algorithms. : : : : : : : : : : : : : : : : : : 28

3.1 The Vertical Phase of the algorithm. : : : : : : : : : : : : : : : : : 39

3.2 Sort and Smooth (d = 4). : 40

3.3 Subphases of the algorithm. : 47

4.1 A Chaos router node. : 54

4.2 Generating the CLT permutation. : : : : : : : : : : : : : : : : : : : 58

4.3 Results of Experiment 1 (Chaos). : : : : : : : : : : : : : : : : : : : 59

4.4 A snapshot of the 150�150 northwest corner of the 1560�1560 mesh. 60

4.5 Results of Experiment 2 (Chaos using the 2cn � 2cn box). : : : : : 61

4.6 Results of Experiment 3 (Chaos as in Experiment 2 with multiqueue

size = 2). : 63

4.7 Results of Experiment 4 (GreedyHP). : : : : : : : : : : : : : : : : : 65

iii

List of Tables

4.1 Data for Experiments 1 and 2. : 67

4.2 Data for Experiments 3 and 4. : 68

iv

ACKNOWLEDGMENTS

This dissertation is not the product of just one person, but the collective product

of a large group of people.

Martin Tompa, my advisor, guided me through the morass of my half-baked

ideas; out of the confusion eventually came fully-baked ideas. He also patiently

and diligently read through drafts of this dissertation and other papers, always

suggesting ways to improve the writing and presentation. My enthusiasm was

inuenced by his enthusiasm and encouragement.

Richard Anderson provided guidance during my early experiences in graduate

school, which included the trauma of writing my �rst parallel program. Richard

Ladner provided many good suggestions for improving this thesis. I also would

like to thank the other theory faculty, Paul Beame and Larry Ruzzo, for their help

in my stay at the University of Washington. Larry Snyder and Carl Ebeling were

important inuences, helping me see some of the practical aspects of the research. I

am also indebted to Tom Leighton of MIT. Some of the ideas that he and I discussed

evolved into Chapters 2 and 3 of this thesis.

Many friends and fellow graduate students made life in graduate school more

enjoyable or helped in some other way. They include Craig Anderson, Gene An-

derson, Ruth Anderson, Kathy Armstrong, Brian Bershad, Kevin Bolding, Je�

Dean, Susie Hashisaki, Jean Kaiser, David Keppel, Rakesh Sinha, Mitch Sundt,

Raj Vaswani, and Lezlie Watkins. Some of these people will no doubt downplay

their contributions; others may not even know what they did to help.

Finally, I would like to thank my parents, my brother, and his wife for their

support throughout.

I hope to return as much as what all of these people so generously gave me.

v

Chapter 1

INTRODUCTION

Massively parallel computers bring large computational resources to bear on

large problems. The full power of these machines can be realized if they are built

and programmed in a way that overcomes two related problems. The �rst problem

is the division of work and partitioning of data into many independent subproblems.

The second problem arises when processing elements need to transmit data to each

other. The cost in time for this communication has two sources: the overhead

needed to construct a message and the transmission of the message through the

interconnection network.

In current machines, the communication time is large enough so that adding

more processing power to a problem can increase the time it takes to solve it,

because the savings in time from the division of labor is more than o�set by the

extra communication time. This phenomenon will become worse as processors get

faster relative to the rest of the machine. Although currently the overhead to create

a message is much greater than the cost to transmit it through the interconnection

network, in the future the transmission time will become a greater fraction of the

communication time than it is today. As machines get bigger, messages will have

to travel through a greater number of nodes to reach their destinations, incurring

a greater delay. Also, the time it takes to create a message (a one-time cost per

message) will decrease as more sophisticated techniques are employed (e.g., see

[Fel93]).

The interconnection network is composed of nodes, which usually correspond

to processing elements, and links, the wires that connect nodes. In one time step,

a node can transmit one message along each of its links. Messages travel from

node to node, and each node decides how to send messages it currently holds. How

2

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

Figure 1.1: An 8� 8 mesh.

fast these decisions are made and how good these decisions are determine how fast

messages reach their destinations. If the decisions are poor, many messages will

travel through the same nodes or compete for the same links, causing contention

for resources and hence delays.

The way nodes and links are organized is called the network topology. For

example, the (two-dimensional) mesh topology is the arrangement of nodes in a

grid pattern (Figure 1.1). The (two-dimensional) torus topology is a mesh with the

two ends of each row and column connected. TheN-node binary hypercube topology

is the topology where each node is labelled by a string of logN bits, and the node

labelled b

1

b

2

: : : b

logN

(b

i

2 f0; 1g) is connected to b

1

: : : b

i�1

b

i

b

i+1

: : : b

logN

, for all

1 � i � logN (where b

i

= 1� b

i

).

The mesh and torus topologies have attracted much attention in multiproces-

sor network design because of their simplicity and their e�cient use of space when

physically realized. Examples of machines that use the mesh or torus topology in-

clude the MPP from Goodyear Aerospace [Bat80], the MP-1 from MasPar [MP-87],

the Paragon from Intel Scienti�c, the J-machine from MIT [ND90], the Touchstone

DELTA from Intel [Int91], the DASH from Stanford [LLJ

+

92], and the Mosaic from

Cal Tech [SBSS93].

3

This thesis focuses on the time to transmit messages once they are in the net-

work. The method by which messages are sent through the network is called the

routing algorithm. Messages are typically subdivided into smaller entities called

packets, but for the purposes of this thesis, we will consider messages and packets

to be equivalent.

In practice, all packet routing algorithms are very simple. For instance, algo-

rithms used in practice make routing decisions based only on each packet's preferred

directions (that is, which links from the packet's current node bring it closer to its

destination), rather than its full destination address. None of the algorithms used

in practice works well with constant sized queues in the worst case.

Routers in almost all state-of-the-art machines use oblivious algorithms, where a

message's path depends only on the source and destination addresses of the packet.

The simplest of these algorithms on the two-dimensional mesh is the dimension or-

der algorithm: a packet moves along its row until it reaches its destination column,

and then moves along that column until it reaches its destination. The logic to

implement the routing decisions is relatively simple in this approach. Furthermore,

the algorithm generalizes to higher dimensional meshes such as the hypercube.

However, oblivious routing performance degrades quickly in the presence of con-

gestion or faults, because the algorithm is not exible enough to use the available

bandwidth e�ectively. That is, although there might be unused links in the network

at a given time, oblivious algorithms are unable to alter the paths of packets to

use these available links. Machines that use oblivious algorithms include the Intel

Touchstone [Int91] and Paragon, the MIT J-machine [ND90], and the Mosaic from

Cal Tech [SBSS93].

Adaptive routing is an alternative to oblivious routing. In adaptive algorithms,

the path a message takes from its source to its destination may depend on pack-

ets it encounters. Intuitively, adaptive routers potentially can use the available

bandwidth to relieve the congestion or to route around faults. In minimal adaptive

routing, the path a packet takes is a shortest one. An example of a minimal adaptive

algorithm is the one of Cypher and Gravano [CG92] or of Chien and Kim [CK92].

In nonminimal adaptive routing, a packet may take any path between its source

and its destination, possibly making moves in the network that place it farther from

its destination than before the move. When a packet makes such a move, the packet

4

is said to have been derouted. Nonminimal routing allows the most exibility in

packet paths, but at a cost of more complex logic to avoid livelock, the situation

in which a packet never reaches its destination because it is derouted frequently.

Examples of adaptive routers include the Chaos router [BFS94, KS90, KS91] and

the Ngai and Seitz router [NS89, NS91].

In theory, there are many fast algorithms for static

1

routing problems on syn-

chronous networks

2

, but all make use of large queues or information about desti-

nation addresses beyond just preferred directions. (See Sections 1.1 and 1.2.) An

example of the latter would be those routing algorithms that are based on sorting

packets according to their destination addresses. Often these complicating consid-

erations render the algorithms impractical, particularly if one wants to generalize

them to dynamic routing problems or asynchronous networks.

One of the simplest benchmarks for a router's performance is how it performs in

the worst case on static one-to-one (or partial permutation) routing problems, where

each processor sends at most one message and receives at most one message. The

permutation problem models real-time systems where the communication pattern

among processors is unknown, yet performance guarantees must be satis�ed. It also

models problems, such as scienti�c problems, that have \bursty" communication

behavior, where processors compute locally for some time and then simultaneously

communicate with each other (see [SWG92]).

An appealing feature of this metric of performance is that the tra�c generated

by a static permutation does not contain any \delivery hot spots," where one node

is the destination of many packets. When there are delivery hot spots, performance

can be limited trivially by delivery bandwidth. Another reason for interest in

permutations is that those that arise in practice, such as the transpose permutation,

1

A static problem is one in which each node is allowed to inject some �xed number of packets

into the network, at most one per time step. In a dynamic routing problem, each node also can

inject at most one packet per time step, but there is no limit on the total number of packets

that a node injects.

2

A synchronous network is one in which the behavior of the network is determined completely

by the what packets are injected into the network and when they were injected. In contrast,

an asynchronous network's behavior is not so determined, due to nondeterministic behavior of

the clocks at the nodes.

5

cause poor performance on some networks.

For example, the dimension order algorithm on the N -node binary hyper-

cube topology routes all packets in the transpose permutation (where n =

logN and the packet at source b

1

b

2

: : : b

n=2

b

(n=2)+1

: : : b

n

is sent to destination

b

(n=2)+1

: : : b

n

b

1

b

2

: : : b

n=2

) in
(

p

N= logN) steps, even though no packet need tra-

verse more than logN nodes. To see this, observe that all packets whose source is

b

1

b

2

: : : b

n=2

0 : : : 0 must travel through the node labelled 0 : : : 0. There are

p

N such

packets, and since the node labelled 0 : : : 0 can transmit at most logN packets per

time step, the lower bound follows.

On the N -node three-dimensional mesh (n�n�n, N = n

3

), Leighton [Lei] ob-

serves that the dimension order algorithm routes all packets in the bit-reversal

permutation (where the packet at source b

1

b

2

: : : b

3 log n

is sent to destination

b

3 log n

: : : b

2

b

1

) in
(n

2

) steps, even though no packet need travel more than 3n

nodes. If the �rst log n bits of the labelling of a node represent the x-coordinate

of the node when realized in three-dimensional space, the next log n bits repre-

sent the y-coordinate, and the last log n bits represent the z-coordinate, then

any packet whose source is b

1

: : : b

log n

0b

log n+2

: : : b

2 log n�1

1 0 : : : 0 must cross

the link that connects the node labelled 0 : : : 0 01 : : : 1 0 : : : 0 with the node la-

belled 0 : : : 0 10 : : : 0 0 : : : 0. There are n

2

=4 such packets, and the link can only

transmit one packet per time step, and so the lower bound follows.

These examples immediately raise the question of whether there is a permuta-

tion, for any given network, that causes poor performance. On the n � n mesh,

there is theoretically enough bandwidth to deliver all packets in any permutation

in time proportional to n. At the very least, a good routing algorithm should be

able to route permutations e�ciently (i.e., in O(n) time).

For some time now, both theoreticians and practitioners have been trying to

�nd a simple routing algorithm that works well in the worst case. In the present

context, \simple" will be taken to mean deterministic, bounded queues (i.e., the

size of the queues does not grow with the size of the network), no dependence on

destination other than preferred directions, and minimal (i.e., shortest) routes from

source to destination.

This thesis explores the limitations and possibilities of �nding simple routing

6

algorithms in the restricted domain of permutation routing on the mesh. In Chap-

ter 2, we will prove that it is impossible for any such simple routing algorithm to

work well in the worst case. In particular, for any such simple routing algorithm on

the n�n mesh,
(n

2

=k

2

) time is required to route all packets in some permutation

routing instance, where k � 1 is the capacity of each queue. This is the �rst non-

trivial lower bound for adaptive routing. We also provide a simple algorithm that

routes any permutation on the n � n mesh in O((n

2

=k) + n) time. In Chapter 3,

we present the �rst minimal adaptive routing algorithm that achieves O(n) time

with bounded queues. The algorithm exploits the full destination addresses (and,

like the other known algorithms, it does so in a complicated and possibly imprac-

tical way). Thus, it is impossible to eliminate the assumption of no dependence

on destination other than preferred directions from the lower bound of Chapter 2.

Chapter 4 describes a series of experiments on nonminimal adaptive algorithms

and gives the results, which suggest that perhaps none of those discussed can route

arbitrary permutations in O(n) time.

A preliminary version of portions of Chapters 2 and 3 has appeared previously

[CLT94]. A preliminary version of portions of Chapter 4 has also appeared pre-

viously [Chi]. This chapter concludes by surveying some of the known results for

permutation routing.

1.1 Routing with Unbounded Queues

Borodin and Hopcroft [BH85] prove an
(

p

N=d

3=2

) time bound for routing the

worst case permutation on any N -node, degree d network using any oblivious rout-

ing algorithm. Kaklamanis et al. [KKT90] improve the bound to
(

p

N=d). These

results are useful for networks such as the hypercube, whose diameter and degree

are log

2

N , but are no better asymptotically than the diameter lower bound of

2

p

N � 2 on the two-dimensional mesh.

It is well known that dimension order paths can be used to route any permuta-

tion on the n � n mesh in 2n � 2 steps, matching the diameter lower bound (see

Leighton [Lei92, pages 159{162]). Unfortunately, this algorithm requires �(n) size

queues at each node. (Leighton [Lei90] proves that if each packet has a random

destination | i.e., the routing problem is not necessarily a permutation | then

7

with high probability all packets will be delivered in 2n+O(log

2

n) steps and none

of the queues ever contains more than four packets. However, this average case

setting is not the one we consider here.) Our goal is to prove that O(n) time rout-

ing of arbitrary permutations on the n � n mesh is impossible in a more practical

setting, which includes bounding the queue size of each node.

1.2 Routing with Bounded Queues

Little is known about lower bounds that exploit the fact that nodes have bounded

queues. Krizanc [Kri91] proves such a bound for any source-oblivious routing al-

gorithm, which is one where the path a packet takes only depends on its current

location and destination. He shows that for any source-oblivious algorithm on an

N -node, degree d network each of whose nodes can hold up to k packets, there

is a partial permutation that requires
(N=d

4

k(8k)

5k

) time to route. Krizanc's

model, however, is restrictive: if a node sends a packet to a neighboring node and

causes that neighboring node to exceed its capacity, the network is in an illegal

con�guration. A more realistic model would allow the node to detect the state of

its neighbor and not send the packet.

Maggs and Sitaraman [MS92] prove that for any nonpredictive routing algo-

rithm on an N -node buttery with queues of size k at each node, there exists a

permutation that requires
(N=(k log

2

N)) time to route. A nonpredictive routing

algorithm is one in which contention for links is resolved independent of destination

addresses of packets.

Another approach to permutation routing is to sort blocks of packets by destina-

tion and then advance them to their destinations by the dimension order algorithm.

Packets in these algorithms may take paths that are nonminimal (i.e., make moves

that place them farther away from their destination during the sorting phases).

For the n� n mesh, Kunde [Kun88] shows that such a deterministic algorithm can

route every permutation in 2n+O(n=k) time using queues of size k. Using Kunde's

approach, Leighton, Makedon, and Tollis [LMT89] and Rajasekaran and Overholt

[RO92] improve the bound to 2n�2 steps using constant (albeit large) sized queues

per node. However, these algorithms may be too complicated, and too speci�cally

tailored to static permutations and synchronous networks to be practical for general

8

routing.

Han and Stanat [HS90] provide routing algorithms for the mesh that are not

based on sorting, but do use nonminimal paths and knowledge of full destination

addresses. Their algorithms can route any permutation in O(n) time and require

constant sized queues per node. However, like the sorting-based algorithms, their

algorithms may be too speci�cally tailored to static permutations and synchronous

networks to be practical.

The desire to have simple routing algorithms with constant sized queues per

node has led to the growing body of literature on hot potato (or deection) routing

[BNRST93, BC91, FR92, Haj91, KKR93, NS92], where at each step every node

in the network must send all packets it received during the previous step. In

these algorithms, no extra queues are needed, and packets again typically take

nonminimal paths. Newman and Schuster [NS92] give an algorithm that routes

any permutation in 7n + o(n) steps, but the algorithm uses sorting. Bar-Noy et

al. [BNRST93] provide a deterministic hot potato routing algorithm not based on

sorting that routes any permutation in n2

O(

p

log

2

n log

2

log

2

n)

steps. In the same

paper, they provide a simpler O(n

3=2

) algorithm.

Because the known O(n) time routing algorithms on the mesh may not be

practical, there is still considerable interest in �nding practical ones. Notice that

the O(n) time bounds mentioned earlier [HS90, Kun88, Lei92, LMT89, NS92, RO92]

each violate either the assumption of bounded queues, or both the assumptions of

minimal paths and using only preferred directions. We will see in Chapter 2 that

there is no O(n) time algorithm that obeys all of these restrictions.

Chapter 2

A LOWER BOUND FOR MINIMAL ADAPTIVE

ALGORITHMS

We now show that for each algorithm in a large class of minimal adaptive al-

gorithms for the n � n mesh, there exists a permutation for that algorithm that

requires
(n

2

=k

2

) steps to route all of its packets, where k is the maximum number

of packets a node is allowed to hold at any time. Section 2.1 de�nes the model of

the network that we will use throughout Chapters 2 and 3. Section 2.2 describes

how to construct a permutation that will be used to prove the lower bound. Sec-

tion 2.3 shows that the permutation constructed in Section 2.2 takes
(n

2

=k

2

) steps

to route all of its packets.

The techniques of this chapter can be used to obtain similar lower bounds on

the torus, for h-h routing problems, for nonminimal algorithms, and for dimension

order algorithms. This is done in Section 2.4. The permutations constructed in

this chapter form the basis of the experiments performed in Chapter 4.

2.1 The Model

Consider an n� n mesh network. The network can be viewed as a directed graph

G = (V;E) such that if the edge (u; v) is in E, then the edge (v; u) is also in E.

The edge (u; v) is an outlink of the node u, and the edge (v; u) is an inlink of u.

Each node has a central queue that can hold up to k packets. In one step,

each node decides deterministically which packets to attempt to transmit along

its outlinks (at most one per outlink), decides which of the incoming packets to

accept, and then transmits those packets that were accepted by its neighbors. When

a packet reaches its destination, it is considered delivered and removed from the

network. This is a multi-port model, in the terminology of Borodin et al. [BRSU93].

For consistency with the existing literature, we use the word \queue" to denote the

10

set of waiting packets in a node. The packets do not have to be served in a �rst-in

�rst-out (FIFO) fashion.

The outqueue policy of a node is the method by which a node decides which

packets, of all the packets in its queue, to attempt to send out its outlinks. No

more than one packet can be scheduled to each outlink. Examples of outqueue

policies are FIFO or farthest-�rst [Lei92, page 159]. The inqueue policy of a node

determines which packets, of all the packets that attempt to enter a node, will be

accepted. The inqueue policy must guarantee that the queue does not overow

(i.e., accept more packets than it is capable of holding). A packet is transmitted

exactly when the outqueue policy of its queue selects it and the inqueue policy of

the target node accepts it.

Also de�ned for each node is a state, which each of the policies can use to make

its decision. The state is allowed to change at the end of the step as a function of

the current state and the packets in the node. An example of the use of state is the

round-robin inqueue policy, where a node accepts packets from each neighboring

node in turn when there is competition for available space in its queue.

The state of a packet consists of information that can be modi�ed by a node

when the packet is in the node. An example of this is the arrival time of a packet

at the current node. This information is transmitted along with the packet.

For the lower bound that follows, we restrict ourselves to deterministic routing

algorithms for the mesh that use minimal (shortest-distance) paths. In addition,

the only part of a packet's destination address that routing decisions may use is the

packet's pro�table outlinks (i.e., those outlinks from the current node that move

the packet closer to its destination). We impose no further restrictions on routing

decisions.

We make this last restriction precise as follows:

� The outqueue policy of a node can be a function only of the states, source

addresses, and pro�table outlinks of the packets in the node; and the state of

the node.

� The inqueue policy of a node can be a function only of the states, source

addresses, and pro�table outlinks of the packets in the node and the packets

11

scheduled to enter the node (where pro�table outlinks of scheduled packets

are measured as pro�table from the node from which they are coming); and

the state of the node.

� The state of a node at the beginning of step t+ 1 can be a function only of

its state at the beginning of step t; and the states at the beginning of step

t, source addresses, and pro�table outlinks of the packets in the node at the

end of step t. The initial state of a node can be a function only of its address

and the pro�table outlinks of the packet that originates there.

� The state of a packet at the beginning of step t+ 1 can be a function only of

the state at the beginning of step t of the node it occupies at the end of step

t; and the states at the beginning of step t, source addresses, and pro�table

outlinks of the packets that occupy the same node at the end of step t. The

initial state of a packet can be a function only of the initial state of its node,

and its own source address and pro�table outlinks.

Let us call an algorithm that obeys this last restriction a destination-

exchangeable routing algorithm. Note that the restriction to pro�table outlinks

is similar to the de�nition of a nonpredictive algorithm, given by Ranade [Ran87],

Leighton [Lei92, page 556], and Maggs and Sitaraman [MS92]. One example of

a destination-exchangeable algorithm is the dimension order algorithm with FIFO

queues and round-robin inqueue policy. An adaptive example might be similar,

except that each packet moves in one pro�table direction until it is blocked by

congestion, and then moves in its other pro�table direction, continuing this alter-

nation until it reaches its destination. Other minimal adaptive algorithms that

could be implemented with a destination-exchangeable algorithm include those of

Chien and Kim [CK92] and Cypher and Gravano [CG92]. An example of a non-

minimal destination-exchangeable algorithm is the O(n

3=2

) hot potato algorithm of

Bar-Noy et al. [BNRST93].

12

cn

cn

cn

6

cn

-

cn-1+i

6

cn-1+i

-

6

N

i

-column

-

E

i

-row

= i-box

= 1-box

Figure 2.1: The n � n mesh.

De�nitions

Number the columns of the mesh 1 to n from west to east and the rows 1 to n from

south to north. Let c be a constant, to be determined later, so that cn = �(n=k)

is an integer. An N

i

-packet is a packet that starts in the cn � cn submesh located

in the southwest corner of the mesh and is destined for the (cn � 1 + i)-th column

(call this column the N

i

-column) north of the (cn � 1 + i)-th row. An E

i

-packet

is a packet that starts in the cn � cn submesh located in the southwest corner

and is destined for the (cn � 1 + i)-th row (call this row the E

i

-row) east of the

(cn � 1 + i)-th column. (See Figure 2.1.)

The i-box is the set of nodes west of and including the N

i

-column and south

of and including the E

i

-row. De�ne the 0-box to be the set of nodes west of the

N

1

-column and south of the E

1

-row. A packet is in the i-box if it is in a node of

the i-box. A packet is outside the i-box if it is not in the i-box.

An exchange of two packets x and x

0

is a switching of their destination addresses.

The remaining packet information (state and source address) remains unchanged.

A packet is scheduled to enter a node v during some step if the outqueue policy

of its current node chooses it to advance into node v.

13

2.2 The Construction

For any given deterministic, destination-exchangeable, minimal adaptive routing al-

gorithm, we will construct a permutation that forces the algorithm to take
(n

2

=k

2

)

steps to deliver all of its packets. The idea behind the construction is that there are

(n

2

=k

2

) packets in the cn� cn submesh destined for nodes outside the submesh,

but only a constant number will depart the 1-box during each of the �rst �(n)

steps, a constant number will depart the 2-box during each of the next �(n) steps,

etc., up to the l-box, where l = �(n=k

2

).

We can do this by maintaining the following invariant: the only packets in

the nodes of the north edge of the 1-box are E

1

-packets, and the only packets in

the nodes of the east edge of the 1-box are N

1

-packets (except for the node in the

northeast corner of the 1-box, which is allowed to contain both N

1

- and E

1

-packets).

While this invariant holds, at most two packets | an N

1

-packet and an E

1

-packet

| can escape the 1-box, since the routing algorithm is minimal. As we shall see,

we can maintain this invariant for �(n) steps, because the routing algorithm is

destination-exchangeable.

Then, for the next �(n) steps, we maintain a similar invariant for the 2-box,

which allows at most one N

2

-packet and one E

2

-packet (and any number of N

1

- and

E

1

-packets) to escape the 2-box. Successive phases of �(n) steps maintain similar

invariants. Figure 2.2 illustrates the invariant of the construction in the general

case.

We now present the construction.

1. Let p =

j

(k + 1)(cn+ c

2

n) + dn

k

, where c and d are constants to be de-

termined later, and cn and dn are integers. For each 1 � i � blc, where

l = c

2

n

2

=(2p), place p N

i

-packets and p E

i

-packets in the 1-box such that

only N

1

-packets are in the N

1

-column at or south of the E

1

-row, only E

1

-

packets are in the E

1

-row west of the N

1

-column, and there is no more than

one packet per node. (Note that there must be N

1

- and E

1

-packets in the

0-box as well.) Assign unique row destinations in the N

i

-column outside the

i-box for N

i

-packets, and unique column destinations in the E

i

-row outside

the i-box for E

i

-packets. It is easy to see that such an arrangement is possible,

14

6

N

i

-column

-

E

i

-row

N

�i

;

E

�i

N

<i

; E

�i

E

<i

;

N

�i

Figure 2.2: The i-box up to step idn. \N

<i

; E

�i

" indicates that the node con-

tains only N

j

-packets, where j < i, or E

j

-packets, where j � i (and similarly for

\E

<i

; N

�i

" and \N

�i

; E

�i

").

provided

j

(k + 1)(cn+ c

2

n) + dn

k

� (1� c)n� l. (See Section 2.3.3.)

2. If desired, place additional packets in any way that forms a partial permu-

tation. (At the extremes, no additional packets could be placed, or enough

packets could be added to form a full permutation.)

3. Run the routing algorithm for blcdn steps, performing the following exchanges

(in any order) as necessary. (Lemmas 2.3 and 2.4 will show that packets

needed for the exchanges are always available, provided l � c

2

n, which is

satis�ed in Section 2.3.3.)

� EX1. For i � 1, j > i, if an E

j

-packet is scheduled by the outqueue

policy of a node to enter the E

i

-row west of the N

i

-column during steps

1 to idn, then exchange that packet with an E

i

-packet in the (i� 1)-box

that is not scheduled to enter the E

i

-row.

� EX2. For i � 1, j > i, if an N

j

-packet is scheduled by the outqueue

policy of a node to enter the N

i

-column south of the E

i

-row during steps

1 to idn, then exchange that packet with an N

i

-packet in the (i�1)-box

that is not scheduled to enter the N

i

-column.

� EX3. For i � 1, j � i, if an E

j

-packet is scheduled by the outqueue

policy of a node to enter the N

i

-column south of the E

i

-row during steps

15

1 to idn, then exchange that packet with an N

i

-packet in the (i�1)-box

that is not scheduled to enter the N

i

-column.

� EX4. For i � 1, j � i, if an N

j

-packet is scheduled by the outqueue

policy of a node to enter the E

i

-row west of the N

i

-column during steps

1 to idn, then exchange that packet with an E

i

-packet in the (i� 1)-box

that is not scheduled to enter the E

i

-row.

The t-th step of the construction consists of the following sequence of activities

for each node:

(a) The outqueue policy chooses packets to schedule along its outlinks.

(b) Exchanges are made, if necessary.

(c) The inqueue policy decides which packets to accept.

(d) Packets are transmitted.

(e) The state of the node and the states of packets in the node are updated.

Part (b) is executed only for the purposes of the construction and the lower

bound argument. The actual routing algorithm ignores part (b). The �rst

step corresponds to t = 1. The phrase \immediately after step 0" will mean

at the beginning of the construction.

4. The constructed permutation of the routing algorithm is the set of packets

(de�ned by their source and destination addresses after all exchanges) at the

end of blcdn steps of the construction given above, including, of course, the

packets that were delivered in those steps.

2.3 The Lower Bound

We now show that any destination-exchangeable routing algorithm takes
(n

2

=k

2

)

steps to deliver all the packets in its constructed permutation. We begin by proving

facts about the construction itself and then prove that when the routing algorithm

is run on the constructed permutation, these facts also hold.

16

2.3.1 Properties of the Construction

In the construction, for all 1 � i � blc, the following lemmas hold:

Lemma 2.1 During step t, where 1 � t � (i � 1)dn, no N

j

-packets or E

j

-

packets, for j � i, leave the i-box.

Lemma 2.2 During step t, where (i� 1)dn < t � idn, at most one N

i

-packet

and one E

i

-packet leave the i-box.

Lemma 2.3 During step t, where 1 � t � idn, there is always an N

i

-packet

eligible for EX2 and EX3, i.e., in the (i � 1)-box and not scheduled to enter the

N

i

-column, provided l � c

2

n.

Lemma 2.4 During step t, where 1 � t � idn, there is always an E

i

-packet

eligible for EX1 and EX4, i.e., in the (i � 1)-box and not scheduled to enter the

E

i

-row, provided l � c

2

n.

Lemma 2.5 For j � i > 1, no N

j

-packet is outside the (i�2)-box immediately

after step t, where 0 � t � (i� 1)dn.

Lemma 2.6 For j � i > 1, no E

j

-packet is outside the (i� 2)-box immediately

after step t, where 0 � t � (i� 1)dn.

Lemma 2.7 No N

i

-packet is at or north of the E

i

-row and also west of the

N

i

-column immediately after step t, where 0 � t � idn.

Lemma 2.8 No E

i

-packet is at or east of the N

i

-column and also south of the

E

i

-row immediately after step t, where 0 � t � idn.

Note that, because the paths are minimal and no exchanges take an N

i

-packet

outside the i-box, no N

i

-packet can ever be east of the N

i

-column in the construc-

tion. Similarly, no E

i

-packet can ever be north of the E

i

-row.

Proof: We will prove all of the lemmas simultaneously by induction on t.

17

Basis : t = 0. Lemmas 2.1 through 2.4 are vacuously true, since they do not

apply when t = 0. Lemmas 2.5 through 2.8 are veri�ed by inspection of the initial

arrangement of the packets.

Induction : Assume Lemmas 2.5 through 2.8 are true for all steps at or before

t� 1 (where t� 1 < blcdn). We will prove all the lemmas true for any i at step t.

Lemma 2.1 follows from Lemmas 2.5 and 2.6 for step t�1. No N

j

-packet leaves

the i-box as a result of an exchange, part (b), of step t. Suppose such a packet

existed. Then there is an N

m

-packet, for some m > j, or an E

m

-packet, for some

m � j, that is scheduled to enter the N

j

-column (i.e., it is in the N

j�1

-column and

hence outside the (i�2)-box immediately after step t�1), contradicting Lemmas 2.5

or 2.6.

Since no N

j

-packet has left the (i�2)-box by the end of step t�1 by Lemma 2.5,

then no such packet can leave the i-box during the transmission, part (d), of step

t.

A similar argument holds for E

j

-packets.

Lemma 2.2 follows from Lemmas 2.7 and 2.8 for step t�1. No N

i

-packet leaves

the i-box in part (b) of step t because the exchange rules never take an N

i

-packet

outside the i-box. The only N

i

-packet that can leave the i-box during part (d) of

step t is the one at the N

i

-column and E

i

-row, since all other nodes on the boundary

of the i-box that could eject an N

i

-packet out of the i-box during part (d) of step

t do not have an N

i

-packet immediately after step t � 1 (Lemma 2.7). A similar

argument holds for E

i

-packets using Lemma 2.8.

Lemma 2.3 follows from Lemma 2.7 for step t � 1, and Lemmas 2.1 and

2.2 for step t. The number of N

i

-packets that begin the construction is

j

(k + 1)(cn + c

2

n) + dn

k

. From Lemmas 2.1 and 2.2 for step t, we know that

no more than dn � 1 N

i

-packets have left the i-box before step t. By Lemma 2.7,

the only N

i

-packets that are in the i-box but outside the (i � 1)-box are in the

N

i

-column, and there are at most k(cn � 1 + i) queue positions for them. Any

other N

i

-packets ineligible for exchange must be scheduled to enter the N

i

col-

umn. Suppose there are x packets that need to be exchanged with N

i

-packets

during step t; in particular, these x packets must also be scheduled to enter the

N

i

-column. Then there can be at most cn � 1 + i � x N

i

-packets scheduled to

18

enter the N

i

-column. Putting these terms together, we �nd that the number of

N

i

-packets that are in the (i� 1)-box and not scheduled to enter the N

i

-column is

at least

j

(k + 1)(cn+ c

2

n) + dn

k

� (dn� 1)� k(cn� 1 + i)� (cn� 1 + i� x) � x,

since i � l � c

2

n. Thus, all x exchanges can be performed.

Lemma 2.4 follows from Lemma 2.8 for step t� 1, Lemmas 2.1 and 2.2 for step

t, and the number of E

i

-packets that begin the construction, analogous to the proof

of Lemma 2.3.

Lemma 2.5 follows from Lemmas 2.5 and 2.6 for step t�1 and Lemmas 2.3 and

2.4 at step t.

No N

j

-packet can be outside the (i� 2)-box immediately after part (b) of step

t. Suppose such a packet existed. Then there is an N

m

-packet, for some m > j, or

E

m

-packet, for some m � j, that is scheduled to enter the N

j

-column (i.e., it was

outside the (i� 2)-box immediately after step t� 1), contradicting Lemmas 2.5 or

2.6.

If an N

j

-packet is scheduled to enter the N

i�1

-column during part (d) of step

t, then EX2 and Lemma 2.3 ensure that we can perform an exchange, leaving the

N

j

-packet in the (i � 2)-box. If an N

j

-packet is scheduled to enter the E

i�1

-row

during part (d) of step t, then EX4 and Lemma 2.4 ensure that we can perform an

exchange, leaving the N

j

-packet in the (i� 2)-box.

Lemma 2.6 follows from Lemmas 2.5 and 2.6 for step t�1 and Lemmas 2.3 and

2.4 at step t, analogous to the proof of Lemma 2.5, except that EX1 and EX3 are

the relevant exchange rules.

Lemma 2.7 follows from Lemma 2.7 at step t � 1 and Lemma 2.4 at step t.

The proof is similar to that of Lemma 2.5, except we observe that an exchange can

never take an N

i

-packet outside the (i � 1)-box, and EX4 prevents an N

i

-packet

from entering the E

i

-row west of the N

i

-column.

Lemma 2.8 follows from Lemma 2.8 at step t� 1 and Lemma 2.3 at step t. The

proof is similar to that of Lemma 2.7, except that EX3 is the relevant exchange

rule. 2

Corollary 2.9 Immediately after step blcdn of the construction, there is still

an undelivered packet in the network.

19

Proof: Choose i = j = blc in Lemmas 2.1 and 2.2. Then at least

j

(k + 1)(cn + c

2

n)

k

N

i

-packets and

j

(k + 1)(cn + c

2

n)

k

E

i

-packets remain in the

i-box, and hence are undelivered, at time blcdn. 2

2.3.2 Properties of the Constructed Permutation

We must now show that the analogue of Corollary 2.9 holds when routing the

constructed permutation, where, of course, no exchanges are performed.

The con�guration of a node is the description of the packets in the node (their

states, sources, and destinations) and the state of the node.

The con�guration of a network is the collective con�gurations of all of its nodes.

The transition function �(S; t) of a routing algorithm maps a con�guration S

of a network and a number of steps t into a con�guration of the network, the

con�guration that results after executing t steps of the routing algorithm (with

no exchanges) starting from con�guration S. Since the routing algorithms we are

considering are deterministic, this function is well-de�ned. Also, de�ne �(S; 0) = S

for any con�guration S. Note that, for any con�guration S, �(S; i+j) = �(�(S; i); j).

We now show that when certain pairs of packets are exchanged, the routing

algorithm behaves essentially in the same way.

Lemma 2.10 Let S be the con�guration of a network. For any 1 � i � blc,

let x and x

0

be two packets in the (i� 1)-box in S and whose destinations are at or

east of the N

i

-column and at or north of the E

i

-row. Let S

x;x

0

be S with x and x

0

exchanged. Then �(S

x;x

0

; 1) is �(S; 1) with x and x

0

exchanged.

Proof: Note that both packets can move north or east pro�tably while they are

in the (i�1)-box. Recall that an exchange of x and x

0

interchanges the destination

addresses only, and does not alter any other packet information. Because of this,

the routing decisions the algorithm makes cannot distinguish between S and S

x;x

0

.

The outqueue policy and inqueue policy depend only on the state of the node,

and the states, source addresses, and pro�table outlinks of packets. The state of

nodes in the next step is a function only of its previous state, and the states, source

20

addresses, and pro�table outlinks of packets in the node. The state of packets is also

a function only of quantities that do not change when an exchange is performed.

Since the decisions made by the routing algorithm are the same whether x and

x

0

are exchanged or not, then �(S

x;x

0

; 1) is �(S; 1) with x and x

0

exchanged. 2

Lemma 2.11 Let S be the con�guration of a network. Let X be a sequence of

pairs of packets such that both packets in each pair are in the (i� 1)-box in S, for

some i, and have destinations at or east of the N

i

-column and at or north of the

E

i

-row. (The value of i can be di�erent for each pair.) Let S

X

be S with each pair

in X exchanged. Then �(S

X

; 1) is �(S; 1) with each pair in X exchanged.

Proof: The proof is by induction on the size of X using Lemma 2.10. 2

Note that (S

X

)

Y

= S

<X;Y >

for any con�guration S and sequences of pairs of

packets X and Y , where < X;Y > denotes the concatenation of sequences X and

Y .

We now show that the routing algorithm, when run using the constructed per-

mutation, behaves essentially like the construction.

Lemma 2.12 Let S

t

be the con�guration of the network immediately after step

t in the construction. Let S

0

be the con�guration of the network with the constructed

permutation immediately after step 0. Then for t = blcdn, �(S

0

; t) = S

t

.

Proof: For 1 � i � blcdn, let X

i

be the sequence of pairs of packets that

are exchanged during step i of the construction. We prove a stronger statement:

�(S

0

; t) is S

t

with < X

t+1

; :::;X

blcdn

> exchanged, for all 0 � t � blcdn.

The proof is by induction on t. Figure 2.3 illustrates the induction step.

Basis : t = 0. �(S

0

; 0) = S

0

is S

0

with all of the pairs of packets in

< X

1

;X

2

; : : : ;X

blcdn

> exchanged (by the de�nition of S

0

).

Induction : Assume the statement is true for t� 1 < blcdn, so that �(S

0

; t� 1)

is S

t�1

with < X

t

; : : : ;X

blcdn

> exchanged. De�ne S

�

t�1

to be S

t�1

with each pair of

X

t

exchanged. Therefore, �(S

0

; t� 1) is S

�

t�1

with < X

t+1

; : : : ;X

blcdn

> exchanged.

21

construction

S

S

�

constructed

permutation

S

0

S

t�1

S

�

t�1

�(S

0

; t� 1)

�(S

�

t�1

; 1)

�(S

0

; t)

?

X

t

, defn of S

�

?

< X

t+1

; : : : ;X

blcdn

>

�

�

�

�

S

S

S

Sw

< X

t

; : : : ;X

blcdn

>

ind. hyp.

-

�

-

�

?

< X

t+1

; : : : ;X

blcdn

>,

Lemma 2.11

= S

t

(defn of S

t

)

Figure 2.3: S

t

, S

�

t

, and �(S

0

; t) in Lemma 2.12.

All of the exchanges in < X

t+1

; : : : ;X

blcdn

> are of the type in the precondi-

tions of Lemma 2.11: for any pair of packets exchanged during any step of the

construction, each packet of the pair at the time of the exchange is in the (i� 1)-

box for some i and destined for nodes northeast of the (i� 1)-box, and neither of

the two packets could have escaped the (i � 1)-box before step t (by Lemmas 2.5

through 2.8). Then by Lemma 2.11, �(S

0

; t) is �(S

�

t�1

; 1) with < X

t+1

; : : : ;X

blcdn

>

exchanged.

But �(S

�

t�1

; 1) = S

t

, since S

t

is the routing algorithm run for one step on S

t�1

with X

t

exchanged. (That is, since all pairs in X

t

are of the type in Lemma 2.11,

then starting in S

t�1

and performing an exchange of X

t

either before or after part

(a) of the t-th step results in the same con�guration, S

t

.) Therefore, �(S

0

; t) is S

t

with < X

t+1

; : : : ;X

blcdn

> exchanged, which proves the induction step. 2

Since S

blcdn

still has an undelivered packet in the network (Corollary 2.9), we

have:

Theorem 2.13 The con�guration �(S

0

; blcdn) contains an undelivered packet.

That is, it takes at least blcdn steps for any deterministic, destination-exchangeable,

minimal adaptive routing algorithm to deliver all of the packets in its constructed

permutation.

22

2.3.3 Choosing the Constants c and d

All that is left to complete the analysis is to �nd constants c and d that satisfy the

following constraints:

1. There are enough distinct rows (columns) for the destinations of allN

i

-packets

(respectively, E

i

-packets),

2. cn and dn are integers, and

3. l � c

2

n (needed in Lemmas 2.3 and 2.4).

The �rst constraint is

j

(k + 1)(cn+ c

2

n) + dn

k

� (1� c)n� l:

Rewritten, this becomes

j

(k + 1)(cn+ c

2

n) + dn

k

+

c

2

n

2

2 b(k + 1)(cn + c

2

n) + dnc

� (1� c)n:

This is satis�ed, provided

(k + 2)c + (k + 1)c

2

+ d+

c

2

2((k + 1)(c + c

2

) + d)

!

� 1; (2:1)

since bxc+ (a= bxc) � x+ (a=x) when bxc �

p

a.

Choosing c = 1=(2 � (k + 2)) and d = 2=5 satis�es Inequality (2.1) for k � 1.

Taking derivatives of the left hand side of Inequality (2.1) with respect to c and

d shows that it is monotonically increasing in c and d, and so choosing any c �

1=(2 � (k + 2)) and any d � 2=5 satis�es Inequality (2.1).

To satisfy the second constraint, choose the largest c � 1=(2 � (k + 2)) such

that cn is an integer, and do likewise for d � 2=5. Then c � 1=(2 � (k + 2)) � 1=n

and d � 2=5 � 1=n. For n � 24 � (k + 2)

2

(which we will need in the proof of

Theorem 2.14) and k � 1, c � 2=(5 � (k + 2)) and d � 1=3.

23

The third constraint is veri�ed for these new values of c and d (and again for

n � 24 � (k + 2)

2

) as follows:

l =

c

2

n

2

2 � b(k + 1)(cn+ c

2

n) + dnc

�

c

2

n

2

2 � (k + 1)cn + 2dn

(cn, dn integers)

�

c

2

n

4�(k+1)

5�(k+2)

+

2

3

< c

2

n:

We can now calculate the lower bound of Theorem 2.13 in terms of n and k by

substituting our choices of c and d.

Theorem 2.14 For any deterministic, destination-exchangeable, minimal

adaptive routing algorithm on the n � n mesh with queues of size k � 1, it takes

(n

2

=k

2

) steps to deliver all of the packets in its constructed permutation.

Proof:

Case 1: n � 24 � (k + 2)

2

. By Theorem 2.13, the number of steps is at least

blcdn �

$

c

2

n

2 � ((k + 1)(c+ c

2

) + d)

%

dn

�

6

6

6

4

2n

25(k + 2)

2

((k + 1)(

2

5(k+2)

+

4

25(k+2)

2

) +

2

5

)

7

7

7

5

�

1

3

n

=

$

n

(k + 1)(5(k + 2) + 2) + 5(k + 2)

2

%

�

1

3

n

�

$

n

12(k + 2)

2

%

�

1

3

n

�

n

12(k + 2)

2

� 1

!

�

1

3

n

�

n

12(k + 2)

2

�

n

24(k + 2)

2

!

�

1

3

n (n � 24(k + 2)

2

)

24

=
(n

2

=k

2

):

Case 2: n < 24 � (k + 2)

2

. The diameter bound immediately yields a 2n � 2 =

(n

2

=k

2

) bound. 2

2.4 Extensions of the Lower Bound

We now give some extensions to the argument that apply to other models and

routing problems.

2.4.1 Other Queue Types

Suppose a node, instead of containing a single central queue, consists of four in-

coming queues, one associated with each inlink, such that when a packet enters a

node, it is placed in the appropriate incoming queue. We can also consider outgoing

queues, where a packet in an outgoing queue means that it is waiting to be sent

along the node's appropriate outlink.

A node using a central queue of size 4k can simulate a node with four incoming

queues each of size k. The key to the simulation is to use the state of the node to

record in which queue each packet is located. The simulation also can be done for

outgoing queues. The simulation can be done in a destination-exchangeable way, so

that a destination-exchangeable routing algorithm that uses incoming or outgoing

queues can be simulated by a destination-exchangeable algorithm that uses central

queues.

After recalculating constants c and d in the analysis, we can conclude that the

lower bound applies asymptotically to networks whose nodes' queues consists of

incoming or outgoing queues.

2.4.2 The Torus

The bound of Section 2.3.3 also holds asymptotically for the torus. The construction

simply is applied to a contiguous (n=2)� (n=2) submesh of the torus, also yielding

a lower bound of
(n

2

=k

2

) steps.

25

2.4.3 h-h Routing Problems

In h-h routing problems, each node is the source for up to h packets and the

destination for up to h packets. The construction is modi�ed to have h packets in

each of the c

2

n

2

nodes of the 1-box. (Assume for the moment that h � k.) As

before, we de�ne p =

j

(k + 1)(cn+ c

2

n) + dn

k

, but we de�ne l = hc

2

n

2

=(2p). We

again have three constraints similar to those of Section 2.3.3 to satisfy. The �rst

constraint is

j

(k + 1)(cn+ c

2

n) + dn

k

� h ((1� c)n� l) :

Rewritten, this becomes

j

(k + 1)(cn+ c

2

n) + dn

k

+

h

2

c

2

n

2

2 b(k + 1)(cn + c

2

n) + dnc

� h(1 � c)n:

This inequality is satis�ed if

(k + 1)(cn+ c

2

n) + dn +

h

2

c

2

n

2

2((k + 1)(cn + c

2

n) + dn � 1)

� h(1 � c)n;

since bxc+ a= bxc � x+ a=(x� 1) for x > 1.

Thus, it su�ces to satisfy

(k + 1 + h)c+ (k + 1)c

2

+ d+

h

2

c

2

2((k + 1)(c+ c

2

) + d �

1

n

)

� h:

Now suppose

(k + 1)(c+ c

2

) + d �

1

2

h +

1

n

: (2:2)

Then it su�ces to satisfy

(k + 1 + h)c+ (k + 1 + h)c

2

+ d � h: (2:3)

Choosing c = h=(3 � (k + 1 + h)) and d = 5h=9 satis�es Inequality (2.3). Since

the left hand side of Inequality (2.3) is increasing in c and d, choosing any c �

h=(3 � (k + 1 + h)) and any d � 5h=9 satis�es Inequality (2.3).

26

To satisfy the second constraint (cn and dn are integers), choose the largest

c � h=(3 �(k+1+h)) such that cn is an integer, and do likewise for d � 5h=9. Then

c � h=(3 � (k+1+h))�1=n and d � 5h=9�1=n. For n � 52(k+1+h)

2

=h

2

, k � 1,

and h � 2, c � h=(4 � (k + 1 + h)) and d � 11h=20. Note that 11h=20 � h=2 + 1=n

when n � 52(k + 1 + h)

2

=h

2

, so that Inequality (2.2) is satis�ed.

The third constraint (l � c

2

n) immediately is satis�ed, since Inequality (2.2)

implies l � hc

2

n

2

=(2 b(hn=2) + 1c) � c

2

n.

As in the proof of Theorem 2.14, we have that for n � 52(k + 1 + h)

2

=h

2

,

blcdn �

$

hc

2

n

2 � ((k + 1)(c + c

2

) + d)

%

dn

�

6

6

6

6

4

h

3

n

32(k + 1 + h)

2

((k + 1)(

h

4(k+1+h)

+

h

2

16(k+1+h)

2

) +

5

9

h)

7

7

7

7

5

�

11

20

hn

=

$

h

2

n

8(k + 1)(k + 1 + h) + 2h(k + 1) +

160

9

(k + 1 + h)

2

%

�

11

20

hn

�

$

h

2

n

26(k + 1 + h)

2

%

�

11

20

hn

�

h

2

n

26(k + 1 + h)

2

� 1

!

�

11

20

hn

�

h

2

n

26(k + 1 + h)

2

�

h

2

n

52(k + 1 + h)

2

!

11

20

hn

=

h

3

n

2

(k + h)

2

!

:

Theorem 2.15 For any deterministic, destination-exchangeable, minimal

adaptive routing algorithm on the n � n mesh with queues of size k � 1, there

exists an h-h routing problem that requires
(h

3

n

2

=(k + h)

2

) steps, for n �

52 � (k + 1 + h)

2

=h

2

and h � 2, to deliver all of the packets in the problem.

Note that this bound also applies to dynamic problems where no more than h

packets originate from or are destined to a single node and packets are injected

deterministically into the network at potentially di�erent times, as long as the time

27

before a packet is injected does not depend on its full destination address (although

it can depend on its pro�table directions). In fact, if h > k this dynamic setting

would be necessary to accommodate the h packets in the k queue locations of their

source node.

2.4.4 Nonminimal Extensions

The techniques of this chapter can also be used to show a lower bound on the time

it takes algorithms that are nonminimal, but nearly minimal, to route arbitrary

permutations. For example, deterministic destination-exchangeable routing algo-

rithms that allow packets to have nonminimal behavior before reaching the edge

of the i-box, but are otherwise minimal, do not contradict the proofs of this chap-

ter. Ben-Aroya and Schuster [BAS94] give a precise characterization of the kinds

of nonminimal algorithms for which the technique applies. Although they describe

the lower bound in the context of hot potato algorithms, the technique applies more

generally to the model described in Section 2.1.

Since the O(n

3=2

) time hot potato algorithm of Bar-Noy et al. [BNRST93] is

destination-exchangeable, the restriction in Theorem 2.14 of minimal routing can-

not be eliminated entirely.

2.4.5 Dimension Order Routing

Destination-exchangeability. The arguments presented in Sections 2.2 and 2.3

also apply to dimension order routing. Even though the paths are �xed in dimension

order routers, the algorithms still have the exibility to have di�erent inqueue and

outqueue policies and di�erent ways the nodes keep state. However, because of the

regularity in the paths, one can prove an
(n

2

=k) bound for routing a worst case

permutation in any destination-exchangeable dimension order router as follows.

The construction is similar to that of Section 2.2, except that we consider the

westernmost (1� c)n nodes in each of the cn southernmost rows of the mesh. Each

of these nodes will send a packet to some node in the northernmost (1� c)n nodes

of the cn easternmost columns (see Figure 2.4, left). De�ne the N

i

-column to be

the ((1 � c)n + i)-th column of the mesh, and the i-box to be the set of nodes

28

cn

(1 � c)n

sources

cn

(1 � c)n

dest.

cn

n

sources

� cn

(1 � c)n

dest.

Figure 2.4: The construction for destination-exchangeable dimension order algo-

rithms (left) and farthest-�rst algorithms (right).

west of and including the N

i

-column and south of and including row cn. We de�ne

p = (k + 1)cn + dn, where cn and dn are integers, and l = (1 � c)cn

2

=p. The

construction proceeds as before, but there are no E

i

-packets and only one exchange

rule: for i � 1 and j > i, if an N

j

-packet is scheduled by the outqueue policy of a

node to enter the N

i

-column during steps 1 to idn, then exchange that packet with

an N

i

-packet in the (i� 1)-box that is not scheduled to enter the N

i

-column.

Following an analysis similar to that of Section 2.3.3, we can �nd constants

2=(5 � (k + 2)) � c � 1=(2 � (k + 2)) and 2=5 � d � 1=2, for n � 10 � (k + 2).

Note that we avoid many of the complications in choosing constants c

and d, because we do not need to satisfy l � c

2

n. We conclude that

blcdn � b3n=(8 � (k + 2))c (2n=5) � 11n

2

=(100 � (k + 2)), for n � 10 � (k+2). When

n < 10 � (k + 2), the diameter bound yields a 2n� 2 =
(n

2

=k) bound.

For h-h routing with destination-exchangeable dimension order routers, we

can �nd constants 2h=(5 � (k + 1 + h)) � c � h=(2 � (k + 1 + h)) and

2h=5 � d � h=2 for n � 10 � (k + 1 + h)=h. For this choice of constants,

blcdn � b4hn=(15 � (k + 1 + h))c (2hn=5), giving a bound of
(h

2

n

2

=(k+ h)) when

n � 10 � (k + 1 + h)=h.

These analyses are summarized in the following theorem.

Theorem 2.16 For any deterministic, destination-exchangeable, dimension or-

der routing algorithm on the n � n mesh with queues of size k � 1, there exists a

29

permutation that requires
(n

2

=k) steps to deliver all of the packets in the permuta-

tion. Also for such an algorithm, there exists an h-h routing problem that requires

(h

2

n

2

=(k + h)) steps, for n � 10 � (k + 1 + h)=h and h � 2, to deliver all of the

packets in the problem.

Farthest-�rst Outqueue Policy. The lower bound technique also holds for di-

mension order routing with a farthest-�rst outqueue policy, where the next packet

to be advanced in a dimension is the one that has the farthest to go in that dimen-

sion (ties are broken by FIFO ordering). All other aspects of the routing algorithm

| the inqueue policy, the way the state of a node changes, and the way the state

of a packet changes | still are restricted to be destination-exchangeable, as in

the de�nition in Section 2.1. Call any algorithm that meets these restrictions a

farthest-�rst dimension order algorithm. In this case the lower bound holds even

though this algorithm makes use of the entire destination address, and hence is not

destination-exchangeable. The dimension order algorithm with farthest-�rst policy

and unbounded queues can route any permutation on the mesh in 2n � 2 steps

[Lei92, pages 159{162].

The construction is similar to the one above, except that we de�ne

p = (2k + 1)cn + dn and l = cn

2

=p. Also, de�ne the N

i

-column to be the (n+1�i)-

th column and the i-box to be the nodes west of and including the N

i

-column and

south of and including row cn. Each of the nodes in the southernmost cn rows will

send one packet (see Figure 2.4, right).

The N

i

-columns are reversed from the original construction, because we want

the �rst packets to leave the i-box to be the ones whose destinations are farthest

to the east in their rows. If the columns were arranged in the order of the original

proof, then we would not be able to enforce the invariant that for any row, packets

are ordered by how far they need to go in that row (see below). This invariant

allows us to show that the construction at step t and the algorithm running on the

constructed permutation at step t di�er by a set of exchanges.

The initial arrangement of packets is one in which no N

i

-packet, for i � 2, is

in the N

i

-column and for which no N

j

-packet is further east in its row than any

N

i

-packet in that row for j > i.

30

The only exchange rule for the construction is as follows. For i � 1 and j > i, if

an N

j

-packet is scheduled by the outqueue policy of a node to enter the N

j

-column

during steps 1 to idn, then exchange that packet with an N

j�1

-packet in the (j+1)-

box not scheduled to enter the N

j

-column. Furthermore, the N

j�1

-packet chosen

for the exchange is one that is westernmost in its row.

It can be shown that packets are always available for the exchange, that for all

i and j with j > i, no N

j

-packet is further east in its row than any N

i

-packet in

that row before step idn, and that the construction behaves in the same way as the

algorithm does when run on the constructed permutation.

As in the previous analyses, we can �nd constants 1=(5 � (k + 1)) � c �

1=(4 � (k + 1)) and 2=5 � d � 1=2, for n � 20 � (k + 1). We conclude that

blcdn � b2n=(9 � (k + 1))c (2n=5), giving a bound of
(n

2

=k).

Theorem 2.17 For any deterministic farthest-�rst dimension order routing al-

gorithm on the n � n mesh with queues of size k � 1, there exists a permutation

that requires
(n

2

=k) steps to deliver all of the packets in the permutation.

Nearest-�rst Outqueue Policy. The nearest-�rst outqueue policy, where the

next packet to be advanced in a dimension is the one that has the nearest to go in

that dimension (ties are broken by FIFO ordering), is a plausible outqueue policy

because it attempts to deliver messages that are near their destinations by giving

priority to them

1

. To complete the description of the routing algorithm, let us sup-

pose that all other aspects of the routing algorithm are destination-exchangeable.

Call an algorithm that meets these restrictions a nearest-�rst dimension order algo-

rithm. For the lower bound of nearest-�rst dimension order algorithms, we de�ne

p = (k + 1)cn + dn. The initial arrangement of packets is the same as for the

destination-exchangeable dimension order routers (Figure 2.4, left), and the de�ni-

tion of the N

i

-column is as in that case as well.

The only exchange rule for the construction is as follows. For i � 1 and j > i, if

an N

j

-packet is scheduled by the outqueue policy of a node to enter the N

i

-column

1

This explanation of plausibility is not an exact characterization of the nearest-�rst algorithm.

A packet might be moving east or west near its destination column and receive priority, yet is

many nodes away vertically from its destination.

31

during steps 1 to idn, then exchange that packet with an N

j�1

-packet in the (i�1)-

box not scheduled to enter the N

i

-column. Furthermore, the N

j�1

-packet chosen

for the exchange is one that is westernmost in its row. Note that if j � i + 2,

then the exchange rule could be applied to a packet twice in one step | once to

exchange for an o�ending packet and once because the packet itself has become an

o�ending packet due to the �rst exchange.

As in the farthest-�rst construction, it can be shown that packets are always

available for the exchange, that for all i and j with j > i, no N

j

-packet is fur-

ther east in its row than any N

i

-packet in that row before step idn, and that the

construction behaves in the same way as the algorithm does when run on the con-

structed permutation. The analysis for the nearest-�rst algorithm is the same as

for the destination-exchangeable algorithms.

Theorem 2.18 For any deterministic nearest-�rst dimension order routing al-

gorithm on the n � n mesh with queues of size k � 1, there exists a permutation

that requires
(n

2

=k) steps to deliver all of the packets in the permutation.

An Upper Bound for Dimension Order Algorithms. We prove in The-

orem 2.19 that the bound for destination-exchangeable dimension order routers

given in Theorem 2.16 is tight.

Theorem 2.19 There is a destination-exchangeable version of the dimension

order routing algorithm that routes any permutation on the n � n mesh in time

O((n

2

=k) + n), where k � 1 is the size of the queue.

Proof: Assume that each node has four incoming queues (labelled North, South,

East, and West) as de�ned in Section 2.4.1, each of size k. The outqueue policy

of each node is that packets trying to go straight have priority, resolving ties using

FIFO. The inqueue policy is that a packet is always admitted if there is space. Note

that these policies are destination-exchangeable.

More precisely, the inqueue policy of North and South queues is always to accept

an incoming packet. To see why such a queue has room to accept a packet, note

the following. Packets moving straight along a column have priority over turning

32

packets. It is easy to prove by induction on the distance from the North (South)

edge of the mesh that any North (South, respectively) queue will eject a packet in

each step that it contains at least one packet, and so it can always accept one.

The inqueue policy of East and West queues is to accept an incoming packet

if there are fewer than k packets in the queue at the beginning of the step and to

refuse if there are exactly k packets in it at the beginning of the step.

For any �xed row i, de�ne a turning interval to begin when an East or West

queue at some column j in row i contains k packets, all of which want to turn into

column j, and to end when the last of these k packets turns. There are at most n=k

turning intervals for row i (since at most n packets ever use East or West queues

in the row), so it su�ces to show that the time from the beginning of one turning

interval to the beginning of the next is O(n). The turning interval itself can last at

most n steps: because every North or South queue in column j with at least one

packet transmits a packet every step, the n packets destined for column j can delay

the k turning packets for at most n steps.

By Lemma 2.21 below, once the turning interval ends there can be at most

3n steps until either every packet is in its destination column or another turning

interval begins.

Once all packets are in North or South queues in their destination columns, it

takes only 2n steps before all are delivered. 2

We now show that after at most 3(n�1) steps after the end of a turning interval,

either all packets are in their destination column, or another turning interval has

begun, i.e., that there is an East or West queue in some column j that contains k

packets, all of which want to turn into column j. Without loss of generality, we can

restrict our attention to eastbound packets.

De�ne a live packet immediately after step t to be a packet that has not reached

its destination column by the end of step t. A packet is delayed in step t if it is live

immediately after step t� 1 and did not cross a link in step t. Also, if q and p are

live packets, we will say that q is east of p if either q is in a node that is east of the

node p is in, or p and q are in the same node (and hence in the same West queue)

but q arrived in the node earlier than p did.

33

If p is a live packet immediately after step t, then let p

0

(t) be the westernmost

live packet immediately after step t that is east of p, if any. If p is a live packet

immediately after step t and the distance between p and p

0

(t) is d, then de�ne

d

t

(p; p

0

(t)) =

8

>

>

>

<

>

>

>

:

2 , if d = 0

1 , if d = 1

0 , if d � 2

:

If p is not live immediately after step t, or p

0

(t) does not exist (i.e., p is the

easternmost live packet in the row), then de�ne d

t

(p; p

0

(t)) = 0. The function d

t

,

loosely speaking, is a measure for how much the packet p

0

(t) can delay packet p in

the future.

Finally, at the beginning of the turning interval, number all eastbound packets

(live or not) p

1

; p

2

; etc. from the east and de�ne

�

m

(t) =

X

packets p

i

immediately after step t,

i � m

d

t

(p

i

; p

0

i

(t)):

Note that if p

i

is live immediately after step t, then p

0

(t) = p

j

for some j < i

(unless p

i

is the easternmost live packet in the row). If we de�ne �

0

(t) = 0, then

for m � 1,

�

m

(t) = �

m�1

(t) + d

t

(p

m

; p

0

m

(t)):

If we can show that �

m

is bounded, is monotonically decreasing in t, and always

decreases if p

m

is delayed, and show that p

m

is never delayed when �

m

= 0, then

we can bound the time it takes p

m

to reach its column destination.

Lemma 2.20 Let step 0 be the last step of a turning interval, and let step T be

the �rst step of the next turning interval. The following statements hold:

(1) For all m, �

m

(0) � 2(m� 1),

(2) For all m and 0 � t < T , �

m

(t) � 0,

34

(3) If �

m

(t) = 0 for some m and 0 � t < T , then no live packet p

i

, i � m, is

delayed in step t

0

> t, where t

0

< T ,

(4) For all m and 0 � t < T , �

m

(t+ 1) � �

m

(t), and

(5) For all m and 0 � t < T , if p

m

is delayed in step t+1, then �

m

(t+1) < �

m

(t).

Proof: Statements (1) and (2) follow easily from the de�nition of �

m

.

To see that (3) is true, we need only observe that if �

m

(t) = 0, then all live

packets east of and including p

m

are at least two nodes away from each other. Thus,

the inqueue policy of the next node east of a live packet will accept it. (At most

k � 1 packets can be in the next node, all waiting to turn, since a new turning

interval has not begun.) By induction on t, (3) holds for all t

0

> t.

We now prove (4) and (5) simultaneously by induction on m. Throughout, we

use the fact that if p

m

is live immediately after steps t and t + 1, then p

0

m

(t + 1)

is always in a node at or east of the node p

0

m

(t) is in; this implicitly uses the fact

that the outqueue policy is FIFO among eastbound packets.

Basis : m = 1. �

1

(t) = 0 for all 0 � t < T , and p

1

is never delayed.

Induction : Suppose the statements are true for all m

0

< m(� n).

Case 1: p

m

is not live immediately after step t+ 1 (and hence was not delayed

in step t+ 1). Then by the de�nition of �

m

and the induction hypothesis,

�

m

(t+ 1) = �

m�1

(t+ 1) � �

m�1

(t) � �

m

(t):

Case 2: p

m

is live immediately after steps t and t+ 1.

Case 2a: p

m

was not delayed during step t + 1. Since p

m

can move only one

node in one step, then d

t+1

(p

m

; p

0

m

(t+ 1)) � d

t

(p

m

; p

0

m

(t)) + 1.

� If d

t+1

(p

m

; p

0

m

(t+1)) = d

t

(p

m

; p

0

m

(t))+1, then p

0

m

(t) = p

0

m

(t+1) was delayed

in step t + 1. We know that p

0

m

(t) = p

m

0

for some m

0

< m, and so by

the induction hypothesis, �

m

0
(t + 1) < �

m

0
(t). But �

m�1

(t) = �

m

0
(t) and

�

m�1

(t + 1) = �

m

0

(t + 1), because packets p

i

, m � 1 � i > m

0

, are not

35

live immediately after steps t and t+ 1. Thus, �

m�1

(t + 1) = �

m

0

(t + 1) <

�

m

0
(t) = �

m�1

(t). We have

�

m

(t+ 1) = �

m�1

(t+ 1) + d

t+1

(p

m

; p

0

m

(t+ 1))

= �

m�1

(t+ 1) + d

t

(p

m

; p

0

m

(t)) + 1

� �

m�1

(t) + d

t

(p

m

; p

0

m

(t))

= �

m

(t):

� If d

t+1

(p

m

; p

0

m

(t+ 1)) � d

t

(p

m

; p

0

m

(t)), then

�

m

(t+ 1) = �

m�1

(t+ 1) + d

t+1

(p

m

; p

0

m

(t+ 1))

� �

m�1

(t+ 1) + d

t

(p

m

; p

0

m

(t))

� �

m�1

(t) + d

t

(p

m

; p

0

m

(t))

= �

m

(t):

Case 2b: p

m

was delayed during step t+ 1.

� If p

0

m

(t) was delayed in step t+1, then as in Case 2a, we have �

m�1

(t+1) <

�

m�1

(t).

�

m

(t+ 1) = �

m�1

(t+ 1) + d

t+1

(p

m

; p

0

m

(t+ 1))

< �

m�1

(t) + d

t+1

(p

m

; p

0

m

(t+ 1))

� �

m�1

(t) + d

t

(p

m

; p

0

m

(t))

= �

m

(t):

� If p

0

m

(t) was not delayed in step t+ 1, then p

0

m

(t) had to be within one node

of p

m

immediately after step t. Thus,

�

m

(t+ 1) = �

m�1

(t+ 1) + d

t+1

(p

m

; p

0

m

(t+ 1))

36

< �

m�1

(t+ 1) + d

t

(p

m

; p

0

m

(t))

� �

m�1

(t) + d

t

(p

m

; p

0

m

(t))

= �

m

(t):

2

Lemma 2.21 For any row, once a turning interval ends, there can be at most

3(n � 1) steps until either every packet is in its destination column or another

turning interval begins.

Proof: By Lemma 2.20, the m-th packet from the east can be delayed at most

2(m � 1) steps. The packet must travel at most n � 1 nodes. Since m � n, the

lemma follows. 2

Chapter 3

A MINIMAL ADAPTIVE ALGORITHM USING

CONSTANT SIZED QUEUES

We now present a deterministic, minimal adaptive routing algorithm for the n�n

mesh that routes permutations in O(n) time and uses constant size queues in each

node. It uses the distance each packet has to travel in the vertical and horizontal

dimensions to make routing decisions and is thus not destination-exchangeable.

These same bounds were known for routing algorithms based on sorting [Kun88,

LMT89, NS92, RO92], but those algorithms do not use minimal routes.

3.1 The Algorithm

Without loss of generality, we assume that we are routing just packets that need

to move either northeast or directly north to get to their destination. The entire

algorithm consists of sequential applications of this algorithm, corresponding to the

four kinds of packets (NE, NW, SE, SW).

The algorithm operates on submeshes of the mesh and consists of an alterna-

tion between vertical phases, where packets move closer to their destinations in the

vertical dimension, and horizontal phases, where packets move closer to their des-

tinations in the horizontal dimension. As packets get closer to their destinations,

the independent submeshes that can be handled in parallel get smaller and more

numerous. We will assume for simplicity that n is a power of 3.

We start with the entire n� n mesh. In the Vertical Phase, a packet that is at

least

1

9

n rows away from its destination will end the phase at least

1

27

n rows and

at most

1

9

n rows away from its destination. The Horizontal Phase gives the same

guarantees in the horizontal direction.

Throughout the algorithm, we will assume the existence of a set of three tilings

38

of the n � n mesh, each with tiles of size 3h � 3h, such that any two nodes within

distance h of each other vertically and horizontally are both within some tile of at

least one of the tilings. Lemma 3.4 shows that such tilings exist.

We now use the three tilings of

1

3

n �

1

3

n (h =

1

9

n) in the next Vertical Phase

and Horizontal Phase to route packets to within

1

27

n rows and

1

27

n columns of their

destinations. A packet participates in the Vertical (Horizontal) Phase if it starts

the phase at least

1

27

n rows (columns, respectively) away from its destination.

We continue in this fashion, routing packets closer to their destinations using

successively smaller tiles, until packets are close enough to their destinations to

use a dimension order algorithm. The Vertical and Horizontal Phases guarantee

that packets never move away from their destinations and that at most a constant

number of packets reside in a node at any time.

for j = 0; 1; 2; : : :

� (Base Case.) If

1

3

j

n < 27, then use the dimension order algorithm

1

on the

entire n� n mesh and then exit the algorithm.

� Otherwise, consider the three tilings, where each tile is of size

1

3

j

n�

1

3

j

n. For

tiles on the edge of the mesh that may not be

1

3

j

n�

1

3

j

n, extend the tile to a

\virtual tile" of size

1

3

j

n�

1

3

j

n, where no packet is moved outside the actual

mesh.

For a given tiling, the actions below are performed on each of the tiles in

the tiling independently and in parallel. A packet participates in an action

on a given tile only if its current location and destination are both within

that tile. Perform the following Vertical Phase for each of the three tilings in

succession, followed by the Horizontal Phase for each of the three tilings in

succession. In the special case of j = 0, there is only one tiling consisting of

one n� n tile.

1

Exactly what dimension order algorithm used here is not important, as long as the outqueue

policy always schedules some packet to an outlink if there is any packet that needs to use it, and

the inqueue policy always accepts if there is space. The algorithm in the proof of Theorem 2.19

is su�cient.

39

1

3

j

n

1

3

j

n

1

q

q

q

i-3

i-2

i-1

i

q

q

q

27

6

?

d

6

March

6

Sort and Smooth

-

Horizontal Balancing

Figure 3.1: The Vertical Phase of the algorithm.

� Vertical Phase

1. Divide each tile of the tiling into 27 horizontal strips of height d =

1

27�3

j

n.

De�ne an active packet to be one whose destination is in strip i and

whose location at the beginning of this Vertical Phase is in one of strips

1; : : : ; i � 3 (i.e., it is at least three strips away from its destination; in

particular, packets whose destinations are in strips 1, 2, or 3 are inactive).

See Figure 3.1. For each of the following steps, every node knows how

long it will take (see Lemmas 3.14, 3.15, and 3.16) and can delay that

long before starting the next step.

2. March. An active packet whose destination is in strip i moves to strip

i� 3 via only column edges. Each node in strip i� 3 transmits packets

whose destinations are in strip i as far north within strip i�3 as possible.

When a node in strip i� 3 contains q = 408 active packets destined for

strip i, it refuses to receive any more such packets.

3. Sort and Smooth. This step is performed in two sequential substeps,

one for packets whose destinations are in strip i, where i is even, and

one for packets whose destinations are in strip i, where i is odd.

Move active packets from strip i�3 to strip i�2, using only column edges,

in decreasing order according to the horizontal distance they need to go.

When each node in the i � 2 strip (in the column we are considering)

has the same number of packets, a new \layer" of packets is added (see

40

strip i-2

column x

strip i-3

column x

4 2 3 6

2 2 3 5

8 5 3 6 1

6 7 1 1 2

-

1 step

4 2 3

6 2 2 3 5

8 5 3 6 1

6 7 1 1 2

-

4 more

steps

2 3 2 2

3 4 5 5 3 1

6 6 6 1 1 2

7

8

-

rest of

S & S

1 2 4 6

2 3 5 6

1 2 3 5 7

1 2 3 6 8

Figure 3.2: Sort and Smooth (d = 4). Each box represents a node. Each packet is

represented by the horizontal distance to its destination.

Figure 3.2). This is implemented as follows. If a node in strip i � 3 is

the t-th from the southernmost node of the strip, then on steps t and

after, the node will transmit north the active packet that has the farthest

east to go. Each node in strip i� 2 can count how many packets it has

received to determine whether to hold an incoming packet or send it

north: the t-th from the northernmost node of the strip holds every t-th

packet it receives.

In Figure 3.2, the packet in the bottommost node that needs to travel

six columns is the only packet that moves in the �rst step. In the fourth

step of Sort and Smooth, the \8" moves into strip i�2. In the �fth step,

the packet that has the next farthest to go (the \7") enters strip i� 2.

The packets will enter strip i� 2 one at a time in decreasing horizontal

distance to go, �lling in one layer at a time in strip i� 2.

4. Horizontal Balancing. Each node performs the following operation,

called the 2-rule: if the node has more than two active packets, then

it transmits east the active packet that has the farthest east to go (ties

broken arbitrarily).

� Horizontal Phase

41

Similar to steps 1 through 4 of the Vertical Phase. (Replace \height" by

\width", \north" by \east", etc.)

We will now prove the correctness of the algorithm, place a bound on the queue

size, and give the running time of the entire algorithm for permutation routing

problems. All of the facts for the Vertical Phase proved in the following subsections

easily translate to the corresponding facts for the Horizontal Phase.

3.2 Correctness

We now show that the routing algorithm presented in Section 3.1 is minimal adap-

tive and delivers all the packets in a permutation. We begin by showing that

Horizontal Balancing does not cause any packet to \overshoot" its destination col-

umn.

For any column c, de�ne a (�c)-packet to be an active packet whose destination

column is at or west of column c. De�ne a (>c)-packet to be any other active packet

(i.e., one whose destination is east of column c).

Lemma 3.1 For any column c, any row r, and any s � 1, immediately after

Sort and Smooth, there are at most 2s (� c)-packets in the �rst s nodes of r that

are west of and including column c.

Proof: Suppose there were at least 2s+1 (�c)-packets in the �rst s nodes west

of and including column c at the end of Sort and Smooth. Let x

1

; x

2

; : : : ; x

s

be the

respective numbers of (�c)-packets in those nodes.

Then there are at least ((x

1

� 1) + (x

2

� 1) + : : :+ (x

s

� 1)) � d (�c)-packets in

the rectangle consisting of the �rst s columns of strip i � 2 west of and including

column c, each destined for nodes in the corresponding rectangle in strip i. This is

because in order for a node � to have x (�c)-packets at the end of Sort and Smooth,

there must be at least x � 1 (� c)-packets in each node of �'s column within its

strip. (See Figure 3.2.)

But x

1

+x

2

+ : : :+x

s

� 2s+1. Thus, there are at least (2s+1�s) �d = (s+1) �d

packets destined for sd nodes, contradicting the fact that this is a permutation

routing problem. 2

42

For any row r and column c, we will say that Condition C(r; c) holds at the

beginning of some step t, where the �rst step of Horizontal Balancing corresponds

to t = 1, if for all s � 1 there are no more than 2s (�c)-packets in the �rst s nodes

of row r west of and including column c.

Lemma 3.2 For all t � 0, for all rows r and columns c, no (� c)-packet is

transmitted east by the node in column c during step t of Horizontal Balancing, and

Condition C(r; c) holds at the beginning of step t+ 1.

Proof: The proof is by induction on t.

Basis : t = 0. The �rst part of the lemma is vacuously true, since there is no

step 0 of Horizontal Balancing. The second part of the lemma follows immediately

from Lemma 3.1.

Induction : Fix an r and c. Assume the statement is true for t � 1 � 0 (in

particular, Condition C(r; c) holds at the beginning of step t). We will prove the

statement for t. During step t, no (�c)-packet is transmitted east by the node � in

column c, because if there were, then by the 2-rule � would have had at least three

(� c)-packets at the beginning of step t, violating Condition C(r; c) for s = 1 at

step t. (Recall that the 2-rule prevents any node from transmitting a (�c)-packet

in preference to a (>c)-packet.)

Now suppose that Condition C(r; c) does not hold for some s

0

at the beginning

of step t + 1. Then the �rst s

0

nodes west of and including � contained 2s

0

(� c)-

packets at the beginning of step t and received a (� c)-packet from the (s

0

+ 1)-st

node during step t. But this means that the (s

0

+ 1)-st node had at least three

(� c)-packets at the beginning of step t. Thus, there were at least 2s

0

+ 3 (� c)-

packets in the �rst s

0

+1 nodes west of and including �, violating Condition C(r; c)

for s = s

0

+ 1 at step t.

Since we chose r and c arbitrarily, we have proved Lemma 3.2 for all r and c,

and hence for all packets. 2

Lemma 3.3 Suppose that, at the beginning of the Vertical Phase, every packet

is within 27d rows of its destination row. Then at the end of the Vertical Phase,

43

every active packet is at least d+1 and at most 3d�1 rows away from its destination

row. Every inactive packet is at most 3d � 1 rows away from its destination row.

Proof: Any active packet destined for the i-th strip will end the phase in the

strip i�2. Thus, every active packet is at least d+1 and at most 3d�1 rows away

from its destination row. Any inactive packet is within three strips (i.e., at most

3d � 1 rows) of its destination row. 2

The following tiling lemma is folklore:

Lemma 3.4 There exist three tilings of the n�n mesh with tiles that are 9d�

9d such that any two nodes within distance 3d in both the vertical and horizontal

dimensions are contained in some tile of at least one of the tilings.

Proof: De�ne the three tilings as follows. The north (and west) boundaries of

the tiles in the �rst tiling are nodes in row (respectively, column) i, where i � 1

(mod 9d). The tiles of the second tiling are displaced 3d rows east and 3d columns

south from the tiles in the �rst tiling. The tiles in the third tiling are displaced 3d

rows east and 3d columns south from the tiles in the second tiling. It is easy to see

that any two nodes within 3d rows and 3d columns of each other must be contained

in the same tile in one of the tilings, as follows.

It su�ces to show that if two nodes within 3d rows and 3d columns are not in a

tile of either the �rst or second tiling, then they must both be in a tile of the third

tiling.

If the two nodes are not in a tile of the �rst tiling, then either

(1) There is an i � 1 such that one of the two nodes is west of column 9di+1 and

the other is at or east of that column, or

(2) There is an i � 1 such that one of the two nodes is north of row 9di + 1 and

the other is at or south of that row.

Similarly, if the two nodes are not in a tile of the second tiling, then either

44

(3) There is a j � 0 such that one of the two nodes is west of column 9dj +3d+1

and the other is at or east of that column, or

(4) There is a j � 0 such that one of the two nodes is north of row 9dj + 3d + 1

and the other is at or south of that row.

Since the two nodes are within 3d rows and 3d columns of each other, (1) and

(3) cannot both hold, and (2) and (4) cannot both hold.

If (1) holds, then both nodes are at or east of column 9d(i � 1) + 6d + 1 and

west of column 9di + 3d + 1. If (4) holds, then both nodes are at or south of row

9dj + 1 and north of row 9dj + 6d + 1. Thus, if (1) and (4) hold, then both nodes

are contained in a tile of the third tiling. A similar argument holds if (2) and (3)

are true. 2

Theorem 3.5 No packet makes a move that places it farther from its desti-

nation, and all packets eventually are delivered. That is, the algorithm above is

minimal adaptive.

Proof: During March and Sort and Smooth, packets move only towards their

destination vertically. Lemma 3.2 ensures that a packet does not move away from

its destination horizontally. Along with the analogous lemma for the Horizontal

Phase, this shows that no packet makes a move that places it farther from its

destination.

Using induction on j and Lemmas 3.3 and 3.4 (and the horizontal analogue of

Lemma 3.3), we see that every packet is no more than 3 �

1

27�3

j

n rows and 3 �

1

27�3

j

n

columns away from its destination after the j-th iteration.

Basis : j = 0. Every packet is within 3d = 3 �

1

27�3

0

n rows and 3d = 3 �

1

27�3

0

n

columns of its destination at the end of the 0-th iteration by Lemma 3.3.

Induction : Suppose the claim is true for j � 1 < log

3

n� 3. By the induction

hypothesis, after the (j � 1)-th iteration, all packets are within 3(

1

27�3

j�1

n) rows

and 3(

1

27�3

j�1

n) columns of their destinations. By Lemma 3.4, the packet and its

destination are both within some tile of one of the three tilings of the j-th iteration.

(Note that the tiles are

1

3

j

n�

1

3

j

n = 9

1

27�3

j�1

n�9

1

27�3

j�1

n = 27(

1

27�3

j

)n�27(

1

27�3

j

)n.)

45

Thus, by Lemma 3.3, every packet will end the j-th iteration at most 3(

1

27�3

j

n)

rows and 3(

1

27�3

j

n) columns away from its destination.

This ends the proof by induction.

When

1

3

j

n < 27, then the dimension order algorithm is used. Thus, every packet

is eventually delivered. 2

3.3 Queue Size

We now show that during the algorithm, no more than a constant number of packets

ever occupy a node at the same time. We do this by examining the queue size during

and at the end of each step in a Vertical Phase. In what follows, let q = 17�(27�3) =

408.

Lemma 3.6 Suppose no node begins the March with more than 17 packets. No

more than q + 1 active packets ever occupy a node at the same time during the

March. At the end of the March, no node contains more than q active packets.

Proof: Consider any node � in strip i � 3. Let t be the step after which �'s

north neighbor refuses to accept more packets destined for strip i (or t = 0, if � is

the northernmost node in strip i � 3). Until time t, � has no more than 17 active

packets, since it sends one north at each step.

After time t, whenever � has a packet destined for a strip north of strip i, it

transmits one such packet. It may accumulate an additional q packets that end the

march at �. Therefore, � never has more than q + 1 active packets at any time (q

packets destined for strip i and one packet destined for a strip north of strip i). 2

Lemma 3.7 During Sort and Smooth, no more than 2q+1 active packets ever

occupy a node at the same time. At the end of Sort and Smooth, no node contains

more than q active packets.

Proof: Consider any strip i.

Each node in strip i�3 receives at most one packet before it starts transmitting

packets northward. Since a node in strip i � 3 always transmits once it starts

46

transmitting (and has at least one packet destined for strip i), then its queue will

never hold more than q + 1 active packets destined for strip i. If i is odd, it may

contain an additional q active packets destined for strip i� 1 that completed their

Sort and Smooth in the even substep.

A node in strip i� 2 will never contain more than q active packets destined for

strip i. If i is even, it may contain an additional q active packets destined for strip

i+ 1 that will move in the odd substep.

At the end of Sort and Smooth, each node in strip i � 2 will contain no more

than q active packets destined for strip i and no other active packets. 2

Lemma 3.8 If a node contains no more than r > 2 active packets at the begin-

ning of Horizontal Balancing, then the node contains no more than r active packets

during Horizontal Balancing. Also, if a node contains no more than two active

packets at the beginning of Horizontal Balancing, then the node never contains

more than three active packets during Horizontal Balancing.

Proof: Because of the 2-rule, any node that has r > 2 active packets transmits

one active packet to the east until it has two active packets. (It might later receive a

packet, but then the 2-rule is in e�ect again.) Since the node is always transmitting

when it has three or more active packets and can only receive at most one packet

per step, then the number of packets in the node can never increase when it has

three or more active packets. In particular, the node can never have more than r

active packets.

A node that begins with two or fewer packets can receive packets until it has

three packets, at which point it will start transmitting. As above, it can never hold

more than three active packets. 2

Lemma 3.9 No more than two active packets end Horizontal Balancing in the

same node.

Proof: The 2-rule ensures this. 2

In what follows, a Vertical Phase is divided into three subphases, one for each of

the three tilings. Horizontal subphases are de�ned analogously. We will now bound

47

V1
V2 V3 H1 H2 H3 V1 V2

V3

Figure 3.3: Subphases of the algorithm. A packet can remain inactive for at most

seven subphases.

the number of inactive packets that occupy a node at any given time by bounding

the number of subphases a packet can remain inactive.

Lemma 3.10 If a packet is active in some vertical subphase at iteration j of

the algorithm, then it will be active in some horizontal subphase at iteration j or

in some vertical subphase at iteration j + 1.

Proof: Let d be the height of a strip in iteration j. Since the size of a strip in

iteration j + 1 is d=3, then a packet at least d + 1 rows away from its destination

row at the end of the current iteration will be at least three strips away (vertically)

at the beginning of the next iteration.

Since the packet is at least d + 1 and at most 3d � 1 rows away from its des-

tination row, then by Lemma 3.4 it will be an active packet in some tile of size

9d � 9d in one of the tilings in the (j + 1)-st iteration, if it did not move in an in-

tervening horizontal subphase. (It could move vertically during Vertical Balancing

of a horizontal subphase.) The d + 1 and 3d � 1 distance bounds are guaranteed

by Lemma 3.3. Thus, an active packet of the j-th iteration will move in one of

the three vertical subphases in the (j + 1)-st iteration if it was not active in the

horizontal subphases of iteration j. 2

Corollary 3.11 Once a packet becomes active in some subphase, it can occupy

space without moving (i.e., is inactive) in at most seven subphases between sub-

phases in which it is active.

Proof: Follows from Lemma 3.10 (and the corresponding horizontal lemma)

and observing the sequence of subphases in the algorithm. See Figure 3.3. 2

Corollary 3.12 At the end of any vertical subphase (or horizontal subphase),

no more than 17 packets occupy any node.

48

Proof: From Lemma 3.9, at most two active packets from any subphase (ver-

tical or horizontal) can occupy a node at the end of that subphase. From Corol-

lary 3.11, only eight subphases' worth of active packets can occupy a node, plus the

one packet that began in the node. Thus, at most 17 packets end any subphase in

the same node. 2

Lemma 3.13 No more than 2q + 18 = 834 packets ever occupy a node at the

same time.

Proof: The lemma follows from Lemmas 3.6, 3.7, 3.8, 3.9, and Corollary 3.12

by induction on the subphase number. Up to 2q +1 active packets and 17 inactive

packets can occupy a node at the same time.

For the dimension order part of the algorithm (the base case), consider any node

�. By Lemma 3.3, no packet is farther than two rows and two columns from its

destination at the beginning of this part of the algorithm. Thus, the only northeast

bound packets that can enter � are those whose destinations are within two rows

north or two columns east of �. There are nine such destinations and hence nine

such packets because this is a permutation routing problem. This gives a bound of

nine on the queue size during the dimension order part of the algorithm. 2

3.4 Time Analysis

We now present the running time analysis of the algorithm by calculating the

running time of each step of the Vertical Phase.

Lemma 3.14 The March takes no more than qd� 1 steps.

Proof: Assume for the sake of time analysis that during the March, whenever

a node contains two or more packets that need to move northward, it prefers to

send the one that was received from the south on the previous step. Otherwise, it

makes an arbitrary choice. Note that because of this priority scheme in the March,

once a packet starts moving, it continues to move uninterrupted until it reaches the

node in which it will end the March.

49

By Corollary 3.12, at most 17 packets occupy a node at the beginning of the

March. Suppose an active packet p is delayed by t steps. Since each delaying packet

had to occupy a node at or south of p's node in the same column, then there are

at least (t� 16)=17 nodes south of it. The distance p travels in the March, then, is

at most d(27 � 3)� 1� ((t� 16)=17).

The total number of steps before p reaches the node in which it ends the March

is then at most t+d(27�3)�1�((t�16)=17) =

16

17

t�

1

17

+d(27�3). This quantity

is maximized when t is maximized. Since an active packet's destination is at least

three strips away from its node at the beginning of the March, then t can be at

most 17 � d(27 � 3)� 1 = qd� 1. Thus, the total number of steps before p reaches

the node in which it ends the March is at most

16

17

(qd� 1)�

1

17

+

1

17

qd = qd� 1. 2

Lemma 3.15 Sort and Smooth takes no more than 2 � ((d � 1) + qd) steps.

Proof: Consider the even substep of Sort and Smooth. The analysis for the

odd substep is identical.

Let P be the number of active packets in a column of strip i � 3 destined for

strip i, and let P = sd+ r, where s and r are integers and 0 � r < d.

It will take d � 1 steps before the �rst packet moves from strip i � 3 to i� 2.

The northernmost node of strip i� 3 will then send a packet northward each step

until there are no more packets to send, which will take sd + r steps. Finally, the

last packet to enter strip i� 2 will move, uninterrupted, an additional d� r nodes,

if r � 1. If r = 0, then the packet will not have to move any further in strip i� 2.

Thus, the even substep takes (d � 1) + (sd + r) + (d � r) steps if r � 1 and

(d � 1) + (sd + r) steps if r = 0. If P < qd, then sd < qd, and so the substep

takes no more than (d� 1) + (sd+ r) + (d� r) � (d� 1) + (s+ 1)d � (d� 1) + qd

steps. If P = qd, then sd = qd and r = 0, and so the substep takes no more than

(d � 1) + qd steps. 2

Lemma 3.16 Horizontal Balancing takes no more than 3h�4 steps on an h�h

tile.

50

Proof: Any node with at least four packets at the end of step t of Horizontal

Balancing had at least four packets at the beginning of each of steps 1; : : : ; t and

therefore transmitted in steps 1; : : : ; t. This is because if the node had three packets

at some step t

0

< t and four packets at step t, then it received a packet without

sending one, violating the 2-rule.

Let M

t

be the maximum, over all nodes in a single row r, of the number of

packets in the node at the end of step t. There are at most 2h active packets in row

r by Lemma 3.2. Thus, for all time steps t for which M

t

� 4, t +M

t

� 2h, since

the node with M

t

packets also transmitted t other packets in earlier steps. Thus,

M

2h�3

� 3.

Let t

�

be the �rst step for which M

t

�

� 3. Then at the end of step t

�

+ i, the

leftmost i nodes of row r each have no more than two packets, for i = 1; : : : ; h� 1.

This is proved by induction on i.

Basis : i = 1. The leftmost node will have at most two packets after one step,

since it obeys the 2-rule, it started step t

�

with no more than three packets, and it

did not receive any packets.

Induction : Assume the statement is true for i = m � 1. Then the leftmost

m� 1 nodes each have at most two packets. Thus, the m-th node from the left will

not receive a packet and will have at most two packets at the end of step t

�

+m,

since it obeys the 2-rule, and it had no more than three packets at the beginning

of step t

�

+m.

This ends the proof by induction.

Thus, after t

�

+ h � 1 steps, the leftmost h � 1 nodes have no more than two

packets each. Also, we know that the rightmost node never has more than two

packets (Lemma 3.2, where c is the rightmost node). Therefore, after at most

(2h � 3) + (h� 1) = 3h � 4 steps, all nodes have no more than two packets. 2

Lemma 3.17 The dimension order part of the algorithm takes no more than

16 steps.

Proof: Consider a packet p and the set of packets that can delay p in the

dimension order part of the algorithm. We know that each packet is within two

51

rows and two columns of its destination (by Lemma 3.3, where d = 1). There are

at most nine destination nodes other than p's destination node that could have a

northeast bound packet � destined for it such that � takes a path that interferes

(i.e., shares an outlink) with p's path.

More speci�cally, for each East outlink p uses, at most �ve other packets could

also use it, and for each North outlink p uses, at most one other packet could also

use it. Since nodes always transmit a packet along an outlink if there is one that

needs to use that outlink, p need only wait six steps before being transmitted along

an East outlink and two steps before being transmitted along a North outlink. Since

p's destination is at most two rows and two columns away from where it started

the dimension order part of the algorithm, then p will arrive at its destination in

at most 2 � 6 + 2 � 2 = 16 steps. 2

Lemma 3.18 The entire algorithm (including handling the four di�erent types

of packets) takes no more than 4 � 243n steps.

Proof: Let J be the number of iterations in the algorithm.

From Lemmas 3.14, 3.15, 3.16, and 3.17, the time to route just NE packets can

be expressed by the following summation. (The factor of 6 is for the three tilings of

each of the Vertical and Horizontal Phases. There is a factor of only 2 when j = 0.)

The value d

j

is the value of d during the j-th iteration of the algorithm.

T (n) � 2 � ((qd

0

� 1) + 2 � ((d

0

� 1) + qd

0

) + (3n � 4)) +

J

X

j=1

�

6 �

�

(qd

j

� 1) + 2 � ((d

j

� 1) + qd

j

) + (3 �

1

3

j

n� 4)

��

+ 16

= 2 � (3qd

0

+ 2d

0

� 7 + 3n) + 6 �

J

X

j=1

�

3qd

j

+ 2d

j

� 7 + 3 �

1

3

j

n

�

+ 16

< 2 �

�

1307

27

n

�

+ 6 �

J

X

j=1

�

1307

27

1

3

j

n

�

<

2614

27

n+

2614

9

n �

1

X

j=1

�

1

3

j

�

52

The value of the last expression is less than 243n. Since we have four di�erent

kinds of packets, we must multiply the bound by four, obtaining the upper bound

on the running time of the entire algorithm. 2

We now have shown that there is a minimal adaptive algorithm that runs in

O(n) time and uses O(1) size queues in each node:

Theorem 3.19 There exists a deterministic, minimal adaptive routing algo-

rithm that routes any permutation in 972n steps and uses space for at most 834

packets in any node.

Proof: The theorem follows from Lemmas 3.5, 3.13, and 3.18. 2

We can improve the time bound by observing that at the beginning of the j-th

iteration, for j � 1, active packets are within nine strips (that is,

1

3�3

j

n rows) of their

destinations. We can now restate Lemmas 3.14 and 3.15 with q = 17 �(9�3) = 102,

reducing the time for iterations j � 1 by a factor of almost four. The new time

bound is 564n.

Note also that the queue size for iterations j � 1 is never more than 2q + 18 =

222. (Lemmas 3.6, 3.7, and 3.13 need to be restated with the new value of q.)

Chapter 4

EXPERIMENTS ON

DESTINATION-EXCHANGEABLE, NONMINIMAL

ADAPTIVE ALGORITHMS

Generally speaking, it is di�cult to obtain good analytic bounds on adaptive

or randomized packet routing algorithms, because the interactions of packets when

they are queued at a node are more di�cult to predict in advance. Simulating

these algorithms is often the only way to get information for how these algorithms

behave.

However, the key fact about the lower bound of Chapter 2 is that it is construc-

tive: given an algorithm in the class for which the lower bound applies, one can build

a permutation that requires the algorithm
(n

2

=k

2

) time to route. It is plausible

that the worst case permutations constructed for minimal adaptive algorithms are

also bad for nonminimal algorithms. We can explore the di�erence between min-

imal adaptive algorithms and nonminimal adaptive algorithms in the worst case

setting by running permutations constructed in the lower bound (hereafter called

CLT permutations) on nonminimal adaptive algorithms.

Chaotic routing [BFS94, KS91, KS94] is a randomized, nonminimal adaptive

algorithm that is competitive with state-of-the-art oblivious routers. Recall that

a packet is said to be derouted if it makes a move that places it farther from

its destination. In the Chaos algorithm, a node deroutes packets when it becomes

congested, randomly picking which packet to deroute among the packets it contains.

Areas of local congestion dissipate via this di�usion mechanism. More details about

the algorithm will be given in Section 4.1.

The question we wish to answer is: How well does Chaos perform on worst case

permutations? Our method was as follows. We �rst removed all of the derouting

logic from the Chaos simulator, which also removed all sources of randomness in

the algorithm. Call the resulting routing algorithmminimal Chaos. Minimal Chaos

54

+X Input Frame

−X Input Frame

+Y Input Frame

−Y Input Frame

Injection Frame

+X Output Frame

−X Output Frame

+Y Output Frame

−Y Output Frame

Ejection Frame

inc

dec

inc

dec

Queue Slot 1

Queue Slot 2

Queue Slot 3

Queue Slot 4

Queue Slot 5

Queue
Input
Xbar

Main
Xbar

MultiQueue

Figure 4.1: A Chaos router node.

is deterministic, destination-exchangeable, and minimal adaptive. We constructed

the CLT permutation for minimal Chaos and then ran the unaltered Chaos on that

permutation. The di�erence in running times of the two algorithms is a measure

of how e�ective the derouting mechanism is in Chaos. By running the experiments

over a range of mesh sizes, we observed that the running time of Chaos on the CLT

permutations on the n� n mesh appears to be superlinear in n.

This chapter also describes a similar experiment for a randomized, destination-

exchangeable hot potato algorithm. The running time of this algorithm also appears

to be superlinear in n.

4.1 The Chaos Router

Figure 4.1 (from [BS92]) shows the block diagram of a node of the Chaos router.

A more detailed description of its operation can be found elsewhere [Bol93, KS94],

but we briey describe it here.

A node consists of four input frames and four output frames, one for each of the

four neighbors of a node. Input and output frames can be paired by the associated

neighboring nodes. For example, in Figure 4.1, the +X Input Frame would be

paired with the �X Output Frame. Each frame can hold exactly as many words

as there are in one packet. A word can be de�ned as the amount of data that can

55

be transmitted between two adjacent nodes in one cycle. In addition to its four

pairs of input and output frames, each node has a central queue (also called the

multiqueue) that can hold up to �ve packets. There is also a mechanism to inject

packets into a node and to deliver packets whose destination is that node.

The Chaos algorithm operates at each node as follows. The node examines the

output frames in a speci�ed order, and this is repeated inde�nitely. If an output

frame is interesting, the node must make a routing decision. If the multiqueue is

not full, then an output frame is interesting if it does not contain a packet and

either (1) any of the packets in the multiqueue or any of the packets in the input

frames can pro�tably use the output frame (i.e., can move closer to its destination

by crossing the associated wire), or (2) there is a packet in the output frame's

paired input frame, and it has been there for longer than a threshold amount of

time. In case (1), one of the packets is moved into the output frame; packets in the

multiqueue have priority over packets in the input frames. Furthermore, if there

is a packet waiting in the input frame of the same direction as the output frame,

then it is moved into the multiqueue. In case (2), the packet is moved into the

multiqueue.

If the multiqueue is full, then all empty output frames are interesting. In this

case, if there is a packet in the multiqueue that can use the output frame pro�tably,

then it is moved into the output frame. Otherwise, one of the �ve packets in the

multiqueue is chosen randomly and moved into the output frame. As in the case

where the multiqueue was not full, if there is a packet in the output frame's paired

input frame, then it is moved into the multiqueue. No packet from an input frame

is allowed to move directly into an output frame when the multiqueue is full.

The packet that is chosen randomly is derouted, since it could not pro�tably

use the output frame. There is nothing to prevent a packet from being derouted

frequently, resulting in a livelock situation. However, the Chaos algorithm is prob-

abilistically livelock-free: the probability that a packet has not been delivered after

T time tends to zero as T tends to in�nity. (A proof of this can be found in [KS90]

for the hypercube; the proof for the mesh is almost identical [Bol93].)

The Chaos router has a mechanism called virtual cut-through, which allows the

head of a packet to move from frame to frame (either the input frames, the output

56

frames, or the central queue) without waiting for the tail to arrive in the same bu�er

space. The router also has a mechanism called multiqueue bypass, which allows a

packet in an input frame to move directly to an output frame if no packet in the

multiqueue can pro�tably use the output frame and the multiqueue is not full (case

(1) above).

In a lightly loaded situation, a packet can take advantage of both virtual cut-

through and multiqueue bypass. The header of a packet that enters an input frame

at the beginning of cycle t can be in an output frame as early as the beginning of

cycle t+ 3. Since it takes one more cycle for the header to be transmitted to the

next node, a header can reside in a node for as few as four cycles.

In heavily loaded situations, packets can enter an output frame at a rate of one

every s + 3 cycles, where s is the size of a packet in words. The three extra cycles

are needed to decide which packet is allowed to enter the output frame next.

In the experiments we describe in Section 4.2, all packets consisted of 10 words.

Thus, a wire will transmit a packet every 13 cycles in heavily loaded situations, and

a packet header can advance one node every four cycles in lightly loaded situations.

The minimal Chaos router works exactly as the Chaos router does, except that

the derouting mechanism (and hence all sources of randomness in the algorithm) is

disabled. If a packet is in an input frame, its associated output frame is empty, and

the central queue is full, then no packet is derouted to make space. The incoming

packet must wait until space is free in the central queue as packets are moved

pro�tably through the output frames. It is not hard to see that minimal Chaos is

in fact a deterministic, destination-exchangeable, minimal adaptive algorithm.

In a general routing situation, minimal Chaos would not be deadlock-free, but

in the experiments we performed, all packets have destinations south and east of

their starting node (and hence no packet needs to move north or west). Thus, no

cyclic dependencies for resources can exist, and so the network never gets into a

deadlocked situation.

Minimal Chaos is, in a sense, an idealized minimal adaptive algorithm, since

it has no mechanism to prevent deadlock. Mechanisms to prevent deadlock, such

as virtual channels [DA93] or that of Cypher and Gravano [CG92], complicate the

logic needed to implement the algorithm.

57

4.2 The Experiments

We now describe the experiments we performed on the minimal Chaos and Chaos

routers.

4.2.1 Experiment 1

Minimal Chaos falls into the class of algorithms in the lower bound of Chapter 2:

it is deterministic and minimal adaptive, routing decisions are based only on local

information, and the only parts of the destinations of packets used to make routing

decisions are their pro�table directions. In our �rst experiment, we built the CLT

permutation for minimal Chaos. This permutation is constructed by injecting one

packet into each of the nodes in a cn�cn corner of the mesh (where c is a constant

1

);

these packets have destinations in one of several rows or columns just outside the

corner (see Figure 4.2; note that, unlike in Chapter 2, packets start in the northwest

corner of the mesh, rather than the southwest corner). A hot spot develops at the

intersection of the destinations, since all packets in the permutation pass through

that area.

The time it takes the last packet to reach its destination conceptually can be

thought of as the sum of two components: the time it takes for the packet to

escape the congestion at the hot spot and the time it takes the packet to reach

its destination once it has escaped the hot spot. In the lower bound of Chapter 2,

the congestion component on the n � n mesh grows quadratically with n for the

last packet. The other component, what we will call the distance component, grows

linearly with n.

In order to isolate the congestion component, we altered the CLT permutation

so that the last twelve packets to be delivered were ones whose destinations were

at the outer edge of the mesh. Running the altered permutation on minimal Chaos

1

The constant c, about 1/17, was calculated by letting k = 8 and using a �ner analysis than that

of Section 2.3.3, where we choose c = 7=(12 � (k+ 2)). The choice of k = 8 uses the fact that of

the 13 queue positions in a node on the south or east edge of the cn � cn corner, four of them

are never used in the CLT permutation because they would send a packet in a nonpro�table

direction, and one of them is never used during the relevant idn steps of the construction, by

Lemmas 2.7 and 2.8.

58

n

n

cn

cn

destinations

6

�

v

�	

hot spot

Figure 4.2: Generating the CLT permutation.

con�rmed that the last packets to be delivered were near the edge of the mesh.

Thus, we were able to ensure that the distance component grew linearly (roughly

4 � (n � cn), since there is little congestion beyond the hot spot), allowing us to

observe how the congestion component grew.

We then ran the Chaos algorithm on this permutation. The distinction between

the congestion component and the distance component was not as clear in the

Chaos case because there was no guarantee that the last packets to be delivered

in the Chaos experiments were near the edge of the mesh. However, we discovered

empirically that in fact, of the last packets to be delivered, at least one of them

always had a destination near the edge of the mesh.

The results of the experiment are shown in Figure 4.3. The top curve represents

the performance of minimal Chaos on the altered permutation, and the bottom

curve represents the performance of Chaos on the same permutation. As predicted

by the lower bound of Chapter 2, the congestion component of minimal Chaos

grows quadratically with n and dominates the distance component. The results for

Chaos, however, are inconclusive: it is di�cult to estimate what the asymptotic

behavior of the bottom curve of Figure 4.3 is.

The experiment described above began with each node examining the south

direction. In an asynchronous environment, the directions nodes are examining

when packets are injected are unpredictable. We ran the Chaos algorithm on the

CLT permutation with each node initially examining a random direction in order

59

6

-

t

n

0 600 1080 1560

0

16000

32000

48000

64000

r

r

r

r

r

r

r

r

b

b

b

b

b

b

b

b

r

minimal Chaos

b

Chaos

Figure 4.3: Results of Experiment 1. The top curve (�lled circles) represents mini-

mal Chaos, and the bottom curve (open circles) represents Chaos.

to isolate the e�ect of the initial state of the nodes. Chaos delivered the packets

faster in the random initial state experiments than in the \all examining south"

experiments, which is to be expected, since the constructed permutation was built

assuming the \all examining south" initial state. However, in all of the �ve problem

sizes for which we did this \random" experiment, Chaos performed no better than

4% better than the results in Figure 4.3.

The Chaos simulator has an animation package that allows us to observe the

behavior of the algorithms by coloring nodes according to how many packets there

are in them (see Figure 4.4). Using the animations, we observed that beyond some

small distance from the hot spot, packets advance virtually uninterrupted (i.e., at

roughly one node every four cycles). This provided the motivation for Experiment 2,

which concentrated on the congestion component of delivery time.

4.2.2 Experiment 2

The mesh sizes in Experiment 1 were large enough so that the machines we used to

simulate the Chaos algorithm on them had just enough memory to do so. However,

from the animations of Experiment 1, we discovered not only that packets advance

virtually uninterrupted after they escape the hot spot, but also that packets destined

for the same row or column \fall into line," so that, informally speaking, nothing

interesting happens beyond the hot spot. This observation allowed us to simulate

60

Figure 4.4: A snapshot of the 150� 150 northwest corner of the 1560� 1560 mesh.

The snapshot is of the CLT permutation running on Chaos. Dark areas are heavily

congested, whereas white nodes have just one packet in them.

just a small portion of the mesh (i.e., the relevant corner of the mesh) and still

observe the same behavior near the hot spot. Since we were simulating a much

smaller part of the mesh, we had enough memory in our machines to simulate much

larger meshes in Experiment 2 than in Experiment 1. Figure 4.4 shows a typical

state of the network in the 150 � 150 corner of the 1560 � 1560 mesh running the

CLT permutation on Chaos.

Experiment 2, then, is identical to Experiment 1, except that only a 2cn� 2cn

part of the mesh was simulated. When a packet reaches the edge of the submesh, it

immediately is removed from the network. Everything else about the experiment is

the same: we built the CLT permutation on minimal Chaos with southward initial

states and then ran the permutation on Chaos. Figure 4.5 shows the results of

Experiment 2, which were consistent with the results in Experiment 1.

The curve for Chaos closely �ts the curve de�ned by 4cn + 0:439n

1:509

, also

plotted in Figure 4.5. We arrived at this function by �rst subtracting an estimate of

the distance component, 4 � cn, from the observed data. The congestion component

was estimated to be the number of cycles observed minus this estimate of the

61

6

-

t

n

0 600 1560 2520 3480

0

64000

128000

192000

r

r

r

r

r

r

r

r

r

r

r

b

b

b

b

b

b

b

b

b

b

b

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

r

minimal Chaos

b

Chaos

p p p p p

4cn+ 0:439n

1:509

Figure 4.5: Results of Experiment 2. The top curve (�lled circles) represents mini-

mal Chaos, and the bottom curve (open circles) represents Chaos. If there were no

congestion, the data would �t the curve 8cn: for n = 3120, all packets would have

escaped the 2cn� 2cn box in 1456 cycles.

distance component. If the congestion component grows proportionally to n

x

, then

the ratio of the congestion components for two di�erent problem sizes is related to

the ratio of the problem sizes as follows:

congestion component on the m�m mesh

congestion component on the n� n mesh

=

�

m

n

�

x

(4:1)

Using linear regression on the logarithms of the mesh sizes and the estimated

congestion components, we were able to approximate the congestion component by

a polynomial of the form an

x

. The resulting curve was 4cn+0:439n

1:509

. The mean

squared error

2

of the curve to the data is 1,096,855. If we perform linear regression

on the data (not on the logarithms of the data), we obtain the curve 30:6n�16308,

whose mean squared error is 9,855,884. When n = 0, this curve evaluates to a

negative number, corresponding to a negative running time. Since the polynomial

of higher degree �ts the data better than the linear curve and the linear curve does

not make sense at small values of n, we can conclude that it is unlikely that the

algorithm's behavior is linear in n.

2

If there are p data points (x

1

; y

1

); : : : ; (x

p

; y

p

), then the mean squared error of a curve f(x) to

those data points is

P

p

i=1

(y

i

� f(x

i

))

2

=p.

62

As in Experiment 1, we ran Chaos on the CLT permutation with each node

in a random initial state. For all of the six mesh sizes on which we did the ex-

periment with random initial states, Chaos performed no better than 10% better

than the results in Figure 4.5. It is not surprising that the percentage di�erence is

greater than in Experiment 1, since the distance component, which is not a�ected

by random initial state, is much greater in Experiment 1 than in Experiment 2.

The CLT permutation arranges packets so that in minimal Chaos, packets des-

tined for, say, the fourth row south of the hot spot are delayed by packets destined

for the third, second, and �rst rows south of the hot spot (see Lemma 2.1). Similarly,

packets destined for the �fth row are delayed by the fourth, third, etc. However,

when we run Chaos on these permutations, the animation reveals that packets des-

tined for the �rst row south of the hot spot are delayed by the second, third, etc.

rows of packets. That is, although the worst case permutation for minimal Chaos

causes poor behavior in Chaos, it does not do so in the same way as in the lower

bound of Chapter 2.

Tables 4.1 and 4.2 in Section 4.5 give all of the data of the experiments in this

chapter (except for the random initial state experiments).

4.2.3 Experiment 3

The results of Experiments 1 and 2 suggest that introducing random and nonmin-

imal behavior into the routing algorithm allows a packet to move into its row or

column before it would in the lower bound result of Chapter 2. Since a node using

the Chaos algorithm introduces both randomness and nonminimality only when its

central queue is full, it is plausible that reducing the queue size will increase the

amount of randomness and nonminimality in the algorithm and thus deliver the

packets in the CLT permutation more quickly.

Experiment 3 tested this hypothesis by reducing the central queue size of the

nodes to two packets. The method for building the permutation and computing

the curve that closely �ts the data was the same as in Experiment 2. We used the

same value of cn as in Experiment 2 in order to allow a direct comparison with the

results of Experiment 2. Note that the result of Chapter 2 allows us to pick a larger

value of c for this k, since the multiqueue is smaller. The results of Experiment 3

63

6

-

t

n

0 600 1560 2520 3480

0

64000

128000

192000

r

r

r

r

r

r

r

b

b

b

b

b

b

b

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

r

minimal Chaos

b

Chaos

p p p p p

4cn+ 0:0903n

1:742

Figure 4.6: Results of Experiment 3 (multiqueue size = 2). The top curve (�lled

circles) represents minimal Chaos, and the bottom curve (open circles) represents

Chaos. As in Experiment 2, if there were no congestion, the data would �t the

curve 8cn: for n = 3120, all packets would have escaped the 2cn� 2cn box in 1456

cycles.

are shown in Figure 4.6.

As in Experiment 2, the time needed for Chaos to move all packets outside the

2cn � 2cn corner can be closely approximated by 4cn + 0:0903n

1:742

. The mean

squared error of this curve to the data is 369,154. If we perform linear regression on

the data (not on the logarithms of the data), then we obtain the curve 40:5n�28724.

The mean squared error of this linear curve to the data is 2,388,953. These results

are evidence that when the central queue size was �ve, the randomness of the Chaos

algorithm was more e�ective.

As in Experiments 1 and 2, we ran the CLT permutations with each node in a

random initial state. Chaos performed no better than 3% better than the results of

Figure 4.6. This di�erence is small because the algorithm is using more randomness

than in Experiments 1 and 2, so the initial random state has less impact on delivery

time than in the previous experiments.

64

4.3 A Greedy Hot Potato Algorithm

Hot potato or deection routing [BNRST93, BDHS93, FR92, Haj91, KKR93], where

a node must send on the next step any packets it receives in the current step, o�ers

the possibility of simple logic and simple algorithms. Greedy hot potato routing

[BDHS93], where packets use pro�table outlinks whenever they are available, might

be a nonminimal adaptive solution to route arbitrary permutations in time linear

in n on the n � n mesh. Makedon and Symvonis [MS93] give an algorithm that

is based on odd-even transposition and behaves much like a hot potato algorithm.

Their algorithm uses a small amount of bu�er space and is simple.

In hot potato algorithms, packets are deected immediately when there is con-

gestion, and so it is plausible that the packets of the CLT permutation will be

spread out more quickly. Experiment 4 is a test of this hypothesis on a random-

ized hot potato algorithm that greedily assigns packets to outlinks based only on

the pro�table directions of the packets. At each step, each node randomly chooses

whether to consider outlinks in the order North, South, East, West, or West, East,

South, North. For each outlink considered, a randomly chosen packet that can use

the outlink pro�tably, if any, is scheduled to that outlink. After this greedy schedul-

ing, any unscheduled packets are assigned to available outlinks in an arbitrary way.

Let us call our algorithm GreedyHP. GreedyHP is destination-exchangeable, and

it is intended to approximate the hot potato algorithm (suggested by Borodin and

Hopcroft [BH85]) that for each node randomly picks a scheduling of the outlinks

that maximizes the number of packets that advance. This latter algorithm is cur-

rently impractical because computing a random maximal matching is expensive,

either in time or in hardware complexity.

Unlike the Chaos algorithm, GreedyHP has no obvious deterministic, minimal

counterpart. In order to construct a permutation like the CLT permutation, we ran

GreedyHP using one seed of our pseudorandom number generator with all packets

destined for the node in the southeast corner of the 2cn�2cn box. As packets enter

the rows (columns) just outside the cn� cn box, we altered their destinations to be

the node at the east (south, respectively) edge of that row (column, respectively).

For example, the �rst (1�c)n packets to enter column cn+1 have as their destination

the node in column cn+ 1 and row 2cn.

65

6

-

t

n

0 600 1560 2520 3480

0

2000

4000

6000

b

b

b

b

b

b

b

b

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

b

GreedyHP

p p p p p

cn+ 0:00911n

1:674

Figure 4.7: Results of Experiment 4. The curve (open circles) represents GreedyHP.

If there were no congestion, the data would �t the curve 2cn: for n = 3120, all

packets would have escaped the 2cn � 2cn box in 384 cycles.

Since this permutation is constructed given a particular pseudorandom number

sequence, we then ran GreedyHP on the permutation with three other seeds to the

generator. The results of these three runs were averaged and �tted to a curve of

the form cn + an

x

(see Figure 4.7). The distance component was estimated to be

cn. (The packet routing simulator used in this experiment was di�erent from the

Chaos simulator and used 1-word packets.) We subtracted cn from the value of the

observed data and �tted it to a curve of the form an

x

, as we did in Experiment 2.

The resulting curve is cn + 0:0911n

1:674

. The mean squared error of the curve to

the data is 1249. A linear curve �t of the data yields 2:45n � 1734, whose mean

squared error is 10137.

From the results of this experiment, we can conclude that although random-

ness and nonminimality help destination-exchangeable algorithms \break" the lower

bound of Chapter 2 (at least on these constructed permutations), they still exhibit

behavior that is superlinear in n. Observing the animations of GreedyHP, we see

that although packets are spread out by smaller queues, packets that deviate from

the destination row or column immediately try to return to that row or column.

That is, packets still interfere with other packets at or near the hot spot.

66

4.4 Summary and Discussion

Our experiments in this chapter have examined the performance of the Chaos al-

gorithm and a plausibly practical hot potato algorithm. Both algorithms appear

to have asymptotic running times that are superlinear in n. The experiments pre-

sented here do not preclude the existence of permutations that cause quadratic

behavior for Chaos or GreedyHP, although this seems unlikely to us after observing

the way these algorithms route packets.

The exponents of n that we calculated in Experiments 2, 3, and 4 should not be

interpreted as exact characterizations of the asymptotic behavior of the algorithms

for the following reasons. The calculations of the exponent were made on the

assumption that the polynomial that approximates the observed data is of the

form an

x

, which ignores the possibility of lower order terms that might inuence

the running times. For example, in Experiment 2, if we �t a curve of the form an

x

to the �rst six data points, we get 0:548n

1:478

, whereas if we �t to the last six data

points, we get 0:157n

1:641

. This suggests that there are lower order terms, and so

the exponents may be higher than the ones we computed. Another possibility is

that the mesh sizes that we used were too small for the algorithms to exhibit their

asymptotic behavior.

Another reason that the curves computed for Experiments 3 and 4 may be inac-

curate is that the numbers of packets used in those experiments were chosen to be

those of Experiment 2 to allow direct comparison. However, for Experiment 3, the

lower bound of Chapter 2 says that we can choose c to be much greater. For Exper-

iment 4, we have no theorem that prescribes how to construct a bad permutation.

In short, the three experiments at best are guesses for how to build a family of bad

permutations for these nonminimal adaptive algorithms, and direct comparison of

the computed curves (e.g., making a conclusion about the e�ect of queue size based

on the results of Experiments 2 and 3) is probably unsound.

However, we know that for both Chaos and GreedyHP, packets interfere with

each other near the hot spot, and so it is plausible that if we were to continue the

experiments on larger mesh sizes, then we would observe superlinear behavior, and

possibly behavior of the curves computed in Experiments 2, 3, and 4 (or worse).

67

4.5 Experimental Data

This section contains all of the data of the Experiments 1 through 4 (except for the

random initial state experiments).

Table 4.1: Data for Experiments 1 and 2. The di�erence in the observed data from

Experiment 1 and Experiment 2 on the same problem sizes is due to the di�erence

in the distance components of the two experiments. It is approximately 4(n � cn)

cycles in Experiment 1, whereas it is approximately 4cn cycles in Experiment 2.

Experiment 1 Experiment 2

n cn min. Chaos Chaos min. Chaos Chaos

600 35 10529 9382 8318 7075

720 42 14382 11699

840 49 18815 14423 15765 11588

960 56 24091 17786

1080 63 29792 21015 25505 17112

1200 70 35740 24227

1320 77 42554 27152 37626 22529

1560 91 58262 36068 52430 29815

1800 105 68696 36051

2040 119 88162 43260

2280 133 109210 51428

2520 147 133277 60357

2760 161 158961 69456

3120 182 202982 86537

68

Table 4.2: Data for Experiments 3 and 4. The data for Experiment 4 is the average

of three separate runs.

Experiment 3 Experiment 4

n cn min. Chaos Chaos GreedyHP

1080 63 26655 17666 1141

1320 77 39538 24340 1597

1560 91 55108 34285 2130

1800 105 72711 42322 2640

2040 119 93424 53869 3343

2280 133 116026 63844 3893

2520 147 141706 76088 4658

2760 161 5331

Chapter 5

CONCLUSIONS

Our search for a simple routing algorithm on the n � n mesh that routes ar-

bitrary permutations in O(n) time has led to the discovery that no such \simple"

(i.e., deterministic, destination-exchangeable, and minimal adaptive with bounded

queues) algorithm exists. That is, the results of Chapter 2 tell us that if we want to

route arbitrary permutations in o(n

2

=k

2

)+O(n) time on the n�nmesh with queues

of size at most k, then our algorithm must either: (1) incorporate the destination

addresses (rather than just pro�table outlinks) of packets in routing decisions, (2)

use a routing algorithm that allows packets to take paths other than their minimal

ones, or (3) incorporate randomness in routing decisions.

An immediate open problem is to show that there is a matching upper bound

to the main result of Chapter 2:

Open Problem 5.1 Show that there exists a deterministic, destination-

exchangeable, minimal adaptive algorithm on the n� n mesh with queues of size k

that routes arbitrary permutations in O((n

2

=k

2

) + n) steps.

The result of Chapter 3 tells us that if we do allow the full destination addresses

of packets to be used in routing decisions, then we can �nd an algorithm (albeit

complicated and probably impractical) that routes arbitrary permutations in O(n)

time.

The experiments of Chapter 4 suggest that two randomized, destination-

exchangeable, nonminimal adaptive algorithms (one of them built into a routing

chip, the other a plausibly practical algorithm) do not have behavior linear in n.

Conjecture 5.2 There is no destination-exchangeable algorithm with bounded

queues that can route arbitrary permutations in O(n) time (expected, for randomized

algorithms) on the n� n mesh.

70

Krizanc, Rajasekaran, and Tsantilas [KRT88] give an algorithm that is almost

a counterexample to the conjecture above. Their algorithm is a simple variant of

Valiant and Brebner's randomized routing result on the hypercube [VB81], where

a packet is �rst sent to a random intermediate node using the dimension order

algorithm, and then sent from the intermediate node to its destination. In the

Krizanc et al. result, a packet is sent to a random nearby node in the same column

as its source and then is sent from that node to its destination via the dimension

order algorithm. They prove an O(n) running time with queues of size O(log n)

with high probability. However, their result does not contradict the conjecture,

because they allow unbounded queues. We know that if we have bounded queues,

congestion builds in ways qualitatively di�erent from congestion in networks with

unbounded queues. (For example, the dimension order algorithm with the farthest-

�rst outqueue policy and unbounded queues routes arbitrary permutations in 2n�2

steps, whereas with bounded queues, it takes
(n

2

=k) steps.)

The results of Chapter 4 suggest that for practical routers, there is a connection

between the worst case permutations for minimal adaptive algorithms and non-

minimal adaptive algorithms. We emphasize \practical" because the algorithms

must be simple, so that they can be built with a small amount of hardware. In

particular, these algorithms will have to make local decisions. In lightly-loaded

situations, a practical nonminimal adaptive algorithm will behave like a minimal

adaptive algorithm, because in such situations there is no reason to deroute. Given

that assumption, then only when congestion is heavy can a nonminimal algorithm

behave di�erently from a minimal algorithm. But by then, it perhaps is too late to

try to relieve the congestion.

Open Problem 5.3 Show that there is no deterministic routing algorithm on

the n � n mesh with constant sized queues that routes arbitrary permutations in

O(n) time and is practical. By a \practical" algorithm, we mean one that uses local

decisions, that extends to the asynchronous and dynamic settings, whose hardware

implementation would be small and fast, and whose constant in the running time is

small.

On the other hand, we may already know of practical algorithms that can route

arbitrary permutations in O(n) time. For example, despite the evidence in Chap-

71

ter 4, the Chaos algorithm or GreedyHP may be such an algorithm. Currently, it

is di�cult to analyze practical or plausibly practical nonminimal algorithms such

as these.

Another possible avenue for future research is to devise algorithms and prove

analytic bounds on the time it takes to deliver packets from a di�erent input class.

For example, it may be that from a practical point of view we are not interested

in all permutations, but in some subset of permutations that is a more realistic

benchmark (i.e., a subset that approximates inputs that arise in practice). An even

more di�cult open problem is to de�ne an appropriate metric for the dynamic

routing scenario, where packets are continuously injected into the network, and

devise algorithms. Once again, we may already know of such algorithms but have

not yet been able to prove good upper bounds on their performance.

If we believe that in the future the routing algorithm of a multiprocessor system

will play a more signi�cant role in its performance, then answering these questions

will be one of the �rst steps to realizing the full potential of such systems.

Bibliography

[BAS94] I. Ben-Aroya and A. Schuster. A CLT-type lower bound for hot-potato

permutation routing. Technical Report LPCR #9405, CS Department,

Technion, May 1994.

[Bat80] K. E. Batcher. Design of a massively parallel processor. IEEE Trans-

actions on Computers, 29(9):836{840, September 1980.

[BC91] J. T. Brassil and R. L. Cruz. Bounds on maximum delay in networks

with deection routing. In 29th Annual Allerton Conference on Com-

munication, Control, and Computing, pages 571{580, 1991.

[BDHS93] A. Ben-Dor, S. Halevi, and A. Schuster. On greedy hot-potatoe rout-

ing. Technical Report PCL Report #9204, CS Department, Technion,

January 1993.

[BFS94] K. Bolding, M. Fulgham, and L. Snyder. The case for chaotic adap-

tive routing. Technical Report TR 94-02-04, University of Washington

Department of Computer Science and Engineering, March 1994.

[BH85] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on paral-

lel models of computation. Journal of Computer and System Sciences,

30:130{145, 1985.

[BNRST93] A. Bar-Noy, P. Raghavan, B. Schieber, and H. Tamaki. Fast deection

routing for packets and worms. In Proceedings of the Twelfth Annual

ACM Symposium on Principles of Distributed Computing, pages 75{

86, 1993.

[Bol93] K. Bolding. Chaotic Routing: Design and Implementation of an Adap-

tive Multicomputer Network Router. PhD thesis, University of Wash-

ington, Seattle, WA, July 1993.

73

[BRSU93] A. Borodin, P. Raghavan, B. Schieber, and E. Upfal. How much can

hardware help routing? In Proceedings of the Twenty Fifth Annual

ACM Symposium on Theory of Computing, pages 573{582, May 1993.

[BS92] K. Bolding and L. Snyder. Mesh and torus chaotic routing. In Ad-

vanced Research in VLSI and Parallel Systems: Proceedings of the 1992

Brown/MIT Conference, pages 333{347, March 1992.

[CG92] R. Cypher and L. Gravano. Adaptive, deadlock-free packet routing in

torus networks with minimal storage. In 1992 International Conference

on Parallel Processing, pages 204{211, 1992.

[Chi] D. D. Chinn. The performance of minimal adaptive algorithms on

worst case permutations. To appear in Parallel Computer Routing and

Communication Workshop.

[CK92] A. Chien and J. H. Kim. Planar-adaptive routing: Low-cost adaptive

networks for multiprocessors. In Proceedings of the 19th International

Symposium on Computer Architecture, pages 268{277, 1992.

[CLT94] D. D. Chinn, T. Leighton, and M. Tompa. Minimal adaptive routing

on the mesh with bounded queue size. In Proceedings of the 1994 ACM

Symposium on Parallel Algorithms and Architectures, Cape May, NJ,

June 1994.

[DA93] W. Dally and H. Aoki. Deadlock-free adaptive routing in multicom-

puter networks using virtual channels. IEEE Transactions on Parallel

and Distributed Systems, 4(4):466{75, April 1993.

[Fel93] E. Felten. Protocol Compilation: High-Performance Communication

for Parallel Programs. PhD thesis, University of Washington, Seattle,

WA, September 1993.

[FR92] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In

Proceedings 33rd Annual Symposium on Foundations of Computer Sci-

ence, pages 553{562, Pittsburgh, PA, October 1992.

74

[Haj91] B. Hajek. Bounds for evacuation time for deection routing. Dis-

tributed Computing, 5:1{6, 1991.

[HS90] T. Han and D. Stanat. \Move and smooth" routing algorithms on

mesh-connected computers. In 28th Annual Allerton Conference on

Communication, Control, and Computing, pages 236{245, 1990.

[Int91] Intel. A Touchstone DELTA system description. Technical report,

Intel, Portland, OR, 1991.

[KKR93] C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on pro-

cessor arrays. In Proceedings of the 1993 ACM Symposium on Parallel

Algorithms and Architectures, pages 273{282, June 1993.

[KKT90] C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for obliv-

ious routing in the hypercube. In Proceedings of the 1990 ACM Sym-

posium on Parallel Algorithms and Architectures, pages 31{36, June

1990.

[Kri91] D. Krizanc. Oblivious routing with limited bu�er capacity. Journal of

Computer and System Sciences, 43:317{327, 1991.

[KRT88] D. Krizanc, S. Rajasekaran, and T. Tsantilas. Optimal routing for

mesh-connected processor arrays. In 3rd Aegean Workshop on Com-

puting (AWOC), volume 319 of Lecture Notes in Computer Science,

pages 411{422. Springer-Verlag, 1988.

[KS90] S. Konstantinidou and L. Snyder. The chaos router: A practical ap-

plication of randomization in network routing. In Proceedings of the

1990 ACM Symposium on Parallel Algorithms and Architectures, pages

21{30, June 1990.

[KS91] S. Konstantinidou and L. Snyder. Chaos router: Architecture and

performance. In Proceedings of the 18th International Symposium on

Computer Architecture, pages 212{221, May 1991.

75

[KS94] S. Konstantinidou and L. Snyder. The Chaos Router. IEEE Transac-

tions on Computers, 43(12):1386{1397, December 1994.

[Kun88] M. Kunde. Routing and sorting on mesh-connected arrays. In 3rd

Aegean Workshop on Computing (AWOC), volume 319 of Lecture

Notes in Computer Science, pages 423{433. Springer-Verlag, 1988.

[Lei] T. Leighton. Personal communication.

[Lei90] T. Leighton. Average case analysis of greedy routing algorithms on

arrays. In Proceedings of the 1990 ACM Symposium on Parallel Algo-

rithms and Architectures, pages 2{10, July 1990.

[Lei92] F. Thomson Leighton. Introduction to Parallel Algorithms and Archi-

tectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[LLJ

+

92] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and

J. Hennessy. The DASH prototype: Implementation and performance.

In Proc. 19th Annual Symposium on Computer Architecture, pages 92{

103, June 1992.

[LMT89] T. Leighton, F. Makedon, and I. Tollis. A 2n � 2 step algorithm for

routing in an n� n array with constant size queues. In Proceedings of

the 1989 ACM Symposium on Parallel Algorithms and Architectures,

pages 328{335, July 1989.

[MP-87] MP-1 family data-parallel computers. Technical report, MasPar Com-

puter Corporation, 749 North Mary Ave., Sunnyvale, CA., 1987.

[MS92] B. Maggs and R. Sitaraman. Simple algorithms for routing on buttery

networks with bounded queues. In Proceedings of the Twenty Fourth

Annual ACM Symposium on Theory of Computing, pages 150{161,

May 1992.

76

[MS93] F. Makedon and A. Symvonis. An e�cient hueristic for permutation on

meshes with low bu�er requirements. IEEE Transactions on Parallel

and Distributed Systems, 4(3):270{6, March 1993.

[ND90] M. Noakes and W. Dally. System design of the J-Machine. In Proceed-

ings of the 6th MIT Conference on Advanced Research in VLSI, pages

179{194, 1990.

[NS89] J. Y. Ngai and C. L. Seitz. A framework for adaptive routing in mul-

ticomputer networks. In Proceedings of the Symposium of Parallel

Algorithms and Architectures, pages 1{9. ACM, 1989.

[NS91] J. Y. Ngai and C. L. Seitz. A framework for adaptive routing in multi-

computer networks. Computer Architecture News, 19(1):6{14, March

1991.

[NS92] I. Newman and A. Schuster. Hot-potato algorithms for permutation

routing. Technical Report PCL Report #9201, CS Department, Tech-

nion, November 1992.

[Ran87] A. Ranade. Equivalence of message scheduling algorithms for parallel

communication. Technical Report YALEU/DCS/TR-511, Department

of Computer Science, Yale University, New Haven, CT, 1987.

[RO92] S. Rajasekaran and R. Overholt. Constant queue routing on a mesh.

Journal of Parallel and Distributed Computing, 15(2):160{166, June

1992.

[SBSS93] C. Sietz, N. Boden, J. Seizovic, and W. Su. The design of the Cal-

tech Mosaic C multicomputer. In Proceedings of the Symposium on

Integrated Systems, pages 1{22, 1993.

[SWG92] J. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel

Applications for Shared Memory. Computer Architecture News, pages

5{44, March 1992.

77

[VB81] L. G. Valiant and G. J. Brebner. Universal schemes for parallel com-

munication. In Conference Proceedings of the Thirteenth Annual ACM

Symposium on Theory of Computing, pages 263{277, Milwaukee, WI,

May 1981.

Vita

Donald Dotway Chinn was born in New Brunswick, New Jersey in 1967. He

received his Bachelor of Arts in Computer Science with High Distinction from the

University of California, Berkeley in May, 1988. He received his Master of Science

in Computer Science in August, 1991, and his Doctor of Philosophy in Computer

Science in March, 1995, both at the University of Washington.

