
Cost-E�ective Data-Parallel

Load Balancing

James P. Ahrens and Charles D. Hansen

1

Department of Computer Science and Engineering

University of Washington

Technical Report 95{04{02

April 1995

1

Advanced Computing Laboratory, Los Alamos National Laboratory, Los Alamos 87545



Cost-E�ective Data-Parallel Load Balancing

James P. Ahrens Charles D. Hansen

Dept. of Computer Science & Engineering Advanced Computing Laboratory

University of Washington Los Alamos National Laboratory

Seattle, Washington 98195 Los Alamos, New Mexico 87545

Abstract

Load balancing algorithms improve a program's performance on unbalanced datasets, but

can degrade performance on balanced datasets, because unnecessary load redistributions occur.

This paper presents a cost-e�ective data-parallel load balancing algorithm which performs load

redistributions only when the possible savings outweigh the redistribution costs. Experiments

with a data-parallel polygon renderer show a performance improvement of up to a factor of

33 on unbalanced datasets and a maximum performance loss of only 27 percent on balanced

datasets when using this algorithm.

1



1 Introduction

Load balancing algorithms provide the basis for e�cient parallel solutions to many important

computational problems including the n-body problem, polygon and volume rendering, and

optimization problems. The completion time of these parallel solutions depends on the com-

pletion time of the processor with the maximum computational workload. Load balancing

algorithms attempt to distribute the computational workload evenly among all processors.

This reduces the maximum workload on any processor and thus reduces the completion time

of the parallel solutions.

In this paper, a data-parallel load balancing algorithm is described. The algorithm bal-

ances �ne-grained computations within a data-parallel program. The workload balanced by

the algorithm is not known until execution time, but once known does not change dynamically

during the computation. The algorithm can be further characterized by when it balances; it

balances only when it is cost-e�ective. A prediction of the load balancing costs and measure-

ment of the possible savings are used to make this decision. A major advantage of utilizing

a cost-e�ective load balancing algorithm is that the execution time of a load-balanced version

of a program is never signi�cantly worse than the execution time of the original version of the

same program. This result depends only on never underestimating the costs of load balancing.

Wikstrom et al. [WPG91] use a computational model and experimental results to present

evidence that using a load balancing algorithm does not always improve a program's perfor-

mance. The authors show the execution time of a load-balanced version of a program can

substantially exceed the execution time of the original version of the same program. This is

because the costs of doing the balancing can exceed the savings achieved by the balancing. The

authors identify concerns which trouble the users of most load balancing algorithms: Should

this load balancing algorithm be used? Do the performance bene�ts of using the algorithm

outweigh the performance degradations? An important contribution of this paper is the pre-

sentation of a load balancing algorithm which alleviates these concerns because the algorithm

does not signi�cantly degrade performance on any dataset.

Other researchers have studied the problem of deciding when to balance with di�erent

workloads and problem types. Nicol and Townsend [NT89] describe a performance model

for parallel computations which assigns processors di�erent partitions of an irregular grid.

The model utilizes performance measurements of portions of the parallel computation and

knowledge about how the grid structure will change over time to calculate an optimal schedule

of grid repartitionings. One disadvantage of this scheme is that the computation of the schedule

adds to execution time of the grid calculation. Nicol and Reynolds [NJ90] describe a load

2



balancing algorithm which is targeted for data-parallel applications with uncertain behavior,

such as, the addition of work during execution and uncertain program completion time. The

algorithm uses a probabilistic model of the cost of delay and the bene�ts of balancing to

decide when to run a single balancing operation. The target applications of our load balancing

algorithm have more deterministic behavior and our algorithm takes advantage of this fact,

for example, it can run multiple balancing operations if they are needed.

Another key component of a load balancing algorithm is a redistribution algorithm which

e�ciently balances the workload. Biagioni and Prins [BP90] describe a data-parallel redis-

tribution algorithm for grid-based computations which preserves the spatial locality of the

workload it balances. Nicol [Nic92] describes a data-parallel redistribution algorithm which

minimizes the volume of data transferred to achieve an optimal balance. These e�orts are of

interest because they describe data-parallel algorithms for redistributing load. In this paper, a

data-parallel redistribution algorithm is described which balances a workload in which multiple

independent tasks are associated with the same read-only problem data. Also, each processor

stores only a minimal �xed amount of problem data. This reduces the memory space needed

by the program during execution. The redistribution algorithm distributes a workload with

these characteristics in a near-optimal manner. These characteristics are di�erent from the

characteristics of workloads manipulated by the other data-parallel redistribution algorithms.

In Section 2, the type of programs and workloads the load balancing algorithm works with

is presented along with a high-level description of the load balancing algorithm. Section 2 also

presents when and how load balancing occurs. Section 3, describes a data-parallel polygon

rendering program to which the load balancing algorithm has been applied. Section 4 presents

a performance study of the original and a load-balanced version of the rendering program.

Section 5 presents conclusions.

2 The Load Balancing Algorithm

The load balancing algorithm uses a data-parallel programming model. In a data-parallel

programming model, instructions are applied in parallel to each element of a data array. For

the following discussion, we assume a virtual processing facility provides the abstraction of

having one virtual processor assigned to each data element of a parallel array.

The load balancing algorithm can be applied to programs which compute the solutions of

a collection of independent tasks. The tasks are independent in time; they do not have to

execute in any speci�c order and there are no data dependencies between the tasks. Multiple

tasks can share the same read-only problem data. An example of how multiple tasks share the

3



same problem data occurs in the polygon rendering application. Multiple tasks are used to

process a row of pixels. Each task computes the solution for one pixel in the row. The pixel's

location is computed by adding an o�set to the row's initial pixel location. The initial pixel

location is stored as part of the problem data.

In a prototypical program, each processor is assigned problem data and its associated

tasks. A processor's workload is the number of tasks associated with its assigned problem

data. Values in the range 1::number of tasks are used as indices to refer to these tasks. A

task's index is used to calculate the speci�c problem data on which the task computes. In the

pixel processing example above, the task index is used as an o�set; task i processes the ith pixel

location. The problem data and workload are stored in parallel arrays named problem data

and workload.

In order to process the tasks, the program increments a global task index counter, index,

which starts at 1 and ends at the maximum workload of all the processors. During each

iteration of the global index, each processor checks if they have a task with that index, and if

they do, they compute a solution for the task. The instructions used to compute the solution of

a multiple tasks in parallel are called the solution phase. A phase is a conceptual grouping of

instructions in a parallel program which performs a useful activity. A pseudo-code description

of a prototypical program is shown in Figure 1. Note that the WHERE statement activates

processors for which the test is true and idles processors elsewhere.

<initial instructions>

forloop index = 1, MAX(workload)

WHERE (index <= workload)

Solution Phase(index)

ENDWHERE

endloop

<further instructions>

Figure 1: A prototypical program to be augmented with the load balancing algorithm

As the computation proceeds, more and more processors complete the processing of their

tasks and remain idle for the rest of the loop iterations. These processors are then termed idle

processors. Processors which have tasks to complete are termed active processors. Processors

are idled because all processors must process tasks with the same task index at the same time.

To improve the program's performance, the program is modi�ed so that tasks with di�erent

4



indices can be processed at the same time. The load balancing algorithm then distributes tasks

from heavily loaded active processors to idle processors and tries to balance the workload

among all processors.

How a program is augmented with the load balancing algorithm is now described. The load

balancing algorithm consists of three distinct phases: the information gathering phase,

the decision phase which decides when load balancing should occur and the redistribution

phase which distributes tasks from active processors to idle processors. The basic iteration

structure of the program is preserved. At the beginning of each iteration, the information

gathering phase is executed. Then the decision phase is run, utilizing the gathered information

to decide if balancing should occur during this iteration. If the decision is to balance, the

redistribution phase is run, moving problem data from active to idle processors and assigning

these idle processors new task indices to process. When tasks are distributed, the task indices

originally assigned to an active processor can be assigned to multiple idle processors. Thus,

di�erent processors can work on di�erent task indices during the same iteration. In the pixel

processing example, this could mean, for example, that the �rst 3 pixels of one processor's row

are processed along with the �rst 5 pixels of another processor's row. A parallel array, named

parallel index, is used to keep track of the current task index computed by each processor. A

pseudo-code description of a prototypical load-balanced program is shown in Figure 2.

<initial instructions>

loop

Information Gather Phase

IF (Decision Phase returns TRUE) THEN

Redistribution Phase

ENDIF

WHERE (workload > 0)

Solution Phase(parallel_index)

workload = workload - 1

ENDWHERE

until (All elements of workload = 0)

<further instructions>

Figure 2: A prototypical load-balanced program

Note that the execution time of both the original and load-balanced prototypical programs

5



presented in Figures 1 and 2 is proportional to the maximum number of tasks assigned to

any processor. The major di�erence between the programs, is the load-balanced program can

reduce the maximum number of tasks on any processor by redistributing the workload.

2.1 When to load balance

The information gathering phase creates information which is used by the decision phase to

decide if redistributing load will be cost-e�ective. This information includes a trial workload,

named new workload. This new workload contains a more balanced distribution of tasks on

the processors. From this new workload a measure of the possible savings is calculated. The

new workload has a smaller maximum number of tasks on any processor than the original

workload. Thus, the savings are calculated as the maximum number of tasks on any processor

in the original workload minus the maximum number of tasks on any processor in the new

workload, as shown in the equation below:

The savings in iterations = MAX(workload)�MAX(new workload)

The savings are measured in terms of the number of future iterations of the loop which will

execute the solution phase. The maximum number of tasks in a workload dictates the number

of iterations that must be executed to process these tasks. If the new distribution is used then

these \saved" iterations will not have to be executed.

The costs of the load balancing algorithm are also measured. Since the savings are measured

in terms of the number of iterations, the costs are converted to this unit as well. The costs of

the load balancing algorithm are incurred during the execution of the information gathering

phase and redistribution phase. In order to quantify the costs of these phases, during each

iteration their execution times are measured. The execution time of the solution phase during

each iteration is also measured. time

info

, time

redis

and time

soln

are the execution times of

one execution of the information gathering, redistribution and solution phases. An estimate of

the load balancing cost in terms of number of iterations can then be calculated by multiplying

the sum of the execution time of the information gathering and redistribution phases by the

inverse of the execution time of the solution phase, as shown in the equation below:

The costs in iterations = (time

info

+ time

redis

)�

1 iteration

time

soln

In order to provide a guarantee that the load balancing algorithm will always make cost-

e�ective load balancing decisions, this cost measure must not be underestimated. Initial runs

6



of the load-balanced program on various datasets are used to compute an overestimated cost

measurement. The longest information gathering time of any iteration and redistribution time

of any iteration are then divided by the shortest solution time of any iteration for each dataset.

The largest of the resulting cost measures provides an estimate of an upper bound on the load

balancing cost in terms of iterations. To this initial estimate a constant is added to assure the

cost measure will always be an overestimate. This overestimate is then used in all future runs

of the load balanced program.

Utilizing the overestimated costs and the calculated savings a cost-e�ective load balancing

decision is then made by the decision phase. If the savings are greater than the costs then the

redistribution phase is executed. Since each load balancing decision results in a cost-e�ective

iteration, the sum of these decisions results in a cost-e�ective program execution.

2.2 Reducing the variability of the cost measurement

It is important to reduce the variability of the execution time of the load balancing and solution

phases. If there is a signi�cant amount of variability, the cost overestimate will be extremely

large and this can prohibit load balancing from occurring.

In order to reduce the variability of the load balancing algorithm, it uses communication

routines which have predictable execution whenever possible. Two types of communication

routines are involved: general send and scan routines.

A general send routine transfers data elements from one set of array locations to a di�erent

set of array locations. The execution time of a send routine depends on the number of data

elements that are transferred and the locations they are transferred to. The redistribution

phase utilizes a general send to redistribute the workload and problem data. It minimizes the

use of the general send by transferring only a minimal amount of data and then copies this

data to other processors with a scan operation.

A scan is parallel pre�x operator; it successively applies an operator to elements of a parallel

array creating a partial result for each element [Ble89]. For example, a scan addition operator

stores the sum of the �rst i elements in the ith array location. Scans provide a useful mechanism

for computing global sums, maximums and counts of the elements of a parallel array. Scan

operations have predictable execution times because they use a �xed communication pattern.

All the load balancing phases employ scans whenever possible.

The data-parallel programming model also helps to reduce the variability of the execution

time because of the synchronous nature of the available programming constructs. Thus, timings

are more predictable than they would be in an asynchronous message passing programming

7



model. An area of future work is to study how signi�cant the predictability of the data-parallel

programming model is to the e�ectiveness of this load balancing method.

Another area of concern is how to reduce the execution time variability of the solution phase.

In particular, it is important to try to bound the minimum execution time of the solution phase

because very short executions have the e�ect of greatly increasing the cost overestimate. For

example, this problem can occur when a conditional in the solution phase causes a major

portion of the instructions to be skipped during some iterations. One workaround for this

problem is to introduce a short delay to provide some minimum execution time for the phase.

This creates a lower bound on the execution time of the solution phase which in turn helps

to place an upper bound on the cost overestimate. One disadvantage of this workaround is it

increases the total execution time of the program.

2.3 How to load balance

Deciding when to balance is one important aspect of a load balancing algorithm. An equally

important aspect is how balancing is performed. An e�cient redistribution method is essential

for good performance. In the load balancing algorithm, workload is distributed by copying the

data from heavily loaded active processors to idle processors. The workload, in the form of

task indices, is then divided up and assigned to the active and idle processors with copies of the

problem data. Each active processor's workload is assigned some number of idle processors.

This assignment is computed by assigning the idle processors in proportion to the workload

on each active processor. Thus, heavy workloads are assigned more idle processors than light

workloads and load is balanced evenly.

The following simple example illustrates the sequence of steps used to compute this as-

signment. It describes the essential core of the information gathering phase. In this example,

seven processors are used. A sequence of numbers is used to represent a data-parallel array on

these processors, with the �rst value in the sequence on the �rst processor, the second value

on the second processor, and so on.

� The following parallel arrays are used in the example.

Notice the problem data array only provides space for one element of problem data per

processor. This means an idle processor can only be assigned to the workload of one

active processor.

8



workload = 100 19 0 0 0 0 0

parallel index = 1 1 0 0 0 0 0

problem data = 1:0 2:0 0 0 0 0 0

processor number = 1 2 3 4 5 6 7

1. Count the number of idle processors; those where the workload is 0.

num idle = 5

2. Compute the average workload of the processors and mask out all the active

processors with workloads equal to or below the average.

The average is the lower bound on the maximum number of tasks there will be on any

processor in the new workload after load redistribution. Therefore, workloads equal to

or below the average are not assigned idle processors, since our goal when balancing is

to reduce the maximum value in the new workload to as close to the average as possible.

avg = 17

act mask = T T F F F F F

3. Compute the sum of the active iterations using the mask de�ned in the pre-

vious step.

sum workload = 119

4. To create the assignment, a proportion is computed for each masked proces-

sor. This proportion is the workload on each masked processor divided by

the sum of the workloads on all the masked processors. This proportion is

then multiplied by the number of idle processors and the result is truncated

to an integer value. One is added to represent the participation of the masked

processors.

assignment =

workload

sum workload

� num idle+ 1

=

100

119

� 5 + 1

19

119

� 5 + 1 0 0 0 0 0

= 4 + 1 0 + 1 0 0 0 0 0

= 5 1 0 0 0 0 0

9



5. The values in the new workload are calculated by dividing the original work-

load by the assignment array.

new workload values =

workload

assignment

= 20 19 0 0 0 0 0

The new workload is instantiated by the redistribution phase if the decision phase decides

balancing will be cost-e�ective. Its value is presented below for clarity. Notice the 100

task indices assigned to the �rst processor in the original workload will be assigned to

�rst �ve processors in the new workload. The 19 task indices assigned to second processor

in the original workload will be assigned to the sixth processor in the workload. This

movement of tasks occurs because the redistribution algorithm uses contiguous blocks

of processors to process the same problem data. More information on the redistribution

phase is presented in Section 2.3.1.

new workload = 20 20 20 20 20 19 0

Using oating point computations and a close variant of the above steps

1

creates an opti-

mal oating point based assignment of task indices to processors since all idle processors are

assigned (possibly as fractions) and the number of task indices assigned to each processor are

equal. This oating point based assignment cannot be used because fractions of processors

cannot be assigned. The integer-based steps described above are used instead. These steps

result in a near optimal solution. This near optimal solution can cause some idle processors to

remain unassigned after a computation. For example, processor 7 remains unassigned in the

example above.

The savings that can be achieved by utilizing the new workload are calculated by subtract-

ing the maximum of the original workload from the maximum of the new workload values.

In this example, the maximum of the original workload is 100 and the maximum of the new

workload value is 20 resulting in a savings of 80 iterations.

1

The above steps have been optimized for integer computations. In the oating point variant, the sum computed

in step 3 totals all active iterations. In step 4, the assignment is equal to the workload over the sum computed in

step 3 times the total number of processors.

assignment =

workload

sum workload

� num procs

10



2.3.1 How to redistribute workload

If the decision phase indicates balancing is pro�table, then the redistribution phase is exe-

cuted. The redistribution phase sends the problem data from the active processors to the idle

processors and updates the workload and parallel index arrays. This section summarizes the

steps in the redistribution phase, building on the example started in the previous section.

The redistribution phase creates blocks of processors which process the same problem data.

The size of these blocks is de�ned by the assignment array. The blocks are placed one after

another from left to right in the new workload array. In the example, the �rst block consists

of processors 1 through 5 and the second block consists of processor 6.

1. An array of pointers to the �rst processor in each block is created by applying

a scan addition operation to the assignment array using the act mask de�ned

in the previous section.

2

One is added to generate 1-based pointers. The

array provides pointers to the processors where data should be distributed

to.

pointers = 0 5 0 0 0 0 0

= 1 6 0 0 0 0 0

processor number = 1 2 3 4 5 6 7

2. The values in new workload values, parallel index and problem data arrays are sent

to the beginning of each block using a general send operation guided by the

pointers. The new workload array is set equal to the new workload values array.

new workload values = 20 0 0 0 0 19 0

parallel index = 1 0 0 0 0 1 0

problem data = 1:0 0 0 0 0 2:0 0

3. The values at the beginning of each block in the new workload, parallel index

and problem data arrays are copied to all processors in their block using a

segmented scan copy operation. A segmented scan operation applies a scan

operation within each segment. The segments are set to correspond to the

processor blocks.

new workload = 20 20 20 20 20 19 0

parallel index = 1 1 1 1 1 1 0

problem data = 1:0 1:0 1:0 1:0 1:0 2:0 0

2

We are using a variant of the scan addition operation which stores the sum of the �rst i elements in the (i+1)th

array location and stores an initial value (in this case 0) in location 1.

11



4. The parallel index array is updated by creating a segmented scan addition

3

of

the new workload array and adding it to the index.

scan add new workload = 0 20 40 60 80 0 0

parallel index = 1 21 41 61 81 1 0

The �rst processor will solve task indices 1-20, the second will solve task indices 21-40,

and so on.

This completes the description of the load balancing algorithm.

3 Application to a Polygon Renderer

The load balancing algorithm has been added to a data-parallel polygon renderer [OHA93].

The goal of a polygon renderer is to generate an image from a three-dimensional polygon

model. A lighting model is used to approximate how light is reected from the polygon model

to an image which represents the user's viewpoint.

The purpose of the data-parallel renderer is to render extremely large polygon datasets at

interactive rates on a massively parallel machine. These datasets are generated from scienti�c

simulations and typically exceed 250,000 polygons. One motivation for rendering these datasets

on the massively parallel machine is to avoid the high network cost of transferring the datasets

to a graphics workstation. The steps taken by the rendering program include:

� transforming, which modi�es the coordinates of the polygons to account for a new view

position and magni�cation

� clipping, which eliminates polygons that are not in view

� scan conversion, which maps the polygons onto the rows of the resulting image

� z-bu�ering, which maps the scan lines generated in the previous step into pixels of the

image

The scan conversion and z-bu�ering steps were initially implemented in the original renderer

using data-parallel loops of the form shown in Figure 1. In the load balanced version of the

renderer the steps were implemented using data-parallel loops of the form shown in Figure 2.

For the scan conversion loop, the problem data is polygons and each task consists of creating

and processing a scan line from a polygon. The number of scan lines in a polygon is dependent

3

The same variant of the scan addition operation used in Step 1 on page 11 is also used here.

12



upon its image-space height. In the z-bu�ering loop, the problem data is scan lines and each

task consists of creating and processing pixels from a scan line. The number of pixels in a scan

line is dependent upon its length.

Unbalanced polygon datasets occur in a variety of ways. One way is during the creation of

the polygon dataset from the output of scienti�c simulations. Isosurface algorithms are used

to create polygonal representations of these outputs. The representation may be regularly

or irregularly structured depending on the output and the isosurface algorithm used. The

viewing angle and magni�cation can also cause imbalances. Clipping unbalances a dataset by

eliminating tasks on processors which are assigned a polygon which is out of view.

4 A Performance Study

A series of experiments were executed using the original and a load-balanced version of the

data-parallel polygon renderer. For all the experiments, the renderer generates output images

which are 512� 512 pixels in size. The experiments were executed on the Advanced Computing

Laboratory's 1024 processor CM-5 at Los Alamos National Laboratory.

In the �rst experiment, performance data for the original and load balanced renderers

is presented. The polygon datasets used in this experiment are a balanced and unbalanced

version of the same scienti�c output, a hydro-dynamics simulation of an oil well perforator.

They are generated by using two di�erent isosurface algorithms. Table 1 provides the maximum

and average workloads of these datasets. The �rst column of the table, lists the viewing and

magni�cation transformations that have been applied to datasets. The \M" before the viewing

angle means the dataset has been magni�ed. Notice in the balanced dataset the di�erence

between the maximum and average workload is small, whereas in the unbalanced dataset the

di�erence is large.

On the unbalanced datasets, the decision phase and the redistribution phase work together

to e�ectively to improve the renderer's performance. Table 2 shows the results of rendering

the unbalanced polygons with (LB) and without (OR) the assistance of the load balancing

algorithm on 32, 64, 128, 256 and 512 processors of the CM-5. Notice the poor performance of

the original renderer on the unbalanced datasets and the improvement obtained when using the

load balancing algorithm. The performance of the load-balanced renderer provides a factor of

8 to 33 improvement over the performance of the original renderer on the unbalanced datasets.

Table 3 shows the results of rendering the balanced polygons with and without the assis-

tance of the load balancing algorithm on 32, 64, 128, 256 and 512 processors. Notice that when

the load balanced renderer is applied to the balanced datasets its performance is approximately

13



Balanced Unbalanced

Scan Z-Bu�er Scan Z-Bu�er

View Max Avg Max Avg View Max Avg Max Avg

(0,0) 8 5 7 1 (0,0) 231 6 9 1

(45,45) 10 5 8 1 (45,45) 169 6 30 1

M(0,0) 13 5 17 2 M(0,0) 512 8 14 1

M(45,45) 21 1 21 3 M(45,45) 468 4 119 2

Table 1: The Maximum and Average Workloads of the Balanced and Unbalanced Datasets

Number of Processors and Program Used

32 64 128 256 512

View OR LB OR LB OR LB OR LB OR LB

(0,0) 48.91 6.21 28.98 3.57 18.18 2.12 12.76 1.35 9.99 0.92

(45,45) 38.03 5.33 22.37 3.00 14.27 1.78 10.45 1.15 8.24 0.81

M (0,0) 109.64 10.62 65.50 5.90 41.74 3.40 30.12 2.16 23.92 1.46

M (45,45) 99.13 4.42 57.91 2.42 37.19 1.46 27.33 0.94 22.40 0.67

Table 2: Rendering of Unbalanced Datasets in Seconds

14



the same as the original renderer. It is di�cult for a load balancing algorithm to provide good

performance on a balanced dataset since any redistribution steps will simply waste time. The

empirical worst case performance loss is only 27 percent on balanced datasets when using the

load balancing algorithm.

Number of Processors and Program Used

32 64 128 256 512

View OR LB OR LB OR LB OR LB OR LB

(0,0) 4.71 5.16 2.67 2.95 1.57 1.72 0.88 1.00 0.54 0.64

(45,45) 5.49 6.12 2.98 3.33 1.69 1.89 0.99 1.13 0.62 0.73

M (0,0) 10.61 12.47 5.80 6.77 3.18 3.73 1.82 2.21 1.11 1.40

M (45,45) 12.27 13.43 6.69 7.34 3.74 4.12 2.24 2.50 1.51 1.65

Table 3: Rendering of Balanced Datasets in Seconds

The original renderer's performance on the balanced datasets provides an estimate of the

target performance we would like to achieve with the addition of a load balancing algorithm.

The performance of the load-balanced renderer on the unbalanced datasets is within 70 percent

of the performance of the original renderer on the balanced datasets.

In a second experiment, three other polygon datasets were tested. Two datasets were

generated from di�erent outputs of a uid-dynamics simulation and the other from the output

of a particle interaction simulation. Two of the the datasets are balanced and one is unbalanced.

In summary, performance improvements ranged from a factor of 4 to 33. The empirical worst

case performance loss is only 25 percent on balanced datasets when using the load balancing

algorithm.

4.1 Cost Measurement Experiments

Overestimated costs of the load balancing algorithm were calculated for the unbalanced dataset

shown in Table 2, by �nding the sum of maximum execution times of the information gathering

and redistribution phases and dividing them by the minimum execution time of the solution

phase. Then a constant was added to ensure these values always overestimate the actual cost.

The overestimated costs are 20 iterations for the scan conversion loop and 32 iterations for the

z-bu�ering loop. It is instructive to relate these values to the maximum and average workload

in Table 1. Note that the di�erence between the maximum and average iteration values on

15



many datasets exceeds these overestimates, implying that the load balancing algorithm may

be able to improve the renderer's performance on these datasets. The overestimated cost

values calculated for the unbalanced dataset were then used when executing the load-balanced

renderer on all the other datasets. Cost values were computed for all the other datasets by

dividing the maximum information gathering and redistribution phases execution times by

the minimum execution time of the solution phase. These cost values were all less than the

overestimates. In addition, the load balancing algorithm outputs a warning message for the

user if the actual costs of any iteration exceeds the overestimated cost value.

The variability of the measured execution times of the load balancing phases of the load

balancing algorithm are summarized in Table 4. Notice the information gathering and redis-

tribution phases have little variability relative to the variability of the solution phase. The

execution time of the solution phase of the scan conversion loop varies widely because it by-

passes a major portion of the solution phase if there is no work to do. The execution time of

the solution phase of the z-bu�ering loop varies because it utilizes an unstructured global send

operation which transfers a variable amount of data. Even though this variability causes the

costs overestimate to be large, substantial performance improvements are still obtained.

Scan Z-Bu�er

Info. Redis. Soln. Info. Redis. Soln.

Minimum 0.0002 0.0584 0.0098 0.0011 0.0592 0.0030

Maximum 0.0064 0.0703 0.3101 0.0093 0.0704 0.0458

Average 0.0012 0.0646 0.0812 0.0014 0.0641 0.0059

Table 4: Execution Time of Load Balancing Phases on 512 Processors in Seconds

5 Conclusions

A signi�cant problem when using a load balancing algorithm is the possibility that along with

improving performance on some datasets it will degrade performance on others. In this paper,

a data-parallel load balancing algorithm was described which will not substantially degrade

a program's performance on any dataset. This property results from utilizing an empirical

measurement of the cost of load balancing along with a calculation of the possible savings to

restrict load balancing to only when it is cost-e�ective. A data-parallel redistribution algorithm

was described which redistributes a workload in a near-optimal manner. A performance study

16



of a polygon rendering program augmented with the load balancing algorithm was presented.

The study showed the e�ectiveness of the algorithm, providing a performance improvement of

a factor of 33 on unbalanced datasets and a maximum performance loss of only 27 percent on

balanced datasets.

6 Acknowledgments

This research was performed at the Advanced Computing Laboratory of Los Alamos National

Laboratory, Los Alamos, NM 87545.

References

[Ble89] G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Com-

puters, 38(11):1526{1538, November 1989.

[BP90] E. S. Biagioni and J. F. Prins. Scan directed load balancing for highly parallel mesh-

connected parallel computers. In Unstructured Scienti�c Computation on Scalable

Multiprocessors, pages 371{95, October 1990.

[Nic92] D. M. Nicol. Communication e�cient global load balancing. In Proceedings of the

Scalable High Performance Computing Conference, pages 292{299, April 1992.

[NJ90] D. M. Nicol and P. F. Reynolds Jr. Optimal dynamic remapping of data parallel

computations. IEEE Transactions on Computers, 39(2):206{219, February 1990.

[NT89] D. M. Nicol and J. C. Townsend. Accurate modeling of parallel scienti�c compu-

tation. In Proceedings of the 1989 SIGMETRICS Conference, pages 165{170, May

1989.

[OHA93] F. A. Ortega, C. D. Hansen, and J. P. Ahrens. Fast data parallel polygon rendering.

In Proceedings of Supercomputing '93, pages 709{718, November 1993.

[WPG91] M. C. Wikstrom, G. M. Prabhu, and J. L. Gustafson. Myths of load balancing. In

Parallel Computing '91, pages 531{549, 1991.

17


