
c

 Copyright 1994

Catherine M. McCann

Processor Allocation Policies for Message-Passing Parallel Computers

Catherine M. McCann

Department of Computer Science and Engineering

University of Washington

Technical Report No. 95-07-03

September 1994

University of Washington

Abstract

Processor Allocation Policies for Message-Passing Parallel

Computers

by Catherine M. McCann

Chairperson of the Supervisory Committee: Professor John Zahorjan

Department of Computer Science

and Engineering

When multiple jobs compete for processing resources on a parallel computer, the

operating system kernel's processor allocation policy determines how many and which

processors to allocate to each. This dissertation investigates the issues involved in con-

structing a processor allocation policy for large scale, message-passing parallel computers

supporting a scienti�c workload.

First, the issues that a�ect the performance of scheduling policies for message-passing

parallel systems are examined. We argue that reasonable policies must provide nearly

equal resource allocation to all runnable jobs and allocate, to a single job, processors

that are in close proximity to one another.

Second, the concept of e�ciency preservation is de�ned as a characteristic of proces-

sor allocation policies. E�ciency preservation captures the impact of scheduling over-

heads such as reallocation cost and system-induced load imbalance on processor e�-

ciencies. We show how e�ciency preservation can be used in a �rst-order evaluation to

identify promising scheduling policies.

Third, we address short-term scheduling, that is, how to allocate processors among

a set of jobs where resource requirements allow them to be executed concurrently. The

details of two families of processor allocation policies, Equipartition and Folding, are

speci�ed. Both policy classes employ dynamic allocation, but di�er in the way they

address the their costs. Folding achieves good application load balance at the cost of

higher reallocation overhead, while Equipartition achieves low reallocation cost at the

expense of higher system-induced load imbalance. Through performance evaluation of

these policies, this dissertation shows that while maintaining low reallocation overhead

is imperative to the good performance of dynamic allocation policies in message-passing

systems, load balancing is also a dominant factor in the policy performance.

Fourth, this dissertation investigates medium-term scheduling policies, that is, how

to choose subsets of the runnable jobs to execute concurrently when the total resource

requirements of all the jobs exceeds the system's capacity. We argue that, in general,

an e�cient optimal solution to this problem is unlikely. As a result, this dissertation

concentrates on restricted problem domains, and shows that, for these cases, optimal

solutions exist.

Table of Contents

List of Figures : ii

Chapter 1: Introduction : 1

1.1 Taxonomy of Scheduling Policies : 3

1.1.1 Static Partitioning and Static Allocation : : : : : : : : : : : : : : : 4

1.1.2 Adaptive Partitioning and Static Allocation : : : : : : : : : : : : : 5

1.1.3 Static Partitioning and Dynamic Allocation : : : : : : : : : : : : : 6

1.1.4 Adaptive Partitioning and Dynamic Allocation : : : : : : : : : : : 6

1.2 Previous Work on Processor Allocation Policies : : : : : : : : : : : : : : : 7

1.2.1 UMA Shared-Memory Systems : 8

1.2.2 Distributed Memory Systems : 10

1.2.3 Building on the Results of Previous Work : : : : : : : : : : : : : : 13

1.3 Thesis Outline : 14

1.4 Thesis Contributions : 15

Chapter 2: Issues in Designing and Evaluating Scheduling Policies for Parallel

Computers : 17

2.1 The Hardware and Software Environment : : : : : : : : : : : : : : : : : : 17

2.2 Equal Resource Allocation : 19

2.3 Processor Adjacency : 20

2.4 Job Distribution (Mapping) Policy : 21

2.5 Scheduling Overhead : 26

2.5.1 Overhead of Dynamic Reallocation : : : : : : : : : : : : : : : : : : 26

2.5.2 E�ect on Job Performance : 27

2.6 Summary : 27

Chapter 3: E�ciency Preservation : 29

3.1 E�ciency Preservation : 29

3.2 E�ciency Preservation Example : 32

3.3 Summary : 34

Chapter 4: Dynamic Allocation Scheduling Policies : : : : : : : : : : : : : : : : : : 36

4.1 Introduction : 36

4.2 Mapping : 38

4.3 The Equipartition Policy : 38

4.3.1 Basic Equipartition: EQUI : 40

4.3.2 A Higher E�ciency Preservation Equipartition: EQUI

+

: : : : : : 43

4.4 The Folding Policy : 46

4.4.1 Basic Operation : 47

4.4.2 Realizing Equal Resource Allocations : : : : : : : : : : : : : : : : 48

4.4.3 Job Departures with Rotations : 51

4.4.4 The Family of Policies FOLD

I

: 52

4.4.5 De�ning Partition Cycles : 52

4.5 Summary : 55

Chapter 5: Performance Evaluation of Dynamic Allocation Policies : : : : : : : : : 57

5.1 The Hardware and Software Environments : : : : : : : : : : : : : : : : : : 58

5.2 Static Analysis: E�ciency Preservation and Fairness : : : : : : : : : : : : 60

5.2.1 E�ciency Preservation: Derivation : : : : : : : : : : : : : : : : : : 61

5.2.2 E�ciency Preservation: Results : 64

5.2.3 Fairness: Results : 65

ii

5.3 Birth-Death Analysis: Mean Response Times : : : : : : : : : : : : : : : : 67

5.3.1 Unlimited Memory Resources : 68

5.3.2 Limited Memory Resources : 70

5.4 Simulation Analysis: Heterogeneous Workloads : : : : : : : : : : : : : : : 71

5.4.1 Unlimited Memory Resources : 71

5.4.2 Limited Memory Resources : 73

5.5 Conclusions : 74

Chapter 6: Scheduling Policies for Memory-constrained Applications : : : : : : : : 77

6.1 Introduction : 77

6.2 MIN SCHED is NP-Complete : 84

6.3 The BUDDY Scheduling Policy : 86

6.4 Analysis of BUDDY Scheduling Policy : : : : : : : : : : : : : : : : : : : 92

6.4.1 BUDDY Produces a Feasible Schedule : : : : : : : : : : : : : : : 92

6.4.2 BUDDY Scheduling Policy is Optimal : : : : : : : : : : : : : : : : 94

6.5 Epoch Scheduling : 103

6.5.1 The EQUI EPOCH Policy : 104

6.5.2 Analysis of EQUI EPOCH : 106

6.6 Comparison of BUDDY to EQUI EPOCH : : : : : : : : : : : : : : : : 109

6.7 Integration With Space-sharing Policies : : : : : : : : : : : : : : : : : : : 110

6.8 Summary : 112

Chapter 7: Conclusions and Future Research Directions : : : : : : : : : : : : : : : 114

7.1 Conclusions : 114

7.2 Future Research Directions : 116

7.2.1 Other Workload Characteristics : 116

7.2.2 Other Architectures : 117

7.2.3 Approximation Algorithms for Medium-term Scheduling : : : : : : 117

7.2.4 Interaction Between Kernel-level and Application-level Scheduling 118

iii

Bibliography : 120

iv

List of Figures

2.1 Hardware Environment : 18

2.2 Kernel-level remapping : 25

2.3 Example kernel mapping onto 3x5 partition : : : : : : : : : : : : : : : : : 25

3.1 Speedup curve for hypothetical application : : : : : : : : : : : : : : : : : : 33

3.2 E�ciency preservation for three policies : : : : : : : : : : : : : : : : : : : 34

4.1 Partitioning under Equipartition : 40

4.2 Equipartition of 16x16 mesh for 1 to 16 partitions : : : : : : : : : : : : : : 42

4.3 Equi+ mapping of 16x16 application onto 4x5 partition : : : : : : : : : : : 45

4.4 index(i; j) for even processor row (top) and odd processor row (bottom) : 47

4.5 Partitioning of processor mesh for 3 to 8 jobs : : : : : : : : : : : : : : : : 48

4.6 Folding rotation for J = 5 jobs : 50

4.7 Cycles for 16 or fewer partitions : 52

4.8 Cycles for 17 and 18 partitions : 53

4.9 Cycles for 17 and 18 partitions : 53

5.1 Hardware and software model : 58

5.2 E�ciency preservation for perfectly load balanced jobs (� = 0) : : : : : : : 64

5.3 E�ciency preservation for thread compute times from U(100� �; 100+ �)

msec. : 65

v

5.4 Fairness of Equipartition: relatively most heavily and most lightly loaded

jobs : 66

5.5 Fairness of Folding: relatively most heavily and most lightly loaded jobs : : 67

5.6 Mean blow-up factor versus system load (� = 0) : : : : : : : : : : : : : : : 69

5.7 Mean blow-up factor versus multiprogramming limit (� = 0) : : : : : : : : 70

5.8 Mean response times (� = 0:5, � = 5) : 72

5.9 Coe�cient of variation of blow-up factor (� = 0:5, � = 5) : : : : : : : : : 73

5.10 Response time versus multiprogramming limit (� = 0:5, � = 5) : : : : : : : 75

5.11 CV of blow-up factor versus multiprogramming limit (� = 0:5, � = 5) : : : 76

6.1 Multiprocessor Scheduling (J,P) : 79

6.2 Example Buddy schedule : 88

6.3 BUDDY Scheduling Algorithm : 90

6.4 BUDDY Schedule for P = 16,J = 8, min = [2; 2; 4; 4; 4; 8; 8; 8] : : : : : : 92

6.5 An epoch schedule for 4 jobs : 104

6.6 EQUI EPOCH Scheduling Algorithm : 105

6.7 EPOCH Scheduling Policy: Example for P = 12, J = 8, min[] =

f2; 3; 3; 4; 4; 4; 5; 6g : 106

6.8 EQUI EPOCH verses optimal epoch policy when P is not a power of two 108

6.9 EQUI EPOCH verses non-optimal greedy epoch policy: P = 16, J = 5,

min = [4; 4; 4; 4; 8] : 109

6.10 BUDDY vs. EQUI EPOCH: P = 16, J = 8, min = [2; 2; 4; 4; 4; 8; 8; 8] 110

6.11 Implementation of BUDDY schedule on 4x4 processor mesh : : : : : : : : 111

vi

Chapter 1

Introduction

This dissertation is concerned with (kernel) processor allocation policies for large scale,

distributed memory, message passing parallel computers. These systems are being de-

veloped to meet the ever increasing demand for processing power. Signi�cant decreases

in the cost of microprocessors and memory chips, coupled with increasing speed of in-

terconnection networks, has made the development of large-scale distributed memory

parallel computers more a�ordable. Systems with the high computational speed, large

memories, and high-speed interconnection networks have the potential for achieving high

performance, scalability, and extensibility, and o�er an attractive platform for solving

many large applications.

E�ective operating system support to manage the resources of these systems will

continue to be an important goal of research and development. To fully utilize their

parallel processing power, it is imperative that every available opportunity be taken to

exploit the parallelism of applications and realize the parallel computing potential of the

architecture. According to [1], \A true general purpose supercomputer system will need

to e�ectively exploit all parallelism available in an application set and do so in a manner

that is convenient to its users."

Many avenues are being explored to e�ciently execute parallel applications on these

machines. At the most rudimentary level, applications are carefully written and struc-

2

tured to exploit parallelism and control the data distribution to maximize the parallelism

of the application. To alleviate the complexity of such e�orts, new parallel languages

are proposed that e�ciently express parallelism and data distribution. Runtime systems

serve as intermediaries between applications and the kernel. They aid speci�c classes

of applications in load balancing, dynamic adaptation of parallelism, and expression of

resource needs. New operating system constructs reduce the communication latency be-

tween processing nodes, increase kernel support for synchronization, and export control

over system resources to users, all in an attempt to reduce the overhead of kernel support

for parallel activities.

In addition to achieving high performance on single applications, multiprogramming

parallel systems can provide higher processor utilization and better aggregate response

time to parallel programs than is achievable under uniprogramming. This dissertation

investigates this avenue to realizing the full potential of parallel machines, that is, the

implementation of processor allocation policies that decide how to divide the available

processing resources of a parallel computer among competing parallel applications in

order to achieve good application response time and the highest possible utilization of

processors.

Processor scheduling in parallel computers is a two-level procedure. While some

schedulers combine these two levels into a single scheduler, they are two separate func-

tions. At the lower level, the kernel allocates processors to applications. Kernel-level

scheduling is thus also referred to as processor allocation. The kernel-level scheduler

decides how many and which processors to allocate to a job, and represents the needs of

the system as a whole to provide the best overall system utilization and responsiveness

to all applications. The kernel-level schedulable unit is called a kernel thread. A kernel

thread is dispatched on each processor assigned to a job, and the job executes within

those threads.

At the higher level, the applications decide which of their ready parallel operations

(called user-level threads) to execute on each processor. The application scheduler assigns

3

one or more user-level threads to each kernel thread. The application-level (or user-level)

scheduling function may be contained within the application itself, may be determined by

a parallelizing compiler, or may be provided by a runtime system. Its goal is to provide

the best response time for that application, given its current processor allocation.

This dissertation is concerned with the lower level (kernel scheduling). As such, we

make a conservative assumption about the interaction between the kernel scheduler and

the application scheduler. We assume the kernel has little knowledge of what computa-

tion or communication occurs within the threads, and can not use any such information

in making its scheduling decisions. In Chapter 2, we describe fully our assumptions

about the interaction between these two schedulers.

While this dissertation focuses on distributed memory, message-passing computers,

many of the ideas and some of the results can be extended to distributed memory sys-

tems with support for shared memory; however, in shared memory systems, which have

support for remote memory reference, there is the additional scheduling issue of whether

to migrate a job's data upon reallocation of its processor or allow it to access the data

remotely. This dissertation does not address this issue.

1.1 Taxonomy of Scheduling Policies

Kernel-level scheduling policies may be categorized according to two types of decisions

they make: when to change the partitioning of processors and when to change the

allocation to jobs. With respect to partition changes, the simplest policies employ static

partitioning of the processors, in which the multiprocessor is divided into �xed size

partitions. The scheduling policy decides which partition to allocate to jobs, but the

size and con�guration of the partitions is not controllable. Adaptive partitioning policies

are more aggressive, adapting the size and con�guration of partitions to changes in

the workload and system environment. When system load is light, few partitions are

de�ned; when load is heavy, more partitions are de�ned to accommodate more jobs

simultaneously.

4

With respect to allocation changes, scheduling policies may employ static or dynamic

allocation. Static allocation policies allocate a �xed number of processors to each job

for the job's entire execution. The number of processors allocated to a job is determined

when it is loaded, based on the job's parallelism, on job size, or on system environmental

considerations such as current system load. Dynamic allocation policies may change the

number of processors allocated to each job throughout its execution lifetime in response

to changes in the job's parallelism or changes in system load.

By varying the combination of partitioning and allocation policies, we de�ne four

classes of scheduling policies that di�er in the aggressiveness with which they pursue the

goals of high system utilization and good application performance. We brie
y discuss

each of these classes in turn.

1.1.1 Static Partitioning and Static Allocation

The simplest scheduling policies employ static partitioning and static allocation. Pro-

cessors are divided into a �xed number of partitions, and jobs are allocated to a single

partition for their durations. The earliest systems implemented only a single partition,

and jobs were executed one at a time until they completed. Later, job scheduling con-

sisted of allocating time-slices during which a single job was executed alone on the whole

machine. After its time-slice, the job was preempted and a new job scheduled. Another

approach divided the system into some number of partitions. Each job was assigned to

one of the partitions, The processors of a partition were time-shared among multiple jobs

assigned to the partition. Often the partitions were used to separate di�erent classes of

jobs, such as non-parallel interactive jobs from parallel jobs, or long-running from short

term jobs.

In contrast to the time sharing policies above, space sharing policies allocate re-

sources to jobs by partitioning processors among multiple jobs. Space sharing policies

make more e�ective use of processors than uniprogramming. Although most applica-

tions bene�t from increasing allocations, their typically sub-linear speed-up implies that

5

at some point additional processors would be better utilized by another application.

Also, for applications that can not make use of all processors, other jobs are able to

utilize processors that might otherwise be idle.

Within static partitioning, policies either assign multiple jobs to a partition or re-

quire jobs to be queued waiting for available partitions. If multiple jobs are assigned to

each partition, the processors within a partition are time-shared among the jobs in that

partition. This has the potential bene�t of allowing a smaller queueing time, which is

especially bene�cial to short jobs. There is also a bene�t to overlapping the computa-

tion time of one thread with the time spent blocked on some event by another thread.

The scheduler for Thinking Machine's CM5 supports static partitioning and time-shares

partitions.

The static division of the machine provides a relatively stable resource allocation

on which an executing job can depend. Both data and computation placement may be

decided at load time to maximize the performance for the speci�c processor allocation.

However, if the number of jobs in the system is less than the number of partitions,

processors will remain unallocated even though the executing jobs could use them, thus

adversely impacting performance.

1.1.2 Adaptive Partitioning and Static Allocation

More aggressive partitioning policies allow changes in the size and con�guration of the

partitions in response to changes in the workload and system load. In this way, the

number of partitions can be adjusted to correspond to the number of jobs in execution,

thereby reducing the potential for idle processors. Further, the size of a partition allo-

cated to a job may be chosen to better re
ect the job's parallelism, thus increasing the

e�ciency of the allocated processors.

Adaptive partitioning policies have been proposed for cube-connected architectures

such as the Hypercube [7, 8]. These policies assume a job requests a subcube of a

particular size. The scheduling policy allocates subcubes to newly arriving jobs. The

6

subcube allocated to a job remains the same throughout the job's lifetime. When a

job �nishes, its subcube is combined with free neighboring subcubes, if any, so that a

larger idle subcube becomes available. Since jobs request subcubes of varying sizes, these

adaptive partitioning policies try to reduce the number of idle processors and provide

better processor utilization than static partitioning policies.

Another form of adaptive partitioning allows the number of processors assigned to a

job to be determined when the job is �rst scheduled. The number of processors allocated

to a job can be a function of the number of jobs waiting to be scheduled, the number of

processors currently available, and the parallelism of the jobs to be scheduled.

1.1.3 Static Partitioning and Dynamic Allocation

Dynamic allocation coupled with static partitioning may be thought of as a means of

load balancing among static partitions. Here, the processors are divided into �xed-size

partitions, and parallel jobs are assigned to a partition. The scheduler may migrate par-

allel jobs to other partitions during their execution in order to balance the load across the

partitions. Most load balancing policies reallocate across identical sized partitions; thus,

dynamic allocation is not involved. It is doubtful that the cost of dynamic allocation

would be justi�ed for load balancing across static partitions. Thus, the combination of

static partitioning and dynamic allocation is of bene�t, and few systems employ this com-

bination. For this reason, the term static partitioning generally implies static allocation

and the term dynamic allocation generally implies adaptive partitioning.

1.1.4 Adaptive Partitioning and Dynamic Allocation

Adaptive partitioning with dynamic allocation o�ers the most aggressive form of schedul-

ing. Both the con�guration of the partitions and the number of processors allocated to

a job can changes during the job's execution. To achieve high utilization, processors are

reassigned to other jobs when a job departs. In fact, dynamic allocation could be done

at any time: the same mechanisms required to reallocate at job departure can be used

7

to accommodate an arriving job, with each running job relinquishing some processors to

the new job. Alternatively, the number of processors allocated to a job may change in

response to changing parallel needs of the job, again making more e�ective use of the

processors.

The overhead of reallocation determines the frequency with which it is appropriate.

In shared memory systems, it has been shown that the bene�ts of dynamic allocation

outweigh the cost of more frequent reallocations. However, there has been only limited

experience with dynamic allocation of processors to jobs in distributed memory systems.

While an aggressive manipulation of the system o�ers a greater potential for increased

performance, the costs of e�ecting these changes in a distributed memory environment

may outweigh the bene�ts. Existing scheduling policies for distributed memory systems

generally employ a static form of allocation because dynamic reassignment of processors

among jobs has been thought to be too expensive, due to the communication costs

associated with relocating code and data. However, hardware advances continue to

increase the bandwidth of interconnection networks, and recent software advances [45,

41] show how to reduce the latency currently imposed by large message startup costs to

a negligible level. These trends indicate that dynamic allocation should be investigated

as a viable scheduling strategy for future parallel machines.

This dissertation explores this category of scheduling policies for message-passing

distributed memory systems that both dynamically change the allocation of processors

to jobs and change the size and con�guration of partitions. In doing so, it lays the

foundation for the design of processor allocation policies to be employed in the next

generation of multiprocessor kernels, which will enjoy high network bandwidths and low

message startup costs, thus making the reallocation cost feasible.

1.2 Previous Work on Processor Allocation Policies

An early and fundamental result on processor scheduling for parallel machines is due to

Ousterhout [32]. He notes that because the threads of a parallel application synchronize

8

frequently, the rate of progress of the application will be determined by the scheduling

quantum unless all threads of the processor are \coscheduled", that is, run at once. If the

kernel threads assigned to a job are not coscheduled, there can be signi�cant ine�ciencies

due to synchronization losses: application-level threads executing on one processor may

be forced to wait for a thread that is blocked on another processor. Ousterhout [32] shows

that coordinated scheduling is imperative to good performance in time-shared scheduling

of parallel systems. This e�ect also forces processor allocators to operate on a per-job

granularity, rather than a per-thread one. This highlights the need to view scheduling as

a two-level procedure, separating the kernel-level processor allocation decisions from the

application-level decisions of which user-level threads to execute on each processor. Work

by Ousterhout [32], Zahorjan et al. [47, 48] and Gupta et al. [20] shows that single-level

schedulers, where a kernel schedules all threads of all applications (usually from a single

queue of ready threads), provide poor performance to individual jobs. These schedulers

also provide unfair service when applications contain di�erent numbers of threads.

Base on these early results, we restrict our attention to two-level schedulers and

focus on the kernel-level scheduling policy. This section reports on previous work on

kernel-level scheduling. First, we survey results from the study of scheduling policies

speci�cally designed for a uniform memory access (UMA) shared memory environment.

Many of the key results from this domain are also relevant to the distributed memory

environment. Next, we report on work speci�c to a distributed memory environment,

where the scheduling policy must re
ect the speci�c environmental considerations of

distributed memory in making its allocation decisions.

1.2.1 UMA Shared-Memory Systems

Much research on shared memory systems compares the performance of time-sharing

scheduling policies, where each job is allocated a time-slice during which it executes on all

the processors, to space sharing policies, where the processors are divided among multiple

running jobs. Tucker and Gupta [42] describe \process-control", which is fundamentally

9

a space-sharing approach. Under process control, an arriving job creates a thread per

processor of the machine, but based on feedback from the kernel, idles threads in excess

of its current processor allocation. This allows a natural form of coscheduling, which

would not be possible if the number of active threads exceeded the processor allocation,

even with space sharing. Processors are reallocated among jobs only on job arrival and

departure.

Zahorjan and McCann [49] compare time sharing to space sharing, and conclude that

space sharing is preferable. Space sharing policies make more e�cient use of processors

that might otherwise be idle when running a single application, and in addition jobs

with sublinear speedup execute more e�ciently when run on fewer processors. They

also describe a more aggressive form of coscheduling than is used in process control, as

well as a more aggressive approach to reallocating processors in response to transient

changes in job parallelism. McCann et al. [28] further re�ne this policy, and report on

results from a prototype implementation of it. Their results showed that the bene�ts

of dynamic reallocation of processors among jobs in a UMA environment outweigh the

costs of more frequent reallocations.

Many studies examine the relationship between job characteristics and the perfor-

mance of various scheduling disciplines. In examining the tradeo� between application

speedup and processor e�ciency, Eager et al. [16] show how allocating a job's \average

parallelism" provides a good approximation of the number of processors that best bal-

ance processor e�ciency with job execution time. Majumdar et al. [27], Sevcik [38, 39],

Leutenegger and Vernon [24], and Chiang et al. [10] examine the relationship between job

characteristics, such as average or maximum parallelism, variance in parallelism, or total

service time, and the performance of various scheduling disciplines. They �nd that, as

in uniprocessor systems, average response time can be improved by allocating resources

preferentially to smaller jobs, and that in the absence of a priori job characterizations,

allocating an equal fraction of total processing power to each job is an e�ective heuristic.

Zahorjan et al. [47, 48] use modelling to examine the e�ect of scheduling discipline on

10

spinning overhead and show that preemption of processors must be done in a coordinated

manner. If a scheduling policy preempts a processor from a running job, and that

processor was executing a thread that held a spin lock, then other executing threads on

other processors waiting for that lock can not make progress until the blocked thread

is rescheduled. Further experimental studies [28, 12] con�rm this. Anderson et al. [2]

propose kernel-level mechanism to support coordinating processor preemption.

Gupta et al. [20] and Vaswani and Zahorjan [44] examine the importance of cache

a�nity to the decisions made by the kernel processor allocator. Their results agree

in showing that cache a�nity is not exploitable by the kernel, except in very special

circumstances. (Squillante and Lazowska come to somewhat contradictory conclusions,

based on results from an analytic model [40].)

1.2.2 Distributed Memory Systems

The �rst parallel systems used very simple scheduling policies that allocated the entire

parallel machine to each waiting job in turn for some time quantum or until the job

completed. Early modelling studies [14, 25] expose the potential performance gain of

multiprogramming over uniprogramming.

Early work on multiprogramming distributed memory systems extends policies de-

veloped for the shared-memory environment to the distributed memory environment.

Crovella et al. [12] report on an implementation of a time-slicing policy, a coscheduling

policy and a dynamic allocation policy on a NUMA system (BBN Butter
y). Their

experiments show that the dynamic allocation policy outperforms the coscheduling and

time-slicing policy, in part due to less cache corruption and fewer remote references than

required under coscheduling or time-slicing. These results are consistent with results

from the shared memory environment demonstrating that space sharing is preferable

to time-sharing policies and that uncoordinated preemption is detrimental to system

performance.

Setia et al. [37] compare static partitioning policies where one job executes in each

11

partition, to multiprogrammed policies, where partitions may be time-sliced among mul-

tiple jobs. They show that at moderate to high system loads, multiprogramming policies

can outperform static partitioning policies.

Feitelson and Rudolph [17, 18] examine variants of gang scheduling. They propose a

hierarchical scheme for assigning applications to processors, and examine the fragmen-

tation associated with gang scheduling jobs whose sizes di�er (according to a number

of distributions). Because many jobs may be allocated to each processor, the processors

must be time-shared among them.

Many studies of distributed memory systems focus on partitioning policies for parallel

system. Zhou and Brecht [50] describe a pool-based scheduling policy. Pools are a logical

construct, used by the kernel to balance the allocation of jobs across the processors.

Unlike the work of Feitelson and Rudolph, there is only a single level to the allocation

structure in pool-based scheduling. Additionally, in pool-based scheduling the kernel can

e�ectively restrict a job's choice of parallelism by restricting its threads to only one or a

few pools. Pool-based scheduling may time-share partitions.

Dussa et al. [15] examine the bene�ts of dynamically repartitioning processors on job

arrival and departure, with experiments on a ring connected Transputer-based system,

as well as a simple analytic model. They conclude that for this hardware and the two-job

workload considered that dynamic repartitioning can be bene�cial, primarily because of

its ability to discriminate among jobs based on their total durations and because the

sub-linear speedup of typical applications makes them more e�cient when run on fewer

processors.

Rosti et al. [35], examine adaptive partitioning policies for multiprogrammed mul-

tiprocessors where the number of partitions changes upon arrival and departure, and

where the number of new partitions created from freed processors depends on system

load. They analyze robustness, where robustness is a measure of a policy's performance

when given little or no knowledge of job characteristics.

Chen and Shin [8] examine processor allocation policies for cube-connected message

12

passing machines. Like Feitelson and Rudolph, they assume that arriving jobs declare the

number of processors required for execution. The scheduling policy allocates subcubes

to a newly arriving job. The size of the subcube allocated to a job remains the same

throughout the job's lifetime. When a job �nishes, its subcube is combined with free

neighboring subcubes, if any, so that a larger idle subcube becomes available. The goal

of their work is to describe e�cient schemes for �nding sub-cubes to satisfy arriving

jobs and minimizing the fragmentation of available subcubes. Later work [9] describes a

global parallel task migration strategy to reduce the available subcube fragmentation.

Other studies consider batch scheduling algorithms where the number of jobs, the

parallelism of the jobs, and jobs' execution time needs are known in advance. Instead

of minimizing overall response time, they consider makespan, which is the total time

necessary to complete all jobs. Chen and Lai [7] study the problem of allocating subcubes

in a hypercube environment. Li and Cheng [26] consider a mesh-connected environment

where jobs require square submeshes. They propose a two-dimensional buddy system

partitioning scheme. Both studies give worst case bounds over an optimal schedule.

Turek et al. [43] consider scheduling policies in which jobs may execute on any number

of processors, and their execution times, a function of the number of processors allocated,

are known for all jobs. They show that the general scheduling problem of �nding an

allocation of processors to jobs that produces the minimum makespan schedule is NP-

hard. They propose a shelf scheduling strategy, which de�nes intervals (called shelves)

to which jobs are allocated processors. At the end of an interval, all processors are

reallocated to jobs in the next shelf. They prove their self-scheduling algorithm �nds the

minimal length schedule within the class of shelf algorithms.

There has been limited experience with dynamic allocation in distributed memory

systems. Setia et al. [29] compare a dynamic allocation policy to static partitioning

and adaptive partitioning for varying workloads. Under their dynamic allocation policy,

partition sizes are changed upon arrival and departure to accommodate newly arriving

jobs or to utilize processors freed by departing jobs. They assume the application re-

13

distributes its workload at the next safe point in its execution after is is noti�ed of the

reallocation. The cost of reallocation is determined by experimentation using a con-

servative redistribution scheme that collapses all threads of a job onto some minimum

number of processors in the new partition and then expands the threads onto the full

partition. Their results show that dynamic allocation can provide the best overall per-

formance. However, they observe that dynamic allocation performs worse for large jobs

than adaptive partitioning at high system loads, since dynamic allocation allocates fewer

processors to those jobs at high loads than do the other policies. Their policies do not

consider adjacency of multiple processors allocated to a job, and thus ignore the potential

performance impact of interconnection network contention among multiple applications

competing for the same interconnection network links.

Several studies [30, 29, 38] explicitly demonstrate the necessity of reducing the al-

location of processors to jobs as the system load increases. Peris et al. [33] examine

the e�ects of increased paging overhead accompanying a reduced allocation on job per-

formance. Their results illustrate the necessity to consider the e�ects of memory on

scheduling large memory-intensive applications.

1.2.3 Building on the Results of Previous Work

In examining the results of prior work in both the shared memory and distributed mem-

ory environments, we conclude that high performance processor allocation policies should

have the following characteristics:

� Co-scheduling | The dispatching of a job's threads must be coordinated, so that

no thread waits to synchronize with a thread that is not running.

� Space-sharing | A set of processors should be shared among multiple jobs by

giving each exclusive use of a subset, rather than by alternating assignment of the

full set among them.

14

� Equal allocation | In the absence of reliable information on the resource require-

ments of each job, each running job should be allocated a reasonably equal portion

of the resources, for reasons of fairness and performance.

This dissertation concentrates on dynamic allocation policies as the most promising

approach to scheduling these systems.

1.3 Thesis Outline

This dissertation is organized as follows. Chapter 2 examines the issues in multipro-

gramming message-passing parallel systems, with a special emphasis on issues particular

to dynamic allocation policies necessary for a comprehensive evaluation of the perfor-

mance of dynamic allocation policies. Chapter 3 de�nes a new metric, called e�ciency

preservation, for evaluating the performance of processor allocation policies for parallel

systems. We show how this metric can be used in a �rst-order evaluation to identify

promising scheduling policies. We also use this metric to show the potential bene�ts

a�orded by dynamic allocation over static partitioning policies.

In Chapter 4, two speci�c classes of scheduling policies are proposed. Both policy

classes employ dynamic allocation and adaptive partitioning: the size and con�guration

of the processors allocated to jobs changes throughout their execution. These policies

di�er in the way they address the costs of dynamic reallocation. One policy, called

Equipartition, always partitions the processors equally among the competing jobs. Re-

allocation occurs only when jobs complete or new jobs arrive in the system, relatively

rare events. However, since the number of processors allocated to a job may not evenly

divide the number of threads in a job, a system induced load imbalance can degrade job

performance. The second policy, called Folding, avoids system induced load imbalance

by always halving or doubling the number of processors allocated to a job. The Folding

policy does not allocate equal-size partitions. To ensure equal resource allocation, the

jobs' allocations alternates between larger and smaller partitions. Here, the frequency

and cost of these reallocations a�ects the job's performance.

15

Chapter 5 evaluates the performance of the policies presented in Chapter 4 to as-

certain the relative impact on performance of reallocation overhead and system induced

load imbalance. In comparing the performance of the policies, both the response time

equal resource allocation among competing jobs (a measure of fairness) are considered.

The performance evaluation is performed using quantitative analysis and simulation.

In Chapter 6, we examine policies that take into account the memory constraints of

large applications. The existence of a lower bound on possible allocations clearly compli-

cates scheduling policies. Here, it is not always possible to schedule all jobs concurrently,

so some time-shared scheduling policy must be employed. We look at scheduling policies

that incorporate another level of scheduling to accommodate the situation where large,

memory-intensive applications have a minimum number of processors on which they can

run.

Chapter 7 summarizes the conclusions of this dissertation and identi�es areas of

potential future research.

1.4 Thesis Contributions

This dissertation makes the following contributions:

� The important issues relevant to the performance of scheduling policies for message-

passing systems are identi�ed, with special attention given to aspects a�ecting

dynamic allocation of processors.

� A new metric, E�ciency Preservation, is de�ned for evaluating the performance of

processor allocation policies for message-passing parallel systems.

� Two dynamic allocation policies are developed that consider the major aspects of

processor allocation necessary for a comprehensive understanding of their perfor-

mance in real systems.

16

� A performance evaluation of these policies identi�es the relative importance of real-

location overhead verses system induced load imbalance. Results show that avoid-

ing system induced load imbalance is important to the performance of scheduling

policies.

� Scheduling policies relevant to the scheduling of parallel applications with large

memory requirements are studied, and feasible policies appropriate to this domain

are de�ned and analyzed.

� Through the study of scheduling algorithms for large memory-bound applications,

a new variant to the class of two-dimensional orthogonal bin-packing problems is

introduced. While the complexity of this problem remains open, we show that it

is a subset of a similar problem that is NP-complete, and thus is unlikely to be

solved e�ciently.

Chapter 2

Issues in Designing and

Evaluating Scheduling Policies

for Parallel Computers

This chapter examines the issues that a�ect the performance of scheduling policies for

message-passing parallel computers, and as such, must be considered in the design and

evaluation of such policies. We discuss both the issues relevant to multiprogramming

scheduling policies in general, and considerations speci�c to adaptive partitioning and

dynamic allocation policies. We describe the decisions made in selecting among the

design alternatives and present the rationale behind those decisions.

2.1 The Hardware and Software Environment

A scheduling discipline manages the resources within a speci�c environment. Its behavior

is intimately tied to the environment for which it is de�ned. Therefore, to assess the

performance of scheduling policies, we �rst need to identify the environment in which

they are appropriate.

This dissertation focuses on scheduling policies for non-uniform memory access (NUMA)

18

architectures. Speci�cally, it examines policies appropriate to systems in which each node

consists of a processor and memory, and nodes communicate via message-passing. Exam-

ples of such systems are the Intel Paragon, the Intel Touchtone Delta, and the Thinking

Machine CM5.

We consider the particular case of a mesh-connected parallel machine consisting of

2

M

x 2

N

nodes, as shown in Figure 2.1. Each node contains a single processor and

su�cient memory to multiprogram a number of threads of a single application. Nodes

communicate only by messages; there is no shared memory. This model captures the

important attributes of the Intel Paragon, and we will make parameterizations of it based

on the speci�cations of that machine. However, much of the work applies to machines

with a tree interconnection structure (such as the CM5), and to machines where each

processing node contains a small cluster of processors. Additionally, it should not be

hard to translate many of our ideas to other interconnection structures.

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

2

N

2

M

Figure 2.1: Hardware Environment

To undertake a substantive analysis, it is also necessary to make assumptions about

the software environment. We consider workloads consisting of large parallel scienti�c

applications. Jobs consist of multiple concurrently executing threads that need to com-

municate and exchange data relatively frequently throughout their execution.

This dissertation assumes scheduling policies have no knowledge of job characteristics

that can be used to ascertain expected completion time or parallelism needs. Information

on job characteristics (such as the expected computation time and speedup of applica-

19

tions, or their minimum, maximum or average parallelism) is useful in making better

allocation decisions. However, such detailed information often is not known. Further-

more, false job characterizations could be used by jobs to circumvent scheduling policy

decisions: for example, a job could arti�cially in
ate parallelism requirements in order

to be allocated more processors than it would otherwise be entitled to; or long jobs could

represent themselves as short jobs in order to acquire service more quickly. Additional

measures must be taken to counteract these attempts.

2.2 Equal Resource Allocation

One goal of scheduling policies is to provide equal allocation of resources among com-

peting jobs. There are two potential drawbacks to unequal processor allocations. First,

the jobs will not experience fair service, which might be one of the goals of the kernel

resource allocator. Additionally, mean job response time might su�er if there are jobs

of signi�cantly di�erent sizes presented to the system. It has been shown that in the

absence of information on the parallel characteristics of the workload, policies providing

equal resource allocation not only provide a measure of fairness to jobs, but also serve as

an approximation to the `shortest job �rst' policy, which is desirable from a performance

perspective.

There are two basic measures of equality that may be applied. Both measure equality

in terms of processor-seconds/second over a window of time (t�T ,t). For T ! 0, policies

provide equal resource allocation via space sharing, where the machine is divided into an

equal number of processors for each job. (Of course, when the number of jobs does not

evenly divide the number of processors, some inequality must be tolerated.) For T > 0,

policies combine some time and space sharing. These policies may allow allocations to

di�er among jobs at any one time, but provide the same average number of processors

to all jobs within an interval T .

The quest for equal resource allocation can sometimes come with a cost to perfor-

mance if additional shu�ing of processors among jobs is needed to achieve equality. The

20

tradeo� of equality and performance is one focus of our analysis of scheduling policies.

2.3 Processor Adjacency

On uniform memory access (UMA) shared-memory systems, processors share a common

global memory, and the cost of accessing that memory is the same from all processors.

Therefore, scheduling policies may decide how many processors to allocate to a job

without concern for which processors the job is allocated. (However, studies have been

done to investigate the e�ects of cache a�nity on the performance of scheduling policies

in these systems [44, 40].)

In a distributed memory environment, the scheduling policy must decide which in

addition to how many processors to allocate to each competing job. Parallel application

performance is a�ected by the proximity of the job's data to the threads that access the

data, as well as by the proximity of the threads of a job to each other. To attain good

performance, an application is structured so that most data references are to data in

local memory.

Still, parallel threads of an application often communicate data and synchronization

information. The cost of this communication a�ects the performance of the applications.

If communicating threads reside on di�erent processors, the time to complete the com-

munication depends on the the network interconnection bandwidth, the message latency,

and the contention for network resources. Hardware advances continue to improve the

bandwidth of interconnection networks. Also, recent hardware and software advances

[45, 41] show how to reduce the latency imposed by large message startup costs to a neg-

ligible level. However, despite high bandwidth and low latency, contention for network

resources could severely a�ect job performance.

The potential for network contention a�ects the design of kernel scheduling policies.

It is important that scheduling policies allocate to a job processors in close proximity

to one another and forming regular shapes. If processors are not in close proximity,

messages between processors belonging to one job would be routed over links connecting

21

processors allocated to other jobs. Not only would tuning the performance of applica-

tions be di�cult, but contention for links could severely degrade job performance. Also,

a mismatch between the application's model of thread con�guration and the actual con-

�guration of the processors allocated to the job could result in excessive communication

overhead and poor load balancing of the application's threads among the processors of

a partition.

To reduce the interference between concurrently executing jobs, we restrict our at-

tention to partitions that have processor adjacency. By processor adjacency, we mean

that the communication between any two processors of a partition does not involve cross-

ing links connecting processors of another partition. Allocating adjacent processors to

a job also reduces the cost of reallocation. For the two-dimensional mesh-connected

environment we are considering, this requires rectangular allocations of processors to

jobs.

Achieving processor adjacency is complicated by the additional constraints of pro-

viding equal resource allocation and dynamically changing partitions. When a new job

arrives, a new partition must be created to accommodate the job. To maintain equal

allocation, processors must be preempted from one or more other partitions and assigned

to a new partition. However, simply creating a new partition by selecting processors in

other partitions will not result in the new partition having processor adjacency. Instead,

some global rearrangement of the processors into new partitions is needed. Similarly,

upon job departure the processors in the vacated partition must be distributed among

the remaining partitions in a manner that preserves partition adjacency and maintains

equality of allocation. Furthermore, this method of rearranging processors among parti-

tions must be determinable for all multiprogramming levels.

2.4 Job Distribution (Mapping) Policy

Schedulers employing dynamic allocation can change the number of processors allocated

to a job as the job executes. When the number of processors allocated to a job changes,

22

the job's computation and data must be redistributed on the new set of processors

assigned to the job. The manner in which the this redistribution is accomplished is called

the mapping problem. There are three approaches to handling the mapping problem:

Application-level Mapping. The job itself could be responsible for the distribu-

tion. In this case, the kernel-level scheduler noti�es the job of a change in allocation and

the identi�cation of the new set of processors assigned to the job. The job remaps its

threads on the new partition. When the mapping is complete, the job signals the kernel,

and the kernel continues scheduling.

This approach has the advantages that the application can rede�ne the granularity of

threads to match its allocation, and can use knowledge of thread load and communication

structure to �nd the best mapping for that particular allocation. Also, a runtime system

could wait until the application-level threads reaches a safe state before redistributing

its computation. However, waiting for the job to remap itself may cause excessive delays

that slow the execution of other jobs assigned to those processors. This also requires the

kernel to trust the job to relinquish the processors in a timely manner.

Kernel-level Mapping. With kernel-level remapping, the kernel is responsible

for mapping the jobs threads onto the allocated processors. It should do so in the

best way possible in the absence of application-speci�c knowledge of thread load and

communication structure.

To do kernel-level mapping, a job's computational structure is de�ned in terms of a

virtual machine. The virtual machine structure re
ects the processor topology. (Thus,

in our case, the virtual machine is a 2

M

x2

N

mesh of processors.) This mapping may

be done either explicitly, by the programmer, or implicitly, by the compiler. The use

of a virtual machine model for this purpose is a common concept in many languages

intended for implementation of parallel programs [22, 23, 34, 21]. Each thread of the

virtual machine becomes a kernel thread, and the kernel makes load balancing and data

placement decisions for the application in the context of a �xed virtual machine.

When a job's allocation changes, the the kernel-level scheduler takes immediate action

23

to reallocate the processors among the jobs. The kernel decides which processors to

allocate to which jobs and remaps the data and kernel threads of the jobs onto the

new set of processors allocated to those jobs. The kernel then noti�es the job of the

allocation change. A runtime system may still relocate the job's threads after the kernel

reallocation.

This immediate preemption is advantageous in that reallocation is completed quickly

and kernel threads for a new application may be immediately started on the vacated

processors. This also relieves that application of the burden of adapting to allocation

changes. However, this approach requires the kernel to make decisions about the mapping

of the job's threads and data based only on the initial virtual machine mapping provided

by the application and without speci�c knowledge of the application's structure.

Application Mapping with Timeout Under this approach, the kernel-level sched-

uler noti�es the job of a change in the allocation to a job and the identi�cation of the new

processor partition assigned to the job. The job performs an application-level remapping.

If the job has not completed the remapping after some appropriate time interval, the

kernel-level scheduler preempts the processors from the job and performs a kernel-level

remapping.

This has the advantages of allowing the job to redistribute its own load, while also

ensuring that uncooperative jobs can not circumvent kernel-level scheduling decisions.

However, determining an appropriate time-out interval is not easy, since reallocation

overhead depends on many factors (e.g, the size of the job to be remapped and network

contention).

Also, even if a time-out interval were used to allow the job to redistribute its load, a

kernel-level redistribution policy must be de�ned and implemented to handle expiration

of the interval.

Our approach: Kernel-level Mapping This dissertation assumes kernel-level

remapping is used when reallocating processors among jobs. Some applications have

support for mapping onto partitions at load time. However, few applications support

24

dynamic remapping during execution. Considerable e�ort is required to implement

application-level dynamic remapping, and to determine when to remap can be compli-

cated [31]. This e�ort may be justi�ed only for very irregular and dynamic computations

[3]. We assume a kernel scheduling policy can not presuppose this support nor wait for

a runtime system to remap an application. A general-purpose kernel-level scheduling

policy must be able to take immediate action to support global system changes a�ecting

all jobs, and can not rely on the cooperation of applications to voluntarily relinquish

processors in a timely manner.

The kernel-level scheduler must incorporate some general purpose remapping pol-

icy applicable to a broad range of applications. In de�ning a remapping policy, it is

important for the kernel-level scheduler to remap an application's threads on its new al-

location in a reasonable manner. The kernel threads should be evenly distributed among

the processors allocated to the job. Also, remapping should preserve the adjacency of

kernel threads assigned by the application to the virtual machine. In other words, the

remapping policy maintains thread adjacency of the virtual machine when running on

a restricted set of processors as when running on the entire machine. This results in a

mapping that corresponds to the application's computational structure, which minimizes

communication costs for an allocation. It also provides a similar physical communication

structure across varying allocations, which is necessary for application tuning.

As previously stated, the kernel de�nes a computational structure in terms of a virtual

machine. For the environment considered here, the virtual machine is a two-dimensional

structure identical to the parallel machine (see Figure 2.2). Our kernel remapping policy

uses a straightforward modulo division of the kernel-threads along both dimensions of

a partition. For example, to distribute the threads of an 8 x 8 virtual machine onto

a 3 x 5 partition, the threads are divided into 3 rows and 5 columns, as shown in

Figure 2.3. (The mapping policy is fully de�ned in Chapter 4.) Notice that there is

a possible load imbalance in that some processors have more threads assigned to them

than other processors. This potential load imbalance can severely a�ect the performance

25

of applications.

j j j j j j j j

j j j j j j j j

j j j j j j j j

j j j j j j j j

j j j j j j j j

j j j j j j j j

j j j j j j j j

j j j j j j j j

T

T

T

T

T

T

T

T

T

"

"

"

�

�

�

�

L

L

L

L

�

�

�

�

E

E

E

D

D

D

H

H

H
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

@

@

@

@

a

a

a

a

Space

Task

Job's

Virtual Machine

Figure 2.2: Kernel-level remapping

Processor Partition

l l l l l l l l

l l l l l l l l

l l l l l l l l

l l l l l l l l

l l l l l l l l

l l l l l l l l

l l l l l l l l

l l l l l l l l

J

J

J

J

J

J

J

J

J

Virtual Machine

Figure 2.3: Example kernel mapping onto 3x5 partition

26

2.5 Scheduling Overhead

Two primary factors a�ect the overhead of scheduling policies for distributed memory

systems: the overhead of reallocation, and the subsequent e�ect on job performance.

Each of these factors must be considered in the design of scheduling policies for dis-

tributed memory parallel systems. We brie
y discuss each of these factors. In Chapter

4, we describe more fully how these factors a�ected the design of the policies proposed

in this dissertation.

2.5.1 Overhead of Dynamic Reallocation

The design of scheduling policies must consider and try to minimize the potentially

high cost of job reallocation in a distributed memory environment. The overhead of

reallocating processors among jobs can be signi�cant in a message-passing environment.

Reallocation involves migrating not only the job's state, but also the job's locally resident

data. When processors are reallocated from one job to another, the tasks currently

running on the processors and the data for the job local to those processors must be

redistributed to remaining processors assigned to the job. Similarly, when additional

processors become available to a job, the tasks and program data for that job must be

redistributed among a new set of processors. The cost of doing this depends on the

number of tasks and the amount of data being migrated, the latency and bandwidth of

the interconnection network, and the potential cost of contention for network resources

if more than one job is reallocated.

In addition, overhead due to network contention with other executing jobs also a�ects

the cost of reallocation. Contention is a function of the relative position of the old and

new processor partitions allocated to jobs within the processor topology and the extent

to which these migration paths between reallocating jobs intersect.

The scheduling policies presented in Chapter 4 seek to minimize the amount of data

migrated during a reallocation and the contention between multiple reallocating jobs.

27

2.5.2 E�ect on Job Performance

In addition to the overhead of reallocating processors, there is a potential overhead due

to the subsequent e�ect on job performance.

It is inevitable that a program's parallel execution involves overheads not present in

its sequential execution. These overheads result from the need to communicate data and

synchronization information among the threads of the parallel job, and synchronization

losses due to load imbalance. When a parallel application is run in a multiprogram-

ming environment, the processor allocation policy employed in the kernel may induce

e�ciency losses for that application beyond those inherent to its parallel execution. Of

course, changing the number of processors allocated to a job a�ects its rate of progress.

Furthermore, the size and con�guration of processors allocated to a job a�ect the job's

performance. For instance, if an application that has partitioned its load into eight

threads is allocated exclusive use of �ve processors, it is likely that three of the �ve pro-

cessors will have twice the number of threads of the other two. If the threads synchronize

or communicate often, a great deal of processing capacity will likely be lost. These losses

result from a mismatch between the resources actually allocated to the application and

the model of the available resources used in making application decisions, such as load

assignment.

The designs of the scheduling policies presented in Chapter 4 consider this e�ect of the

partition con�guration on the performance of applications assigned to those partitions.

2.6 Summary

Based on the discussion of scheduling issues in this chapter, we summarize here the

design criteria for scheduling policies for message-passing parallel systems:

� We assume that scheduling policies have no knowledge of job characteristics that

can be used in making scheduling decisions.

28

� Scheduling policies should provide some measure of equal resource allocation to

competing jobs.

� Because of potential network contention among multiple jobs, it is important that

scheduling policies allocate processors to jobs that are in close proximity to one

another. This adjacency must be preserved at all multiprogramming levels.

� A kernel-level mapping policy is de�ned to specify the distribution of a job's com-

putation and data on varying sized partitions.

� The design and performance evaluation of scheduling policies should consider both

the overhead of reallocation and the subsequent e�ect on application performance.

Chapter 3

E�ciency Preservation

Evaluating the performance of dynamic allocation scheduling policies is di�cult in the

face of the many factors a�ecting performance, as discussed in Chapter 2. This chapter

introduces a simple performance metric, e�ciency preservation, that measures the extent

to which a policy induces e�ciency losses. E�ciency preservation can be used as a �rst-

order evaluation to identify promising scheduling policies. This chapter de�nes e�ciency

preservation and discusses its use as an early predictor of scheduling policy performance.

As an example, we demonstrate how e�ciency preservation can be used to show the

potential bene�ts of dynamic allocation over static partitioning.

3.1 E�ciency Preservation

We de�ne e�ciency preservation as a characteristic of processor allocation policies that

measures the extent to which an allocation policy induces processor e�ciency losses. Pro-

cessor e�ciency is a measure of the time processors spend in productive computation.

Processor e�ciency is a�ected by both application behavior and scheduling policy char-

acteristics. E�ciency losses attributable to application behavior result from insu�cient

parallelism to utilize the processors allocated to the job or excessive synchronization

among the application's threads. E�ciency losses due to scheduling policy behavior

30

result from unallocated processors, poor matches between an application's parallelism

needs and its allocation, and high scheduling overhead. E�ciency preservation mea-

sures these impacts of scheduling discipline on processor e�ciency, factoring out the

ine�ciency due to inherent workload characteristics.

To de�ne e�ciency preservation, we �rst de�ne application e�ciency, AE

policy;app

(p),

as the ratio of the total computation time of an application, app, when run under schedul-

ing policy, policy, on p processors (excluding waiting time due to load imbalance syn-

chronization losses) to the product of the application's elapsed time and p:

AE

policy;app

(p) �

comp(p)

elapsed(p) � p

(3:1)

Here, comp(p) is the total computation time of an application and elapsed(p) is the

elapsed time of the application when run on p processors.

De�ne the e�ciency preservation of a processor allocation policy policy for some

application app by considering what happens when J copies of app are run under policy

on a machine with P processors. The e�ciency preservation measure is

EP

policy;app

(J; P) �

P

J

j=1

A

j

AE

policy;app

(A

j

)

AE

Uniprogramming;app

(P)

P

(3:2)

where A

j

is the number of processors the policy allocates to copy j of the application.

By using the ratio of application e�ciency on A

j

processors to that on P processors,

we factor out the ine�ciency inherent in the application regardless of the number of

processors allocated to the application.

Because allocation policies can impose overheads, EP can in theory be as small as

zero. Although it may seem counterintuitive, e�ciency preservation can also be greater

than one, since at least some applications exhibit signi�cantly sub-linear speedups, and

thus run more e�ciently on fewer processors.

The e�ciency preservation measure provides a natural explanation for a number of

conclusions reached in prior work. For example, e�ciency preservation can be used to

illustrate the importance of space sharing over time-sharing scheduling policies. Because

applications typically exhibit sub-linear speedup, it is bene�cial to schedule many of

31

them at once, assigning each a few processors, rather than rotating possession of many

processors among them. This is expressed as a growth in application e�ciency with

diminishing allocation, and thus the growth in e�ciency preservation.

While e�ciency preservation provides useful information about a processor allocation

policy, it is not a complete characterization. It is a static measure, and thus ignores the

cost of reallocating processors when jobs arrive and depart. For most policies, these costs

are small, since job arrivals and departures are relatively infrequent. However, some

policies can experience longer term ill e�ects from arrivals or departures. For instance,

a policy that dynamically partitions a machine but never changes the assignment of

any job once made will not respond well to job departures. Another shortcoming of

e�ciency preservation as a measure is that high e�ciency preservation alone does not

guarantee good performance, as measured, say, by mean response time. A policy that

dedicates the entire machine to individual jobs in FCFS order will have an e�ciency

preservation of 1.0. However, this policy is as unattractive for parallel machines as it

is for sequential ones. Despite these shortcomings, e�ciency preservation does provide

important information useful in comparing alternative processor allocation policies.

E�ciency preservation must be measured relative to a particular workload. The

dependence of the e�ciency preservation measure on the application considered is nec-

essary. This dependence arises because the interplay between the kernel's processor

allocation policy and the application's load management policy can have a profound

e�ect on performance. For example, if an application that has divided its work into

eight pieces is allocated �ve processors, its application e�ciency will be very poor if it

is incapable of reallocating its work in response to this processor allocation. On the

other hand, if the application is able to dynamically repartition its work into an arbi-

trary number of equally balanced pieces, application e�ciency may not su�er. Thus, in

general it is not reasonable to compare the performance of alternative processor alloca-

tion policies without specifying at least some of the characteristics of the applications

they are intended to support. For the example presented in the next section, we use

32

the simplistic characterization of application speedup to measure e�ciency preservation.

A more detailed model of application characteristics is presented in Chapter 5 for the

evaluation of the dynamic allocation policies de�ned in Chapter 4.

3.2 E�ciency Preservation Example

In this section, we illustrate the use of e�ciency preservation in a �rst-order perfor-

mance evaluation of three candidate scheduling policies. All policies space share the

system among multiple jobs. Two policies statically divide the system into four and

eight partitions, respectively. Each job is assigned to a partition and executes there until

completion. The third policy is a hypothetical dynamic allocation policy that divides

the number of processors as evenly as possible among the jobs in the system.

For this example, we use an application's speedup function to estimate its e�ciency

preservation under the three scheduling policies. Assume for simplicity that the total

computation time of an application is the same for all allocations (i.e., comp(p) in Equa-

tion (3.1) is the same for all p). Then the ratio

AE

policy;app

(a

j

)

AE

Uniprogramming;app

(P)

in Equation 3.2

can be rewritten as:

AE

policy;app

(a

j

)

AE

Uniprogramming;app

(P)

�

elapsed(P) � P

elapsed(a

j

) � a

j

�

S

app

(a

j

) � P

S

app

(P) � a

j

(3:3)

Consider an application with a speedup curve S

app

as shown in Figure 3.1. The

x-axis denotes the fraction of the total machine allocated to an application, rather than

the actual number of processors. This speedup function is typical of many applications

that exhibit increasing speedup for increasing numbers of processors until some point at

which speedup levels o�.

Figure 3.2 plots the e�ciency preservation under the three scheduling policies for the

application whose speedup curve is shown in Figure 3.1. This �gure shows the drastic

decrease in e�ciency preservation for the static partitioning policies when the number

of jobs in the system is less than the number of partitions. The dynamic allocation

policy is able to utilize all the processors, whereas the static partitioning policies have

33

signi�cant loss of e�ciency due to idle processors. The dynamic allocation policy also

has a higher e�ciency preservation at high loads. When the number of jobs in the system

increases, the dynamic allocation policy allocates fewer processors to each job. Since the

application exhibits sub-linear speedup (as most applications do), it runs more e�ciently

on fewer processors. This is also shown in Figure 3.2 by the higher e�ciency preservation

for the eight-partitioned system over the four-partitioned system when the number of

jobs in the system exceeds four.

0 P/8 P/4 3P/8 P/2 5P/8 3P/4 7P/8 P

Processors

0

P/8

P/4

3P/8

P/2

5P/8

3P/4

7P/8

P

Speedup

..
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
..
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
...
..
.
..
.
..
..
.
..
.
..
..
.
...
..
.
..
.
..
..
.
..
..
.
..
.
...
..
.
..
.
..
..
.
..
..
.
..
.
...
..
.
..
..
.
..
.
..
..
.
..
.
....
...
...
...
...
...
...
....
...
...
...
....
...
....
...
...
...
...
...
...
....
...
...
....
...
...
..

Figure 3.1: Speedup curve for hypothetical application

For this simple analysis, Equation 3.3 ignores the cost of scheduling. For the static

partitioning policies, this is the cost of time-sharing a partition among multiple jobs when

the number of jobs exceeds the number of partitions. E�ciency preservation would be

diminished by the overhead required to implement a time-sharing scheme, so on the

whole, e�ciency preservation argues against its use.

Our analysis of the hypothetical dynamic allocation policy ignores the cost of dynamic

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Jobs in System

0.0

0.35

0.70

1.05

1.40

E�ciency

P

r

e

s

e

r

v

a

t

i

o

n

~

..........................

Dynamic Partitioning

�

..........................

STATIC: 4 Partitions

?

..........................

STATIC: 8 Partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.

.

.

.

..
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
....
....
....
....
....
....
....
....
....
....
....
......
....
.....
.....
.....
.....
.....
.....
....
.....
......
....
.....
....
....
.....
....
....
....
.....
....
....
......
....
.....
.....
....
.....
.....
....
.....
....
.....
.....
....
....
....
....
....
....
....
....
....
....
....
.....
......
......
......
......
......
......
......
.....
.......
.....
.....
....
.....
.....
.....
.....
.....
.....
.......
.........
........
........
........
........
...

~

~

~

~

~

~

~

~

~

~

~ ~ ~ ~ ~ ~

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

�

�

�

� � � � � � � � � � � � �

.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.

.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

..

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.
.
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.
.

.

.

.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.
.

.

.
.
.
.
..

.
.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

..

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
..
.

.

.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.

.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.
.

..

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.
.

.

.
.
.
.
.

.

.

.

.

.
.
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

..

.
.
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.
...

?

?

?

?

?

?

?

? ? ? ? ? ? ? ? ?

Figure 3.2: E�ciency preservation for three policies

reallocation and the e�ect of varying allocations on the performance of applications.

As discussed in Chapter 2, these are important factors a�ecting the performance of

dynamic allocation policies. In Chapter 5, we reexamine e�ciency preservation using

a more detailed analysis of application e�ciency that re
ects both the cost of dynamic

reallocation and the performance e�ect of load balancing for the speci�c policies in

Chapter 4.

3.3 Summary

This chapter de�ned e�ciency preservation as a measure of processor allocation disci-

plines, and showed how it can be used to gain useful information for comparing the

expected performance under alternative proposed policies. We also argued that this

measure must necessarily be taken relative to a particular workload, as the suitability of

an allocation policy is intimately tied to the workload to be supported. We compared

the e�ciency preservation of static allocation policies to a hypothetical dynamic alloca-

tion policy and showed how e�ciency preservation can highlight the potential bene�ts

35

of dynamic allocation.

Chapter 4

Dynamic Allocation Scheduling

Policies

4.1 Introduction

In this chapter, we de�ne processor allocation policies for message-passing parallel sys-

tems. Our speci�c policy proposals fall into two families, called Equipartition and Fold-

ing. Both classes employ dynamic allocation and adaptive partitioning: the size and

con�guration of the processors allocated to jobs can change throughout their execution.

Both the Folding and Equipartition families of policies assume no a priori information is

available on job characteristics, and so strive for equal allocation of resources to the jobs.

While we do not consider it here, it is possible to implement variants of these policies

that allow unequal allocation to re
ect priorities.

Given J jobs in the running set, the processor allocation policy determines which

processors to assign to each. Both policies are restricted to assignments of rectangular

blocks of processors: if other shapes were allowed, messages between processors belonging

to one job would be routed over links connecting processors belonging to other jobs. As

discussed in Chapter 2, for reasons of predictability and contention, we wish to avoid

this sort of interference.

37

Our allocation policies apply to sets of jobs that �t simultaneously in memory and

the processors of the system. If more jobs are ready to run than can be supported by the

hardware resources, another level of scheduling is required. We confront this issue brie
y

in Section 5.4 and discuss it more extensively in Chapter 6. We also assume each job

may be scheduled on as few processors as possible, even one. Thus, these policies ignore

the possibility of applications that may require some minimum number of processors to

run. Chapter 6 discusses policies appropriate to the scheduling of these applications.

The Equipartition and Folding policies di�er in the way they address the costs of dy-

namic reallocation. The Equipartition family of policies reallocates processors as equally

as possible whenever a job arrives or departs, but makes no other reallocations. Equipar-

tition has very low scheduling overhead and good equality of allocation, but potentially

poor balance of an application's load across its allocation. Since the number of proces-

sors allocated to a job may not evenly divide the number of threads in a job, a system

induced load imbalance can degrade job performance.

The other policy, called Folding, avoids system induced load imbalance by always

halving or doubling the number of processors allocated to a job. A newly loaded job is

allocated a partition of processors obtained by dividing the largest currently allocated

partition in half, with the threads running on those processors \folded" onto the re-

maining processors allocated to their job. In this way, the policy ensures both that no

processors are needlessly idle and that jobs exhibiting good load balance when run alone

will be load balanced when run in a multiprogrammed environment.

The Folding policy does not allocate equal-size partitions. To ensure equal resource

allocation, the jobs' allocations alternate between larger and smaller partitions. Here, the

frequency and cost of these reallocations a�ect the job's performance. By varying the rate

of reallocations, the Folding policies vary from emphasizing high e�ciency preservation

to emphasising equal resource allocation.

By comparing members of the Folding policy family to each other and to members

of the Equipartition family, we are able to compare the importance of reallocation cost,

38

application load balance, and equal resource allocation on the performance of processor

allocation policies. This chapter de�nes each of these policy classes in detail.

4.2 Mapping

As discussed in Section 2.4, in addition to choosing the processor partition for a job, the

allocation policy must also choose a location for each of its threads. To make it possible

for users to tune their applications, thread adjacency when running on a restricted

rectangle of processors must be the same as when running on the full grid.

The simplest thread mapping scheme, and the basis of all the schemes used in our

proposed policies, is simply a contraction from a 2

M

x 2

N

grid onto an R x C grid. A

thread that would be located on processor (i; j) of the full machine is located on node

map(i; j) of the RxC subgrid, where

map(i; j) �

��

i �R

2

M

�

;

�

j � C

2

N

��

(4:1)

The maximum number of threads assigned to any of a job's processors is an important

measure, since the synchronization constraints of the job limits its performance to that of

its most slowly progressing thread. The theoretical minimum for the maximum number

of threads assigned to a single processor under any thread mapping function is

l

2

M

R

2

N

C

m

.

In general, the adjacency preserving mapping (Equation (4.1)) gives maximal loading

l

2

M

R

m l

2

N

C

m

, which can be considerably larger. Addressing this shortcoming is one of the

problems confronting processor allocation policies.

4.3 The Equipartition Policy

The Equipartition policy takes a straightforward approach to allocating processors among

competing jobs, that is to partition the processors as evenly as possible among the run-

ning jobs. The number and size of the partitions change only when jobs enter or leave

the system: when a new job arrives, each currently executing job relinquishes some of its

39

processors, so that the arriving job is assigned it's equitable allocation. Similarly, when

a job departs, the allocation of each remaining job is increased.

There are several factors that complicate an equipartition policy for the distributed

memory mesh connected environment we are considering. First, it is not always possible

to allocate an equal number of processors to all jobs, since the number of jobs may not

evenly divide the number of processors.

Second, to maintain adjacency among the processors allocated to a job, the partitions

must be rectangular, which further complicates �nding equitable allocations. Addition-

ally, maintaining rectangular partitions in the face of dynamic allocation is di�cult. It

is not su�cient to reassign processors freed by a departing job among the remaining

jobs. Rather, a shift in the allocation of processors is necessary so that the new par-

titions remain rectangular. The cost of reallocation depends in part on the number of

processors that have to be reassigned to di�erent partition sets. Furthermore, this shift

will invariably involve all running jobs. In reassigning processors, all jobs will have to

remap their applications on new partition sets. The cost of this remapping depends in

part on the contention for network resources among all jobs reallocating at once. A

viable equipartition policy must both reduce the number of processors shifted among

di�erent partition sets and orchestrate the partition changes so as to minimize interfer-

ence among multiple reallocating jobs. Finally, this reallocation must be de�ned for all

multiprogramming levels.

A third di�culty with de�ning an equipartition policy relates to the mapping policy

used to distribute an application load among the processors allocated to the job. As

pointed out earlier, the thread mapping function (Equation (4.1)) allocates

l

2

M

R

m l

2

N

C

m

to at least one processor in an RxC partition. If the number of threads does not evenly

divide the number of physical processors in the dimensions, the mapping can result in

a considerable load imbalance. Because the progress of the job is limited by its slowest

thread, reducing this maximal loading is an important goal. In Section 4.3.2, we describe

a variant of the Equipartition policy that speci�cally addresses this concern.

40

4.3.1 Basic Equipartition: EQUI

Our approach to reducing the maximal processor loading is to ensure that at least one di-

mension of each allocated partition is a power of two, since the thread mapping function

would evenly divide the threads among the processors in that dimension. We propose

a policy, EQUI , that has this property, and additionally tries to reduce the realloca-

tion overhead necessary to move from one con�guration to another by minimizing the

number of processors that must be reassigned to di�erent jobs. It also chooses partition

con�gurations so that threads of multiple jobs migrating to di�erent processors do not

contend for the same network resources.

2

x

rows of

partitions

Remainder Section

Regular Section

Z

m

columns of

processors

Figure 4.1: Partitioning under Equipartition

Figure 4.1 shows the general case. We divide the mesh into two sections, the regular

section and the remainder section. We divide the regular section into 2

X

rows, each of

which contains Y � bJ=2

X

c partitions. The remainder section contains W � J � 2

X

Y

partitions. (For some values of J this will be zero, and so there will be no remainder

section.) To make the partitions in the regular section as square as possible, we choose

X =

l

blogJc

2

m

. Hence, 2

X

Y is the largest number less than J with a power of two factor.

To ensure that each partition in the regular section has at least one dimension that

is a power of two, we simply assign 2

M�X

rows of processors from the 2

M+N

mesh to

41

each row of partitions in the regular section.

For the partitions in the remainder section, the number of processors in each row of

the partitions is de�ned by dividing the number of partitions into the number of proces-

sors in a row. One of the dimensions must have a power of two number of processors. If

W , the number of partitions in the remainder section, is a power of two, each partition

will have a power of two number of processor rows. Otherwise, we must ensure that the

number of columns of processors in each partition of the remainder section is a power of

two.

The columns of processors will be divided among the partitions in the regular and

remainder sections so that each partition will have approximately its fair share of pro-

cessors. Each partition in the regular section is guaranteed a minimum of Z

g

�

$

2

M+N

J

2

X

%

columns of processors. For the remainder section, let Z

m

be the number of columns of

processors in each partition. If W is a power of two, each partition is assigned a min-

imum of Z

m

=

$

2

M+N

J

2

M

W

%

=

j

2

N

�W

J

k

columns of processors. Otherwise, we ensure that

Z

m

is a power of two by setting it to:

Z

m

= 2

j

log(1�

�

J

2

X

�

2

X

J

)+N

k

(4:2)

This results in a largest partition possible for the remainder section which has a power of

two number of processor columns, and whose size is smaller than the fair share number

of processors.

The remaining 2

N

� Z

g

� Y � Z

m

columns of processors are allocated among the

partitions of the regular and remainder sections in a greedy manner, while ensuring that

Z

m

remains a power of two if W is not a power of two.

Finally, the orientation of the regular and remainder sections (i.e, positioned hori-

zontally or vertically) is alternated every 2

k

, k > 1 partitions with the sections being

aligned along the larger dimension of the mesh �rst. This allows the partitions to be

added vertically, then horizontally, so that the dimensions of the partitions remain close

in size.

Figure 4.2 illustrates how this partitioning scheme allocates a 16x16 processor grid

42

16

4 4 4 4

4 4 44

6

5

5

4

4

4

4

4

4

4

4

5

5

6

6

6 4

4

4

4

4

3

8

8

7

6

8

8

8

8

1 5

1

8

8

88

3

7

6

88

5

6

5

88

2

4

5

5

88

8

8

4

4

4

4

116

4

4

4

4

8 7

4

4

4

4

5

5 5

4

4

4

4

8

8

5 5 4 2

4

4

4

4

5

6

5

4

4 4 4

Figure 4.2: Equipartition of 16x16 mesh for 1 to 16 partitions

among 1 to 16 jobs. As an example, consider partitioning the system into 11 partitions.

The regular section would contain 8 partitions (the largest number less than 15 with

a power of two factor), with 4 rows of partitions and 2 columns of partitions. The

remainder section would contain 3 partitions. The rows of processors are divided evenly

43

among the partitions in the regular section, with 4 processor rows per partition. In

the remainder section, the number of partitions does not evenly divide the number of

processor rows; two partitions will be allocated 5 processor rows and 1 partition will be

allocated 6 processor rows. The fair share number of processors is b16 � 16=11c = 23:27,

so each partition in the regular section is guaranteed b23:27=4c = 5 processor columns.

Solving Equation 4.2, each partition in the remainder section is guaranteed 4 processors

in each column. Thus, there are 2 columns of processors that are unallocated. One

column each is assigned to each partition column of the regular section. Thus, each

partition in the regular section has size 4x6, and two partitions in the remainder section

have size 5x6, and one partition in the remainder section has size 4x6.

4.3.2 A Higher E�ciency Preservation Equipartition: EQUI

+

Consider a single partition allocated by EQUI , and denote its size as 2

i

x C, for some

i. The maximally loaded processor in that partition will contain 2

N�i

d2

M

=Ce threads.

The purpose of EQUI

+

is to reduce that maximal loading. For this discussion, we will

assume that a partition allocated to a job has a power of two number of processor rows,

although as discussed in Section 4.3.1, the dimension with the power of two number of

processors may be the row or the column depending on the orientation of the regular

and remainder sections.

EQUI

+

performs the same partitioning as EQUI , that is, it assigns partitions of

exactly the same size. However, it violates the simple mapping function of threads onto

processors (Equation (4.1)) in order to reduce the maximal loading to

l

2

M+N�i

=C

m

, the

theoretical minimum for this partitioning. The EQUI

+

mapping policy distributes the

threads of an application evenly along the processor rows. In addition, the columns of

threads allocated to a processor row are distributed evenly among the processor columns

within a processor row. There are a total of 2

M+N�i

threads assigned to each processor

row. Thus, it is possible to achieve the minimal load balance by averaging within rows

only; there is no need to resort to averaging between rows. In addition, the new mapping

44

policy maintains thread adjacency de�ned by the virtual machine.

Figure 4.3 illustrates how the EQUI

+

mapping policy works. Suppose a system con-

sisting of a 16x16 processor mesh were divided into 13 partitions, as illustrated at the

top of Figure 4.3. Consider the shaded partition consisting of a 4x5 partition of proces-

sors. The bottom of Figure 4.3 illustrates how EQUI

+

maps an application consisting of

16x16 threads onto a 4x5 partition of processors. The threads along each thread column

are divided evenly into 4 processor rows. Each processor row then divides its threads

among the processor columns as evenly as possible.

Consider the �rst row of processors in the partition. To maintain adjacency within

a processor row, a `snake-like' ordering of the

2

M+N

R

threads within the processor row is

de�ned. This ordering is illustrated by a dashed line in Figure 4.3. This ordering among

threads within a processor row is used to map the threads evenly onto the processor

columns within a processor row. For the example in Figure 4.3, the 2

4

� 2

4

=4 = 64

threads of each row are mapped onto 5 columns of processors, so that each processor is

assigned either 12 or 13 threads.

Next, in order to preserve adjacency among threads between rows, the snake-like

ordering among threads of a processor row is row-wise transposed, as illustrated in

Figure 4.3. (For clarity, the third and fourth rows show only part of the ordering).

The function that realizes this mapping is:

map(i; j) �

��

i �R

2

M

�

;

�

index(i; j) �C

2

M+N

=R

��

(4:3)

where index(i; j) de�nes the relative position of thread coordinate (i; j) within the

2

M+N

=R threads of a processor row. There are two functions for index, correspond-

ing to the two orderings of the threads within the processor row. Consider any even

processor row containing 2

M+N

=R threads to be divided evenly into C columns. The

relative position of coordinate (i; j) within the 2

M

=Rx2

N

threads is illustrated in Fig-

ure 4.4(top) and de�ned by:

index(i; j) =

�

j

2

�

�

2

M+1

R

!

+

(j mod 2) �

2

M

R

!

+

2

M

R

�

i mod

2

M

R

!!

� 1

45

4

4

4

4

5

5 5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

.

.

.

.

.

.

�

�

�

�

�

16

16

Processor

Partitions

Equi+ mapping onto 4x5 partition

13

12

13

13

13

13

13

13

13

13

13

13

13 13

13

13

13 12

12

12

12

Ordering of tasks within

processor row

Partition boundary

processor

nn Number of threads on

Figure 4.3: Equi+ mapping of 16x16 application onto 4x5 partition

46

if

i mod

2

M

R

!

= 0 (4.4)

The �rst term represents the number of threads in the b

j

2

c pairs of thread columns

preceding column j. The second term represents a single column of

2

M

R

threads preceding

column j if j is odd. And the third term represents the o�set of the coordinate within

the last thread column.

For odd processor rows, the third term changes, since the ordering of the threads

within the processor row is transposed (Figure 4.4(bottom)). For odd processor rows,

index(i; j) is de�ned as:

index(i; j) =

�

j

2

�

�

2

M+1

R

!

+

(j mod 2) �

2

M

R

!

+

i mod

2

M

R

!

+ 1

!

� 1

if

i mod

2

M

R

!

= 1 (4.5)

In general, using this indexing within a processor row instead of within a thread row

requires moving only a few threads from where the simple mapping scheme would place

them. However, the fact that even a few are not where that mapping would place them

means that some more complicated procedure must be followed to determine to which

processor a message should be sent. We make the optimistic assumption that the added

messaging complexity results in a negligible increase in communication costs.

4.4 The Folding Policy

The goal of the Folding policy is to eliminate the system induced load imbalance resulting

from mapping an application onto rectangular partitions whose dimensions do not factor

the application's virtual thread space. The Folding policy allocates partitions in such a

way that the adjacency preserving mapping of threads to processors results in a perfectly

equal allocation of threads. Under the assumption that the threads of the application

are load balanced when run on the full machine, they will also be load balanced when

run under Folding in competition with other jobs.

47

(a)

�

b

j

2

c �

2

M+1

R

�

(b)

�

(j mod 2) �

2

M

R

�

(c)

�

2

M

R

� (i mod

2

M

R

)

�

(a) (b) (c)

X

(a) (b)

X

(d)

(d) ((i mod

2

M

R

) + 1)

2

M

R

threads

2

N

threads

2

M

R

threads

2

N

threads

Even row

Odd row

Figure 4.4: index(i; j) for even processor row (top) and odd processor row (bottom)

4.4.1 Basic Operation

Folding chooses new partition sizes whenever a job arrives or departs. On job arrival,

if the machine is idle, all processors are allocated to the new arrival. If not, the largest

currently allocated partition is divided in half, with the new job taking one of the result-

ing partitions and the existing job the other. Both jobs have their threads mapped to

their allocated processors in the manner described in Section 4.2. Thus, each job arrival

disturbs at most one currently running job.

48

When a job departs, two partitions must be recombined. Unfortunately, this is not

always a simple operation. We defer discussion of job departures to Section 4.4.3.

J = 3 J = 4 J = 5 J = 6 J = 7 J = 8

Figure 4.5: Partitioning of processor mesh for 3 to 8 jobs

Figure 4.5 shows the partitions produced by Folding for J = 3 to 8 jobs, forM = N .

In the general case, when a job arrives and a single other job holds the entire machine,

the machine is split along its largest dimension. After that, splits alternate directions,

so that a partition of size 2

M+N

=2

i

is split along the machine's largest dimension if i is

even and along the other dimension if i is odd.

4.4.2 Realizing Equal Resource Allocations

Unless J , the number of jobs, is a power of two, Folding allocates partitions of two

di�erent sizes, with the larger partitions containing twice as many processors as the

smaller partitions.

To provide equal resource allocation for all jobs, the Folding policy must rotate

ownership of the large and small partitions. To achieve this, we de�ne a rotation policy.

The rotation policy is invoked at �xed intervals, and determines how many and which

processors to move from one job to another. The goal of the rotation policy is to ensure

that over a su�ciently long interval, each job will receive an equal percentage of the

total processing power of the machine.

Many di�erent rotation policies are possible. In designing a rotation policy, it is

desirable to limit processor reassignments to jobs running on adjacent rectangular sub-

grids, so that rotation tra�c does not interfere with the execution of other, uninvolved

49

jobs. It is also desirable to use a scheme that achieves equal allocation after only a small

number of rotations, that is, with small overhead.

One technique for reducing the required number of rotations is to perform them

hierarchically: a system running an even number of jobs is treated as two systems, each

with half the jobs and half the processors. For example, when six jobs are present, we

rotate two independent systems of three jobs, each on half the machine. (See Figure 4.5.)

Similarly, we rotate twenty jobs as four systems of �ve jobs, each running on one quarter

of the machine.

The rotation policy we propose here has the property that each job can determine

whether or not it is involved in an exchange of processors at each rotation instant using

information about only two neighboring jobs, rather than the state of the entire machine.

Figure 4.6 shows the sequence of partition allocations made under our rotation policy

for a system running �ve jobs. To understand the procedure used, consider performing

a cyclic walk that touches each partition and moves only between adjacent partitions.

(It is easy to show inductively that because of the way in which we form partitions,

such a walk must exist. Section 4.4.5 discusses this further.) In Figure 4.6 the jobs

are numbered according to their position in this cyclic walk. At rotation instants, the

rotation policy we use reassigns half the processors from a job holding a large partition to

a job holding a small partition if the former immediately follows the latter in this cyclic

walk. This reallocation results in the exchange of the large and small partitions between

the two jobs, and so preserves the cyclic walk. Other partitions remain unchanged.

We evaluate rotation policies according to two measures, rotation cycle length and

rotations per job. Imagine running the system at a constant multiprogramming level for

a long period. After some initial transient, the sequence of allocations produced by a

well behaved rotation policy will be partitionable into cycles, each of which delivers the

same total processing power to each job. The rotation cycle length, N(J), is the number

of reallocation intervals in each such cycle. For example, in Figure 4.6 the cycle length

is �ve. The second measure, f(J), is the number of rotations participated in by each job

50

2

4

31

5

init

bbbb

1 2 3

45

cccc

1

2

3

45

1

2

34

5

e

cycle (i+1)...

1

2

4

5

3

g

1 2

5 4 3

1 2

34

5

d

f

cycle (i)

aa

Figure 4.6: Folding rotation for J = 5 jobs

within the rotation cycle of N(J) rotations. In Figure 4.6, f(J) is four.

To understand the behavior of the rotation policy we have proposed in terms of N(J)

and f(J), we represent it as an operation on strings. Let the symbol `s' represent a small

partition, and `b' a large one, and form a string R by performing the cyclic walk over the

jobs as described above. For instance, the string corresponding to Figure 4.6a is `ssbbb',

and for Figure 4.6b is `sbsbb'. Our rotation policy is simply to replace each occurrence

of `sb' in R with `bs', considering the �rst symbol of R to follow the last.

Let S be the number of small partitions and B the number of large partitions. It

is straightforward to show for any such string R that after no more than min(S;B)

rotations, R contains no consecutive `s's when S � B, and no consecutive `b's when

B � S. Once this equilibrium condition is reached, each string R that occurs at all

occurs every J + 1 rotations, that is, repeats after J rotations. (Because the length

of the string must be odd due to our hierarchical rotation scheme, the string may not

reoccur any sooner.) To see this, note that if B � S, each `b' will be preceded by an

`s' in R. Thus, at each rotation, each `b' will move one symbol to the left, and so after

J rotations the string will be in its original con�guration. (A similar argument applies

when S � B.) This reasoning also shows that all jobs will be allocated large partitions

for the same number of rotation steps during a cycle, and so equal allocation is assured.

This analysis leads to the following expressions for the cycle length, N(J), and the

51

number of reallocations per job per cycle, f(J):

N(J) =

8

>

>

>

>

<

>

>

>

>

:

N(K) if J = K � 2

0 if J = 1

J otherwise

(4:6)

f(J) =

8

>

>

>

>

<

>

>

>

>

:

f(K) if J = K � 2

0 if J = 1

2 �min(S;B) otherwise

(4:7)

4.4.3 Job Departures with Rotations

An examination of Figure 4.6 shows that reallocating the processors freed by a departing

job may not be possible with only local operations. For example, if job 5 departs in any of

the con�gurations shown in Figure 4.6, we cannot make only local adjustments without

violating the constraint on partition sizes imposed by Folding.

One way to handle job departures in such cases is to compute a new set of partitions

and perform a global assignment of jobs to those partitions. A simpler way to achieve

the same e�ect is to mark the freed partition as available, but to leave it in the rotation

string R that controls rotation reallocations, and then step through the normal rotation

sequence as fast as possible until the idle processors have been allocated. (Note that

it is possible for the freed processors to constitute a small partition. We do not steal

processors from a succeeding large partition in this case, and as well modify the rules so

that a preceding small partition is combined with the free small partition.)

It is not evident whether this scheme is more or less expensive than simply remapping

all the jobs to new partitions on any departure. It does o�er a much simpler implementa-

tion, in the simulation model of Section 5.4, and presumably in real systems. We believe

this is an indication that it would be an attractive approach.

52

4.4.4 The Family of Policies FOLD

I

The family of Folding policies is generated by varying the rate at which rotations take

place. We denote by FOLD

I

the Folding policy with inter-rotation time I . At one

extreme, FOLD

1

never rotates. This gives a policy with very high e�ciency preserva-

tion, but unequal allocation to running jobs. By decreasing the time between rotations,

equality of allocation is enhanced, but at the cost of diminished e�ciency preservation.

4.4.5 De�ning Partition Cycles

The Folding rotation policy relies on the property that there is a cyclic ordering of the

partitions. Each partition knows the partitions immediately preceding and immediately

following it in a cyclic partition ordering. This ordering is used to determine what action

(fold, unfold or no change) is taken for each partition at each rotation instance. This

section describes the algorithm for maintaining the cyclic ordering of the partitions in

the face of changes to the partition con�guration.

-

?

�

6

�

?

�

6

-

-

?

6

- - -

?

���

6

-

�

6

-

?

6

�

?

�

6

6

6

6

-

-

? ?

?

�

(a) 3 partitions

(b) 8 partitions

(c) 12 partitions

(d) 16 partitions

Figure 4.7: Cycles for 16 or fewer partitions

It is highly desirable that as jobs enter and leave the system and the number of

partitions changes, changes to the partition cycle involve only those partitions a�ected

by the allocation change. In this way, only local updates to the cyclic ordering are

necessary.

The partitioning policy described in Section 4.4.1 has the property that only local

53

-

-

?

-

6

-

?

?

?

�

6

�

?

�

6

6

6

-

-

?

6

-

?

?

?

�

6

�

?

�

6

6

6

(a) 17 jobs in system

(b) 18 jobs in system

Figure 4.8: Cycles for 17 and 18 partitions

-

?

���

-

?

�

-

6

?

--

6

�

6

-

?

���

-

?

�

6

?

--

6

�

6

-

?

���

-

?

�

6

?

--

6

6

��

- ---

16 partitions

17 partitions 18 partitions 32 partitions

Figure 4.9: Cycles for 17 and 18 partitions

changes are necessary to the cyclic ordering for up to 16 processors in the system. To

see this, Figure 4.7 illustrates the cyclic ordering for several con�gurations with up to 16

processors in the system. When a large partition is split into two, the currently de�ned

cycle is changed so that the new partitions replace the old partition within the cycle, i.e.,

the two new partitions are adjacent to each other in the new cycle, and the neighboring

partitions of the old partition become the preceding neighbor of one new small partition,

and the succeeding neighbor of the other new small partition. Similarly, when two

adjacent partitions that are combined to become a large partition upon job departure,

54

the two partitions are replaced by the single large partition in the cyclic ordering, while

updating only the adjacency of the new partition and its immediate neighbors in the

cyclic ordering.

However, when the number of partitions exceeds 16, it is not always possible under

the partitioning policy de�ned in Section 4.4.1 to make local changes to the partition

cycle. Consider the con�guration of Figure 4.7(d) with 16 processors in the system. Fig-

ure 4.8(a) illustrates the partition cycle after a 17

th

partition is added if only adjacency

for the two new smaller partitions and the neighboring larger partitions is changed to

de�ne the new cycle. Now suppose an 18

th

partition is added as illustrated in �gure

Figure 4.8(b). Given the current cycle, it is not possible to create a new cycle simply by

changing adjacency information local to the new partitions and their neighbors.

To solve this problem, a new global cyclic ordering is de�ned when the number of

partitions reaches 16. Figure Figure 4.9(a) illustrates the global change to the partition

cycle at 16 processors. Once the cycle is changed, subsequent increases in partition

changes (from 16 to 32 processors) result again in only local changes. Figure 4.9(b)-(d)

illustrate the partition cycles for 17, 18, and 32 partitions. (In Figure 4.9(d), we omit

the arrowheads for clarity.) In general, every 2

k

partitions, k >= 4, a rede�nition of the

cyclic ordering is necessary so that subsequent changes to the partitions result in local

changes to the cyclic ordering. (This corresponds to the partitioning policy de�ned in

Section 4.4.1 which alternates the direction along which a large partition is split every

2

k

partitions.) Finally, note that there is more than one partition cycle possible for

16 partitions that would allow local cycle changes for up to 32 partitions. Figure 4.9

illustrates only one such cycle.

Globally changing the cycle de�nition requires synchronization among all processors

at processor reallocation time, which is expensive. While global change occurs only for

the single allocation point within 2

k

partitions, if the system oscillates within this number

of partitions, system performance can degrade due to signi�cant reallocation costs. Still,

no such global change is needed for a moderate numbers of partitions (up to 16).

55

Another possible solution exists for systems with the same number of processors in

each dimension (M = N) when the number of partitions ranges between 16 and 32. For

these systems, when the number of partitions reaches 16, each partition has the same

number of processors in each dimension. To create 17 to 32 partitions, a partition may

be split along either direction. By repeating (rather than alternating) the direction along

which the machine was split for 8 to 16 partitions, a global cyclic ordering of the partitions

is possible to maintain by making only local changes to the cyclic ordering. This results

in the ordering illustrated in Figure 4.9, without requiring a global reordering. After

32 partitions, however, a global change to the cyclic ordering is required. For these

systems, however, this simple approach doubles the number of partitions that may be

created before a global change to the cyclic ordering.

4.5 Summary

In summary, we have de�ned two speci�c dynamic allocation policies. These policies are

designed for a 2-dimensional mesh-connected processor topology, where each dimension

has a power of two number of processors. In de�ning both policies, we address not only

how many processors are allocated to arriving jobs, but also which processors. Both

policies maintain partitions that are composed of adjacent processors, so that there is no

contention for network resources among multiple executing jobs. Each policy also takes

great pains to reduce the cost of reallocation, since in a distributed memory environment,

this cost can be signi�cant. Consideration of all of these factors is necessary for a realistic

evaluation of the performance of scheduling policies for distributed memory parallel

systems.

The Equipartition policy attempts to divide the system into rectangular partitions of

approximately equal size, so it attempts to provide low reallocation overhead but incurs a

system induced load imbalance. In order to reduce the potential for system-induced load

imbalance, each rectangle de�ned has one dimension that has a power of two number of

processors. Two variants of Equipartition are proposed: the �rst, EQUI , uses a simple

56

modulo division to divide the threads of an application as evenly as possible along both

dimensions of the partition allocated to the job. The second policy, EQUI

+

, uses a more

complicated mapping policy that provides the minimum load imbalance for a partition.

By always halving or doubling a partition, the Folding policy provides good load balance

but incurs additional reallocation overhead in guaranteeing equal resource allocation.

We de�ned a rotation policy that tries to reduce the number of reallocations and the

cost per reallocation that must occur in order to guarantee equal resource allocation.

In Chapter 5, we compare the Folding and Equipartition policies in order to ascertain

the importance of cost of reallocation and load balancing { two central overheads of

dynamic reallocation { on the performance of dynamic scheduling policies.

Chapter 5

Performance Evaluation of

Dynamic Allocation Policies

This chapter compares the Folding and Equipartition families of policies in order to

ascertain the relative importance of reallocation cost, load balancing, and the impact of

equal resource allocation on the performance of dynamic allocation scheduling policies

for distributed memory, message-passing systems.

Section 5.1 details the assumptions made about the hardware and software environ-

ment. Section 5.2 derives the e�ciency preservation of the two classes of policies in the

absence of job arrivals or departures. Unlike the e�ciency preservation metric derived

for the hypothetical dynamic allocation policy de�ned in Chapter 3, we incorporate

reallocation overhead and load imbalance ine�ciencies into the e�ciency preservation

derivation. This gives us a simple, �rst order metric determining the e�ects of this over-

head on scheduling performance. We also examine the degree of fairness a�orded by

each of the policies for a static number of jobs in the system.

In Section 5.3, we consider the e�ects of arrivals and departures on the performance of

the policies. We use a Markovian birth-death model to obtain mean response times under

homogeneous job arrivals and departures. We also examine the e�ects of imposing a limit

on the multiprogramming level, as might be appropriate to accommodate limitedmemory

58

capacity and large memory-bound applications. In Section 5.4 we use discrete event

simulation to ascertain examine the performance of the policies under heterogeneous

workloads, again including the e�ects imposed by a multiprogramming limit. We also

re-examine the issue of fairness in this dynamic environment. Section 5.5 summarizes

our results.

5.1 The Hardware and Software Environments

As stated in Chapter 2, we consider the particular case of mesh-connected parallel ma-

chine of 2

M

x2

N

nodes, as shown in Figure 5.1a. Each node contains a single processor

and su�cient memory to multiprogram a number of threads of a single application.

Nodes communicate only by messages; there is no shared memory.

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

�

�

�

�

�

l

l

l

l

l

2

N

End Thread;

repeat (c) f

g

Thread (i,j)::

communicate ();

compute();

2

M

(a) Hardware (b) Software

Figure 5.1: Hardware and software model

The performance a�orded by a particular kernel processor allocation policy is inti-

mately tied to decisions made by the applications it supports. We consider a workload

composed of scienti�c applications written in a single-program-multiple-data (SPMD)

style. This is a common style for both hand-written codes and those produced by par-

allelizing compilers.

Figure 5.1b shows the particular software structure we consider, the simple but quite

59

common \communicate-compute" model, in which all nodes pass through coordinated

phases of communication followed by local computation.

We assume that when a job begins execution, it spawns a number of threads equal to

the number of processors in the virtual machine, and partitions its workload as equally

as possible among them. After that, it is unable to alter the load distribution. While

some systems allow the granularity of the job to be speci�ed at load time in response to

the job's initial allocation, in the environment we are studying where the job's allocation

changes, this choice could be suboptimal. By choosing a parallelism at least as great as

the number of processors in the system, if given the opportunity, the job can utilize all

processors. We also assume that the application does not alter the number of threads in

response to changes in processor allocation.

Our hardware and software models re
ect an important class of system and applica-

tions, and capture the most central aspects of the processor allocation problem for other

classes. However, we have not attempted to include all aspects of all parallel systems.

We intend our results to be appropriate for systems supporting the large number of ap-

plications of the type we model, and as well to serve as the basis for policies intended to

support other forms of parallel applications.

We use the following notation throughout this chapter. The values in parentheses

indicate the baseline setting for the experiments discussed throughout the chapter. These

values are based, in part, on the workload characteristics described in [13], and on the

characteristics of the Intel Paragon hardware.

The parameters relevant to this hardware environment are:

� 2

M

x2

N

, the size of the mesh of processors (2

4

x2

4

).

� c, the context switch time required to schedule a new thread (0.5 msec.).

� X , the interconnection network link bandwidth (200MB/sec.).

� L, the limit on the number of threads per node, or equivalently, the number of jobs

in the system (2

M+N

)

60

While current production systems impose high message start-up costs that can have a

signi�cant performance impact, recent work, [45, 41] has shown that these costs can be

almost entirely avoided. Our parameterization anticipates the next generation of system

software that will incorporate these advances.

For the SPMD applications, for a quantitative analysis, we assume the particular

case that during the communication phase, threads exchange data only with their four

nearest-neighbors. Most of our results are not strongly a�ected by this, and the analysis

techniques are applicable for more general patterns.

We use the following parameters to model the software:

� J , the (static) number of jobs in the system (variable).

� t, the average per-thread compute time of each application step (100 msec.).

� �, thread compute time spread: individual thread per-step compute times are

chosen from U(t� �; t+ �) (0 msec.)

� s, the per-thread cost of the communication phase of each application step when

run on 2

M

x2

N

processors. (1 msec.).

� C, the size of a thread's code segment (512KB).

� D, the size of the thread's data and stack segments (4096KB).

Finally, for the Folding policy, we de�ne I as the inter-rotation time, which varies

throughout the experiments.

5.2 Static Analysis: E�ciency Preservation and Fairness

In this section we compare e�ciency preservation and fairness under Folding and Equipar-

tition when there are a �xed number of identical running programs, that is, in the ho-

mogeneous, static case.

61

5.2.1 E�ciency Preservation: Derivation

As explained in Chapter 3, e�ciency preservation is given by

EP

policy;app

(J; P) �

P

J

j=1

A

j

AE

policy;app

(A

j

)

AE

Uniprogramming;app

(P)

P

(5:1)

where A

j

is the size of the partition allocated under policy to job j. (Because which

application we are considering is clear, we hereafter drop the subscript app on all quan-

tities.) Therefore, to compute the e�ciency preservation of a policy, we must �rst give

an expression for application e�ciency.

Let t

i

denote the length of each of thread i's compute phases. Then we have for job

j

AE

policy

(A

j

) =

P

2

M+N

i=1

t

i

max

p2P(j)

(CMP=step

p

+ CS=step

p

+ COM=step

p

)

� (1�%OV

policy

)

(5:2)

where A

j

is the size of the partition allocated under policy to j, P(j) is the set of

processors in the partition assigned to j, CMP=step

p

and COM=step

p

are the total

compute and communication times respectively that processor p spends per application

step, CS=step

p

is the context switch time if more than one thread is mapped to p and

zero otherwise, and %OV

policy

is the fraction of time each processor spends on policy

overhead functions.

Under most applications where computation time exceeds the cost of synchronizing

between threads, the ratio in the expression is dominated by CMP=step

p

term, which

is determined by the maximally loaded processor. In the speci�c case of perfectly load

balanced computations (t

i

= t), we can simplify CMP=step

p

using the fact that the

maximum number of threads mapped to a single processor for a partition of size R

j

x

C

j

is

l

2

M

R

j

m l

2

N

C

j

m

under all policies we consider except EQUI

+

, for which it is

l

2

M

R

j

2

N

C

j

m

.

The numerator of the ratio can also be simpli�ed under an assumption of perfect load

balancing. When thread compute times can vary, we use Monte-Carlo simulation to

obtain numerical results for this term.

62

In computing the cost of the communication of a job, CS=step

p

, we make the following

assumptions:

1. the cost of synchronization is dominated by the cost to synchronize between threads

on remote processors; the cost of communicating between threads on the same

processor can be overlapped with the remote communication.

2. two pairs of threads of a job communicating between the same pair of processors

must send distinct messages.

Recall that s is the time for two threads located on neighboring nodes to communicate

the amount of data necessary for an application step. For a processor with X

j

x Y

j

threads, the synchronization cost for a single application phase is (X

j

+ Y

j

) � s. Again,

under the assumption of a perfectly load balanced system, this term, determined by the

maximally loaded processor of a R

j

x C

j

partition, is

�l

2

M

R

j

m

+

l

2

N

C

j

m�

� s.

The last term, COM=step

p

is (X

j

� Y

j

� 1) � c for a processor with X

j

x Y

j

threads.

For the maximally loaded processor of a perfectly load balanced application running in

a R

j

x C

j

partition, COM=step

p

=

�l

2

M

R

j

m

�

l

2

N

C

j

m

� 1

�

� c.

%OV

Uniprogramming;p

and %OV

Equipartition;p

are zero (for both variants of Equiparti-

tion). To compute %OV

Folding;p

we make use of the following assumptions:

� Each processor can send or receive only a single message at a time.

� Because of the large amount of data transferred in moving a thread, communication

time is dominated by bandwidth considerations, not latency.

� When folding a job allocated a large partition onto half of its processors, only

thread data must be sent, since a copy of the code segment already exists on the

destination processors. The code segment must be sent, however, to unfold a job

onto an expanded partition.

� All processors of a partition stop application processing while folding or unfolding

is taking place in it.

63

� Thread transfer times are su�ciently well synchronized that folding a job along a

single dimension from 2K processors onto K processors requires K steps. This is

accomplished by �rst transferring the threads at node 2k to node 2k� 1 in parallel

for k = 1::K (one step), and then successively transferring the resulting paired sets

of threads to their �nal destinations ((2K � 2)=2 steps).

With these assumptions one can derive that

%OV

Folding

=

(#rotations in N(J)I) � (#procs=rotation) � (#seconds=(proc=rotation))

2

M+N

N(J)I

(5:3)

The denominator represents the total number of processor-seconds available in an interval

of length N(J)I , the �rst term of the numerator the total number of rotations in that

interval, the next term the total number of processors involved in each rotation, and the

�nal term the time required to complete a rotation.

It is easy to see that the number of rotations that occur in N(J) rotation steps is

N(J) � f(J)=2, since each rotation is composed of two jobs. Since each rotation involves

a fold followed by an unfold, and each of these involves a number of processors equivalent

to the size of a large partition, the number of processors per rotation is 2

M+N

=2

blogJc

.

We compute an upper bound for #seconds=(proc=rotation) by assuming that each

fold takes place along the larger dimension of a large partition. Both the job folding

from a large partition onto a small one, and the job unfolding from a small to a large

partition, must relocate half (i.e., 2

M+N�1

) of their threads. It takes time D=X to

fold a thread, and time (D + C)=X to unfold one. Finally, parallelism equal to the

narrower dimension of a large partition is possible in moving the threads. This is equal

to 2

min(M;N)

=2

j

blog

2

Jc

2

k

.

Combining these terms and simplifying, we get

%OV

Folding;j

=

1

I

� f(J) � 2

max(M;N)�

j

blog

2

Jc

2

k

�1

�

(2D + C)

X

(5:4)

64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Jobs in System

0.75

0.82

0.89

0.96

E�ciency

P

r

e

s

e

r

v

a

t

i

o

n

�

...

EQUI

�

...

EQUI

+

?

.................................

FOLD

5

.

.................................

FOLD

15

~

.................................

FOLD

25

�

.................................

FOLD

1

.

.....
....
.....
.....
....
.....
.....
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............................
...............
.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.

.

.
.
.
.

.

..

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.
.
.
.

.

.

.

.

.
.
.
.

.

.

.

.

.
.
.
.

.

.

.

.

...
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

..
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
...
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.....
....
.....
.....
....
.....
.....
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
...
....
....
....
....
...
....
....
.....

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
...
..
...
...
...
..
...
...
...
..
...
...
....
...
...
...
....
...
...
...
...
....
...
...
...
.....
....
...
....
....
....
...
....
....
....
...
.....
....
.....
....
....
....
....
....
....
.....
....
....
...
....
....
...
....
....
...
....
......
...
...
....
...
...
...
....
...
...
...
....
....
...
...
...
...
...
...
....
...
...
...
...
...
...
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.......
.....
.....
.....
....
.....
.....
.....
..

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.....
....
.
....
....
...
.
.....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............
..............

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...............
...............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...........
................

.
.
.
.
.

.

.

.

.
.
.
.

.

.
.
.
.

.
.

.

.

.

.
.
.
.

.
.

.

.

.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............................
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

?

?

?

?

?

?

?

?
?

?

?

?

?
?

?

? ?

?

?

.

.....
....
.
....
....
...
.
.....
...
.
.

.

.
..
.
..
.
.
..

.
..
.
..
.
.
..
.

..
.
..
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
..
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
..

.

.
..
.
.
..
.
.
.

.

.
..
.
.
..
.
.
.

.

.
..
.
......
...........
...........

.
..
.
..
.
.
..
.

.

..
.
..
.
.
..
.

.

..
.
..
.
.
..
.

.
.
.
.
..
.
.
.
.
.

.
.
.
..
.
.
.
.
.
.

.

.

.
..
.
.
....
......................

.

.
.
.
.

.

.
.
.
.
.

.

.

.
.

.

.

.
.
.
.
.

.

.

.
.
.
.
.
.
.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.

..
.
.
.
.
.
..
.
.

.

.
.
.
.
.
..
.
.
.

.

.
.
.
.
.
.
.
..
.

.

.

.
..
.
.
.
.
.
.

.
.
.
.
.
.
.
.
..
.

......
.......................

..
..

.
..
..
..
..
..

..
..
..
..
..
.

..
.
..
.
.
..
.
.

.
..
.
..
.
.
..
.

.

.
..
.
..
.
.
..
..........................

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.
.
.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.....
....
.
....
....
...
.
.....
....
.

.

...
..
...
..

.
..
...
...
..

.
.
..
.
.
..
.
.
.

.

.

..
.
.
..
.
.
.

.

.
..
.
.
..
.
.
.

..
.
.
..
.
.
..
.

.

.
..
.
.
..
.
.
.

.

.
.
.
..
.
.
...

.
..
..
..
..
..

.
..
..
..
..
..

.

....
......

....
..

..
..
..
..
..
.

..
..
..
..
..
.

..
..
..
..
..
.

.
..
.
..
..
..
.

.

..
.
..
..
..
.
.....................

......
.
.
.
..
.

.

.
..
.
.
.
..
.
.

.

.

..
.
.
..
.
.
.

..
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.

..
..
..
.
..

..
..
..
..
.
..

..
..
..
..
.
..
.
.
..
..
.
..
..

.

..
.
..
..
.
..

..
.
..
..
......................

....
...
...
...
..

..
...
...
...

.

...
....
..
.

.
..
..
..
...
.

..
...
..
..
..

.............................
..
.
.

.

.
.
..
.
.
.
..
.

.
.
.
..
.
.
.
.
..

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

~

~

~

~

~

~

~

~

~
~

~

~

~

~
~

~

~ ~

~

~

.

.....
....
.
....
....
...
.
.....
.....

....
....
...
.
.....
.....

....
....
...
.
.....
.....

....
.....
.............

...........
...........
...........
........... ..

.........
.......

.....
...

...........
..........

.......
........................

.......................
.......................

.........................
..........................

..
..

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

� � � �

Figure 5.2: E�ciency preservation for perfectly load balanced jobs (� = 0)

5.2.2 E�ciency Preservation: Results

We present quantitative results on e�ciency preservation for each of our policies, using

the baseline parameterization given at the beginning of this section.

Figure 5.2 shows e�ciency preservation when thread compute times are constant

(� = 0). As expected, EQUI shows signi�cant e�ciency losses when J is not a power

of two. While EQUI

+

is a noticeable improvement, it still experiences large e�ciency

losses, although the magnitudes of these losses decrease with increasing J .

The e�ciency preservation of the Folding policies shows some sensitivity to the choice

of inter-rotation interval. In general, though, they have much better behavior than the

Equipartition policies for all but unrealistically small inter-rotation times. FOLD

1

attains values slightly greater than 1.0 as J increases. This re
ects the decreased o�-

processor communication required as the application is folded onto smaller and smaller

partitions.

Figure 5.3 shows how variation in application thread compute times a�ect e�ciency

preservation for the FOLD

1

and EQUI

+

policies. We present results for thread times

taken uniformly from (100��; 100+�) msec. for � = 0, 5, 10, and 20 msec. As can be seen,

the e�ciency preservation measures of our disciplines increase with increasing variance

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Jobs in System (J)

0.80

0.89

0.99

1.08

1.17

E�ciency

P

r

e

s

e

r

v

a

t

i

o

n

�

...

FOLD

1

: � = 0

�

...

FOLD

1

: � = 5

~

...

FOLD

1

: � = 10

?

...

FOLD

1

: � = 20

�

.................................

EQUI

+

: � = 0

�

.................................

EQUI

+

: � = 5

~

.................................

EQUI

+

: � = 10

?

.................................

EQUI

+

: � = 20

......
.....
......
......
.....
......
.......
.....
......
.....
......
......
.....
.......
......
.....
......
.....
......
..........
......................

.......................
......................

.......................
.......................

......................
..................................

...
...

...
...

...
...

..
....................

�

�

�

�

�

�

�
�

�
�

�
� �

�
�

� � �
� �

...
...
...
...
...
...
...
...
...
...
...
....
...
...
...
..
...
..
...
...
..
...
...
..
...
..
...
....
..
...
..
...
..
...
...
..
...
..
...
...
..
....
.......
.......
.......
.......
.......
........
.......
......
.......
......
........
.......
........
.......
........
........
.......
.......
.......
......
.......
..................
..................

..................
................
..................

.................
..................

...............
...............
.................
................
.................
...............
.................
................
..................

.................
.................
..

...
...

.....

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�
�

..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
...
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
...
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
...
.....
....
....
....
....
.....
....
....
.....
....
....
....
...
....
....
....
....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
....
....
....
....
.....
....
....
.........
...........
............
............
..........
.........
..........
...........
...........
...........
............
.........
.........
.........
..........
..........
..........
..........
..........
..........
.........
..........
..........
..........
..........
.........
............
..........
...........
..............
..........................

............................
...............................

................................
..............................

.

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~
~

~
~

~

..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
..
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
...
...
..
...
..
..
...
..
...
..
...
..
..
...
..
....
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
...
...
..
...
...
..
...
..
...
...
..
...
..
...
....
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
.......
.......
......
.......
......
.......
......
.....
.....
......
.....
......
......
......
.......
......
......
......
.......
.....
.....
.....
.....
.....
.....
....
.......
.....
......
.....
......
.....
.......
.....
.....
.....
.....
......
.....
.....
......
......
.....
......
.....
.....
.......
......
......
......
......
......
......
..............
.............
..............
...............
................
................
.................
.................
................
...............

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

......
.....
.
......
....
..
....
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...
.....
...
.
.....
....
.

.
.
.
.
.

.

.

.

.

.
.

.

.

.

.

.

.

.
.
.
.

.

.

.

.
.
.
.
.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
..

.

.
.
..
.
.
..
.
.

.
..
.
.
.
..
.
.
.

.
..
.
.
.
.
..
.
.

.

.

.
..
.
.
.
.
..

..
.
.
.
.
..
.
..

...
...
...
..

....
...
....

..
....
....
.
..
....
....
.
..
....
.....

....
....
...
.
.....
.....

.....
.....
.
....
.....
..
...
....
....

.....
....
..
..
...
....
..

.....
....
..
.
....
....
..

....
....
...

....
...
....

.
..
..
..
..
..

.

..
...
..
..
.

..
..
..
.....
..
......
...
....
......

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

...
...
...
..

..
..
...
...
.

...
....
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
.

...
....
...
.

...
...
..

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.
.
.
.
.

.
.
.
.
.

.

.

.

.

.
.
.
.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..
.
.
.
..
.
.
..

.

.
..
.
.
..
.
.
.

.

.
.
.
..
.
.
..
.

.

.
.
..
.
.
.
..
.

.
.
..
.
.
.
..
.
.

..
...
...
...

.
...
....
...

.

...
....
...

..
....
....
.
.
...
....
...

.....
....
..
.
....
.....
.
..
.....
....

.....
....
..
..
....
.....

...
....
....

...
....
.
...
.
....
.....
.
...
.....
...
.
....
.....
.
...
....
....

....
..
...
..

...
..
...
..
.

..
..
...
....
.
.......
...
.....
......

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

..
..
..
..
...

...
..
..
..
..

.
..
..
...
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
...
.

.

..
...
..
...

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.
.
.
.

.

.
.

.

.

.
.
.
.
.
.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
..
.
.
..

.

..
.
.
..
.
.
..

.

..
.
.
..
.
.
..

.

.
..
.
.
..
.
.
.

.

.
.
..
.
.
..
.
.

.
..
...
...
..

.
...
...
...
.

..
...
...
...

..
...
...
...

..
...
....
..

...
....
....

...
....
....

..
....
.....

...
....
....

...
....
....

...
...
....
.
..
....
...
..
.....
......

.....
.....
.
.....
......

......
.....
..
.....
...
.
.
...
...
....

.

...
....
.........
.....
....
.......
.

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

..
.
..
.
.
..
.
.

.

.
..
.
.
..
.
..

.
..
.
.
..
.
..
.

.

.

.

.

.
.
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
..
..
.
.

.
.
..
..
.
..
..

.
..
..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.
.
.
.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

..
.
..
.
..
.
..

..
.
..
.
..
.
..

..
.
..
..
.
..
.

.
.
..
..
.
..
.
.

.

..
..
.
..
.
..

.
...
..
...
..

..
..
...
..
..

...
...
...
..

.

...
..
...
..

.
...
...
...
.
.
...
...
....

.
...
....
...

..
...
....
..

...
....
...
.
.
....
...
...

.
....
...
...

..
...
......
......
.....
.......
....
...........
.......
......
........
..
.......
...
...........
......
.....
.....
......

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Figure 5.3: E�ciency preservation for thread compute times from U(100 � �; 100 + �)

msec.

in thread compute times, indicating that they are even more e�ective for applications

with load imbalance than those that are perfectly balanced. The intuition behind this is

quite simple: there is less variation among the total per-processor compute times when

many threads are allocated to each processor than when there is only one thread per

processor. This is a quite general phenomenon, and is likely to be violated only if the

high load threads are located in a clustered way.

Note that, as desired, e�ciency preservation re
ects on the performance of the pro-

cessor allocation policy for the workload, not the performance of the application itself.

It is clear that application performance decreases with increasing thread compute time

variation, since the application is less well load balanced.

5.2.3 Fairness: Results

The computation rate of a parallel application is limited by its most slowly progressing

thread. For this reason, we use the maximal number of threads assigned to any of a job's

processors as our measure of fairness, rather than the total number of processors the job

is allocated.

Under an ideal policy, the maximal number of threads assigned to any processor

66

would be J for all J jobs. To evaluate fairness, we compute the ratio of two values to

this ideal average: the largest (over all partitions) maximal number of threads assigned

to any processor in a single partition, and the smallest maximal thread assignment.

To compute the thread assignment values for the members of the Folding family that

employ rotation, let E be the elapsed time of the application when run alone on the

machine. When run in competition with other jobs, the application passes through some

number of complete intervals of length N(J)I , followed by a partial interval. During the

complete intervals, it �nishes fraction (N(J) � I)=(E � J) of its work, since it is allowed

use of an equal share of the machine in each such interval. We obtain upper and lower

bounds on fairness by assuming that during the partial interval some job is allocated

large partitions only, and another small partitions only.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Jobs in System

0.5

0.8

1.2

1.5

1.9

Max/Min

of

Max

Loading

�

..

EQUI: Min

�

..

EQUI: Max

?

..

EQUI

+

: Min

~

..

EQUI

+

: Max

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
...
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.

.

.

.
.
.

.

.

.
.
.

.

.

.

.
.
.

.

.

.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

.

.
.
.

.

.

.

.
.
.

.

.

.
.
.

.

.

.
.
.

.

.

.

.
.
.

.

.

.
.
.

.

.

.

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.
.

.

..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
...
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
.
...
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
...
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
...
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
..
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
...

..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
.

.

.

.
.
.
.

.

.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

? ? ? ? ? ? ? ?

?

? ?

?

?

?

?

?

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

...
....
...
....
....
...
....
...
....
....
...
....
...
....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
...
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.......
...........
...........
...........
...........
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
....
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
...
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
...
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..

~ ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Figure 5.4: Fairness of Equipartition: relatively most heavily and most lightly loaded jobs

Figure 5.4 shows the fairness ratios for EQUI and EQUI

+

, and Figure 5.5 the same

results for members of the Folding family. These results demonstrate the bene�ts of

reducing N(J) for J even by dividing the system of rotations into two.

In Figure 5.5 we express the inter-rotation time of the Folding policies, I , as q�E, for

various values of q > 0. This allows the results to be independent of the value of E. For

67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Jobs in System

0.5

0.8

1.2

1.5

1.9

Max/Min

of

Max

Loading

�

..

FOLD

1

: Max

�

...........

FOLD

1

: Min

?

..

FOLD

I=

8D

15

: Max

?

...........

FOLD

I=

8D

15

: Min

~

..

FOLD

I=

4D

15

: Max

~

...........

FOLD

I=

4D

15

: Min

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.
.
.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.
.
.
.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.

.

.

.

.
.
.
.
.

.

.

.

.
.
.
.
.
.

.

.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
...
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
...
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
...
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

...................................
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
.
.
.
.
.
.

..
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.

.

.
..
.
.
..
.
.

.

.
..
.
.
..
.
..

.
..
.
.
..
.
..
.

..
.
.
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
.
.
..

.
.
.
.
..
.
.
.
..

.

.
.
.
..
.
.
.
.
.

..
.
.
.
..
.
..
.

.

..
.
.
..
.
..
.

.
..
.
..
.
.
..
.

.
..
.
..
.
..
.
.

.
.
..
..
..
.
..

..
..
.
..
..
..

.

..
..
..
.
..
.

.
..
...
..
..
.

..
..
..
..
..
.

..
..
...
..
..

.

..
..
...
..
.

.

..
...
..
...

.

...
..
...
..

..
..
...
...
.

..
...
...
..
.

..
...
...
...

...
...
...
..

..
...
....
..

..
...
...
...

..
...
...
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.
.
.

.

.

.
.
.

.

.

.

.

.
.
.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.

.
.

.

.

.

.

...
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

...
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.

.

.

.

.
.
.

.

.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.
.

.
.
.
.
.
.

.

.

.

.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.
.
.

.

.
.
.
.
.
.

.

.

.

..
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..

........
....
....
....
...
....
....
....
....
....
....
....
....
...

? ?

?

?

?

? ?

?

?

?

?

?

?

?
?

?

...................................
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.
.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

..
.
..
.
.
..
.
.

.

..
.
..
.
.
..
.

.
.
..
.
.
..
.
..

..
.
.
...
....

....
.....
..
..
.....
....

.....
..
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
..

.

.

.

.
.
.
.

.

.

.
.

.

.

.

.
.
.
.

.

.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

.
.
.
.

.

.

.
..
.

.
...
..
..
...

..
..
...
..
..

..
...
..
..
..
........
....
..........
.....
......

.
.
..
.
..
.
..
.

.

..
.
..
.
..
.
.

..
.
..
.
..
.
..

..
.
.
..
.
.
..
.

.
.
..
.
.
..
.
.
.

..
.
.
..
.
.
.
..

.

.
..
.
.
.
...
.

.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.

.
..
.
..
.
.
..
.

.

.
..
.
.
..
.
..

..
.
..
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
..

.

.
.
.
.
.
.
.
.
.
.

.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

...
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
...
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
............
..................

.................
.......
....
....
....
....
....
.....
....
....
....
....
....
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
.....
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
...
...
....
...
...
....
...
...
....
...
...
....
...
...
............................

................................
..........
.........
.........
.........
........

~ ~

~

~

~

~

~

~

~

~

~

~

~

~
~

~

...................................
..
..
..
..
.

.

..
..
..
..
..

..
..
..
..
..
.

.
..
..
..
..
..

..
..
..
..
..
.

.
..
..
..
.
..
.

..
..
.
..
..
.
.

...
...
....
.

...
...
...
..

..
...
...
........
......
..
.......
..
......
.....
.
..
..
..
..
..

.
..
..
..
..
..

..
..
..
..
..
.

..
.
..
.
..
.
..

.
.
..
.
..
.
..
.

.
..
.
..
.
..
.
.

..
.
..
.
..
...
...
.....
...
...
.....
...
...
........
....... .
..........
...........

.
...
...
...
.

...
...
...
..

.
...
...
...
.

.
...
..
..
..
.

.
..
...
..
..
.

.
..
..
...
..
.
.
.
..
..
.
..
..

.
..
..
.
..
..
.

..
.
..
..
.
..
.

.

.
...
...
..
.

..
...
..
...
.

.
...
..
...
..

...
...
.
.
..
.

..
..
..
..
..
.

..
..
..
..
..
.

.

..
..
..
..
.
.

.

..
.
..
.
.
..
.

.
.
..
.
.
..
.
..

..
.
.
..
.
..
.
.

~ ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Figure 5.5: Fairness of Folding: relatively most heavily and most lightly loaded jobs

I � E (q � 1), the bounds are equivalent to the case I =1. For I < E, intuitively the

worst case is when I is just greater than E=2. Figure 5.5 shows the bounds on fairness

in this case (q = 8=15). We also show results for I just greater than E=4 (q = 4=15).

From these samples, it is clear that fairness is very near the ideal once the inter-rotation

time is at least a small factor smaller than the duration of the job when run alone.

5.3 Birth-Death Analysis: Mean Response Times

In the previous section we examined two static properties of the Folding and Equipar-

tition disciplines: e�ciency preservation and fairness. In this section we examine a

dynamic property, the mean response time a�orded under homogeneous arrivals.

To do this, we employ a simple, load dependent Markovian birth-death model, the

states of which represent the number of jobs that are ready to run. We de�ne parameter

L of the model as a limit on the number of simultaneously runnable jobs. This limit

might result, for instance, from the limited memory capacity of the system.

For each processor allocation policy we consider, we set the completion rate, �(S),

in each state S � L to 1=(E � EP

policy

(S; 2

M+N

)), where E is the elapsed time the job

68

would experience if run alone on the machine. This represents the equilibrium rate of

job completions under policy given a constant workload of J jobs. For each state S > L,

we set �(S) = �(L).

We set the arrival rate of the model, �, to produce a desired target system load, �.

In particular, if E is the elapsed time required by the application when run alone on the

full machine, we set � = �=E.

This model captures the policy costs of induced load imbalance under Equipartition,

of rotations under Folding, and of context switching under both policies. However, it does

make a number of approximations; for instance, it ignores the costs of repartitioning due

to job arrivals and departures. Its major bene�ts are that it captures the most important

aspects of the problem, but is simple and has low computational cost, which makes it

easy to parameterize and allows us to obtain many performance estimates quickly. For

example, on a workstation on which our simulator (described in Section 5.4) requires

about 30 minutes to produce a single response time estimate, our birth-death model

computes about one hundred such estimates in under a second. Comparisons of the

results of the birth-death model to those of the detailed simulation show that the birth-

death model is very accurate, despite the approximations it makes.

5.3.1 Unlimited Memory Resources

In this subsection we examine response times under the assumption that each node

has su�cient memory to multiprogram an arbitrary number of threads. In the next

subsection we consider the case of limited memory.

Figure 5.6 show the estimates of the mean blow-up factor under two Equipartition and

three Folding policies against system load for jobs with deterministic thread compute

times, using the baseline parameterization of Section 5.2. The mean blow-up factor

represents the factor by which the job's elapsed time exceeds its minimum, and is de�ned

as the mean response time divided by the mean time to complete if run in isolation, E.

We note that, in general, response time is smaller under the Folding than under the

69

Equipartition policies. This re
ects their better e�ciency preservation properties, and

the fact that equal allocation of resources is unimportant to performance when there is

a single class of jobs, as considered in this section. However, the results for FOLD

20

also make clear that there is a danger in choosing too small an inter-rotation interval

for the Folding policies. As the system load increases, FOLD

I

becomes less e�cient, for

I < 1. Thus, a value of I su�ciently large to achieve good performance at moderate

loads may become unstable at high loads.

10 20 30 40 50 60 70 80 90

System Load (�x100)

0.9

3.4

5.9

8.5

11.0

Mean

Blow-Up

Factor

�

..

FOLD

1

�

..

FOLD

200

?

..

FOLD

20

�

..

FOLD

20�J

.

.................................

EQUI

+

~

.................................

EQUI

.

..........
..........
..........
...........
..........
..........
..........
..........
........
.........
........
.........
........
.........
........
.........
.......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
....
.....
.....
....
.....
....
.....
.....
....
.....
.....
....
.....
....
.....
.....
...
...
...
...
....
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
...
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

�

�

�

.

..........
..........
..........
...........
..........
..........
..........
..........
........
.........
........
.........
........
.........
........
.........
.......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
....
.....
.....
....
.....
....
.....
.....
....
.....
.....
....
.....
....
.....
.....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

�

�

�

.......
..........
...........
...........
...........
...........
...........
..........
........
........
........
........
........
........
........
........
........
......
......
......
.......
......
......
......
......
......
......
......
......
......
....
....
.....
....
....
.....
....
....
.....
....
....
.....
....
....
.....
....
.....
..
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
..
...
...
...
...
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

?

?

?

?

?

?

?

.

..........
..........
..........
...........
..........
..........
..........
..........
........
.........
........
.........
........
.........
........
.........
.......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
....
.....
....
.....
....
.....
....
.....
....
....
.....
....
.....
....
.....
.....
...
...
...
....
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
...
...
.....
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

�

�

�

......
.....
..........
.
.......
........
.....
.........
...
........
..
........
..
........
..
........
...
......
.....
.
.....
.....
.
......
....
.
......
....
.
......
....
.
....
...
...

....
....
...

...
....
....

..
....
....
.
.
....
....
..

...
...
..
...

..
..
...
..
..

.

..
...
..
...

..
...
..
...
.

.
...
..
..
.
..

.
.
..
..
.
..
.
.

..
..
.
..
.
..
.

..
.
..
.
..
.
..

.
..
.
..
.
..
..

.
.
..
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
......
......
.....
.......
....
.......
....
........
...
.....
......
..
......
...
....
.......
.
......
....
....
....
...
.
....
....
..
.
.....
....
.
..
.....
....

...
....
....

..
...
...
...

.

..
...
...
..

..
..
...
...
.

...
...
..
...

.

...
...
..
..

.

..
.
..
..
..
.

..
..
..
.
..
..

..
..
.
..
..
..

.

..
..
..
.
..
.

.
..
.
..
..
..
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
..
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
..

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

~

~

~

~

~

~

~

~

Figure 5.6: Mean blow-up factor versus system load (� = 0)

The explanation for this phenomenon is that as load increases, the average number

of jobs in the system also increases. Since each job makes progress at a rate that is

inversely proportional to the number of competitors, when I is a constant, the rotation

overhead per unit of application progress grows with increasing load. Eventually, the

relative rotation load exceeds capacity.

There is a remedy to this drawback, which is to use an inter-rotation interval of

length J � I , where J is the current number of running jobs. Figure 5.6 shows that the

performance of FOLD

20�J

is stable at high loads and very similar to FOLD

200

. Even

in the absence of this modi�cation, it is not di�cult to �nd values of I that provide

reasonable fairness and are stable up to very high loads. In the rest of this chapter, we

70

will use inter-rotation interval lengths that vary with J .

5.3.2 Limited Memory Resources

In Figure 5.7, we graph mean blow-up factor against L, the multiprogramming limit,

for the EQUI

+

and FOLD

1

policies, and a number of system load factors (�). (We

show relatively high load factors because for � < 0:5 the number of simultaneously

present jobs is almost always very small.) The results show how performance would be

a�ected if the memory capacities of the nodes limited the number of threads that could

be multiprogrammed at each, or if a policy were to impose such a limit voluntarily in an

attempt to improve performance.

0 2 4 6 8 10 12 14 16

Multiprogramming Limit (L)

0.0

2.8

5.5

8.2

11.0

Mean

Blow-Up

Factor

�

...........

EQUI

+

:�=0:9

.

..

FOLD

1

:�=0:9

�

...........

EQUI

+

:�=0:7

?

..

FOLD

1

:�=0:7

~

...........

EQUI

+

:�=0:50

�

..

FOLD

1

:�=0:50

..
..
..
.
..
..

.

.
..
..
..
..
.

.
..
..
..
..
..

.
...
...
..
..

.

...
...
...
.

..
...
..
...
.

..
...
...
...

...
.
.......
.
......
....
....
......
.
.......
....
...
.......
.
......
.....
...
......
..
......
.....
..
.......
..
.....
......
...........
........
........
.......
..........
...........
.......
........
.......
...........
.........
..
..... ..
.........
...........
........
...
.......
..........
..........
........
.......
........

�

�

�

�

�

..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..........
..........
..........
...........
..........
..........
...........
..........
..........
...........
..........
...........
..........
..........
..................

..................................
.................................

.................................
.................................

.................................
.................................

..................................
.................................

.........................

.

.

.

.

.

...........
...........
...........
.......................

.....................
...........
.......
.......
........
...........
......
..... ..
.........
.........
..
......
...........
......................

..
...

...
...................................

�

�

�

�

�

................
................
....................

.....................
.....................

.............................
...

?

?

?
? ?

.....................................
.......................

...........................
..................................

..
....

~
~

~

~
~...

...

�
�

� � �

Figure 5.7: Mean blow-up factor versus multiprogramming limit (� = 0)

The results show that performance under the the Folding policy improves with an

increasing multiprogramming limit. This occurs because Folding has high e�ciency

preservation, which grows slightly higher with increased numbers of jobs in the system

due to the better locality of communication of those jobs.

In contrast, Equipartition shows some tendency towards a local minimum, especially

for high loads. This re
ects the e�ciency losses that Equipartition induces for most

values of J larger than 4. The e�ect is not extremely pronounced, however, and in

71

the next section we revisit the question of multiprogramming limit in the context of

heterogeneous workloads, where there is an additional bene�t to high limits.

5.4 Simulation Analysis: Heterogeneous Workloads

In this section, we use simulation to investigate the behavior of the policies under het-

erogeneous loads, as well as their dynamic fairness properties. We obtained simulation

point estimates using the batch means method. All results have a 90% con�dence inter-

val of width 5% of the point estimate. (This level of con�dence required 30 minutes or

more of Decstation time per point.)

The workload we study is composed of two job classes. The basic behavior of both

classes is identical to that of the job class we have used to this point, that is, they are

SPMD jobs performing repeated communication-compute cycles. The two classes di�er

from each other only in the mean number of cycles required to complete. For the shorter

class of jobs, we set the mean such that the job would complete in 30 seconds if run

alone on the full machine. For the longer class, a job would complete in 15 minutes. The

number of cycles for an individual job of either class is chosen according to a geometric

distribution.

As in the previous section, we divide our discussion into the memory constrained and

unconstrained cases.

5.4.1 Unlimited Memory Resources

We compute mean performance measures for the short and long job class under a variety

of workload mixes. In each case, we set the overall arrival rate, �, so that p�E

short

+

(1 � p)�E

long

= 0:5, where E

r

is the mean elapsed time experienced by class r jobs if

allocated the full machine, and p is the fraction of arrivals that are short jobs.

Figure 5.8 shows the mean response times of the long and short job classes against p.

We see from these results that the Folding policies dominate the Equipartition ones, and

that the best Folding policy (FOLD

1

) yields response times about 10% smaller than

72

the best Equipartition policy (EQUI

+

). The performance of FOLD

15�J

is comparable

to FOLD

50

for this workload intensity.

0 10 20 30 40 50 60 70 80 90 100

Percentage Small Jobs

33.0

36.4

39.8

43.1

46.5

Long

Job

Mean

Response

Time

(Mins.)

�

..............................

EQUI

�

..............................

EQUI

+

�

......................

FOLD

5�J

?

......................

FOLD

15�J

.

......................

FOLD

1

.
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
.....
.......
.......
........
.......
..
...
....
....
....
....
...
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
....
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
.

�

�

�

�

�

�

.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..............
..................................

..................................
.................................

..................................
..................................

..................................
..................................

.............
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.........
..........
..........
..........
..........
..........
..........
..........
..........
..........

�

�

�

�

�

�

..
.
..
.
.
..
.
.

.

.
..
.
.
..
.
..

.
..
...
.
..
.
.

..
.
..
.
..
.
..

.

..
.
..
...............

.
........

...........
.......

...........
......

...........
....

...........
...........
.
.
.

.

.
..
.
.
..
.
.
.

.

.
.
..
.
.
..
.
.

.

.
.
..
.
.
..
.
.

.
.
.
..
.
.
..
.
.

..
.
.
..
.
..
.
.

..
.
.
..
.
.
..
.

..
.
.
..
.
.
..
.

.

..
.
..
.
.
..
.

.

..
.
.
..
.
.
..

.

..
.
.
..
.
.
..

.

.
..
.
..
.
.
..

...
...
...
..

...
...
...
..

...
...
...
..

...
...
...
..

...
...
...
..

...
...
...
..

�

�

�

�

�

�

.
.
..
.
..
.
.
..

.

..
.
..
.
.
..
.

..
.
..
..
..
.
.

.
.
..
..
.
..
..

.
..
.
..
..

...
..
.
.

.

.
..
.
..
.
..
.

.
.
..
.
.
..
.
..

..
.
..
.
..
.
.
.

.
..
.
..
.
..
.
.

.

.
..
.
..
.
..
.

.
.
..
.
.
..
.
..

..
.
..
.
..
.
.
.

.
..
.
..
.
..
.
.

.

..
.
.
..
.
..
.

.
.
..
.
.
..
.
..

..
.
..
.
.
...
.

..
...
...
...

...
...
...
..

.
...
...
...
.

..
...
...
..
.

...
...
..
...

.
...
..
...

?

?

?
?

?

?

.
.
..
.
..
.
.
..

..
.
.
..
.
..
.
.

.
.
..
.
.....
.
......
.....
.
........
....
.........
.....
......
........
.....
.........
.....
......
........
....
..........
....
.......
.......
.... .
.........
.
.......
.......
....
..........
....
........
......
.....
.....
..
..
.
.

..
..
.
..
..
.
.

..
..
.
..
.
..
.

..
.
..
..
.
..
.

..
.
..
..
.
..
.

..
.
..
.
..
..
.

.
..
..
.
..
..
.

.
..
..
.
..
.
..

.
..
.
..
..
.
..

.
..
.
..
..
.
..

.
.. ...

...
...
..

...
....
...
.

....
...
....

.

...
....
...

..
.

.

.

.

.

.

.

0 10 20 30 40 50 60 70 80 90 100

Percentage Small Jobs

63.0

72.3

81.5

90.8

100.0

Short

Job

Mean

Resp.

Time

(Secs.)

�

..............................

EQUI

�

..............................

EQUI

+

�

......................

FOLD

5�J

?

......................

FOLD

15�J

.

......................

FOLD

1

.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
...
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
..
...
..
..
...
..
..
..
...
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
...
....
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
....
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
........
............................

............................
............................

.........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
�

�

�

�

�

�

.

.
.
.
.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.

.....
....
..
...
....
....
.
....
.....
.
...
.....
...
.
.....
.....

....
.....
..
..
.....
....

.....
.....
.
...
.....
...
.
.....
.....

....
.....
..
..
.....
....

.....
....
..
...
....
....
.
....
.....
.
...
.....
...

.
..
...
..
..
.

..
..
...
..
..

.

..
..
..
...
.

..
..
..
..
..
.

.
..
..
..
..
..

..
..
..
..
..
.

...
..
..
..
..

.
..
...
..
..
.

..
..
..
...
..

.
..
..
..
...
.

..
..
.
...... ..
.........
...........
.......
........
.......
...........
.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.
.
.
.

.

.
.
.
.
.

.

.
.
.
.

.....
......
....
.......
....
.......
...
........
..
........
...
.......
...
........
..
........
...
.......
....
.......
....
......
.....
......
.....
.....
......
....
.......
....
.......
...
........

.

..
..
..
.
..
.

.
..
.
..
..
..
.

.

.
..
..
..
.
..

..
..
..
.
..
..

..
.
..
..
..
..

.

..
..
..
.
..
.

.
..
..
.
..
..
.

.
..
.
..
..
..
.

..
..
..
..
.
..

..
..
.
..
..
..

..
.
..
..
..
.
.
....
......
.
....
.....
..
....
.....
..
...
.....
...
...
.....
...
..
......
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

?

?

?

?

?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

..
...
...
...

.
...
...
...
.

...
...
...
..

..
....
...
..

..
...
...
...

.

...
...
...
.

...
...
...
..

..
...
...
...

.
...
...
....

....
...
...
.

...
...
...
..

..
...
...
...

.
...
...
...
.

...
...
...
..

..
....
...
..

..
...
...
...

.

...
...
.
..
.

..
..
..
.
..
..

.

..
.
..
..
..
.

..
.
..
..
..
.
.

.
.
..
..
.
..
..

.
..
..
.
..
..
.

..
..
.
..
..
.
.

.

..
.
..
..
.
..

..
.
..
..
.
..
.

.
.
..
..
.
..
..

.
..
..
.
..
..
.

...
.....
...
..
.....
....
.
.....
.....

.....
.....
.
....
.....
..
...
.....
...
...

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.8: Mean response times (� = 0:5, � = 5)

Figure 5.9 compares the fairness of the policies. Here we graph the coe�cient of

variation of the blow-up factors of the jobs. In addition to the Equipartition and Fold-

ing policies, we also show results for Uniprogramming under both FCFS and processor

sharing (PS). These serve to give some scale to the results, since it is well known FCFS

has poor behavior for heterogeneous workloads, while PS has very good behavior.

From the �gure, it is evident that all our policies behave very similarly with respect

to fairness, and that even FOLD

1

performs about as well on this measure as could be

73

hoped for any policy. We attribute this to the fact that all the policies employ space

sharing, and thus provide at least some service to each ready job. In addition, the

constant stream of job arrivals and departures provides an opportunity to shift resources

without resorting to time-sharing.

0 10 20 30 40 50 60 70 80 90 100

Percentage Small Jobs

0.0

1.4

2.8

4.1

5.5

CV

of

Blow-Up

Factor

�

................

FCFS

�

.....................................

EQUI

+

?

.....................................

EQUI

~

...........

FOLD

5�J

�

...........

FOLD

15�J

.

...........

FOLD

1

�

................

PS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.
.

..
.
.
..
..
..
.
.
..
..
..
..
.
.
..
..
..
..
.
.
..
..
..
..
.
.
..
..
..
.
..
.
..
..
..
.
.
..
..
..
..
.
.
..
..
..
..
.
.
..
..
..
..
.
.
..
..
..
..
.
.
..
..
..
.
..
.
..
..
..
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
..

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

�

...............
..

..
..

...
...

..
..

..
.............
............
.............
.............
............

�
� �

�

�
�

�

.
.............
..............
...

..
...

...
..

..
...

....................................
.....................................

....................
...........
...........
...........
...........
...........
........

?

? ?

?

?

?

?

..
...............................

.......................................
..

..
.................................

...........
....
...........

.......
...........

......
...........
...........

...........................
................

........
...
.......
....
.......
....
.......
....
..

~
~

~

~

~

~

~

..........................
............................

.....
.......
........
.....
.........
......
.....
..........
.
.......
........
... ..
.........
......
.....
..........
.....
.......
........
.....
.........
......
.....
..........
.....
.......
........
...
.
.......
...
.....
......
...
.......
.
.......
....
....
.......
..
......
...
......
.....
...
.......
.
.......
....
....
.......
..
........
.
...
.....
...
.
.....
.....

....
.....
..
..
.....
....

.....
....
..
...
....
....

� �
�

�

�

�

..
..

........................
..........................

..........................
.......................

...........
..........

......
...
...........

...........
..........

.......
..

. . .

.

.
.

.................
................

..................................
.................................

..................................
.
.............

..............
..............

..............
..............

....
......................................

....
..
....
...
...
...
...
...
...
.

�
�

�

�

�
�

�

Figure 5.9: Coe�cient of variation of blow-up factor (� = 0:5, � = 5)

5.4.2 Limited Memory Resources

Figure 5.10 shows how response time is a�ected under EQUI

+

and FOLD

1

when mem-

ory resources are su�cient to support at most L jobs at a time. The memory admission

policy can have a signi�cant e�ect on performance for heterogeneous workloads. Because

there can be a signi�cant performance penalty of small memory limits on short job per-

formance, we modeled preemptive admission policies. Every Q time units, enough jobs

are preempted so that any queued jobs can be assigned to processors. De�ne O as the

overhead of preempting processors. This overhead is highly dependent on the availability

of I/O bandwidth for swapping jobs in and out of the system. The I/O bandwidth varies

widely among systems. Given a cost of preempting processors, O, the interval between

preemptions, Q, can be set so that a desired percentage overhead due to preemptions,

O=Q, is incurred. Our simulations used two values for O=Q ranging from less than 1%

74

up to 3%.

We note that in terms of overall mean response time, small memory limitations

are detrimental to Folding, but may be bene�cial to Equipartition. The drawback of

small multiprogramming limits under both policies is the reduced opportunity to put an

arriving short job into service quickly The drawback to large multiprogramming limits

for Equipartition is that it is ine�cient for odd numbers of jobs in the system. The fact

that the average response time grows with increasing L indicates that the penalty can

outweigh the bene�t.

Figure 5.11 shows how the coe�cient of variation of blow-up factor for all jobs varies

with multiprogramming limit. We see that both Folding and Equipartition behave about

the same, and that the blow-up factor is signi�cantly larger for small values of L than

for large ones.

From this data, we conclude that there is little or no penalty to the factor of two

di�erence in resource allocation possible under FOLD

1

, and so this policy appears to

dominate the others.

5.5 Conclusions

This chapter compares the performance of the Folding and Equipartition policies de�ned

in Chapter 4. We examined the e�ciency preservation of the two disciplines, �nding that

Folding is superior by this measure. Using a simple Markovian birth-death model, we

evaluated mean response time under a homogeneous load, and found a member of the

Folding family to perform best. Finally, we used simulation to examine both mean

response time and fairness for a mixed workload of long and short jobs. We found here

that the Folding policy continued to a�ord better response time performance, at little

or no penalty in fairness.

Based on these results, we conclude while maintaining low reallocation overhead

is imperative to the good performance of dynamic allocation policies, load balancing

for highly parallel applications is also a dominant factor in the performance of policies

75

0 2 4 6 8 10 12 14 16

Maximum Multiprogramming Level

35

37

39

41

43

Long

Job

Mean

Response

Time

(Mins.)

�

..

EQUI

+

(O=4sec,Q=2min)

?

...........

FOLD

1

(O=4sec,Q=2min)

~

..

EQUI

+

(O=1sec,Q=2min)

�

...........

FOLD

1

(O=1sec,Q=2min)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
....
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
............
..

..
..

..
..

..
..

..

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.
.
.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.
.
.
.
.

.
.
.

.
.
.

.

.

.
.
.
.
.

.

.

.

.

.
.
.

.

.

.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.

.
.
.
.
.
.
.

..

.
..
...
..
...

..
...
..
...
.

.

...
...
..
..

...
...
..
...

..
...
..
...
.

.

...
..
...
..

...
..
...
..
.

..
..
...
..
..

.
..
...
...
..

...
..
...
..
.

..
..
...
..
..

.

..
...
..
...

..
...
..
...
.

.
...
..
.....
...........

...........
...........

...........
...........

...........
...........

...........
.....................

......................
.....................

......................
.....................

.............

?

?

?

?

?

.

.

.

.
.
.

.

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.

.

.
.
.
.
.
.

.

..............
...............
..............
...............
...............
..............
...............
.............
...
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
...
....
...
...
....
...
...
...
....
...
...
...
....
...
...........
..

..
..

..
..

...
..

..
..

..
................................

~

~

~

~

~

.

.

.

.
.
.

.

.
.
.
.

.

.

.

.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.

.

..
.
..
.
..
.
.

..
.
..
.
..
.
..

.
.
..
.
..
..
.
.

..
.
..
.
..
.
..

.
.
..
.
..
.
..
.

.

..
..
.
..
.
..

.

.
..
.
..
.
..
.

....
...
....

..
...
....
..

...
....
...
.
.
...
....
...

..
....
...
..

....
...
....

.
....
....
..

...
...
....
.
.
...
....
...

..
....
...
..

...
....
...
.
.
....
...
...

...
...
....
.

....
...
....
..

...
..

�

�

�

�

�

0 2 4 6 8 10 12 14 16

Maximum Multiprogramming Level

75

99

122

146

170

Short

Job

Mean

Resp.

Time

(Secs.)

�

...

EQUI

+

(O=4sec./Q=2min.)

?

...........

FOLD

1

(O=4sec./Q=2min.)

~

...

EQUI

+

(O=1sec./Q=2min.)

�

...........

FOLD

1

(O=1sec./Q=2min.)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
............
............
...........
............
............
...........
............
............
...........
............
............
...........
............
............
...........
............
............
..

...
.............................

�

�

�

�
�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
..
.

.

.

.
.
.
.
..
.
.
.

.
.
.
.
..
.
.
.
.
.

.

.
..
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
..
.

.
.
...
...... ..
.........
...........
.........
..
........
.........
..........
...........
........
........
........
.........
...........
..

...
.........

.. ..

?

?

?

?

?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
................
.......................

.......................
......................

.......................
.......................

.......................
.......................

.......................
..

..

~

~

~

~
~

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
.
..
.

.
..
.
.
..
.
.
..

.
.
..
.
.
..
.
.
.

.
.
.
..
.
.
..
.
.

.

.

.
.
..
.
.
..
.

..
.
.
..
.
.
.
..

.

..
.
.
..
.
.
..

........... ...
........

...........
.

.....
.........

....................
...

..
...

.......

�

�

�

�

�

0 2 4 6 8 10 12 14 16

Maximum Multiprogramming Level

18.0

19.3

20.5

21.8

23.0

All

Jobs

Mean

Resp.

Time

(Mins.)

�

...

EQUI

+

(O=4sec./Q=2min.)

?

...................................

FOLD

1

(O=4sec./Q=2min.)

~

...

EQUI

+

(O=1sec./Q=2min.)

�

...................................

FOLD

1

(O=1sec./Q=2min.)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..........
..........
.........
..........
.........
..........
.........
..........
.........
..........
.........
..........
.........
.........
..........
.........
..........
.........
..........
.........
..........
...

...
...

...
...

...
..................

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.
.
.

.

.
.
.

.

.
.
.
.
.
.

.

.
.
.

.

.
.
.
.
.
.

.
.
.
.

.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.

.

.

.

.

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

...
...
...
.

...
..
...
...

.

...
...
...
.

..
...
...
...

.
...
...
...
.

..
...
...
...

.
...
..
...
..

..
...
...
...

...
...
...
..

..
...
...
...

...
...
...
..

..
...
..
...
.

...
...
...
.................

.................................
................................

................................
................................

................................
......................

...........
...........

?

?

?

?

?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.......
...
....
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
....
...
....
....
...
....
....................

...
..

..
..

...
..

..
...

.............

~

~

~

~

~

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
..

..
.
..
.
.
..
.
.

.
..
.
..
.
.
..
.

.

.
..
.
..
.
.
..

..
.
..
.
..
.
..

.

..
.
..
.
..
.
.

.
..
.
.
..
.
..
.

.

..
.....
...
.
....
.....
.
...
....
....

....
.....
..
..
....
.....

....
....
...
.
....
.....
.
...
....
....

.....
....
..
..
....
.....

....
....
...
.
....
.....
.
...
....
..

...

�

�

�

�
�

Figure 5.10: Response time versus multiprogramming limit (� = 0:5, � = 5)

76

0 2 4 6 8 10 12 14 16

Maximum Multiprogramming Level

0.7

1.4

2.2

2.9

3.7

CV

of

Blow-Up

Factor

�

...

EQUI

+

(O=4sec./Q=2min.)

?

...........

FOLD

1

(O=4sec./Q=2min.)

~

...

EQUI

+

(O=1sec./Q=2min.)

�

...........

FOLD

1

(O=1sec./Q=2min.)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
...
....
...
....
...
....................

..............................
..............................

..............................
..............................

..............................
..............................

..............................
..............................

..............................
..............................

..............................
..............................

.......................

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
...
....
..

..
...
...
...

.

...
...
....

.
...
...
...
.

...
...
...
..

...
...
...
..

..
...
...
...

.
...
....
...

.
...
...
...
.

...
...
....
.

...
...
...
..

..
...
...
...

.
...

.

?

?

?

?
?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
.
...
.....
...
.
.....
.....

....
.....
..
..
.....
....

....
.....
..
..
.....
....

.....
.....
.
...
.....
...
.
.....
....
.
...
.....
...
.
.....
.....

....
.....
..
........................

.......................
.......................

.......................
.................

.....
....

...
.

...........
...........

...........

~

~

~

~

~

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
.
..
....
....
.
..
.....
....

...
....
....

...
....
....

...
....
....

...
....
....

...
.....
...

....
....
...

....
....
...

....
....
...

....
....
...

....
....
...
...

.

�

�

�

�
�

Figure 5.11: CV of blow-up factor versus multiprogramming limit (� = 0:5, � = 5)

for distributed memory systems. The results also show that with careful attention to

processor adjacency and load balancing considerations, dynamic allocation o�ers the

potential for high performance in distributed memory parallel systems.

Chapter 6

Scheduling Policies for

Memory-constrained

Applications

6.1 Introduction

Processors are not the only scarce resource in message-passing parallel systems; there is

also a �nite amount of memory. These systems do not generally support virtual memory

addressing. However, parallel applications often operate on data sets that require large

amounts of memory to run. These applications may not �t in an arbitrarily small portion

of the machine's memory. For the distributed memory environment we are considering,

where memory is local to processors, this results in a minimum processor requirement

for these jobs. The existence of a lower bound on possible allocations clearly complicates

scheduling policies: it is not always possible to schedule all jobs concurrently, so some

other level of scheduling must be employed to determine which of the available jobs to

schedule at any one time. This chapter addresses this additional constraint imposed on

scheduling policies for distributed memory systems.

To address large, memory-constrained applications, the scheduling problem for dis-

78

tributed memory parallel systems is de�ned in two parts, corresponding to two levels of

kernel scheduling. First, a medium-term scheduling policy decides which of the available

jobs to run at a given time and for how long. In the absence of reliable a priori informa-

tion on job characterization, medium-term scheduling involves time-sharing. Second, for

each set of jobs to be scheduled, a short-term scheduling policy decides how to schedule

the set of jobs on the parallel system. These policies employ space-sharing. The schedul-

ing policies studied in Chapters 4 and 5 focused on the space-sharing scheduling policy

{ deciding how to distributed the processors among the running jobs. This chapter is

concerned with the time-sharing scheduling policy, deciding when to schedule jobs and

for how long when not all jobs may be scheduled at once.

In general, the goal of the time-sharing scheduling policy is to schedule J jobs on P

processors, where each job has a minimum processor requirement to run. We assume

each job can potentially use all the processors, and job execution time is not known

to the scheduler. In this environment, it makes sense to rotate the processors among

the jobs, so that each job gets an equal percentage of the processing resources within a

reasonable time interval.

De�ne a scheduling quantum T within which all jobs are scheduled. The schedule

is repeated every T time units. When the number of jobs in the system changes, the

schedule is changed to re
ect the new multiprogramming level before the start of the

next interval.

Within the time interval, T , each job receives an equal percentage of the total pro-

cessing resources with the constraint that no job receives an allocation of processors less

than its minimum requirement. Resource allocation is measured by the product of the

number of allocated processors and the duration of the allocation.

To illustrate, consider a graph with the number of processors P on the x axis and the

time interval T on the y axis, as shown in Figure 6.1. A feasible schedule will partition

the PxT rectangle into areas representing the allocation of processors to jobs over time.

(We do not allow processors to be unallocated.) A schedule is an assignment of the J

79

(time)

T

P processors

2

3

4 56

10

7 8

1

Figure 6.1: Multiprocessor Scheduling (J,P)

jobs to the areas in such a way that the total area for each job is P � T=J , and the

minimum width of the area assigned to each job is greater than or equal to that job's

minimum processor requirement.

The parameter T represents a time interval over which equal allocation is guaran-

teed. Choosing an appropriate value for T involves a tradeo� between fairness and

performance. Fairness cannot be guaranteed over an in�nitely small time interval, since

the overhead of swapping within a small time interval would be prohibitive. On the other

hand, performance of short jobs would su�er if an interval is too long, causing excessive

queueing delays. Thus, T is a system de�nable parameter, set to bound the percentage

of reallocation overhead and provide fair resource allocation within T .

It is always possible to �nd a feasible schedule for any inputs. Speci�cally, each job

can be given P processors for time T=J (i.e., uniprogramming). What we want is the

\best" policy.

Intuitively, an optimal policy minimizes the reallocation overhead { the total cost

80

within time T of swapping out one or more jobs running on several processors and

swapping in another set of parallel jobs. This cost depends on many factors, including the

I/O bandwidth available, the connectivity of the I/O channels (IOC) to the processors,

and the size and number of jobs being reallocated at any one time. In the extreme

case of one IOC per processor, each processor can be reallocated in parallel; therefore

swapping cost is independent of the number of processors swapping concurrently. At

the other extreme, if there is a single IOC for all processors, then swapping must occur

sequentially among all the processors. In general, the cost of each reallocation depends

on both the number of processors competing simultaneously for each IOC and the total

amount of data that must be swapped out.

Systems vary in I/O availability and con�guration. As a result, it is not possible

to de�ne a single model of IOC connectivity to encompass all system con�gurations.

For our analysis, we assume reallocation cost is independent of which processors are

allocated to a job. In other words, we assume that all I/O parallelism is available to

each processor, but that current reallocations among multiple processors serialize. Some

of the schemes we propose tend to minimize the number of processors simultaneously

involved in swapping; so this assumption is not critical to them.

As discussed in Chapter 2, reallocation cost alone is not the sole determinant of

scheduling policy performance, since the number of processors allocated to a job a�ects

its performance. We assume that speci�c information (such as speedup) about the

performance of a job under varying allocations is unknown to the scheduler. In the

absence of such job information, we make the general assumption that jobs exhibit

sublinear speed-ups, implying that each job runs more e�ciently on fewer processors

(down to the job's minimum processor requirement).

Returning to the time sharing scheduling problem above, we de�ne an optimal

scheduling policy as one that produces a feasible schedule and minimizes the total num-

ber of processor reallocations within T . This objective function re
ects a desire both to

minimize I/O and to promote e�ciency through allocation of fewer processors to each

81

job. It also favors solutions for which jobs with small processor requirements are able to

run uninterrupted if their minimum processor requirement is no greater than P=J .

We restrict our attention to schedules allocating processors to each job at most once

within T . This simpli�es the scheduling problem, and eliminates the need for jobs to ad-

just to varying allocation sizes, a potentially expensive operation. Also, it is a reasonable

restriction, given the objective function of minimizing the number of reallocations.

This scheduling problem can be de�ned as follows: Given a set of J jobs, each with a

minimum processor requirement,min

j

, schedule the jobs over an interval [0,T], in such a

way that, at each moment, each job, j, has either no fewer than min

j

processors, or else

has 0 processors, and each job is allocated a total of P � T=J processor-seconds within

the interval. Let A

j

be number of processors allocated to job j, and let job j within T .

An optimal policy minimizes:

J

X

j=1

O

j

(6:1)

where O

j

= A

j

, if A

j

> P � T=J , and O

j

= 0, otherwise. This objective function

minimizes the number of reallocations within T . (Jobs for whichA

j

= P �T=J execute for

the entire interval T , and thus are never reallocated). For the illustration of Figure 6.1,

this translates to an objective function of minimizing the sum of the lengths of the

horizontal lines, excluding the top line of the scheduling grid, and excluding the jobs

that are never reallocated.

We characterize our scheduling problem by de�ning the corresponding decision prob-

lem, EQUAL MIN SCHED, as follows (making the assumption that T = 1, with-

82

out loss of generality):

EQUAL MIN SCHED(P,J,min[],L):

Instance: An integer P , an integer J , an array of J integers min[], and an

integer L.

De�ne a valid schedule forEQUAL MIN SCHED as a partitioning of a

Px1 rectangle into J subrectangles, where each of the J rectangles is denoted

by its lower left coordinate (x

i

; y

i

) and its dimensions (width

i

; height

i

): x

i

and width

i

are integers, y

i

and height

i

are real numbers, width

i

� min

i

,

width

i

� height

i

= P=J .

Question: Is there a valid schedule for which

P

J

i=1

O

i

<= L, where O

i

=

width

i

, if height

i

< 1, O

i

= 0, otherwise?

At �rst glance, EQUAL MIN SCHED appears similar to the physical memory

allocation problem studied extensively a decade ago [4, 11]. At that time, only those jobs

that could �t into real memory could be scheduled for execution. Memory scheduling

policies determined which jobs to load into memory next so as to maximize the number

of jobs in memory and minimize the fragmentation. However, the objective function

of EQUAL MIN SCHED is to minimize the number of times processors are real-

located instead of minimizing unallocated processors (analogous to memory fragmenta-

tion). Furthermore, EQUAL MIN SCHED is a two-dimensional packing problem,

whereas memory allocation is a one-dimensional problem. Our problem is distinguished

from most other two-dimensional packing problems in that our subrectangles are mal-

leable: the height and width of the rectangles can be varied, subject to the constraints

of minimum width to each piece and equal area to all pieces.

Recent studies [43, 46] also consider the problem of scheduling malleable rectangles

within the context of multiprocessor and data base query scheduling. In these studies,

each rectangle represents the execution of a parallel task or database query: the width

represents the number of processors executing the task and the height represents the

83

duration of execution. Malleable rectangles represent di�erent execution times of the

tasks under varying allocations. The objective function is to minimize the total height

of the schedule (i.e., makespan). Schedules that leave processors unallocated for some

periods of time are allowed.

Turek et al. [43] show this scheduling problem to be NP-complete, and present ef-

�cient approximate solutions for schedules restricted to those consisting of shelves. At

shelf boundaries, all processors are reallocated to jobs scheduled on the next shelf. Be-

tween shelf boundaries, no processors are reallocated. The height of a shelf is determined

by the longest running job on that shelf. The total length of the schedule is determined

by the sum of the heights of all shelves. EQUAL MIN SCHED di�ers from this

scheduling problem in that job completion times are not known: the allowable dimen-

sions of our rectangles are determined by the constraint of equal resource allocation (i.e.,

equal area) rather than the speedup properties of the jobs.

In Section 6.2, we discuss the complexity of EQUAL MIN SCHED. We intro-

duce a similar problem known to be NP-complete and argue that, while the complexity of

EQUAL MIN SCHED remains an open problem, an e�cient solution is unlikely.

As a result, we take two approaches to �nding good solutions for many inputs. In Sec-

tion 6.3, we restrict our attention to problems in which the number of processors and

the number of jobs are powers of two, and to policies that make power of two allocations.

We present a scheduling policy in this class for these problems, and in Section 6.4 prove

that policy to be optimal.

In Section 6.5, we impose a di�erent restriction on the class of schedulers considered,

requiring all processors to be reallocated at the same time. We call this class the epoch

scheduling policies. Epoch scheduling policies di�er from shelf-scheduling policies dis-

cussed above in that, within a shelf, the jobs run to completion and the duration of a

shelf is determined by the execution time of the longest running job on that shelf. With

epoch scheduling, jobs execute for some time interval, after which they are all swapped

out and a new epoch (with a new set of jobs) begins. The duration of each epoch is

84

chosen to result in equal allocation over the full period [0,T]. Unlike shelf scheduling,

under epoch scheduling policies all processors are fully utilized each epoch.

This chapter concludes with a discussion of the interaction between the medium-

term, time-sharing policies it de�ne and the short-term, space-sharing policies studied

in Chapters 4 and 5.

6.2 MIN SCHED is NP-Complete

This section formulates a decision problem, called MIN SCHED, that considers a

superset to the class of problems addressed by EQUAL MIN SCHED and shows

that this decision problem is NP-Complete.

De�neMIN SCHED as follows:

MIN SCHED(P

m

; U

m

; L):

Instance: Given an integer P

m

and a set U

m

of J pairs

(min width

i

; max height

i

), where min width

i

is an integer, 0 <

max height

i

� 1, 1 � i � J , and an integer L.

De�ne a valid schedule for MIN SCHED as a set of J non-overlapping

rectangular areas positioned within a rectangular area P

m

x 1. Each of the J

rectangles is denoted by its lower left coordinate (x

i

; y

i

) and its dimensions

(width

i

; height

i

), where x

i

and width

i

are integers, and y

i

and height

i

are

real numbers. A valid schedule requires that width

i

� min width

i

and

width

i

� height

i

= min width

i

�max height

i

for all 1 � i � J .

Question: Is there a valid schedule for which

P

J

i=1

width

i

� L?

To proveMIN SCHED is NP-complete, consider also the following problem,

85

RECTANGLE FIT :

RECTANGLE FIT (U

r

):

Instance: A set U

r

of J pairs (width

i

; height

i

), where width

i

is an integer

and height

i

is a real number. (width

i

; height

i

) corresponds to a box of width

width

i

and height height

i

.

Question: Is there a way to �t the J non-overlapping boxes into a rectangle

of width

P

J

i=1

(width

i

� height

i

) and height 1.0?

MIN SCHED can be shown to be NP-complete by transforming the well-known

NP-Complete problem PARTITION [19] to RECTANGLE FIT , and then trans-

forming RECTANGLE FIT toMIN SCHED.

PARTITION(A):

Instance: Finite set A of integers a

i

.

Question: Is there a subset A

0

� A such that

P

a

i

2A

0

a

i

=

P

a

i

2(A�A

0

)

a

i

.

Theorem 6.1 RECTANGLE FIT is NP-complete.

Proof: Reduce PARTITION(A) toRECTANGLE FIT (U

r

). De�ne a set U

r

of pairs (a

i

,

1

2

) for each a

i

2 A. Let P =

1

2

P

J

i=1

a

i

. If RECTANGLE FIT (U

r

) is

true, then it must be the case that the boxes of U

r

are arranged in two rows (of height

1

2

each). Since the width of the boxes in each row must sum to P , the rows de�ne a

solution to PARTITION . Conversely, if A can be partitioned into two subsets, then

the corresponding boxes of U

r

can �t into a P x 1 rectangle using 2 rows, each row

corresponding to a subset of A.

Finally, to see that RECTANGLE FIT is in NP, encode a solution by ordering

the rectangles in bottom-to-top order of lower left coordinate, and within the same base

height, left-to-right order. An oracle can verify in polynomial time that the rectangle

positions represented by the ordering �t within the P x 1 area.

QED

86

Theorem 6.2 MIN SCHED is NP-complete.

Proof: Reduce RECTANGLE FIT (U

r

) to MIN SCHED(P

m

; U

m

; L). Let

min width

i

= width

i

, for each width 2 U

r

andmax height

i

= height

i

for each height

i

2

U

r

, 1 � i � J . Let P

m

=

P

J

i=1

(min width

i

�max height

i

). Let L =

P

J

i=1

width

i

.

IfMIN SCHED produces a schedule S

m

with

P

J

i=1

width

i

� L, then it must be

the case that each width

i

2 S

m

= min width

i

and each height

i

2 S

m

= max height

i

.

Thus S

m

is also a valid �tting of boxes of U

r

. Conversely, if RECTANGLE FIT (U

r

)

is true, then the �t produced by RECTANGLE FIT corresponds to a valid schedule

inMIN SCHED, where the

P

J

i=1

width

i

� L.

Finally, to showMIN SCHED is in NP, encode the solution space to include both

an ordering of the rectangles in bottom-to-top, left-to-right order, and a list of widths

corresponding to each rectangle in the ordering. An oracle may generate in polynomial

time a schedule from these lists by allocating each rectangle in bottom-to-top, left-to-

right order for the corresponding width, and verify that the rectangles �t within the P

x 1 area and that the sum of the widths of the rectangles is less than or equal to L.

QED

The general scheduling problem, EQUAL MIN SCHED, de�ned in Section

6.1 is a restriction on MIN SCHED in which min width

i

� max height

i

= P

m

�

T

m

=J; 81 � i � J . While the complexity of EQUAL MIN SCHED remains an

open problem, we believe that restricting the input rectangles to having the same total

area is not likely to reduce this complexity.

6.3 The BUDDY Scheduling Policy

Given the unlikelihood of an e�cient optimal solution to EQUAL MIN SCHED,

it is natural to ask under what conditions an optimal solution can be found. This section

presents a scheduling policy, called BUDDY , for a restricted class of problems, those

in which the number of processors and the number of jobs are powers of two, and a

87

restricted class of policies, those that allocates powers of two numbers of processors. In

Section 6.4, we show BUDDY is optimal for these restrictions.

In BUDDY scheduling, processors are allocated to jobs in order of non-increasing

minimum processor requirement of the jobs. BUDDY attempts to assign each job

the smallest power of two number of processors greater than its minimum processor

requirement. However, in some cases, it may be necessary to assign a job a larger

allocation.

Consider P , J , and allocations A

i

, for all jobs i, to all be powers of two; thus P = 2

p

,

J = 2

n

, and A

i

= 2

a

i

. Since each job is allocated an equal percentage of the processing

resources, job i will be allocated 2

a

i

processors for duration 2

p

=(2

n

� 2

a

i

). Thus, each

rectangle allocated in the schedule has width 2

a

i

for some a

i

and height 1=2

n+a

i

�p

.

Represent the scheduling area as a Px1 rectangular grid with P on the x axis. De�ne

a partial schedule as an allocation to a subset of the jobs in the system, where each

allocation is given by a coordinate (x

i

; y

i

) and dimensions (A

i

; t

i

). This represents a

rectangle of width A

i

and height t

i

whose lower left corner is at (x

i

; y

i

). As will be

seen, allocations are scheduled within the Px1 scheduling area in a bottom-up fashion,

whenever possible. De�ne the frontier of a partial schedule to be the lowest possible set

of (horizontal) line segments within the Px 1 scheduling grid above which no allocations

have been made.

Lemma 6.1 de�nes a property of partial schedules created by the BUDDY scheduling

policy that forms the basis for its allocation decisions. In e�ect, this property states that

for any height of a partial schedule, there is an upper bound on the shortest subsequent

allocation height to be added above that height; thus there is a corresponding lower

bound on the largest processor allocation to be placed above that point on the graph.

This restriction on the maximum height (minimumwidth) of the largest allocation placed

above a current partial schedule is used by the BUDDY policy to determine the size of

the next allocation to be scheduled.

To illustrate this restriction, consider a system with 16 processors where 8 jobs

88

T

Processors

(b)

(unallocated)

1/4

1

job 1

job 2

T

Processors

(a)

(unallocated)

1/8

1

job 1

Figure 6.2: Example Buddy schedule

are to be scheduled, and the minimum processor requirement for the jobs is min =

[2; 2; 4; 8; 8; 8; 8; 16]

1

. Since one job requires all the processors, it will be scheduled on

16 processors. Since it must be allocated an equal percentage of the processing power,

it must be allocated for 1/8 of the time. (See Figure 6.2(a).) To �ll the remaining 7/8

of the schedule above this allocation with allocations of height 1=2

x

, at least one of the

other jobs must get an allocation of height no more than 1/8. This corresponds to an

allocation of no fewer than 16 processors. Therefore, even though no other job requires

16 processors, at least one other job must run on 16 processors. This is represented by

the dashed line in Figure 6.2(a). Similarly, as showing in Figure 6.2(b), if the height

of a current partial schedule summed to 1/4 of T at some position in partial schedule,

to complete the rest of the schedule above that position, at least one other job placed

above that position must have an allocation of height 1/4 or less, which corresponds to

a width of 8 processors or more, regardless of minimum processor requirements of the

1

The minimum processor requirement is not restricted to a power of two, but since

all allocations must be powers of two, for simplicity we assume here the minimum re-

quirement is also a power of two.

89

remaining jobs to be scheduled.

We begin by de�ning the following property of the height of any segment of a frontier

of a BUDDY schedule.

Property 6.1 If P , J, and A

i

for all i are powers of two, then any line segment of

the frontier for a partial schedule will have height C=2

x

for some odd integer C, integer

x � 0.

Since each allocation is a power of two, the duration of each allocation (e.g., each

allocation height) will be 1=2

i

for some i. Therefore, the sum of any allocations can be

written in the form C=2

x

for some odd C and some x. This is the irreducible fractional

representation of the segment's height.

We now prove Lemma 6.1.

Lemma 6.1 For each line segment of a frontier of height C=2

x

for some odd integer C

and integer x � 0, at least one allocation above the line segment must have an allocation

of height less than or equal to 1=2

x

.

Proof: Let B

v

be the height of the current set of allocations along a vertical cut of the

PxT scheduling area. By de�nition, the sum of the heights of the allocations placed

above a line at height B

v

must sum to 1�B

v

= (2

x

� C)=2

x

or K=2

x

for some odd K.

In order for subsequently added allocations of height 1=2

i

, i � 0, to sum to K=2

x

for some odd K and some x � 0, there must be at least one allocation whose height is

less than or equal to 1=2

x

. Thus, given any frontier of the PxT scheduling area, there is

an upper bound on the smallest allocation height to be added above it. Since the area

of each allocation is P=J , there is a corresponding lower bound of P=(J � 1=2

x

) on the

largest allocation width to be added above B

v

.

QED

Figure 6.3 gives the BUDDY algorithm. Jobs are represented by their minimum

processor requirement within an array, min[], sorted in non-decreasing order. Frontier

represents the frontier of a partial schedule. It is composed of a set of a segments given

90

BUDDY (P; J;min[])f

int min[0..J-1]; /* minimum processor requirement */

linked list Frontier = new linked list(0,0); /* list of segments representing /*

/* current top of allocations */

For (int j = J � 1; j � 0; j{) f

min width exp = dlog

2

min

j

e /* job's min width = 2

min width exp

*/

max height exp = log

2

(J=P)�min width exp; /* 1=2

max height exp

height */

/* corresponding to min width exp */

(x;C=2

min seg exp

) Get min frontier segment(); /* returns min seg */

if (max height exp � min seg exp) /* allocation forced by min seg */

Allocate(j; P � 2

min seg exp

=J; 1=2

min seg exp

);

else /* allocation not forced */

Allocate(j; 2

min width exp

; 1=2

max height exp

);

g

Get min frontier segment() f

/* Returns the �rst segment with the largest denominator */

/* when represented as an irreducible fraction */

g

Allocate(int j, int width,
oat height) f

/* Assigns job j an allocation starting at coordinate (x;C=2

min seg exp

), */

/* for width, width, and height, height. */

Update frontier(x;C=2

min seg exp

; width);

g

Update frontier(int x,
oat y,int box size) f

oat prev height = Frontier.get prev height(x,y); /* height of segment preceding */

/* (x; y), or 1 if (x; y) not found */

int segment width = Frontier.get width(x,y); /* width of segment */

Frontier.remove(x,y);

oat new height = y + P=(J � box size);

if (new height 6= prev height))

Frontier.add(x,y + new height));

if (box size < segment width)

Frontier.add(x+ box size, y);

g

g

Figure 6.3: BUDDY Scheduling Algorithm

91

by coordinates in the scheduling graph. Each coordinate (x,y) is the starting point of a

segment. The ending point and length of segment can be computed from the x coordinate

value of the next segment.

BUDDY schedules jobs in decreasing order of minimum processor requirement. It

�rst determines the power of two minimum width permitted by the job's minimum

processor requirement (represented in Figure 6.3 by the exponent min width exp of this

power of two number) and the corresponding maximum height (represented in Figure 6.3

by the exponent of the power of two denominator, max height exp).

The function Get min frontier segment() returns the frontier segment that has the

largest denominator when represented as an irreducible fraction. Call this segment

min seg. For this segment, BUDDY determines the maximum allocation height of

the largest possible allocation to be placed above min seg. (This value is represented

in Figure 6.3 by the exponent of the power of two denominator, min seg exp). We call

this the forced height of the min seg segment. (Similarly, the corresponding width of

that allocation is called the forced width of the min seg.).

BUDDY gives the next job to be scheduled an allocation whose height is the mini-

mum of

1. its maximum height, and

2. the height forced by the min seg.

This allocation is placed in the left-most position on top of the min seg segment. After

each allocation, Frontier is updated.

As an example, consider scheduling P = 16 processors and J = 8 jobs, where the

minimum processor requirement of the jobs is min

n

= [2; 2; 4; 4; 4; 8; 8; 8]. Figure 6.4

illustrates the schedule created by the BUDDY scheduling algorithm. The numbers

inside the rectangular allocations represent the minimum processor requirement of the job

assigned to that allocation. The �rst three jobs, all with minimum processor requirements

of eight, are scheduled consecutively on eight processors each. The fourth job, with a

92

8

8

8

4

4

4

2 2

Processors

T

8 12 14 16

1/4

1/2

3/4

1

Figure 6.4: BUDDY Schedule for P = 16,J = 8, min = [2; 2; 4; 4; 4; 8; 8; 8]

minimum processor requirement of four processors, is forced onto an allocation of eight

processors in order to complete the schedule above the �rst allocations. The rest of the

jobs are allocated their minimum processor requirements. The BUDDY algorithm is

able to schedule two jobs on only two processors, so that these jobs never have to incur

the overhead of reallocation.

6.4 Analysis of BUDDY Scheduling Policy

In this section, we prove the BUDDY schedule always produces a valid and optimal

schedule when P , J , and a

i

for all i are powers of two.

6.4.1 BUDDY Produces a Feasible Schedule

Theorem 6.3 The BUDDY algorithm always produces a valid schedule.

Proof We prove this by showing that BUDDY can always schedule the next job. Let

P = 2

p

, J = 2

j

, and all allocations to jobs be of the form 2

a

. Consider following invariant

of the frontier of a partial schedule created by BUDDY :

Inductive Hypothesis: After job i < J is added to the schedule and given 2

a

i

proces-

93

sors, each segment x of the frontier has width greater than or equal to 2

a

i

and height

C

x

=2

j+x�p

for some integer C

x

, x <= a

i

.

Given this invariant, it follows that the next job, i+ 1, can be scheduled. BUDDY

schedules job i+ 1 on segment min seg. It gives the job either its minimum processor

requirement, if it �ts, or a larger allocation forced by min

s

eg.

Base: i = 1. Trivial.

Induction: Assume the hypothesis is true after scheduling job i. BUDDY schedules

the next job on the min seg segment, the segment with the largest denominator, when

represented as an irreducible fraction. Let C=2

x

, for some odd C, be the height of

min seg. BUDDY will give the job one of two possible allocations.

If job i+ 1 has a maximum height greater than the height forced by min seg, then

the job will be given a partition of height 1=2

x

placed above min seg. It remains to

be shown, for this case, that the resulting frontier satis�es the invariant for i + 1 jobs.

Adding the i+ 1

th

allocation to the partial schedule results in either:

1. the min seg segment of the frontier replaced by two segments, one segment 1=2

x

higher than the height of the previous segment, and the other segment the same

height,

2. the min seg segment of the frontier is replaced by a single segment, whose height

is 1=2

x

higher.

The higher segment has height (C + 1)=2

x

, for some odd C, which equals K=2

x�k

, for

some odd K, k � 1. Thus, if the segment height is not 1, then it will have enough height

above to support another segment of identical height (and su�cient width). The lower

segment, if one exists, will be at least as wide as the higher segment (and, of course have

su�cient height). Finally, according to the inductive hypothesis, the remaining segments

have width greater than a

i

, which is greater than or equal to a

i+1

. Furthermore, the

denominators of these segments all have values 2

y

, y <= x. Thus, they can support

allocations above the segments with heights of 1=2

x

.

94

If m = dlog

2

min

i+1

e, the maximum possible height of job i+1 is less than or equal to

the height forced by min seg, then the job will be given a partition of height 1=2

j+m�p

placed above min seg. It remains to be shown, for this case, that the resulting frontier

satis�es the invariant for i+1 jobs. Adding the i+ 1

st

allocation to the partial schedule

results in the min seg segment of the frontier replaced by two segments, one segment

1=2

m

higher than the height of the previous segment, and the other segment the same

height. The higher segment has height C=2

m

, for some odd C. Thus, if the segment

height is not 1, then it will have enough height above to support another segment of

identical height (and su�cient width). The lower segment will be at least as wide as

the higher segment and will have space above to support a smaller segment height as

indicated by the induction hypothesis. Finally, according to the inductive hypothesis,

the remaining segments have width greater than a

i

, which is greater than or equal to

a

i+1

. Furthermore, the denominators of these segments all have values 2

y

, y <= x, Thus,

they can support allocations above the segments with heights of 1=2

m

, m >= x.

QED

6.4.2 BUDDY Scheduling Policy is Optimal

In this section, we show the BUDDY schedule is optimal when P , J , and each allocation

to jobs of A

i

processors are powers of two. To do so, we �rst need to establish several

properties of schedules created by the BUDDY algorithm. First, Lemma 6.2 states

that all segments of the frontiers of a BUDDY decrease in height (e.g, the frontier

resembles a staircase). This property is used to show that all segments of a frontier,

when represented as an irreducible fraction have unique denominators. This implies

there is a single segment, called min seg, which has the largest denominator (Corollary

6.1 of Lemma 6.3). This segment determines the maximum allocation of the next job to

be scheduled. This lemma is used in Lemma 6.5 to show if the BUDDY algorithm forces

an allocation to some job i to be of size 2

b

i

, then there is no possible partial schedule for

jobs 1 to i � 1 for which the all segments of the frontier have heights K=2

j+x�p

where

95

x < b

i

. In other words, there is no way to complete a partial schedule without giving

a job an allocation width greater than or equal to 2

b

i

. This property is exploited in

Theorem 6.4 to prove the BUDDY algorithm produces an optimal schedule.

Lemma 6.2 Every segment of a frontier created by the BUDDY schedule has height

less than or equal to the height of the segment immediately to the left.

Proof: by induction on the number of allocations i in a partial schedule.

Base: i = 1. Allocation for job 1 is placed at the bottom-left of the PxT scheduling

grid. Thus, the new frontier has either a single segment (of width P) or two segments,

with the height of the second segment less than the height of the �rst.

Induction: Assume true for a partial schedule of i jobs. BUDDY allocated job i + 1

above the segment with the largest denominator when represented as an irreducible

fraction. Let min seg be this segment (returned from Get min frontier segment()). If

min seg is not the �rst segment, Let the height of min seg be C=2

x

, for some odd C,

and let K=2

a

, for some odd K, be the height of the segment immediately preceding

min seg. K=2

a

= K � 2

x�a

=2

x

> C=2

x

, a < x. The allocation to job i + 1 will have

height 1=2

x

or less, and the new frontier would involve increasing part or all of the

segment by this height. Still, the new height must be less than or equal to K=2

a

, since

K � 2

a�x

=2

x

� (C + 1)=2

x

. Thus, it is impossible for the new segment height to be

greater than the segment to the left.

QED

The next two lemmas together prove that no two segments of a frontier created by the

BUDDY scheduling policy have the same power of two denominator when represented

as a irreducible fraction. This implies there is a single segment, called min seg, which

has the largest denominator, when represented as an irreducible fraction.

Lemma 6.3 Let S be a partial schedule created by the BUDDY algorithm. Every seg-

ment i of the frontier of S has height C

i

=2

x

i

, for some odd C

i

, and x

i

6= x

j

; 8 segments

i; j 2 thefrontier.

96

Proof: By induction on the number of allocation in the partial schedule, j.

Base: j = 1. Trivial.

Induction : Assume the lemma (hypothesis) is true for partial schedule with j alloca-

tions. Let C=2

x

, for some odd C, be the height of the min seg segment of the frontier.

BUDDY will give the job one of two possible allocations. If job i + 1 has a maximum

height greater than the height forced bymin seg, then the job will be given a partition of

height 1=2

x

placed above min seg. Adding the j+ 1

th

allocation to the partial schedule

results in either:

1. the min seg segment of the frontiers replaced by two segments, one segment 1=2

x

higher than the height of the previous segment, and the other segment the same

height,

2. the min seg segment of the frontier is replaced by a single segment, whose height

is 1=2

x

higher.

The higher segment has height (C + 1)=2

x

, for some odd C, which equals K=2

x�k

, for

some odd K, k � 1. By Lemma 6.2, this segment has the same height or less than its

immediately preceding neighbor. If it has the same height, then it is combined into a

single segment of height K=2

x�k

. Otherwise, it remains to be shown there can not be

another segment of the frontier of height D=2

x�k

, for some odd D.

Suppose, by contradiction, there is another segment of height D=2

x�k

, for some odd

D. If D > K, then this segment is located to the left of min seg. Denote this left-most,

higher segment as high seg. Figure 6.4.2(a) illustrates this scenario. Corollary 6.2 of

Lemma 6.4 states that high seg must have previously had a height of (D � 1)=2

x�k

=

E=2

x�k�j

, for some odd E, j � 1. At that time, min seg was at or below C=2

x

. If

min seg was at C=2

x

, then the BUDDY schedule would not have added allocations

above E=2

x�k�j

, and high seg could not have attained its current height of D=2

x�k

. If

min seg was below C=2

x

, then in order for high seg to have advanced beyond the height

of E=2

x�k�j

, min seg would have to be at a height F=2

x�k�j�l

, for some odd F , l � 1.

But then after high seg advanced to its height of D=2

x�k

, the BUDDY schedule would

97

E=2

x�2

T

Processors

(a)

high seg

D=2

x�1

min seg

K=2

x�1

C=2

x

E=2

x�2

T

(b)

Processors

min seg

low seg

C=2

x

K=2

x�1

D=2

x�1

F=2

x�2

.

not have advanced min seg from F=2

x�k�j�l

before advancing high seg. So it is not

possible for another segment to have a height of D=2

x�k

, for some odd D > K.

A similar argument is used when K < D (when the other segment with the same

denominator is to the right ofmin seg). Denote this segment as low seg. Figure 6.4.2(b)

illustrates this scenario. According to Corollary 6.2, in order formin seg to have reached

the height of K=2

x�k

, it must have previously had a height of (K� 1)=2

x�1

= E=2

x�k�j

for some odd E, j � 1. At that time, low seg was at or below D=2

x�k

. If low seg was at

D=2

x�k

, then the BUDDY schedule would not have added allocations above E=2

x�k�j

until low seg reached a height greater than its height D=2

x�k

. If low seg was below

D=2

x�k

, then in order for min seg to have advanced beyond the height of E=2

x�k�j

,

low seg would have to be at a height F=2

x�k�j�l

, for some odd F , l � 1. But then

BUDDY would have advanced min seg to a height of K=2

x�k

before any advancements

of low seg from its height of F=2

x�k�j�l

.

Finally, if job i+ 1 has a maximum height less than or equal to the height forced by

min seg, then the job will be given a partition of height 1=2

j+m�p

placed abovemin seg,

where m = dlog

2

min

i+1

e. This corresponds to an allocation height of 1=2

j+m�p

=

1=2

x+k

< 1=2

x

. This will result in a new segment height of C=2

x

+ 1=2

x+k

= (C �

2

k

+ 1)=2

x+k

, where k � 1, which is equal to D=2

x+k

, for some odd D, which has a

98

denominator unique (and greater than) the denominators of the other segments.

QED

Corollary 6.1 For any segment of a frontier created by the BUDDY scheduling algo-

rithm, there is a single segment, called min seg, with the largest denominator, when

represented as an irreducible fraction.

Lemma 6.4 If a segment of a frontier of a schedule created by the BUDDY algorithm

has a height C=2

x

, for some odd C, 1 � x � n, then there exists a set of allocations lying

immediately below the segment and having a combined height of 1=2

x

.

Proof by induction on x.

Base: x = n. Trivial.

Induction: Assume the hypothesis holds for C=2

y

, y � x. We show the hypothesis is

true for C=2

x

. If the segment has a height C=2

x

, for some odd C, then the next allocation

must have height less than or equal to 1=2

x

. Since all previous allocations must have

heights less than or equal to all subsequent allocations, then all previous allocations must

have height less than or equal to 1=2

x

. If the highest possible allocation, 1=2

x

, occurred

in the previous allocation, then the inductive hypothesis holds for x.

Otherwise, let 1=2

x+i

(i � 1) be the height of the previous allocation below this

segment. Before this allocation, the previous height of the segment was C=2

x

�1=2

x+i

=

(2

i

� C � 1)=2

x+i

= K=2

x+i

, for some odd K. According to the inductive hypothesis,

in order for the height of K=2

x+i

to be achieved, the height of the previous allocations

totaled 1=2

x+i

. Thus the total height thus far of allocations below the segment at height

C=2

x

is 1=2

x+i

+ 1=2

x+i

= 1=2

x+i�1

. Therefore, a previous height of the segment before

these allocations was C=2

x

�1=2

x+i�1

= (2

i�1

�C�1)=2

x+i�1

= K=2

x+i�1

, for some odd

K. Again, according to the inductive hypothesis, in order for the height of K=2

x+i�1

to be achieved, the height of the previous allocations totaled 1=2

x+i�1

. Thus the total

height thus far of allocations below the segment at height C=2

x

is 1=2

x+i�1

+1=2

x+i�1

=

1=2

x+i�2

. Therefore, a previous height of the segment before these allocations was

99

C=2

x

� 1=2

x+i�2

= (2

i�2

�C � 1)=2

x+i�2

= K=2

x+i�2

, for some odd K. It is easy to see

this pattern repeats until the allocations below the segment of height C=2

x

have total

height 1=2

x+i�i

= 1=2

x

.

QED

Corollary 6.2 If a BUDDY frontier segment has a height C=2

x

> 1=2

x�1

, then it had

to have passed through height (C � 1)=2

x

= D=2

x�k

for odd D = (C � 1)=2

k

, for some

k � 1.

Lemma 6.5 Let S be a partial schedule produced by the BUDDY algorithm for jobs 1

to i. If min seg has height C=2

s

for some odd C, then it is not possible to rearrange

the allocations of jobs 1 to i so that a resulting frontier has all segments of heights

representable K=2

x

for K odd and x < s.

Proof: Consider each column of the partial schedule, where a column represents the

allocations to a single processor. The height of any allocation to a processor is 1=2

x

for

some integer x which can be represented as a binary fraction, where the (n+1)

th

binary

place represents 1=2

n

. The sum of all allocations to a processor is C=2

x

, for some odd

C, which can also be represented as a binary fraction with no less than x + 1 binary

places. The processor columns comprising the min seg have the greatest number of

necessary binary places (s+ 1). Ignoring the width of allocations, consider rearranging

the allocation heights among the processor columns, so that all processor columns have

heights whose binary fractions have fewer than s + 1 binary places. Since all columns

not directly under the min seg have a height whose binary fraction has fewer than s+1

binary places, the only way to eliminate the s + 1 binary place from the sum of the

heights of the min seg columns is to remove a height of 1=2

x

from

1

2

of the min seg

columns, and place those allocations above the other half of the processor columns of

min seg.

It is not possible to divide the allocations lying below min seg in the manner de-

scribed above. To see this, consider the set of allocations lying within a height 1=2

s

100

immediately below min seg. (According to Lemma 6.4, such a set of allocations exists).

It is not possible for these allocations to be halved in the manner described above, for

otherwise, in adding allocations above height (C�1)=2

s

, BUDDY would have added al-

locations in such a way that the right half of the allocations would have been added only

after the left half of the allocations, since the segment height of the left half would always

have had a greater denominator. But, after the left half of the allocations were added,

the frontier belowmin seg would have consisted of two segments of height (C�1)=2

s

and

C=2

s

. BUDDY would have placed further allocations above the left half (above C=2

s

)

instead of �lling the right half. Therefore, at least some of the allocations within the set

of allocations lying within a height 1=2

s

immediately below min seg are wider than

1

2

of the min seg. Finally, since these allocations are at least as wide as any allocations

lying below these allocations of the min seg, it is not possible for any allocations below

the min seg to be rearranged in such a way that a set of allocations of width

1

2

of the

min seg and height 1=2

x

are placed above

1

2

of the min seg.

QED

Theorem 6.4 The BUDDY algorithm produces an optimal schedule when P , J, and

allocations A

i

are powers of two (for all i).

Proof by Contradiction. Let A

i

= 2

a

i

for some a

i

� 0. Let P = 2

p

and J = 2

j

for

some j; p � 0. Assume there is some optimal schedule, O, for which the total number

of processors reallocated within T is less than that of a schedule, B, produced by the

BUDDY algorithm. Now, consider the list of jobs as ordered within min[] (sorted by

non-decreasing minimum processor requirement) where i > j implies job i appears after

job j in this list.

Without loss of generality, assume schedule O has the following property:

Property 6.2 For all job pairs i and j, if min

i

� min

j

, a

i

� a

j

.

Any feasible schedule can be transformed into a schedule meeting this property by switch-

ing the allocations for all jobs pairs, i and j not meeting this criteria.

101

Consider the �rst job i represented bymin[] allocated a di�erent number of processors

under the optimal schedule O than the schedule produced by the BUDDY Algorithm.

Let 2

o

i

be the number of processors allocated to job i under schedule O and 2

b

i

be the

number of processors allocated to job i under schedule B.

o

i

< b

i

implies the BUDDY algorithm gave a job an allocation greater than the

minimum power of two greater than its minimum processor requirement. When allocat-

ing job i, a segment of the frontier of Schedule B must have had a lower bound on the

largest processor allocation to be placed above that segment equal to 2

b

i

and greater

than 2

dlog

2

min

i

e

. In other words, at least one segment of the frontier of schedule B for

i� 1 allocations had height

K

2

j+b

i

�p

, for some odd K.

Consider, for the schedule O, the partial schedule representing the allocation of jobs

1 to i � 1. Consider Frontier

O

to be the set of line segments de�ning the boundary

between allocated and unallocated space in this schedule. De�ne Frontier

B

to be the

frontier in the BUDDY algorithm before job i is allocated. Assume for now schedule O

contains no unallocated space below allocated space.

Because of Property 6.2, for an optimal schedule to give an allocation of size 2

o

i

< 2

b

i

,

all subsequent allocations to jobs i+ 1 to J will have allocations fewer than 2

b

i

. Hence,

all Frontier

O

line segments must height of the form K=2

x

where x < j+ b

i

� p. Lemma

6.5 proves this is not possible; if the BUDDY algorithm forces a segment to be of size

2

b

i

, then there is no possible partial schedule for jobs 1 to i�1 for which the all segments

of the frontier have heights K=2

j+x�p

where x < b

i

.

Now, consider the case where schedule O contains unallocated space below allocated

space. Since any subsequent allocations must have a width less than or equal to 2

o

i

,

any future allocations must be of a height greater than or equal to 1=2

j+o

i

�p

. Thus, the

height of any unallocated space below allocated space of schedule O must have height

C=2

j+x�p

, for some odd C, where x > b

i

. Since any partial schedule for jobs 1 to i� 1

will have some frontier height C=2

j+b

i

�p

, and no unallocated space within or below the

previous allocations may be of height less than or equal to 1=2

j+b

i

�p

, then some line

102

segment of schedule O above which no allocations occur must have a height K=2

j+b

i

�p

,

for some odd K, and therefore, it is not possible to complete schedule O without an

allocation of width 2

b

i

.

Finally, consider the case in which o

i

> b

i

, or the optimal schedule O gives an

allocation greater than the BUDDY schedule for job i. Since the BUDDY schedule

was able to allocate 2

b

i

processors to job i, then the min seg of the frontier before job i

is allocated had height C=2

j+x�p

, for some odd C, where x � b

i

. Since 2

b

i

is the largest

possible height of the previous allocations, it is not possible to rearrange the i�1 previous

allocations, so that the height of some unallocated space does not sum to K=2

j+x�p

, for

some odd K. If schedule O gives 2

o

i

processors to job i, where o

i

> b

i

� x, then the

unallocated space above or below the allocation to job i must sum to D=2

j+o

i

�p

, for

some odd D. As a result, in order for all allocations lying directly above or below the

allocation to job i to sum to 1, some future allocation to one of jobs i + 1 to J must

be given an allocation of height 1=2

j+o

i

�p

, and which lies directly above or below the

allocation to job i. But then, schedule O may be modi�ed as follows to result in a

new schedule better than schedule O, thus contradicting the assumption schedule O is

optimal:

1. Rearrange schedule O, so that the allocations to jobs i and j lie directly above one

another. This is possible since both jobs have the same width and encompass the

same processors.

2. Replace the allocations to jobs i and j with two allocations lying side by side with

one half the width and twice the height of the previous allocations. The smaller

allocation to job i is possible since job i was allocated b

i

< o

i

processors in the

BUDDY schedule. The allocation to job j is possible since its minimum processor

requirement is less than or equal to that of job i. Thus, the new schedule has

fewer reallocations overall than schedule O, a contradiction to the assumption that

schedule O is optimal.

QED

103

Generalization of BUDDY Policy

The BUDDY policy is de�ned for a power of two number of jobs in the system. When

J is not a power of two, an additional level of scheduling is needed to divide the jobs into

groups, where each group has a power of two number of processors. A buddy schedule

is created to allocated the processors to the jobs within each group, and the duration of

a group is determined by the number of jobs within the group.

There are many possible approaches to dividing the jobs among the groups. One

reasonable division would �ll the smallest groups �rst, allocating the jobs with the largest

memory requirements �rst. This strategy would provide the greatest opportunity for

jobs with small processor requirements to run uninterrupted if their minimum processor

requirement is less than P=J . Also, jobs within a group may form a job class with similar

memory requirements. Thus, it would be possible to adjust the frequency or duration

for which a group is scheduled to give priority to one group over another.

6.5 Epoch Scheduling

In this section, a restricted class of scheduling policies, called epoch scheduling, is con-

sidered. In epoch scheduling policies, all schedules consist of epochs: at each reallocation

moment, all processors are reallocated at once to a (possibly) new set of jobs, and within

epochs, no reallocations occur. For example, the schedule in Figure 6.5 consists of three

epochs. During the �rst epoch, job 1 is allocated all the processors for 1=4 � T . During

the second epoch, jobs 2 and 3 are allocated 1/2 of the processors each for 1=2 � T , and

during the last epoch, job 4 is allocated all the processors.

As before, schedule optimality is de�ned as a minimization of the total number of

processor reallocations that take place in providing (at least nearly) equal service to all

jobs. For the class of epoch scheduling policies, this is equivalent to minimizing the

number of epochs.

In the work presented here, we consider only epoch scheduling policies providing

104

1

2 3

4

Processors

1/4

3/4

T

Figure 6.5: An epoch schedule for 4 jobs

exactly equal allocations. This implies each job scheduled within an epoch is allocated

the same number of processors. The duration of an epoch is determined in such a way

that all jobs receive the same number of processor-seconds of execution time. We de�ne

a scheduling policy, called EQUAL EPOCH , within this class and prove it is optimal

when the number of processors is a power of two.

6.5.1 The EQUI EPOCH Policy

We de�ne an epoch scheduling policy, EQUI EPOCH , that allocates an equal number

of processors to each job within an epoch. EQUI EPOCH uses a greedy approach to

�ll epochs with as many jobs as possible, starting with the jobs with the lowest minimum

memory requirement, while ensuring that the number of jobs in an epoch evenly divides

the number of processors. In general, EQUI EPOCH does the following:

1. Sort jobs by non-decreasing minimum processor requirement, min[].

2. Fill the �rst epoch with the largest number of jobs that evenly divide P and for

which the last minimum requirement of the jobs in the epoch does not exceed its

equitable share in that epoch.

105

3. Fill subsequent epochs similarly from remaining jobs.

4. Determine the duration of each epoch by the percentage of total jobs executing

in that epoch, so that each job is allocated an equal number of processor-seconds

within the interval T .

Figure 6.5.1 gives the EQUI EPOCH algorithm.

EQUI EPOCH(P; J;min[]) f

int min[0::(J � 1)]; /* non-decreasing order of minimum processor requirement */

start index = 0; /* remember �rst job in candidate set */

while (start index < J) do f

for (j = J � start index; j > 0; j � �)

if ((P mod j � 0) && (min[start index+ j] < P=j))

break;

assign epoch(start index; start index+ j);

start index+ = j;

g

g

Figure 6.6: EQUI EPOCH Scheduling Algorithm

For example, consider scheduling eight jobs on 12 processors, where the minimum

processor requirements for the jobs are min[] = f2; 3; 3; 4; 4; 4; 5; 6g. Figure 6.7 illustrates

the EQUI EPOCH schedule for this job mix. The numbers in the �gure refer to the

minimum allowable allocation of the job assigned to that pertion of the schedule. The

�rst three jobs with the lowest minimum processor requirements are assigned to the �rst

epoch. The fourth job can not be added to this epoch, since its minimum processor

requirement of four is greater than the three processors that would be allocated to each

job in the epoch. Thus, the fourth, �fth and sixth jobs are scheduled on four processors

each in the second epoch, and the remaining two jobs are given an allocation of eight

processors each in the third epoch.

106

2 3 3

4 4 4

5 6

12 Processors

T

Figure 6.7: EPOCH Scheduling Policy: Example for P = 12, J = 8, min[] =

f2; 3; 3; 4; 4; 4; 5; 6g

6.5.2 Analysis of EQUI EPOCH

This section presents a proof that EQUI EPOCH produces an optimal schedule when

P is a power of two.

Theorem 6.5 EQUI EPOCH is an optimal epoch scheduling policy for P = 2

p

, for

some integer p � 0.

Proof: Let S be an optimal epoch schedule for a set of J jobs with minimum processor

requirementmin[]. Consider the list of jobs sorted by non-decreasing minimum processor

requirement where i < j implies job i appears before jobs j in this list. De�ne the size

of an epoch be the number of jobs scheduled in that epoch. De�ne ORD

S

(i) as the i

th

allocation in S, where allocations are ordered by increasing job index within decreasing

epoch size. Let a

i

be the number of processors allocated to job i. Without loss of

generality, assume S has the following properties:

Property 6.3 For all job pairs i and j, if i < j, a

i

<= a

j

.

Property 6.4 For all job pairs i and j, if i < j, ORD

S

(i) < ORD

S

(j).

107

Any schedule can be changed to a schedule meeting these properties and having the

same number of epochs by simply exchanging the allocations of any pairs not meeting

this criteria.

Both S and EQUI EPOCH produce schedules where jobs appear in the same order

within epochs of decreasing size. It remains to be shown that S and EQUI EPOCH

have the same number of epochs; therefore, EQUI EPOCH is optimal.

Let S

1

,S

2

...S

s

be the sizes of the epochs of S, where S

x

>= S

y

if x < y. Let

E

1

,E

2

,...E

e

be the sizes of the epochs produced by EQUI EPOCH where E

x

>= E

y

if

x < y. Since P is a power of two, the number of jobs in each epoch of both schedule S

and the EQUI EPOCH schedule must also be a power of two. Thus, E

1

,E

2

...E

e

, and

S

1

,S

2

,...S

n

are powers of two.

Consider the minimum x where S

x

6= E

x

. E

x

< S

x

is not possible, since the size

of the epochs prior to epoch x and the set of jobs in these epochs are the same under

the two schedules, and by de�nition, the EQUI EPOCH algorithm packs as many jobs

into an epoch as possible.

If E

x

> S

x

, it would have to be at least twice the size of S

x

since all epochs have

a power of two number of jobs. So E

x

would have to contain at least the contents of

S

x+1

in addition to S

x

. In general, E

x

would have to encompass S

x

,...S

x+i

for some i.

(Either all of an epoch of S is encompassed by E

x

or none of the epoch is included in E

x

.)

This means that EQUI EPOCH would take fewer epochs to schedule the jobs in E

1

up to E

x

than the optimal solution S. Similarly, for the remaining jobs not scheduled in

epochs E

1

to E

x

of EQUI EPOCH (or epochs S

1

to S

x+i

of S), the number of epochs

created by EQUI EPOCH will be less than or equal to the number of epochs created

by an optimal schedule S. Thus EQUI EPOCH is an optimal epoch scheduling policy

for equal allocation.

QED

To help clarify the key properties on which the optimality of this greedy algorithm

rests, we present two similar scenarios in which a greedy algorithm is non-optimal.

108

EQUI EPOCH not optimal when P not a power of two

If P is not restricted to a power of two, the EQUI EPOCH scheduling policy is not

optimal. To illustrate this, consider scheduling P = 140 processors. Assume there are

10 jobs, each can run with no fewer than 20 processors each.

28

28 28 28 28 28

28 28 2828

20 20

20 20

20 20 20

70

140

70

Time

Processors

Time

Processors

(b) Optimal non-greedy schedule

(a) EQUI EPOCH schedule

Figure 6.8: EQUI EPOCH verses optimal epoch policy when P is not a power of two

As illustrated in Figure 6.8(a), EQUI EPOCH schedules 7 jobs with 20 processors

each in the �rst epoch, 2 jobs with 70 processors each in the second epoch, and 1 job

with 140 processors in the third epoch. (3 jobs can not be coscheduled on 140 processors

equally.) An better solution could schedule the jobs in two epochs, with 5 jobs having

28 processors in each epoch (Figure 6.8(b).

Non-optimal greedy algorithm

We note that there is a greedy algorithm similar to EQUI EPOCH , but starting with

the jobs with the largest minimum processors requirement instead of the smallest mini-

mum processor requirement. However, such a policy is not optimal. To show this, con-

sider scheduling 5 jobs whose minimum processor requirements are min = [4; 4; 4; 4; 8]

on P = 16 processors. EQUI EPOCH would schedule the jobs in two epochs as shown

109

in Figure 6.9(a), while the other greedy schedule would be forced to schedule the jobs in

3 epochs (Figure 6.9(b)).

8

4 4 4 4

4

8

4

4

4

Time

Processors

(a) EQUI EPOCH schedule

Processors

(b) Non-optimal greedy schedule

Time

Figure 6.9: EQUI EPOCH verses non-optimal greedy epoch policy: P = 16, J = 5,

min = [4; 4; 4; 4; 8]

6.6 Comparison of BUDDY to EQUI EPOCH

Although EQUI EPOCH is an optimal epoch scheduling policies within its class

of scheduling policies, the non-epoch scheduling policy BUDDY can produce schedules

with fewer reallocations, when it is applicable (i.e., when J as well as P is a power of two).

Figure 6.10 gives an example for P = 16 processors and J = 8 jobs, where the minimum

processor requirement of the jobs is min

n

= f2; 2; 4; 4; 4; 8; 8; 8g. The EQUI EPOCH

policy requires three epochs to schedule the jobs. The job's with minimum requirement

of 2 are forced to run on four processors. The BUDDY schedule instead is able to

schedule those jobs on two processors, so that they never have to incur the overhead of

reallocation. Therefore, it's total reallocation overhead is less.

110

8

8

8

4

4

4

2 2

BUDDY Schedule

Processors

Time

8 8

2

4

2 4 4

8

EQUI EPOCH Schedule

Processors

Time

Figure 6.10: BUDDY vs. EQUI EPOCH: P = 16, J = 8, min = [2; 2; 4; 4; 4; 8; 8; 8]

6.7 Integration With Space-sharing Policies

As discussed in Section 6.1, scheduling in distributed memory parallel systems is de�ned

in two parts, corresponding to two levels of kernel scheduling. This chapter focused on

the �rst level, medium-term scheduling that determines the of the available jobs to run at

a given time when not all jobs can be scheduled concurrently. Both of the medium-term

scheduling policies presented in this chapter must interact with a second-level, short-

term policy that determines how to schedule a set of jobs on the processors in order to

realize the allocations speci�ed by the time-sharing policy.

For the EQUI EPOCH scheduling policy, the Equipartition policy could be used to

schedule the jobs assigned to each epoch. This involves a simple partitioning, since the

number of jobs scheduled in each epoch evenly divides the number of processors. For

the two-dimensional mesh topology, this results in no load imbalance.

When P is not a power of two, the EQUI EPOCH still integrates well with equipar-

titioning policies for a two-dimensional mesh of processors. The dimensions of the mesh

111

must be factors of P . Since the number of jobs in any epoch are always an even divisor

of P , partitions can be de�ned by appropriate factoring along the dimensions. Thus,

the equipartitioning results in no system-induced load imbalance for the jobs executing

within the epoch.

A

B

D

1

2

5

7

6

3

4

8

16 processors

T C

1

7 8

5

A.

7 8

5

2

B.

7 8

6

3

C.

7 8

6

4

D.

4x4 processor mesh

4x4 processor mesh 4x4 processor mesh

4x4 processor mesh

(a) BUDDY Schedule

(b)Realization of BUDDY schedule on 4x4 mesh of processors

Figure 6.11: Implementation of BUDDY schedule on 4x4 processor mesh

The BUDDY policy may be implemented by a simple variant of the Folding policy.

112

Each allocation consists of a power of two number of processors, which Folding maps onto

a two-dimensional mesh of processors with a power of two number of processors in each

dimension. Any allocation of a BUDDY schedule rests on only one previous allocation,

and there are a power of two number of allocations resting on any allocation. Therefore,

each reallocation consists of dividing an allocation into a power of two smaller allocations,

a straightforwardmapping when the dimensions of the larger allocation are powers of two.

Thus, only local changes are needed to reallocate the processors. No Folding rotation

policy is needed, since the reallocations necessary to achieve equal resource allocation

are determined by the BUDDY schedule. This is consonant with the results of Chapter

5, which show that both good fairness and good performance can be achieved without

rotation under Folding.

As an example, Figure 6.11(a) illustrates a BUDDY schedule consisting of 8 jobs,

whose minimum processor requirements are min = [2; 2; 4; 4; 8; 8; 8; 8]. Figure 6.11(b)

illustrates a folding-style partitioning of a 4x4 grid of processors to accommodate the

BUDDY schedule. The dashed lines in Figure 6.11(b) denotes the time at which the

reallocations occur.

6.8 Summary

This chapter examined medium-term scheduling policies for applications with large mem-

ory requirements, resulting in a minimum number of processors required to execute these

applications. We de�ned this scheduling problem as a time-sharing scheduling problem

in which all jobs are scheduled at some time within a scheduling interval. A scheduling

policy determines which jobs to schedule concurrently within some quantum interval, so

that each job receives at least its minimum processor requirement, and each job receives

the same total number of processor-seconds at the end of the interval. We de�ne an opti-

mal policy as one that minimizes the total number of reallocations within the scheduling

interval.

We showed that this scheduling problem is a subset of a similar problem known to

113

be NP-Complete, and argued that although the complexity of this scheduling problem

is open, it is unlikely e�cient solutions exist for all inputs. As a result, we present

scheduling policies that produce optimal schedules for a restricted class of inputs. One

policy, called BUDDY , produces an optimal schedule for a power of two number of

processors, a power of two number of jobs, and where all allocations are powers of two.

We also consider a restricted class of scheduling policies, called epoch scheduling

policies, where all processors are reallocated at the same time, at epoch boundaries, and

within each epoch, no reallocations occur. We de�ned a policy, called EQUI EPOCH ,

for this class of epoch schedulers and proved it is optimal when the number of processors

is a power of two.

Finally, this chapter discussed the interaction between the medium-term, time sharing

policies and the short-term, space sharing policies de�ned in Chapter 4.

Chapter 7

Conclusions and Future Research

Directions

This dissertation investigates kernel processor allocation policies for multiprogramming

large scale, message passing parallel computers. Speci�cally, it examines aggressive ap-

proaches to scheduling these systems, using dynamic reallocation of processors among

running jobs in order to attain the best overall job performance and system utilization.

This chapter summarizes the contributions of this dissertation and proposes some

interesting areas for future research in scheduling on parallel systems.

7.1 Conclusions

This dissertation examines the design factors in multiprogramming message-passing par-

allel systems, with a special emphasis on issues particular to dynamic allocation. First,

we assumed that to achieve good job response time in the absence of knowledge of appli-

cation run-time behavior, the scheduling policy must provide equal resource allocation.

Second, the design and performance of dynamic allocation policies must consider the

overhead of reallocation and the subsequent e�ect on application performance. Appli-

cation performance is a�ected by the con�guration of the partition allocated to the job

115

and the distribution of the job's threads across that allocation. A mismatch between

the application's structure and the physical partition, or a poor mapping of an appli-

cation's threads across a partition, could result in an computational imbalance, thus

adversely a�ecting job performance. Policies must also consider the proximity of pro-

cessors allocated to a job. Furthermore, a policy must consider the manner in which

a job's threads are redistributed when its allocation changes. We discuss a number of

alternatives to providing this mapping and propose a kernel-level mapping policy that

speci�es the distribution of a job's threads on varying sized partitions.

This dissertation introduces a new metric, called e�ciency preservation, to evaluate

the performance of processor allocation policies for parallel systems. This metric mea-

sures the e�ects of a scheduling policy on processor e�ciency. We show how e�ciency

preservation can be used in a �rst-order evaluation to identify promising scheduling

policies.

We presented two families of dynamic allocation policies for mesh-connected machines

that di�er in the ways they address the costs of dynamic allocation. One policy, called

Equipartition, partitions the processors only when the number of jobs in the system

changes, either because of a job completion or arrival. Processors are partitioned equally

among the competing jobs. Since the number of processors allocated to a job may not

divide the number of threads it contains, a system-induced load imbalance can degrade

job performance. The other policy, called Folding, avoids system-induced load imbalance

by always halving or doubling the number of processors allocated to a job, but it must

incur additional reallocation cost to ensure equal resource allocation.

The performance of these policies is compared using both modelling and simulation

to ascertain the relative importance of reallocation cost and job load balancing e�ects

of the scheduling policies on job performance. Achieving good load balancing is shown

to be a dominant factor in the performance of policies for distributed memory systems.

Overall, the results show that with careful attention to processor adjacency and load

balancing considerations, dynamic allocation o�ers the potential for high performance

116

in distributed memory parallel systems.

Lastly, medium-term scheduling policies are examined to accommodate the situation

where the combined memory requirements of the submitted jobs exceeds the system's ca-

pacity. This scheduling problem is shown to be a variant to the class of two-dimensional

orthogonal bin-packing problems, and we argue that it is unlikely to be e�ciently solv-

able. We investigate two scheduling policies that address a subset of the problem space.

One approach produces an optimal schedule when the number of processors, the number

of jobs, and all allocations are powers of two. The second approach creates schedules

that consist of epochs, a scheduling discipline in which all processors are reallocated at

once to a (possibly) new set of jobs. We de�ne a policy that is optimal in the class of

epoch scheduling policies when the number of processors is a power of two. We also dis-

cuss the relationship between this level of scheduling and the short-term, space sharing

scheduling policies examined earlier.

7.2 Future Research Directions

7.2.1 Other Workload Characteristics

The dynamic allocation scheduling policies designed and analyzed in Chapters 4 and 5

considered only performance aspects of scheduling policies. However, there are other

non-performance aspects that have an impact on the suitability of scheduling policies for

large parallel systems. For example, many systems execute interactive jobs or jobs with

little parallelism in addition to large parallel applications. It might be best to reserve

a portion of the machine for this workload, and to schedule those jobs in a manner

similar to traditional time-sharing systems. The Folding family of policies does not lend

itself well to this partitioning, since it requires a power of two number of processors in

each dimension of the mesh of processors, which would be unlikely if a small number of

processors where reserved for sequential work. However, the Equipartition policy could

easily accommodate a separate partition while maintaining a power of two number of

117

processors in one dimension of the processor mesh. These non-performance aspects must

be considered in a comprehensive evaluation of scheduling policies.

7.2.2 Other Architectures

The results presented in this dissertation are speci�c to a two-dimensional processor

mesh topology. For other processor topologies, such as tree-like structures or hypercube

topologies, a partitioning policy needs to be de�ned that simultaneously maximizes the

adjacency of processors within a partition allocated to a job and that reduces the load

balancing of an application distributed on the partitions. Achieving this partitioning is

not trivial in the face of dynamic allocation. Furthermore, this partitioning should be

realizable for all multiprogramming levels.

This dissertation focused on message-passing parallel systems. The basic ideas and

some of the results presented here can also be extended to distributed memory systems

with support for shared-memory; however, in shared memory systems, which have sup-

port for remote memory reference, there is the additional issue of whether to migrate a

job's data upon reallocation of its processor, or allow it to access the data remotely.

7.2.3 Approximation Algorithms for Medium-term Scheduling

In Chapter 6, we proposed and analyzed medium-term scheduling policies that were

optimal for a restricted class of schedulers. An area of future research investigates ap-

proximation algorithms for medium-term scheduling that provide schedules with low (but

not lowest) overhead of reallocation. One approach currently being pursued considers

a new class of epoch policies in which some inequity is tolerated in the allocations to

the jobs. This policy class allows the number of processors allocated to jobs within an

epoch to di�er by some small amount. Allowing this inequity permits a reduction in the

number of epochs needed to schedule the jobs, in many, if not most cases.

118

7.2.4 Interaction Between Kernel-level and Application-level Schedul-

ing

This dissertation is concerned with kernel-level scheduling, and has assumed that there is

minimal interaction between the kernel-level and the application-level schedulers. How-

ever, the design and performance of kernel-level scheduling policies can be improved

by coordinated interaction with application-level scheduling, especially for aggressive

scheduling policies that dynamically change the allocation of processors to jobs. Coordi-

nation between the two levels of scheduling may reduce the cost of dynamic reallocation

and the e�ects of dynamic allocation.

We identify two kernel support mechanisms that could facilitate dynamic reallocation.

The �rst mechanism concerns kernel support for faster communication or synchroniza-

tion between two kernel threads of the same application residing on the same processor.

Message-passing between co-resident threads could be replaced by local more e�cient

message-passing within the same processor in a manner similar to the lightweight re-

mote procedure call (LRPC) mechanism proposed by Bershad et al. for intraprocessor

communication on multiprocessors [5]. For this environment, the mechanism used to

achieve the communication between application threads must be changed dynamically

as the threads become co-located or become reassigned to separate processors.

A more aggressive operating system support mechanism for dynamic reallocation

could involve kernel or runtime system support for combining multiple kernel threads

executing on the same processor into a single kernel thread. In the absence of ker-

nel support, an application could reduce the number of kernel threads by reassigning

application-level threads and data from one kernel thread to another and then deleting

the vacated kernel-level thread. Such contraction could reduce memory needs by re-

solving duplicate copies of shared data and eliminating the overhead of maintaining two

address spaces. In addition, communication between application threads that previously

executed within separate kernel threads could be implemented via shared memory ref-

erences. Ashok [3] examines runtime support mechanisms for adjusting an application's

119

parallelism to changes in its allocation. However, it is unclear to what extent the kernel

could facilitate the collapsing or expansion of kernel threads. Such mechanisms might

be implemented more easily in shared memory systems or systems supporting a single

address space [6].

Bibliography

[1] G. Alverson, R. Alverson, D. Callahan, B. Koblenz, A. Porter�eld, and B. Smith.

Exploiting heterogeneous parallelism on a multithreaded multiprocessor. Proceed-

ings of Supercomputing '91, November 1991.

[2] T. Anderson, B. Bershad, E. Lazowska, and H.M. Levy. Scheduler activations: e�ec-

tive kernel support for the user-level management of parallelism. ACM Transactions

on Computer Systems, 10(1):53{79, February 1992.

[3] I. Ashok. Adhara: A Run-Time Support System for Space-Based Applications. PhD

thesis, The University of Washington, In Preparation.

[4] B. Baker, E. Co�man, and R. Rivest. Orthogonal packings in two dimensions, SIAM

Journal of Computing, 9(4),846{855, November 1980.

[5] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight remote procedure

call. ACM Transactions on Computer Systems, 8(1):37{55, February 1990.

[6] J. Chase, H. Levy, M. Feeley, and E. Lazowska. Sharing and protection in a single

address space operating system. ACM Transactions on Computer Systems, 12(4),

November 1994. To appear.

[7] G.-I. Chen and T.-H. Lai. Scheduling independent jobs on partitionable hypercubes.

Journal of Parallel and Distributed Computing, 12:74{78, 1991.

121

[8] M.-S. Chen and K.G. Shin. Processor allocation in an n-cube multiprocessor using

gray codes. IEEE Transactions on Computers, C-36(12):1396{1407, December 1987.

[9] M.-S. Chen and K.G. Shin. Subcube allocation and task migration in hypercube

multiprocessors. IEEE Transactions on Computers, C-39(9):1146{1153, September

1990.

[10] S.-H. Chiang, R. Mansharamani, and M. Vernon. Use of application characteristics

and limited preemption for run-to-completion parallel processor scheduling policies.

In Proceedings of ACM SIGMETRICS Conference, pages 33{44, May 1994.

[11] E. Co�man, M. Garey, D. Johnson, and R. Tarjan. Performance bounds for

level-oriented two-dimensional packing algorithms, SIAM Journal of Computing,

9(4),808{826, November 1980.

[12] M. Crovella, P. Das, C. Dubnicki, T. Leblanc, and E. Markatos. Multiprogramming

on Multiprocessors. In Proceedings 3rd IEEE Symposium on Parallel and Distributed

Processors, Dallas, December 1991, pages 590{597.

[13] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural requirements

of parallel scienti�c applications with explicit communication. In Proceedings 20th

Annual International Symposium on Computer Architecture, pages 2{13, May 1993.

[14] L. Dowdy. On the partitioning of multiprocessor systems. Technical Report, Van-

derbilt University, Nashville, TN, July 1988.

[15] K. Dussa, B. Carlson, L. Dowdy, and K-H. Park. Dynamic partitioning in a trans-

puter environment. In Proceedings of ACM SIGMETRICS Conference, pages 203{

213, May 1990.

[16] D. Eager, J. Zahorjan, and E. Lazowska. Speedup versus e�ciency in parallel

systems. IEEE Transactions on Computers, C-38(3):408{423, March 1989.

122

[17] D.G. Feitelson. In Support of Gang Scheduling. PhD thesis, Department of Com-

puter Science, The Hebrew University, December 1991.

[18] D.G. Feitelson and L. Rudolph. Distributed hierarchical control for parallel pro-

cessing. Computer, 23(5):65{77, May 1990.

[19] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H.Freeman and Company, New York, 1979.

[20] A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system scheduling

policies and synchronization methods on the performance of parallel applications.

In Proceedings of ACM SIGMETRICS Conference, pages 120{132, May 1991.

[21] P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. Anderson, and R. Jones. Data-

parallel programming on MIMD computers. IEEE Transactions on Parallel and

Distributed Systems, 3(2):377{383, July 1991.

[22] L. Kale'. The chare kernel parallel programming language and system. In Proceed-

ings of the 1990 International Conference on Parallel Processing, volume II, pages

17-42.

[23] C. Koelbel and P. Mehrotra. Supporting shared data structures on distributed

memory architectures. In 2nd ACM SIGPLAN Symposium on Principles Practice

of Parallel Programming, pages 177-186, March 1990.

[24] S. Leutenegger and M. Vernon. The performance of multiprogrammed multiproces-

sor scheduling policies. In Proceedings of ACM SIGMETRICS Conference, pages

226{236, May 1990.

[25] M. Leuze, L. Dowdy, and K. Park. Multiprogramming a distributed memory mul-

tiprocessor. Concurrency: Practice and Experience, September 1989.

123

[26] K. Li and K.-H. Cheng. Job scheduling in a partitionable mesh using a two-

dimensional buddy system partitioning scheme. IEEE Transactions on Parallel

and Distributed Systems, 2(4):413{422, October 1991.

[27] S. Majumdar, D.L. Eager, and R. Bunt. Scheduling in multiprogrammed parallel

systems. In Proceedings of ACM SIGMETRICS Conference, pages 104{113, May

1988.

[28] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation pol-

icy for multiprogrammed, shared memory multiprocessors. ACM Transactions on

Computer Systems, 11(2):146{178, May 1993.

[29] V. Naik, S. Setia, and M. Squillante. Scheduling of large scienti�c applications

on distributed memory multiprocessor systems. In Proceedings of the 6th SIAM

Conference on Parallel Processing for Scienti�c Computation, pages 913{922, March

1993.

[30] V. Naik, S. Setia, and M. Squillante. Performance analysis of job scheduling policies

in parallel supercomputing environments. In Proceedings of Supercomputing '93,

pages 824{833, November, 1993.

[31] D.M. Nicol and J.C. Townsend. Accurate modeling of parallel scienti�c compu-

tations. In Proceedings of ACM SIGMETRICS Conference, pages 165{170, May

1989.

[32] J. Ousterhout. Scheduling techniques for concurrent systems. In 3rd International

Conference on Distributed Computing Systems, pages 22{30, October 1982.

[33] V. Peris, M. Squillante, and V. Naik. Analysis of the impact of memory in dis-

tributed parallel processing systems. In Proceedings of ACM SIGMETRICS Con-

ference, pages 5{18, May 1994.

[34] M. Rosing, R. Schnabel, R. Weaver. The DINO Parallel Programming Language.

Journal of Parallel and Distributed Computing, 13:30{42, 1991.

124

[35] E. Rosti, E. Smirni, L. Dowdy, G. Serazzi, B. Carlson. Robust Partitioning Policies

of Multiprocessor Systems. Performance Evaluation, To appear.

[36] S. Setia. Scheduling on Multiprogrammed, Distributed Mmoery Parallel Computers.

PhD thesis, The University of Maryland, UMIACS-TR-93-115, October 1993.

[37] S. Setia, M.S. Squillante, , and S. Tripathi. Processor scheduling on multipro-

grammed, distributed memory parallel systems. In Proceedings of ACM SIGMET-

RICS Conference, pages 158{170, May 1993.

[38] K.C. Sevcik. Characterization of parallelism in applications and their use in schedul-

ing. In Proceedings of ACM SIGMETRICS Conference, pages 171{180, May 1989.

[39] K.C. Sevcik. Application scheduling and processor allocation in multiprogrammed

parallel processing systems. Performance Evaluation, To appear.

[40] M. Squillante and E. Lazowska. Using processor-cache a�nity information in shared-

memory multiprocessor scheduling. In IEEE Transactions on Parallel and Dis-

tributed Systems, 4(2):131{143, February 1993.

[41] C.A. Thekkath and H.M. Levy. Limits to low-latency communication on high-speed

networks. ACM Transactions on Computer Systems, 11(2):179{203, May 1993.

[42] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed

shared-memory multiprocessors. In Proceedings of the 12th ACM Symposium on

Operating System Principles, pages 159{166, December 1989.

[43] J. Turek, J. Wolf, K. Pattipai, and P. Yu. Scheduling parallelizable tasks: putting

it all on a shelf. In Performance Evaluation Review, 20(1),158{170, June 1992.

[44] R. Vaswani and J. Zahorjan. The implications of cache a�nity on processor schedul-

ing for multiprogrammed, shared memory multiprocessors. In Proceedings 13th

ACM Symposium on Operating Systems Principles, pages 26{40, October 1991.

125

[45] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages:

A mechanism for integrated communication and computation. In Proceedings 19th

International Symposium on Computer Architecture, pages 256{266, May 1992.

[46] J. Wolf, J. Turek, M. Chen, and P. Yu. Scheduling multiple queries on a parallel

machine. In Proceedings of ACM SIGMETRICS Conference, pages 45{55, May

1994.

[47] J. Zahorjan, E. Lazowska, and D. Eager. The e�ects of scheduling discipline on spin

overhead in shared memory parallel systems. IEEE Transactions on Parallel and

Distributed Systems, (2)2:180{189, April 1991.

[48] J. Zahorjan, E. Lazowska, and D. Eager. Spinning versus blocking in parallel systems

with uncertainty. In Proceedings of the International Sympossium on Performance

of Distributed and Parallel Systems, (Kyoto, Japan, Dec. 1988).

[49] J. Zahorjan and C. McCann. Processor scheduling in shared memory multipro-

cessors. In Proceedings of ACM SIGMETRICS Conference, pages 214{225, May

1990.

[50] S. Zhou and T. Brecht. Processor-pool-based scheduling for large-scale numa multi-

processors. In Proceedings of ACM SIGMETRICS Conference, pages 133{142, May

1991.

