Achieving High-Latency, Low-Bandwidth
Communication: Logic Emulation Interfaces

Scott Hauck, Gaetano Borriello, Carl Ebeling
Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract

There is a large amount of interest in using multi-FPGA systems for logic emudatioapid-prototyping
of digital systems. One difficulty with this approachis the handling of the external interfacesof the
system. In this paperwe describea genericinterfacetransducer,a board capableof handlingthe external
interfaces of the system under prototype, allowing the emulation to ofrertite target environment. We
also describe how several protocols can be implemented on this board, including NTSC vide@udiigital
PCMCIA, and VMEbus.

Introduction

Logic emulation with FPGAs (the mapping of circuitry to be testetd a multi-FPGA system)holdsthe promise
of greatly decreasinglevelopmentimes for both ASICs and completesystems. Emulation systems[Tessier94,
Thomae91, Varghese93, Yamada94, Zycad94] offer orderaghitudespeedupver softwaresimulation for ASIC
designs. Thereis also work being done to bring similar benefitsto board-leveland system-level emulation
[Aptix93, Hauck94, Koch94].

One of the strongest potential justifications for using logic emulation instead of simulation is thateariatztion

of a systemmight be capableof operatingin the targetenvironmentof the prototypecircuit. In this way, the
prototype would be exercised with real inputs and outputs, providing a much more realistic evaluation of the circuit's
functionality, while hopefully providing a fully functional prototype for further experimentation. i$hisportant,
becausddeally a prototypewill not only be usedto determinewhether the circuit implementationmeets its
specification, but also whether what was specified is actually what is wanghidl, what is wantedwill actually be

useful. Specifically, while working with a prototype timeplementersaswell asthe eventualusers,may be able

to determine not only whether thesefaulty logic in the implementation but also whetherthe circuit meetstheir
expectation. If we only usesimulation, the interactionwith the simulationis much more restrictedthanwith an
emulation, which greatly limits how much and what kinds of testing can be performed.

Unfortunately, while it is clear that placing the prototyp® its targetenvironmentis valuable,it is unclearhow
in general this cabe accomplished. This is becausdhe environmentexpectsto be connectedsia someprotocol,
and while the final circuit will obey the protocol, it is not clear that the prototype will meet the protocol's
requirements. This problemis twofold. First of all, someprotocolshavetiming assumptionsnuch faster than
FPGA-basedorototypescan deliver. For example,while logic emulatorscan reachspeedsin the hundredsof
kilohertz, or even a few megahertaany communicationprotocolsoperatein the tensof megahertzange. Thus,
unlessthe protocolwill automaticallyslow downto the speedof the slowestcommunicatorthe logic emulation
will be unable to keep pace with the communication protocol, and thus cannot be placed in the target environment.

The second issue is that even if the protocol is oaughthat the logic emulatorcould keep pace,the prototype
will still not meet the protocol’s timing requirements. Thishecause logic emulationdoesnot run at the same
speedasthe original circuit, and there will inevitably be some slowdown of the prototype’sclock speed. For

example, a 50 MHz circuit built to communicate on a channelrépiresresponsesat 1 MHz will be constructed
to communicateonce every 50 clock cycles. If we use logic emulationfor this circuit, we might achievea
performance of 10 MHz from the emulation. Howe\tbe prototypewill still be communicatingonly onceevery
50 clock cycles. This achieves a communication performah80 KHz, muchtoo slow to respondto a 1 MHz

channel. Ingeneralthe prototypecannotbe alteredto communicatdn lessclock cycles,both becausét may be

busy performingother workduring this time period,and also becauseso alteringthe prototype would changeits

behavior, and we would no longer be testing the true system functionality.

One solution to this problem is to build a custom interface transducer, a circuit board ohpakieg the high-rate
communication interface that the environment assumes and slow it down sufficiently for the logic enwliatiem
pace. This approach has already been taken by Quickturn Design Systems, Inc. with its Picasso Graphics Emulatic

Adapter [Quickturn93], which takes video output from a logic emulaimspeedst up to meetpropervideo data
rates. This boardis essentiallya frame-buffer,writing out the last completeframe sent by the prototype while
reading in the next frame. Although this board is adequate for the specific case of video output, itseilebgor
many other communicationprotocols,or evenfor video input to the logic emulation. With the large number of
existing communicationprotocols,it is clearthat special-purposéransducergannotbe marketedto handle every
user’s needs. Expecting the user to develop and fabricate these transdalserisnpractical, sincenow in orderto
prototype onechip or circuit board,the usermust developother circuitboardsto handlethe interfaces. Thus, we
now have to do extra development and debugging work in ordeseta systemmeantto simplify the development
and debugging process.

In this paper we explore an alternative solution for handling logic emulation interfoesevelopmentand use of

a single generic, standardized interface transducer for most logic emulation interfaibesnelxt sectionwe discuss
someof the detailsof a communicationinterface. We also describea standardgenerictransducerboard for these
interfaces. Then, in thgectionsthat follow we presentsomecasestudies,describinghow severalcommunication
protocolscanbe mappedto this structure. Theseinclude NTSC video, digital audio, PCMCIA, and VMEbus.

Finally, we discusssome of the generaltechniquesand limitations of this approach,as well as some overall

conclusions.

MASTER SLAVE
DRIVE AS* to low
|

Y
Drive WRITE* high Receive address
Wait until DTACK* high and BERR* high Receive address modifier
Logical (indicates that previous slave is no longerReceive LWORD* high, IACK* high, AS* low
driving data bus) If address is valid for this SLAVE
Drive DISO* to low and DS1* to high ThenI select on-board device
Y
FETCH DATA
| =—0ns min—y

AO01-A31*
LWORD* XXXXX

—10ns mln—>| ——30ns min—
AS* ’

Timing «——10ns Min—
DSA*
t— Ons mMin —m|
DTACK*
BERR* |\
+5V+5%
Current sourced by board at 0.6 V,
including leakage current: IOZL+IIL < 600 uA
: Current sunk by board at 2.4 V,
Electrical including leakage current: IOZL+IIL < 50uA SIGNAL —
LINE
Total capacitive load on signal,
including signal trace, for system
controllers (which have drivers): CT < 20 pF

Figure 1. A communicationprotocol canbe consideredto havethreelevels: electrical, timing, and
logical. Examples in this figure adapted from the VMEbus specification [VMEbus85].

Protocol Transducers

As shownin figure 1, communicationprotocolscanbe consideredo havethreelevels of requirements: electrical,
timing, andlogical. At the electricallevel, the protocol specifiesthe proper signaling voltages,the amount of
currentdriven onto signals, terminationresistors,allowed capacitancesand other featuresthat interact with the
electrical propertiesof the signaling medium. At the timing level, the protocol specifiesthe minimum and
maximum time delay between transitioms signal wires. At the logical level, the protocol specifiesthe order of
transitions necessaryto accomplishvarious actions, both on the sender'sand on the receiver's end of the
communications. While eachof theselevels is conceptuallydifferent, to properly communicateusing a given
protocol a system must obey the restrictions of all levels of the specification.

It turns out that for logic emulationinterfacesmost of the problemsoccurat the timing level. Sincethe circuit
being prototypedhas beendesignedto communicateusing the requiredprotocols, it will alreadybe capableof
handling the logical level of the protocol. This means thatprototypewill alreadyknow how to respondto any
given set of input transitions, awdll generateoutput transitionsin the right order. However,the prototypewill
send these transitions muotore slowly thanthe final circuit is intendedto, sincethe logic emulatorwill not be
able to achieve the same performance as the cusiciware. The emulatoralso may not meetthe electricallevel
specifications of the protocol. However, in general the electrical requirements are simglasinuiet by a small
amount of interface hardware. In some cases, the protditoperformall signalingusing standardvoltagevalues,
with almost no requirementsin the electrical level. This is most common when the protocol is used to
communicatedirectly betweenonly two systems. In this case,most programmabldogic, including the logic
contained in the interface transducer, will meet the electrical level specifications of the protocol. In othérerases,
will be more stringentrequirementon the prototype. However, most protocols will have a standardset of
componentghat meettheir electricallevel specification. As long as the emulator (with the help of a protocol
transducer) is capable of meeting the logical and timing level specifications, the swatadriohterfacecomponents
can be used to meet the electrical level of the protocol.

Sincethe logic emulationof the circuit will meetthe logical level of the protocol specification,and since the
electricallevel of the specificationcanbe handledby at most a small set of standardcomponentsthe interface
transducemwill be almostentirely focusedon meetingthe timing level of the specification. While the details of
meetingthe timing level of the specificationvary greatly betweenprotocols, there are in generaltwo methods:
slowing down the protocol, or filtering the datato reducethe amountof communication. Many protocols are
designedto allow a great deal of flexibility in the speed,cost, and quality of the systemsinvolved in the
communication. These protocols use a handshakingbetween the communicators,with both sides of a
communicationindicating both whenthey arereadyto startor accepta communicationandalso whenthey have
finishedwith a communication. Theseprotocolsallow eitherendof a communicationto slow down the actions
taking place, and thus it is easy for a prototype to slow the communication sufficiently faedépop. However,
as we will see in the examples that follow, there are still some issues to be dealt with even in these systems.

Some communications are not built with a handshake, and instead assume that any systegivesipgadocolis
able to meet the specified timing requirements. Obviously, while thediraiit will meettheserequirementsthe
prototype may not, and something must be donsotopensate.Whatis necessarys to somehowslow down the
data coming into th@rototype,andspeedup the dataleaving the prototype. In generalwe wish the prototypeto
keep up with all incoming data streams, and not simply keep an ever-increasingbuffer of unreceived
communications. Unfortunatelythe prototypeis capableof processingonly a small fraction of the incoming
communications. Thus we must somehow reduce the number of communications comiing pntwotype. How
this is done differs from protocol to protocol, but the generalapproachis to throw away enough of the
communicationsto allow the prototype to keep pace, while not throwing away any essentialinformation.
Obviously, simply throwing away all but the nth clock tick’s worth of datawill not work, as the information
coming in will be totally corrupted. One possibility, applicable to protocols asefdeo input, is to throw away
all but the nth frame of data. In this way the prototype receivescompleteframesof video, though from the
prototype’s point of view the objects the video are moving very fast. For other situations,we canthrow away
uninteresting communications, such as those not intefudtie prototype,or thosethat do not include important
data. For example, in a bus-based protocol, many of the communications will not be intendegrfaiotiipe,and
most systems can safely ignore them. Alternatively, for a voice recognition system an interface transducer can thro
away the “dead air”, and retain only those portions of the input surrounding high volume levels.

Although thereareonly a few generalmethodsfor meetingthe timing requirementsof a protocol, the details of
doing so for different protocols can very greatly. However, the hardware necessary to do so can be generic and simg
(seefigure 2): reconfigurablelogic to perform filtering and meet timing delays, external RAM for holding

intermediate results, and possibly programmable delag to generateiming signals. Also importantis a small
prototyping aredo accommodat@ny requiredstandarccomponentdor meetingthe electricallevel requirementsof
the protocol. Note that there witlfften needto be communicatiorbetweenthe FPGAsin the systemso they can
coordinatetheir actions. This can be accomplishedby connectingtogethersome of the wires leading from the
prototypingregionto the FPGAs, or from the FPGAsto the emulatorinterface. In generalthe numberof such
connections will be small, since the number of actions the FPGAs will perform will bdimégd. Flexibility is
not only importantin the numberof interconnectiondbetweenFPGAs, but also in the number and type of
components used for a given mapping. Specifically, some interfaces will require smigll amountof logic in a
single FPGA, while others may need several large FPGAs plus a signéivanintof RAM. This flexibility can
be handledby using standardsocketsfor all chips. Also, at leastin the caseof the Xilinx FPGAs[Xilinx94], a
single socket type can accommodate many different capaaitiEBGAs. For example,a socketfor the PQFP208
package can accommodate chips fromXimx XC4003H (a high-1/O chip with relatively little internallogic) to
the XC4025 (the largest capacity Xilinx FPGAS). In this way, a single board can be built to handle wide varieties of

resource demands.
RAM1 RAM2
RAM1 == EPGA RAM2 Emulator

EXtema| Interface

Interface Prototyping Region I
| RAM1 I- -| RAM2 | |

FPGA

| RAM1 I—

FPGA --|MI

Clock

Programmable
Delay

Figure 2. Interface transducer board.
Example Mappings

In the following sections, we consider several different communication protaooldescribehow they are mapped
onto the interface transdudeoarddescribedabove. This includescontinuousstreamsof data(video andaudio), as
well as packetized protocols (PCMCIA and VMEDbus).

Video

Video datais transmittedin a steadystreamof video frames,arriving at a continuousrate (for NTSC video, the
standard used for broadcast video in the US, the rate is 30 frames a second, 2 interlaced fields pBeframsehe
video arrives at a steady rate we must ignore some frahresying away enoughdataso that the remaindercan be
handled by the emulator. What remains are complete, sequential framdsamthoughany motion in the pictures
will be artificially sped up (that is, if we view the remainifigmesat the standardrate). This shouldbe sufficient
for most applications.

As mentioned earlier, to handle the constraints of a protocol we must handle the electrical atidiogical levels

of the protocol. For video, there are standard chips available for handling the electrical characteristics \wéii&bdr SC
[Philips92]. Thesechipstakein the analogwaveformcontainingthe video dataand convertit into a streamof
digital data. Most video applicationswill usetheseor similar chips, anda transducecanrely on thesechips to
handle the electrical level of the interface.

The digital video data coming from the standard chipset arrives at a rate of 13.5 MHz, faster tremutaietscan
handle. To slow the video down, the protocol transducer maintains a buffer of videoifrattmesnemories filling
up buffers after the logic emulatorhasconsumedhem. In the simplestcase thereneedsto be only two frames

worth of buffer spaceonefor the framebeing sentto the emulator,and one for the frame being read from the

external interface. In cases suchmastion detection the interfacetransducemay needto storeseveralconsecutive
frames of video, increasing the memory demanBscauseof the FPGAsin the protocoltransduceraswell asits

socketeddesign,the transducer'snemory capacitycan be easily increased. Note that sincethe transducewill be

writing arriving datato the memoriesat the sametime as it is readingdatafrom the memoriesto sendto the

emulator, there could be memory access conflicts if we were using only one naradime, or a single memory
for a given set oframes. The solution we haveadopteds to interleavestorageof the datato the two memories,
with all data from one timestep residing idiéferent memoryfrom the next timestep. If we assumehe emulator
runs at least twice adow asthe targetsystem,thenthe transducewill haveat leasttwo clock cycles(wherethe

clock is the 13.5 MHz clock of the incoming data)to supply the emulatorwith the next datavalue. Since the

transducer will not write data to the same memory in swecessiveycles,therewill alwaysbe anopportunityto

read data from the memories to supply it to the emulator.

A similar mappingcanhandleoutgoing video dataaswell. The primary differenceis that sincethereis lessdata
coming out of the emulator than the exterinéérfaceexpectswe must somehowfill in the time betweenframes.
The solution is simply to repeatedbutput the last completeframe of datafrom the logic emulatoruntil the next
frame has been fully received.

Interface Transducer

Frame Buffer FPGA

Start =¥ Manager

Detector
Standard Logic
Video | Input Counte‘ |Output Countef Emulator
Chipset

P Pipeline ¢ $ Pipeline
Stages » Memory Interface Stages

Mem1l Mem?2

Figure 3. Logic diagram of a interface transducer mapping for incoming video data.

As we have jusshown,thereis relatively little logic necessaryn an interfacetransduceto handlevideo data. A
diagram of the logic for the input side is given in figure 3. The logic contains a detector tioefineljinningof an
incoming frame. This informationis passedo a buffer managerwhich simply determinesif thereis an empty
buffer in memory, and if so the incoming data frame is routea this buffer. If thereis not an empty buffer, the
frame is discarded. Two counters, one for incoming data from the external interfameediod outgoing datato the
emulator, index into the memory buffers. The low-order bit from these counters are used to dekidle memory
the current data should reside. Thus, this interleaves accesses to the two memories. Thia srfguléanemory
interface,which routesinput andoutput requestdo the proper memory, and generateshe proper read and write
signals. To achievethe bestperformanceall of thesestepsare heavily pipelined. Since the datacomesin at a
steady, predictable pace, and since there usually is no latency constraint, heavy pipelining can easily be achieved.

We implemented the interface transducer mapping as described above by specifyifegiiba (a high-level design
language) and usedcompletelyautomaticmappingtools to convertit to a Xilinx 4000 mapping. By simply

making sure all logic had at most five inputs, with a register on the outpulbyansing a counterdesignfrom the

Xilinx Application Briefs [Xilinx94], we were easily ableto achievethe requiredperformance. The performance
could easily be increasedy the specificationof timing hints to the tools, as well as by the hand placementof

individual logic blocks.

Audio

Even though audio is slower than video, and is well withinpgrormanceconstraintsof logic emulators,audiois
actually more difficult tohandlethanvideo. Eventhougha mappingrunningon a logic emulatorcould meetthe
performance requirements for most audio applications, the problem is tisgstbenunderprototypewas not built
to run at the speeds achieved on the logic emulator, but was uefaghedo run at a higherclock rate. Thus, it

will accept or output audio data on every nth clock cycle. Since the clock cycle on thenagatoris slower,the
systemwill not be keepingup with the externalworld. While it might be possibleto alter this, and adjustthe
mapping to account for the slowdown, in general this will not be feasible, and may distort the system.

Since the prototype on the logic emulator will not keep up with the required data rates of its audio 1/O it will need an
interface transducer to fix the problem. Unfortunately, unlike video, audio is not broken into framtegraisino
clear way to find data that can be ignored. For some situations, stiehiaput to voice recognitionsystems the
signal can be expected to have large gaps of silence, and a transducer could look for the “noisy” periodgbétime.
mapping would take all incoming data and store it in ohthe transducer'snemories. Sincethe dataratesare so

low, thereareno concernsover read/writeconflicts on the memories,and only one memoryis necessaryor this.

The transducer would look for noisy periods, places where the signal amplitude is above some threshosdichWhen
a period is discovered the transduaguld transferthe noisy period,along with a secondor more of dataon either
side, to the next memory. We need this extra time period to catch the less noisy start artbeesigmdl, andthis

is why we storeall incoming datain the first memory. The datafrom the secondmemoryis sentto the logic
emulator,and can be paddedwith null dataif necessarythatis, duringlong quiet stretches). In this way we can
detect uninteresting data and throw it away.

Other, more common situations are harder to handle. In most cases vie piskerveall of the audiodatain the
system. For example,if the systemis generatingor recordingmusic therewill alwaysbe interestingdatain the
audio signal, and there is no “dead airthoow away. In suchsituationsit is necessarys to saveall of the data,
perhaps to tape or disk, and use this storage as a buffer to change the Hpeddtaf For audiothis is obviously
feasible, since we already store large amounts of audio on today’s systems. Thuddtwoaywhile to augment
the transducerhardwarewith a hard disk interface. Evenin protocolsand mappingswhere this featureis not
necessary for buffering, the disk could still be used to record the data passingbarthel,servingas a debugging
aid. However, for higher data rate sign@ls. video), thereis too much datato store,andusing secondarstorage
would not be sufficient. It is unclear if there is any wayhandlehigh datarate signalsthat haveno uninteresting
periods, no periods where the data can be discarded. However, we have yet to encounter such a protocol.

PCMCIA

PCMCIA [Mori94] is a card format and bus protocol usedto add peripheralsto computersystems. It allows
standardizesmemory cards,modems,disk drives, and other computercardsto be addedto any compatiblehost,
including systemsfrom portablecomputersgo Newton MessagePadsThe interfacecanbe moderatedby standard
chips such as the Intel 82365SL DF PC Card Interface Controller (FRGIL93], which connectswo PCMCIA
card slots to an EXCA/ISA bus (see figure 4).

Host System

Host e Card 1

Processor Support Circuitry A

+ EXCA/ISA
Bus
82365SL DF
Internal PC Card -

. I

Peripheral(s) Interface Controller SBOt Card 2
Chip

Figure 4. PCMCIA interface built with the Intel 82365SL DF PCIC chip.

Communications to the PCMCIA cards are initiated by the host processor. The PCIC chip routes these tmessages
the proper card slot based on the addresslsetiie processor. This cardthen hasthe option of assertinga WAIT

signal to indicatethat it needsextratime to processhe currentcycle. Oncethe cardhas finished processingthe

current cycle, either by reading in da@ntby the host or by writing out requestediata,it will deasserthe WAIT

signal. All signalsarethenreturnedto their prior (idle) state,andthe systemis availablefor anotherbus cycle.
Cardscangeneratdnterrupt requeststo the host processorvia specialinterrupt lines. Note that the PCMCIA
specification also contains provisions for digital audio to be sent from a ctre lhost system; the detailsof this

portion of the protocol are ignored here, and can be handled as described in the audio section earlier.

Implementing a transducer for either a PCMCIA card or a PCMCIA host system is quite simple. The electrical level
of the specification is handled by the Intel 82365SL DF PCIC chip plus some standard support hardhare&ir
side, while the card side requires very little special processing. There are some consttaamphgsical properties
of the PCMCIA cards,which translateinto electrical and timing propertiesof the protocol. However, these
primarily involve the orderof certainevents,suchas when power lines connectand disconnectrelative to other
signals, requirements that are easily met in a transducer mapping. The timing blgeleasyto meet, becauset
is alwaysobviouswhat subsystemsreinvolved in a given communication,only one communicationcan be in
progressat any time, andalmostall timing constraintson the host systemandthe PCMCIA cardsare minimum
delays, not maximums. Note that conversely,the timing constraintson the PCIC chip itself are mostly
maximums,making it difficult to prototypethe PCIC chip itself. The reasonwhy it is always clear who is
involved in this communication is that the Host always initi@é$us communicationsandthe PCIC chip takes
care of activating only the slot involved in the current communication. Thus, meetitigihg constraintsof the
host system involve simplgesynchinga few signalsto the clock lines, stretchingsomeinterrupt signalscoming
into the host system to meet their minimum delays, and tristating the bi-directional data lines quickgndbfhe
bus cycle. Note thatin generalbi-directionalbusestake someextrawork inside an FPGA-basedransducersince
internal to the FPGAs these bi-directional signals must be cdryiédo unidirectionalsignal lines, with only one
of the directions active at a given time. However, the direction of these lines is determined easily §tane dfie
few bus signals. Meeting the PCMCIA timing specification on the card side is similae host side, exceptthat
the interfacelogic must also usethe WAIT signal automaticallyto slow the currentbus cycle. It doesthis by
asserting the WAIT signal near the beginning otal$ cycles. If the carddecidesto assertits own WAIT signal,
this servesto sustainthe WAIT signal generatedy the transducer; if the card doesnot assertits WAIT signal
within the required time period, where this time period has been adjostemnpensatéor the slowdowncausedoy
emulation, the transducer lowers the WAIT signal and allows the cycle to complete. Perfalirointheseactions
inside the transducer’'s FPGAs is quite easy, and is well within the performance capabilities of current devices.

Oneimportantconcernraisedby consideringthe PCMCIA specificationis that while it is trivial to handlethe
interfacesfor the host systemandfor a PCMCIA card,it is much harderto meetthe timing constraintson the
controller chip itself. While most of the delaga the host andthe cardsare minimum delays,thereare numerous
maximum allowable delays on evemsneratedy the controller chip, andthesedelaysare on the orderof tens of
nanosecondslt is unclearif thereis any way to prototypethe controller chip itself on a logic emulatorwhile
running it in its target environment. The emulator will most likelyubableto meetthe requireddelays,andit is
difficult for a transducer tepeedup the eventswithout implementingmost of the logical portion of the protocol,
which means implementing most the controllerchip in the transducer. The reasonfor this discrepancyis quite
simple. When protocols are designed to interconnect many types of circuit boards, it must takeountdhe fact
that some of the boards will be much more complicated, or made from low-cossfmaviag down their responses
to communication events. Thus, the protocols are designed to taknaty cards. However,whenwe designthe
interfaces to integrated circuits, we realize that thereheith smallernumberof differentICs for a given task, and
we expect a certain level of performance. The sadpbe tasksrequiredfrom theselCs are often limited andwell
defined, and thus we can requireto respondto externalcommunicationswithin a certainamountof time. Thus,
meeting the externalinterface timings for system-levelprototyping is in general simpler than for chip-level

prototyping.
VMEbus Slave

The VMEbus [VMEbus85] is a backplane bus capable of supparintiple Master(controller) boards,aswell as
Slave boards. Onef the featuresthat makesthis systemdifferentthan the othersdiscussedo far is the fact that
communication is bus-baseaheaningthat many of the transactionsa componentseeson the bus are intendedfor
some other subsystem, and thus that component has no control over the processing of that transaction.

The VMEbus is brokeninto a Data TransferBus, an Arbitration Bus, an InterruptBus, anda Utility Bus. Data
communication is accomplished over the Data Transfer Bus. A Master, after it hasagaitretiof the bus, writes
an address out onto bus. Boards in the systemmappedinto a commonaddresspace andthe addresswritten to
the bus will uniquely determinghich boardthe Masterwishesto communicatewith. This boardwill respondto
the Master’srequesteither readingor writing a datavalue onto the datalines of the bus. The Master may then
requestadditionaldatatransfersfrom the sametargetboard,eithercommunicatingseveraldatavaluesin the same
direction at once, or performing a read-modify-write operation.

Slowing down the datatransferbus communicationgor a prototypeslavecan be difficult, primarily becausehe
prototypewill not be involvedin all transactionghat occuron the bus, andthus many of thesecommunications
will not give the prototypea chanceto slow down the communications. For transfersactually involving the

prototype, almost all of the required timing relationshapsminimums, not maximums. This meansthat we can

simply delay the signals in the interface to re-establish the proper minimum delays frorotttgpe’sperspective.
Communications that do not involve the prototype catedtandledso simply, becausdhe systemdoesnot wait

for the prototypeto processa transactiorthat is not intendedfor it. However,the prototype may not function

correctlyif thesetransactiongroceedfaster(in its slowedframe of reference)than the requiredminimum delays.
There are two solutions to this problem. First of all, since the ranges of addrémsedrespondgo arefixed, we

can program the interface to ignore all transactionsateatot intendedfor the prototype,andthe issueis avoided.
A second choice is to allow the interfacept@senta transactiorto the prototyperegardlesof whom it is destined
for, and delayit sufficiently to meetthe minimum delaysin the prototype’stime frame. If the transactionis not

destined for the prototype, this and other transactions can complete while the protstifpedseivingthe original

transaction. Thesetransactionsare ignored, and the interface only presentsa new transactionwhen the last

transactiorhasbeencompletelyreceivedby the prototype. Sincethe transactionsarevery simple, requiring less
than 100 bits, the datacan easily be cachednsidethe FPGAsin the interface. The prototypewill not miss any

transactionghat are intendedfor it, sincesucha transactionwvould still be waiting for it when it completesthe

previous transaction. This second solutiasthe advantagehat the prototypeboardexperiencegransactionghat

arenot intendedfor it, thus allowing the designerto test that the board doesindeedignore communicationsnot

intendedfor it. Note howeverthat a prototype cannot“snoop” on the bus, attemptingto overhearand capture
communications not intended for it, since thet## inevitably be transactions£ommunicatedn the bus that must

be filtered out.

The Arbitration and Interrupt busesare much easierto handlethan the Data Transfer Bus, since most of the
processing is handled by a daisy-chain of point-to-point communicatithse.interfaceneedonly slow portions of
the processingdown enoughto meetthe minimum delaysguaranteedo all boardsby the VMEbus specification.
The Utility bus is also not a problem for the prototype, since it provides system signals pogreasipand clock
signals, and failure indication lines, signals whose behaviors can easily be retained by the interface.

One significant problem with the VMEDbus specification is thatontainsseveralbuilt-in time-outs. Specifically,

if a board does not respond in a reasonable amount of time to an arbitration or Data Transfer Bus communication, tt
system may decide to rescind the transaction. While these delays should be quisineegheseystemsare only

meantto freethe busin exceptionalsituations,it is possiblethat the prototypewill operatetoo slowly to meet

these upper bounds. In such a case, the logic that administers these time-outs will need to be modified or removed
allow proper operation of the prototype.

Conclusions

As we haveshown, many logic emulatorinterfacescan be handledby a simple, genericinterfacetransduceboard.
The boardconsistsof FPGAs, memories,programmabledelays,and perhapsan interfaceto a secondarystorage
device. This board is responsible for meeting the timing level specifications of the protdeotlectricallevel of
the protocolis met by standarcchips wherenecessaryandthe logical level is met in the emulatoritself. The
FPGAs on the transducemperform filtering and paddingon the data stream,and make sureall required timing
relationships are upheld. The memories are used for temporary storage and buffering, migmioreesper FPGA
to avoid read/write conflicts. The programmable delays are used to generate timing signals, bothtéofaitesto
the memories, and to help the FPGA meet the required timing constréifitile the protocol transducemappings
can be somewhat involvedye have found that they can be quickly developedin a high-level language,and
automatically translated into FPGA logic.

In this paper, we described how this generic baartbe usedto handleNTSC video, digital audio, PCMCIA, and
VMEbus. Beyondthe detailsof the individual mappings,thereare severalgeneraltechniquesthat have emerged,
techniqueghat are applicableto many other situations. Interfacetransducersnust somehowslow the external
interfacedown to the speedof the logic emulator,eitherby delayingthe communication,or filtering away data.
Many protocols obey a strict handshaking, or have explicit wait or dgagals. In thesecasesthe incoming data
rate can be sloweddownto meetthe emulator'sspeedsimply by properly delayingthesesignals. In some cases
(such as the VMEDbus) data will be sentacommonmediumbetweenmany subsystemsbut only the senderand
receiver of this data have control of thendshaking. In thesesituationsthe interfacetransduceican simply ignore
data not intended for the prototype.

Other protocols do not have an explicit method for slowingrtheming data. Video andaudio are good examples
of this. In these cases it is necessary to filter away some of the datdh@ing, throwing away lessinteresting
data,while storing the moreimportantportions. In somecasegshis may requirea large amountof buffer space,
possibly even the use of secondary storage.

Timing constraints orindividual signalsmust be respectedy the protocol transducers.However,it is in general

true, at leastin the caseof system-levelprototyping, that most of the timing constraintson the system are
minimums, meaning that the emulator should not respond too quickly. Obviously this is not a prdlaenthat

if the emulation is of an individual chip, meeting the timing constraints can be much more difficult. This is because
protocolsaremorelikely to makemaximumresponse-timeonstraintson individual chips, but not on complete
systems. The one exception to tlefault-tolerantfeaturesfeaturesthat imposea large maximum responsdime
constraint on the system, reasoning that @ntiefectivesystemwill everexceedthesedelays. In many casesthe
emulation will meet these delays; In others, there is no choice but to disable the fault-tolerance features.

Although we did not encounter such protocols in our study, there are some tymesfatesthat simply cannotbe
handled by any protocol transducer. Specifically, the legitlationwill run more slowly thanthe targetsystem,
andthis will significantly increasethe response-timef the system. Thus, the protocol must be able to tolerate
large communicationlatencies. Also, there must be some methodof reducingthe incoming datarate. If the
interface delivers data at a steady rate, and all data must be received by the system, there waly/lte retlucethe
data rate.

As we haveshown, the designof a genericinterfacetransducelis possible,and can meet most of the interface
demands of currergndfuture emulationsystems. With a small amountof designeffort, which canin generalbe
carried out in a high-level design languagechsystemscanbe run in their targetenvironmentgreatly increasing
their utility.

Acknowledgments

This researchwasfundedin part by the AdvancedResearchProjects Agency under Contract NO0014-J-91-4041.
Scott Hauck was supported by an AT&T Fellowship.

References

[Aptix93] Aptix Corporation,Data Book San Jose, CA, February 1993.

[Hauck94] S. Hauck, G. Borriello, C. Ebeling, "Springbok: A Rapid-PrototypingSystem for Board-Level
Designs"2nd International ACM/SIGDA Workshop on Field-Programmable Gate Arfi#®@s}.

[Koch94] G. Koch, U. Kebschull, W. Rosenstiel, “A Prototyping Environment for Hardware/Software
Codesignin the COBRA Project”, Third International Workshopon Hardware/SoftwareCodesign
September, 1994.

[Mori94] M. T. Mori, The PCMCIA Developer’s Guig&unnyvale, CA: Sycard Technology, 1994.
[PCIC93] 82365SL DF PC Card Interface Controller (PClGanta Clara, CA: Intel Corporation, April 1993.
[Philips92] Desktop Video Data HandbooRunnyvale, CA: Philips Semiconductors, 1992.

[Quickturn93] Quickturn Design Systems, Inc., “Picasso Graphics Emulator Adapter”, 1993.

[Tessier94] R. Tessier, J. Babb, M. Dahl, S. Hanono, A. Agarwal, “The Virtual Wi@sllation System”, 2nd
International ACM/SIGDA Workshop on Field-Programmable Gate Arra934.

[Thomae91l] D. A. Thomae, T. A. Petersen,D. E. Van den Bout, “The Anyboard Rapid Prototyping
Environment”,Advanced Research in VLS| 1991: Santa Cppz 356-370, 1991.

[Varghese93] J. Varghese, M. Butts, J. Batcheller, "An Efficient Logic Emulation Syst#EE Transactionson
VLSI Systemsvol. 1, No. 2, pp. 171-174, June 1993.

[VMEbus85] The VMEbus Specificatipiempe, Arizona: Micrology pbt, Inc., 1985.
[Xilinx94] The Programmable Logic Data Book, San Jose, CA: Xilinx, Inc., 1994.

[Yamada94] K. YamadaH. Nakada,A. Tsutsui,N. Ohta, “High-SpeedEmulation of CommunicationCircuits
on a Multiple-FPGA System”, 2nd International ACM/SIGDA Workshopon Field-Programmable
Gate Arrays 1994,

[Zycad94] Paradigm RPR Fremont, CA: Zycad Corporation, 1994.

