
Using C++ Templates to Implement Role-Based Designs

Michael VanHilst and David Notkin

Technical Report 95-07-02

Department of Computer Science & Engineering

University of Washington,

Box 352350

Seattle, WA 98195-2350 USA

fvanhilst,notking@cs.washington.edu

July 10, 1995

Abstract

Within the object-oriented technology community, much recent work on design reuse

has focused on role-based collaborations distributed across multiple objects. Many

bene�ts can be derived by mapping role-based designs directly into implementations,

including greater ease in maintaining the connection between designs and implemen-

tations under change, and the opportunity for code reuse along with design reuse.

Current e�orts in role-based designs don't provide these bene�ts. We provide a method

for mapping role-based designs into implementation, preserving the design without un-

necessary constraints on the design structures. Roles are represented as parameterized

classes, where the parameters represent the types of the participants in the collabo-

ration. Composition of roles is implicit in the binding of parameters to classes in the

implementation. The bindings are created at compile time by type de�nitions that are

separate from the role implementations. In this paper we focus on the use of templates

and typedef statements in the C++ language as the supporting mechanisms.

1 Introduction

The objective of design reuse is to allow software developers to exploit parts of earlier

designs that seem applicable to a new system or application. Successful design reuse is

characterized by the ability to construct new applications by composing new parts with

reused parts sculpted to �t the new context.

Within the object-oriented technology community, much recent work on design reuse

has focused on collaborations of responsibilities distributed across multiple objects [3, 9,

5, 16]. \[N]o object is an island" [3, p. 2]: instead, each object has roles that it plays in

collaboration with other objects. Designs are composed from groups of these collaborations,

where each collaboration abstracts a task or concern in the design that may be appropriate

for reuse. Roles are the elements of a collaboration, with each role encapsulating the

responsibilities of a single participating class or object in a given collaboration. While the

combination of roles played by a given participant may di�er from one application to the

1

Using C++ Templates to Implement Role-Based Designs

next, the details of a given role are stable and are thus reusable in other designs having the

same concerns.

Carrying the bene�ts of role-based design reuse into implementation promises additional

bene�ts. The two primary bene�ts of increasing the connection between design and imple-

mentation are that changes at the design level are easier to keep consistent with changes at

the implementation level, and that it provides the opportunity for reusing sections of code

that correspond to the reusable pieces of design.

Current e�orts in role-based designs do not provide this bene�t. Some approaches

encourage implementation structures in which the design-level structures are not visible,

weakening the connection between the two levels. Beck and Cunningham [3] and Reen-

skaug, et al. [17], for example, each allow an object's multiple roles to be combined at the

design level, but, once combined, lose the identity of individual roles. Other approaches

may maintain a clear association between design and implementation for the roles of one

or two collaborations, but are di�cult to apply to designs consisting of many collabora-

tions. An example of this is Holland's use of frameworks [10]. In practice, approaches such

as frameworks may constrain the designs that are used because developers often restrict

themselves to designs that they believe can be implemented in a reasonably straightforward

way.

We propose an alternative approach for mapping role-based designs into implementa-

tions, preserving the design without unnecessarily constraining the design structures that

can be used. Roles are represented as parameterized classes, where the parameters repre-

sent the types of the participants in the collaboration. Compositions of roles are implicit

in the binding of parameters to classes in the implementation. The bindings are created at

compile time by type de�nitions that are separate from the role implementations. In this

paper we focus on the use of templates and typedef statements in the C++ language as

the supporting mechanisms.

Section 2 uses an example of Holland's to clarify role-based design. Section 3 uses this

example to describe the framework approach to implementing role-based designs.

1

Section

4 introduces our alternative approach, again in the context of Holland's example, describing

how we map role-based designs to C++ templates and how we instantiate these templates

to create an application. Section 5 discusses related work, while Section 6 presents our

discussion. Our conclusion appears in Section 7.

2 Role-Based Design: An Example

Holland's [10] design for graph traversal is a simple but useful example of role-based design.

In addition, it provides a foundation for understanding and comparing the implementation

structures de�ned using the framework approach as well as our template-based approach.

Holland's example de�nes a general depth �rst traversal over an undirected graph in

adjacency list format and three specializations of that traversal.

2

In this case, \general"

1

All code discussed in this paper is available by anonymous ftp from ftp.cs.washington.edu. The �le

is in the pub/se/code directory and is called TR-95-07-02.tar.gz

2

The example represents relatively low-level design. However, it captures both the design-level and the

implementation-level issues in a concrete way.

UW-CSE-TR-95-07-02 2 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

means that hooks are provided for doing various kinds of work as part of the traversal, but

the work itself is left to the later re�nements. Holland considers three re�nements to depth

�rst traversal: NumberedVertices, which numbers each vertex of the graph in the order it

was visited by the traversal; ConnectedRegions, which numbers all the vertices of connected

regions equally; and CycleCheck, which checks for cycles in the graph.

Considering role-based designs requires us to view them in two ways: one in terms of the

participants or types that are involved, and the other in terms of the tasks or concerns of

the design. The design of the depth �rst traversal has three participant types. The Graph

type represents the overall graph and its interface to clients, the Vertex type de�nes the

properties that each vertex must provide, and the Workspace type includes the common

part of any work that must be passed along during a traversal. The example design can

also be viewed as the combination of two separate collaborations: UndirectedGraph and

DepthFirstTraversal. UndirectedGraph is concerned both with the representation of a graph

in terms of vertices and edges and also with maintaining the graph's invariant properties

(for example, that the graph is undirected). DepthFirstTraversal is concerned with visiting

vertices in a particular order and providing support for doing work as part of the traversal.

Each of the three re�nements would be an additional collaboration.

As stated earlier, a role is a part played by a participant in a collaboration. Thus

a role is a unit of design common to both views. The role of the Vertex participant in

the UndirectedGraph collaboration supports the storage and retrieval of neighbors, while

in DepthFirstTraversal its role supports being visited and traversing outgoing edges. The

Graph participant also has a role in UndirectedGraph, which includes providing the client

interface for adding vertices and edges and maintaining certain invariants. In DepthFirst-

Traversal, the role of the Graph participant includes an interface to start the traversal, and

it also ensures that every vertex gets visited.

It is the symbiosis of these two views of design that gives role-based design its power.

The participant view captures conventional notions of object-oriented design; without it,

connections to implementation would be di�cult. The collaborative view captures cross-

cutting aspects of designs, such as DepthFirstTraversal ; without it, the relationships across

objects are lost.

3 The Framework Implementation

Holland uses a framework [11] to implement the basic collaborations from the design. The

participants in the collaborations are implemented as classes, while roles from a re�nement

are added to these participants by subclassing.

The base classes of the framework implement the roles from the UndirectedGraph and

DepthFirstTraversal collaborations. GraphDFT, the Graph participant in DepthFirstTraver-

sal, is implemented as a subclass of GraphUndirected, the Graph participant de�ned

in UndirectedGraph. The graph participant in the ConnectedRegions re�nement, called

GraphRegions, is then implemented as a subclass of GraphDFT.

The hooks to allow re�nements to add work to the traversal are implemented by calls

to work methods in the traversal code of GraphDFT. GraphDFT de�nes a set of default

work methods for these calls, and declares them as dynamically bound (virtual) so that

UW-CSE-TR-95-07-02 3 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

they can be overridden as necessary by a re�nement subclass of GraphDFT. In addition,

while GraphDFT passes a Workspace object as part of the traversal, the framework for

DepthFirstTraversal leaves the de�nition of the Workspace class to the re�nement. In

these ways, the framework implementation of DepthFirstTraversal is able to support a

variety of re�nements for traversal work.

The simplicity of the framework implementation is attractive, but assorted problems

remain, most of them related to naming. As one example, the names of participant classes

appear in the framework code, which implicitly binds the implementation to a particu-

lar structure of composition; for instance, GraphDFT names GraphUndirected as its parent

superclass, even though depth �rst traversal is equally meaningful for a directed graph. Hol-

land's design level description of DepthFirstTraversal reected this speci�city by including

the details that the graph was undirected and used adjacency lists. As Johnson and Foote

point out, \reusing the edi�ce that ties the components together is usually possible only by

copying and editing it" [11, p. 26].

A more serious problem is that it is di�cult to apply more than one re�nement to a given

framework. Since the implementations of both re�nements would assume the framework

as a base, editing is again required to achieve the required unambiguous combination of

common and separate pieces in a single class. This situation also has a naming problem due

to the use of dynamic binding, because it always binds to the most specialized de�nition of

a method. For example, suppose an application needs two di�erent traversals and thus two

separate GraphDFTs on the same UndirectedGraph, each doing a di�erent set of work. If both

re�nements of the Graph participant override the same work method, the �rst traversal's

GraphDFT will call the work method meant for the second GraphDFT.

3

4 A Template-Based Approach

Our alternative approach uses class templates to represent and implement roles. Partic-

ipants to these roles are passed as parameters to the templates. A role's template pa-

rameterizes the type of every participant to which it refers, including itself. This use of

parameterization enables us to overcome the naming problems of the framework approach.

In addition, because class names are bound to the parameters of the role implementations

by a separate set of type de�nitions, we treat as separate concerns the implementation of

roles and the composition of those roles.

The remainder of this section applies these techniques to Holland's graph example,

making the comparison between the approaches easier to understand.

4.1 Role Implementation

Roles are implemented using C++ templates. For example, Figure 1 shows the C++ code

to implement the GraphDFT role as a class template. The three parameters, V, WS, and G

respectively represent the class names VertexDFT, Workspace, and GraphUndirected in

3

Holland observed this problem and proposed a somewhat complicated \lens" mechanism that required

the di�erent re�nements to be instantiated between traversals [10].

UW-CSE-TR-95-07-02 4 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

template<class V, class WS, class G>

class GraphDFT : public G {

public:

bool depthFirst(WS* workspace) {

V* v;

for(v = firstVertex(); v; v = nextVertex())

v->setNotMarked();

initWork(workspace);

for(v = firstVertex(); v; v = nextVertex()) {

regionWork(v, workspace);

v->visitDepthFirst(workspace);

}

return finishWork(workspace);

}

};

Figure 1: A template implementation of a role.

the original framework implementation.

4

The template is instantiated to a class by binding

the three parameters to the desired participants. The part of our approach that does this

binding is explained in the next subsection.

The framework version of GraphDFT declared three virtual work functions and provided

the default implementations. Dynamic binding was needed to support their re�nement by

a descendent of the GraphDFT class. In the template version, these hooks for re�nement are

not declared in GraphDFT, but are instead provided, together with the default implemen-

tations, by a separate class template, called GraphDefaultWork which must be included

as part of the superclass of the GraphDFT class. (The process of re�nement by inserting

ancestors will become clearer in the discussion of role composition.) The firstVertex and

nextVertex methods are also assumed to be part of the superclass. If the superclass does

not provide these methods, an error is reported at compile time.

4.2 Role Composition

Roles are composed at the implementation level to form the classes of the participants. We

separate composition from role implementation using a series of type de�nition statements.

These statements are analogous to the type equations used by Batory [2] to specify the

composition of classes in his data structure generator. In addition, they form a kind of

textual description of the structure of the entire design of the application, analogous to a

class dictionary in Demeter [13].

The details of this aspect of the approach depend on some C++-speci�cs about class

4

Participant classes are formed, in part, by combining their role implementations through inheritance. In

GraphDFT<V,WS,G>, the G parameter represents its immediate superclass in the Graph participant inheritance

hierarchy. Although the code fragments in the paper do not show it, there is a default ancestor class.

UW-CSE-TR-95-07-02 5 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

typedef WorkspaceDefault WS;

typedef VertexAdj VGraph;

typedef VertexDefaultWork<WS,VGraph> VWork;

typedef VertexDFT<WS,VWork> V;

typedef GraphUndirected<V> GGraph;

typedef GraphDefaultWork<V,WS,GGraph> GWork;

typedef GraphDFT<V,WS,GWork> Graph;

Figure 2: Type de�nitions for the general case.

naming and templates. In C++ a class template is not a class, but rather a speci�ca-

tion of a family of classes, all sharing the template's implementation, but having di�er-

ent bindings for the parameters. A template class is a class de�ned by binding other

classes to the parameters of a class template. Thus, if VertexAdj is the name of a class

and template<class V> GraphUndirected is the declaration of a class template, then

GraphUndirected<VertexAdj> is the name of a template class. A class of that type will be

instantiated when the full template class name appears in the type declaration of a variable.

For the GraphDFT class template of Figure 1, the type names bound to V, WS, and G become

part of the name of any class instantiated from the GraphDFT class template. Because these

types would di�er if the role was in a di�erent part of the application, a role can be reused

in the same application without causing a class name conict.

Figure 2 shows a set of typedef statements that de�nes the Workspace, Vertex, and

Graph classes for the general depth �rst traversal algorithm. Although WorkspaceDefault

has no parameters, we chose to de�ne WS as a short alias for it because it is used in sev-

eral places later on. We next de�ne the Vertex participant type by combining its roles

from the UndirectedGraph and DepthFirstTraversal collaborations. VertexAdj is the im-

plementation of the vertex-with-an-adjacency-list role in the UndirectedGraph collaboration.

VertexDefaultWork appears next in the order of inheritance for the Vertex class, followed

immediatedly by VertexDFT. As we stated before, we make the Work roles ancestors of the

DFT roles so DFT can call the work methods they de�ne using only static binding. The

Graph participant is similarly constructed.

Binding template classes to template classes may create long names. While typedefs

allow us to de�ne shorter aliases, the use of typedefs is not merely a matter of saving

keystrokes. Using typedefs to give names to types at intermediate levels and aliasing the

type names makes it easier to change the types of participants when modifying the imple-

mentation, because the type only has to be changed in the de�nition of the alias.

Figure 3 shows the set of type de�nitions for the classes in the NumberedVertices re-

�nement of the DepthFirstTraversal. NumberedVertices de�nes its own Workspace role

and an additional role for the Vertex participant, but it needs no additional role for

the Graph participant. In re�ning DepthFirstTraversal, we replaced WorkspaceDefault

with WorkspaceNumber, and inserted the VertexNumberWork role between VertexWork and

UW-CSE-TR-95-07-02 6 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

typedef WorkspaceNumber WS;

typedef VertexAdj VGraph;

typedef VertexDefaultWork<WS,VGraph> VWork;

typedef VertexNumberWork<WS,VWork> VNum;

typedef VertexDFT<WS,VNum> V;

typedef GraphUndirected<V> GGraph;

typedef GraphDefaultWork<V,WS,GGraph> GWork;

typedef GraphDFT<V,WS,GWork> Graph;

Figure 3: Type de�nitions for the NumberedVertices re�nement.

VertexDFT in the Vertex inheritance hierarchy. In this way, the calls to work routines

in VertexDFT will call the methods de�ned in VertexNumberWork instead of the ones in

VertexDefaultWork. Without the same exibility in ordering inheritance, the framework

approach needed dynamic binding to accomplish this.

The type de�nitions for composing the ConnectedRegions and CycleCheck re�nements

are similar to those for NumberedVertices in Figure 3. Both also have a role for the Graph

participant which is inserted between GraphDefaultWork and GraphDFT in the Graph in-

heritance hierarchy.

How could we adapt this design and associated implementation for an application that

needed a directed graph? A DirectedGraph collaboration could share the same interfaces

as those in UndirectedGraph, and even use the same implementation of VertexAdj. We

could then reuse this implementation for a depth �rst traversal on DirectedGraph simply

by switching GraphUndirected to GraphDirected in the de�nition of GGraph, without

touching any template code. Both versions could in fact coexist in the same application

with no conict.

4.3 Composing Multiple Collaborations

Composing roles from one collaboration with roles from di�erent collaborations is an im-

portant part of role-based design. Equally important is the ability to compose roles from

similar collaborations and from repeated uses of the same collaboration. Our approach per-

mits mapping these design structures directly into the implementation. To demonstrate,

we add a second DepthFirstTraversal, together with the CycleCheck re�nement, to the

composition in the previous section.

The typedef statements for this new composition are shown in Figure 4. This example

highlights the importance of speci�able types for these kinds of compositions. For example,

GraphUndirected must manage vertices that are appropriate for both traversals, but the

�rst traversal must see a Vertex that results in the correct method and variable bindings

for that traversal. The issue is handled by binding the Graph roles of the �rst traversal to

the V Vertex type, while binding the remaining roles of the Graph participant to the more

UW-CSE-TR-95-07-02 7 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

typedef WorkspaceNumber WS;

typedef WorkspaceCycle WS2;

typedef VertexAdj VGraph;

typedef VertexDefaultWork<WS,VGraph> VWork;

typedef VertexNumber<WS,VWork> VNumber;

typedef VertexDFT<WS,VNumber> V;

typedef VertexDefaultWork<WS2,V> VWork2;

typedef VertexCycle<WS2,VWork2> VCycle;

typedef VertexDFT<WS2,VCycle> V2;

typedef GraphUndirected<V2> GGraph;

typedef GraphDefaultWork<V,WS,GGraph> GWork;

typedef GraphDFT<V,WS,GWork> Graph;

typedef GraphDefaultWork<V2,WS2,Graph> GWork2;

typedef GraphCycle<WS2,GWork2> GCycle;

typedef GraphDFT<V2,WS2,GCycle> Graph2;

Figure 4: Type de�nitions to compose multiple re�nements and traversals.

re�ned V2 Vertex type. Although the exibility is greater than in the framework approach,

all references are handled using only static binding.

This composition does not require the editing of any of the role implementations. The

client creates a graph instance of type Graph2, but casts it to a Graph type when it calls

the �rst, NumberedVertices, traversal.

5 Related Work

A number of authors have addressed either the composition of parts of objects to form the

objects of an application, or the use of type parameters to achieve exible implementations.

Batory et al. [1, 2] have developed a number of code generators that compose sets of

object features, called factors, to form complete classes. Batory's type equations compose

the factors into classes in much the same way our typedef statements compose the roles of

a participant to form its type. Batory has done much work identifying compositions that

may be semantically incorrect, and �nding optimizations to apply to the generated code.

Batory's approach requires careful domain analysis to identify common interfaces, followed

by the development of specialized generators. Our approach views any application and its

re�nements as its own domain, and requires no special generator, thus avoiding much of

Batory's analysis and preparation overhead.

Batory's work has focused on broadly used domains, such as data structures. The

general-purpose nature of these domains encourages both careful domain analysis and also

the development of specialized generators. With comparatively low overhead, our approach

UW-CSE-TR-95-07-02 8 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

provides much of the same exibility for arbitrary applications.

Lieberherr's Demeter [12, 14, 13] is a system that also addresses extensible structures

in object-oriented development, and combines design reuse with source code reuse. Like

our approach, Demeter minimizes and localizes dependencies on the class structure, and

avoids overspeci�cation. Demeter separates the speci�cation of structure from the imple-

mentation. But Demeter requires a special development environment and uses annotations

in the implementation of each collaboration to specify the composition. We have chosen to

restrict ourselves to using the features found in a widely used language and to separate the

implementation code from the speci�cation of composition.

Harrison and Ossher [7, 8] have been working on composing fragments of object-oriented

programs under the name subject-oriented programming. Their approach uses a special

dispatcher that \merges" classes by rerouting method calls. Their system allows a variety of

merging semantics. Our approach stays within the semantics of inheritance and aggregation

and does not require any special, extra-language mechanisms.

Musser, Stepanov and Lee [15] have recently gained attention in the C++ community

for their work on libraries of generic container classes and iterators. Their work has helped

push builders of compilers for C++ to provide better support for parameterized types.

They do not use parameterized inheritance and have not considered using templates as a

structuring mechanism for entire applications. But some of the ways in which they use

template programming could be applied alongside those suggested here.

Bracha [6, 4] addressed the use of types with parameterized superclasses, called mixins.

His work dealt largely with extending languages to support mixins, but also addressed

merge semantics and module composition. We view the parameterized types within the

context of a tool for structuring designs, while his focus was at a lower level.

6 Discussion

Implementations produced using our approach are relatively e�cient, largely because of our

use of static binding as opposed to dynamic binding. We timed closely matched implemen-

tations of the graph example in both the framework and the template versions, and found

that the template version ran about twice as fast (e.g., 28 seconds vs. 61 seconds CPU time,

for 10000 traversals of a graph with 800 edges on a PC using Linux/gcc 2.6.3). The object

code produced using templates was comparable in size to the framework implementation

(16423 bytes vs. 16988 before stripping, 8192 for both after stripping)

The approach is quite portable as well, primarily because it depends only on the avail-

ability of features|templates and typedefs|that are widely available in a commonly avail-

able language|C++. To apply the approach, then, requires an understanding of role-based

design, an understanding of how to map these designs using C++ templates and typedefs,

and the presence of a C++ compiler. The use of C++ and C++ templates and typedefs

raises a number of questions that we have not yet answered, including:

� How hard is it to debug templates like these? Our initial experience is that it is

not a serious problem, since C++ provides a degree of static typing for template

classes. Some compilers do not give as useful error messages as we would like (e.g.,

gcc), although others are already quite good (e.g., IBM's xlC). Without debugger

UW-CSE-TR-95-07-02 9 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

support for aliases, the long type names add a degree of complexity to debugging.

Although we have found some approaches to address this, the question is open for

larger applications.

� Do current compilers provide su�cient support for templates? So far we have observed

that the template support provided by C++ compilers varies widely. It is not unusual

to �nd templates that work in some compilers and fail in others. We expect it to take

some time before this technology is stable enough to use in our style across essentially

all compilers.

� Can our use of C++ templates be applied to other object-oriented languages that have

parameterized type mechanisms (e.g., Ei�el generics)? We see no a priori problems,

but neither have we tried this yet.

The principal open question we face is, does the approach scale? That is, for larger, more

complicated role-based designs, can we construct implementations that are reusable in the

implementations of similar (but not identical) role-based designs? One technical problem

we face in answering this question is how to manage the composition of large numbers of

roles using typedefs, which can be confusing even in small examples like Holland's graph.

Determining whether or not the approach indeed enhances design and implementation reuse

across large applications is an important, and complicated, question to answer.

7 Conclusion

Our template-based approach to implementing role-based designs provides a relatively

strong mapping between the design and the implementation. In particular, roles have

an explicit representation, as templates. This contrasts with approaches that transform

designs into collections of objects where the roles cannot be easily discerned. Our approach

does not, however, capture collaborations as clearly as it does roles. The initial step towards

addressing this shortcoming is to de�ne a design-level notation that explicitly represents

collaborations. Overall, our mapping from design to implementation is good, although not

yet ideal.

Designs consisting of multiple collaborations are implemented as directly as those con-

sisting of one or two collaborations. This contrasts with framework-based implementation

approaches, which have natural mappings only to implementations of a single collaboration

and one re�nement. Developers, then, need not be as constrained in their designs to ensure

straightforward implementations.

Finally, the amount of work required to accommodate many changes at the imple-

mentation level is proportional to the e�ort in changing the design level. Conventional

object-oriented programming styles, as well as framework approaches, use naming in a way

that tends to complicate the way design changes are realized in the implementation. In even

simple systems, such as Holland's graph example, the potential bene�ts of our approach

become apparent.

UW-CSE-TR-95-07-02 10 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

Acknowledgments

We would like to thank George Forman for his helpful feedback.

References

[1] D. S. Batory and S. O'Malley. The design and implementation of hierarchical software sys-

tems with reusable components. ACM Transactions on Software Engineering and Methodology,

1(4):355{398, October 1992.

[2] Don Batory, Vivek Singhal, Marty Sirkin, and Je� Thomas. Scalable software libraries. In

Proceedings of the First ACM SIGSOFT Symposium on Foundations of Software Engineering,

pages 191{199, 1993.

[3] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented thinking. In

Proceedings of the 1989 ACM Conference on Object-Oriented Programming Systems, Languages

and Applications, pages 1{6, 1989.

[4] Gilad Bracha. The programming language JIGSAW: Mixins, Modularity and Inheritance. PhD

thesis, University of Utah, 1992.

[5] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[6] Bracha. Gilad and William Cooke. Mixin-based inheritance. In Proceedings of the 1990 ACM

Conference on Object-Oriented Programming Systems, Languages and Applications, pages 303{

311, 1990.

[7] William Harrison and Harold Ossher. Subject-oriented programming (a critique of pure ob-

jects). In Proceedings of the 1993 ACM Conference on Object-Oriented Programming Systems,

Languages and Applications, pages 411{428, 1993.

[8] William Harrison, Harold Ossher, Randall B. Smith, and David Ungar. Subjectivity in object-

ooriented systems workshop summary. In Addendum to the Proceedings of the 1993 ACM

Conference on Object-Oriented Programming Systems, Languages and Applications, pages 131{

136, 1994.

[9] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying behavioral

compositions in object-oriented systems. In Proceedings of the 1990 ACM Conference on Object-

Oriented Programming Systems, Languages and Applications, pages 169{180, 1990.

[10] Ian M. Holland. Specifying reusable components using contracts. In Proceedings of the 1992

European Conference on Object-Oriented Programming, pages 287{308, 1992.

[11] Ralph Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented Pro-

gramming, pages 22{35, June/July 1988.

[12] Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of software growth through pa-

rameterized classes. Journal of Object-Oriented Programming, pages 8{22, August/September

1988.

[13] Karl J. Lieberherr and Cun Xiao. Minimizing dependency on class structures with adaptive

programs. In Object Technologies for Advanced Software: Proceedings of the First JSSST

International Symposium, pages 424{441, 1993.

[14] Karl J. Lieberherr and Cun Xiao. Object-oriented software evolution. IEEE Transactions on

Software Engineering, 19(4):313{343, April 1993.

UW-CSE-TR-95-07-02 11 July 10, 1995

Using C++ Templates to Implement Role-Based Designs

[15] D. R. Musser and A. A. Stepanov. Algorithm-oriented generic libraries. Software Practice and

Experience, 24(7):623{642, July 1994.

[16] Trygve Reenskaug and Egil P. Anderson. System design by composing structures of interacting

objects. In Proceedings of the 1992 European Conference on Object-Oriented Programming,

pages 133{152, 1992.

[17] Trygve Reenskaug, Egil P. Anderson, Arne Joggan Berre, Anne Hurlen, Anton Landmark,

Odd Arild Lehne, Else Nordhagen, Eirik Naess-Ulseth, Gro. Oftedal, Anne Lise. Skaar, and

Pal Stenslet. OORASS: Seamless support for the creation and maintenance of object-oriented

systems. Journal of Object-Oriented Programming, 5(6):27{41, October 1992.

UW-CSE-TR-95-07-02 12 July 10, 1995

