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Abstract

This dissertation concerns efficient computation of realistic images. To compute

realistic synthetic images, the effect of global illumination is essential. Ray trac-

ing algorithms solve the global illumination problem for specular interreflec-

tions, and radiosity algorithms solve it for diffuse interreflections. But comput-

ing a solution is more complicated when the surfaces are glossy. This disserta-

tion describes hierarchical techniques for efficient solution of the glossy global

illumination problem. Two types of hierarchy are utilized: wavelets to accu-

rately represent radiance distributions on surface patches, and clusters to ap-

proximately represent radiant intensity fromgroups of surface patches. Without

hierarchical techniques, the solution time would be quadratic in the number of

patches and O(n1:5
b ) in the number of basis functions nb. The hierarchical tech-

niques make solution time linear in both the number of patches and the number

of basis functions. This reduction is significant since the numbers of patches and

basis functions are large for accurate solutions in realistic environments. Fur-

thermore, directional importance is used to focus refinement of the solution on

parts that contribute significantly to a particular view of the scene. Our method

is the first finite-element method capable of handling complex glossy scenes.
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Notation

Throughout this dissertation, scalars, points and functions are set in slanted

typeface, vectors and matrices are set in boldface, and operators are set in cal-

ligraphic typeface,

The following symbols and notation are used:

Symbol Meaning

Ax Area around point x [m2]

B Radiosity [W=m2]

b Basis function

b Dual basis function

B Basis for a space

eB Finite basis for subspace

B Dual basis for a space

E Irradiance [W � sr=m2]

fr Bidirectional reflectance-distribution function, BRDF [1=sr]

G Geometric term [sr=m2]

G Propagation operator

I Radiant intensity [W=sr]

(continued on next page)
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(continued from previous page)

I Identity operator

L Radiance [W=m2
=sr]

Le Emitted radiance

Lr Reflected radiance

L Radiance matrix

eL Finite radiance matrix

L� Two-point transport intensity [W=m4]

L2 The space of square-integrable functions

nb Number of basis functions in the global illumination solution

np Number of patches in the scene

r Receiving patch

R Receiving cluster

R Reflectance operator

s Sending patch

S Sending cluster

T Transport operator

T Transport matrix

u, v Parameters of a parametric surface

V j Function space

W j Orthogonal complement space

x, y, z Points

� Directional importance (dimensionless)

� Importance matrix

e

� Finite importance matrix

�

� Two-point importance [sr=m2]

(continued on next page)
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(continued from previous page)

� Importance intensity [m2]

�

j
k Scaling function in space V j with translation k

 

j
k Wavelet in spaceW j with translation k

	 Smits’ type of diffuse importance

~

! Direction

~

!xy The direction from point x to point y

~

!SR The direction from cluster S to cluster R

Ω The sphere

Ω+ The hemisphere above a point

Notation Meaning

� “is defined as”

hf jgi Inner product of functions f and g

f ? g Orthogonal functions, hf jgi= 0

O� Adjoint operator

f� Adjoint function

O �P Operator composition, (O �P )f(x)� O(P (f(x)))

df(x,y)eA,B Upper bound of function f over domain A�B

ix
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Chapter 1

Introduction

One of the fundamental goals of computer graphics is to create artificial images

that are indistinguishable from photographs. Given a specification of geometry,

emission, and reflection properties in a three-dimensional scene illuminated by

some light sources, we want to compute the resulting distribution of light in the

scene and create a two-dimensional image of it. Realistic image synthesis is use-

ful for visualizing non-existent environments in fields such as architectural de-

sign, interior design, illumination engineering, industrial design, virtual reality,

and special effects for movies.

To generate realistic images, it is necessary to accurately simulate the propa-

gation and reflection of light in the three-dimensional scene. By imitating the

physics we can approximate the visual impression of the scene. Among the

physical effects that need to be modeled are the dependencies of reflected light

on the direction, color, and intensity of the incident light; the orientation, mate-

rial, and texture of the reflecting surface; and the direction of reflection.
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“Local illumination” is illumination directly from the light sources. Since

there are usually few light sources in a scene, the local illumination at a point

in a scene can be computed fairly easily. However, the light emitted from the

light sources is reflected in the scene, causing indirect illumination. This indi-

rect illumination means that the light at a point depends not only on light from

the light sources, but on light from all points visible to it. To complicate matters

even more, the light at these points in turn depends on light at other points, and

so on. All in all, the light at a point indirectly depends on light in the entire scene

—even fromparts of the scene not directly visible to that point. This dependence

motivates the term “global illumination”.

1.1 Global Illumination

To create realistic images, we need to take global illumination into account.

Without global illumination, the objects in the scene would only be illuminated

directly from the light sources. Several subtle, but visually important, effects

would then be missing from the computed images. “Color bleeding” refers to

the effect where one object picks up the tint of another nearby object. For exam-

ple, a white wall next to a red carpet will appear slightly pink. Without global

illumination, there would be no color bleeding. A real shadow of an object is

not completely black since other objects in the environment reflect light into the

shadow area. Without global illumination, the shadows of objects would be

pitch black. When two glossy objects are near each other, the bright highlight

from one object reflects so strongly to the other object that a secondary highlight

appears. Without global illumination, there would be no secondary highlights.

These effects, and other global illumination effects, are essential to convey the

illusion of a real scene. Introductions to the global illumination problem can be

found in several textbooks [24, 32, 36, 86].
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As already described, global illumination problems are challenging because

weneed a solution at all points in all directions, and because the light at all points

depend on each other. Themost direct simulation of light transport would trace

photons from the light sources through the scene to the eye. However, the num-

ber of photons in a non-trivial scene is overwhelming. For example, a 100-Watt

light bulb emits on the order of 1027 photons in the visible spectrum each sec-

ond. Simulating such hugenumbers is farbeyond the capability of even themost

powerful computers. Therefore careful approximations have to be made. The

approximations should be chosen so that the resulting solution is close to the real

solution, while enabling much faster computation. One solution method selects

a subset of these photons to simulate. Unfortunately, millions of photons have to

be simulated to get images without noticeable noise, especially since only a frac-

tion of the photons are going to reach the eye. Another solution method traces

the photon paths backwards from the eye. In this way, one is sure to only sim-

ulate photons that actually reach the eye. However, if all types of reflection are

simulated, even this solution method requires the tracing of millions of photon

paths to create images without noticeable noise. Yet another solution method

approximates the infinitely many points and directions as a finite set of small

areas and directions and computes an approximate solution for these areas and

directions. This results in a very large number of interdependencies.

These solution methods are conceptually simple, but they are not efficient.

Considerable effort has been put into developing efficient methods for solving

the global illumination problem, and this dissertation is a part of that effort. On a

wider scale, themethods that are useful for solving the global illumination prob-

lem are also useful for general transport theory and physics simulation. There-

fore, new techniques developed for global illumination may turn out to be useful

in other fields as well.
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1.2 Glossy Reflection

Reflection of light from a surface can be divided into three types: diffuse, glossy,

and specular. A diffuse reflection scatters all reflected light evenly in all direc-

tions on the hemisphere above the surface point. Specular reflection reflects

only in the mirror direction, where the angle of incidence equals the angle of

reflectance. Glossy reflection is directional but not restricted to a single direc-

tion. These three types of reflection are illustrated in figure 1.1. In computer

graphics, glossy reflection is typically modeled using microfacet theory. There is

a plethora of glossy reflection models [12, 15, 25, 47, 53, 74, 94, 98]. Any of these

models can be used with the techniques developed here, as could any other re-

alistic model.

diffuse
glossy

specular

Figure 1.1

Diffuse, glossy, and specular reflection.

Real materials are not perfectly diffuse or specular; therefore, the simulation

of glossy reflection is essential for realistic image synthesis. For purely diffuse

reflection, one can reduce the dimensionality of the global illumination problem

since there is no directional variation. Algorithms for this special case are often

referred to as radiosity algorithms. For purely specular reflection, one can ex-

ploit the property that light is only reflected in a single direction using ray trac-

ing algorithms. But for glossy reflections, neither advantage can be exploited. So

glossy global illumination is, in some sense, the hardest problem of these three.

However, as we shall see, many of the same solution techniques that have been

developed for diffuse global illumination can also be used for glossy global il-
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lumination. The main difference is that the directionality of the reflections in-

creases the dimensionality of the problem.

1.3 Solution Methods

The global illumination problem has been attacked with two fundamentally dif-

ferent solution methods: Monte Carlo and finite elements . The well-known ray

tracing and radiosity methods are simple versions of these methods, but sim-

ulate only special cases of global illumination. Ray tracing is a simple version

of the Monte Carlo method. It is efficient, but only simulates purely specular

reflections within the scene. The term “radiosity” is used to describe a low-

dimensional version of the finite-element method. There are now reasonably ef-

ficient radiosity methods, but they only simulate purely diffuse reflection.

1.3.1 Monte Carlo Methods

Monte Carlo methods simulate the transport of photons, either forwards from

the light sources or backwards from the eye, and generate the solution by count-

ing how many photons reach each pixel in the image.

The first Monte Carlo method used for global illumination was ray tracing

[34, 101]. It traces the photon paths (rays) backwards from the eye. All three

types of reflection (diffuse, glossy, and specular), are simulated in the direct illu-

mination from the light sources, but photon paths are only traced backwards in

the mirror direction. Therefore, only specular global illumination is simulated.

Other types of global illumination are approximated by a constant — the so-

called “ambient term”. Thus, all diffuse and glossy interreflections are ignored,

meaning that effects such as color bleeding (which is diffuse interreflection) are

missing. As a result, ray traced images look too shiny and mirror-like. For an

example, see figure 1.2.
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Figure 1.2

A typical ray traced image

To take glossy and diffuse interreflections into account, manymore rays have

to be traced through the scene. This added complexity is caused by the fact that

a photon reflected in some direction from a glossy surface could have come from

any direction within a cone before the reflection. Even worse, a photon reflected

from a diffuse surface could have come from any direction on the entire hemi-

sphere before the reflection. For specular reflection, in contrast, the photon could

only have come from the mirror direction. There are two techniques to simulate

general photon transport: distribution ray tracing and path tracing . Cook [26]

introduced distribution ray tracing, where each time a ray hits a surface, a new

set of rays is traced. The new rays are cast in the directions where the photon

most likely came from. If the contribution along a ray is sufficiently small, no fur-

ther rays are cast. Nevertheless, this technique gives a combinatorial explosion

of rays to trace. Kajiya [54] used path tracing. He observed that if only a single

photon path is followed for each intersection, the combinatorial explosion can be

avoided entirely. The direction of the new ray is determined statistically from

the reflection model, that is, where the photon most likely came from. Ward’s
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“Radiance” system [99, 100] reuses values from previous rays when a ray hits a

surface near a ray that has already been traced. This gives a substantial savings,

especially for diffuse interreflections.

Pattanaik [68, 69], Veach and Guibas [96], and others use techniques that si-

multaneously trace light both from the light sources and backwards from the

eye, and compute reflections by combinations of these paths.

In general, Monte Carlo methods that account for all three types of reflection

give noisy artifacts. These methods also have slow convergence; in order to re-

duce variance of the noise by half, four times as many photons have to be simu-

lated.

1.3.2 Finite-ElementMethods

In finite-element methods, the unknown light distribution in the scene is rep-

resented in a finite basis, and an approximation to the solution is found in that

basis. Recent advances such as hierarchical representation [9, 41, 46, 79, 88],

importance-driven refinement [17, 89], error control [8, 59], discontinuity mesh-

ing [49, 60], etc. have made finite-element methods a promising approach to

global illumination. Most of these advances have been for diffuse global illu-

mination, but, as we shall see, they can also be generalized to glossy global illu-

mination.

Goral et al. [39] introduced the finite-element solution method for global il-

lumination. They considered the simplified problem of diffuse global illumina-

tion, a problem often informally called “radiosity” since radiosity is a character-

ization of diffuse light. When all emission and reflection is diffuse, light leaving

a surface is uniform in all directions, and only spatial variation has to be com-

puted. The finite-element solution method has long been used to simulate ther-

mal radiation [82, 91, 92], a problem very similar to global illumination. Both are

transport problems where equilibrium is expressed as an integral equation, and
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in both cases the solution is radiation fromsurfaces of objects. Solving is amatter

of computing coefficients of the basis functions: The influence of each basis func-

tion on every other basis function is computed and arranged in a so-called “form

factor”matrix. The form factormatrix defines a finite linear systemof equations.

Solving this system of equations gives the unknown basis function coefficients

and thereby an approximation of the radiosity in the scene. This method for ap-

proximate solution of an integral equation is known as the Galerkin method.

This method was improved in two major ways. The first improvement was

faster solution of the linear system using Southwell iteration (also known as

“progressive refinement” or “shooting” [22, 40]). The second improvement was

the use of basis functions that ensure better convergence: orthogonal polynomi-

als (Troutman andMax [95] and Zatz [105]) and piecewise-linear functions with

discontinuities along the dominant discontinuities of the solution (Heckbert [49]

and Lischinski et al. [60]).

Simulating only diffuse reflections is a rough approximation to the general

global illumination problem. Images computed with only diffuse reflection con-

tain no highlights, and look matte and dull. An example of an image of a scene

with purely diffuse reflection is shown in figure 1.3.

Wallace et al. [97] extended the finite-element method to also handle a sin-

gle specular reflection between diffuse reflections. This was done by taking a

single bounce of specular reflection into account when computing form factors

between diffuse surfaces. In this way, only diffuse light distributions have to

be represented, while some specular reflections are simulated. A second pass

using distribution ray tracing computes the chains of specular and glossy re-

flections that reach the eye. However, glossy-to-diffuse transfers and multiple

specular reflections followed by diffuse reflection were not accounted for. Sil-

lion and Puech [84] extended this method to handle diffuse and multiple spec-

ular reflections (but still no glossy interreflections). This combination of diffuse
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Figure 1.3

A typical radiosity image

and specular reflection was done by takingmultiple specular reflections into ac-

count when computing the influence of diffuse basis functions on each other (the

form factors). Specular surfaces are treated as additional paths alongwhich light

can be transported between diffuse surfaces. A final ray tracing pass computes

the chains of specular reflections that reach the eye. In this way, only diffuse

light distributions have to be represented, while multiple specular reflections are

taken into account.

Immel et al. [51] were the first to use the finite-element solution method for

glossy global illumination. They used piecewise-constant basis functions for

both spatial and directional variation. Diffuse reflection is a simple special case

of glossy reflection and can easily be handled. After the finite-element solu-

tion is computed, it is rendered using interpolation between discrete directions.

Since the dimensionality of glossy global illumination is higher than that of dif-

fuse global illumination, more basis functions and light transports are required.

However, the transports are sparse; not all basis functions need to interact since

a basis function with a given directional support only transports light to basis
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functions on a fraction of the patches in the scene. Despite this, the method uses

a lot of time and space, so only very limited environments could be handled.

Shao et al. [81] computed a directional solution similar to Immel et al., but fol-

lowed it by a secondpass of distribution ray tracing to improve the imagequality

by avoiding some discretization artifacts.

Later, Sillion et al. [85] extended their method for diffuse and specular reflec-

tions to include glossy reflection, resulting in a finite-element solution method

capable of handling all three types of reflection. They used spherical harmonics

to represent directional variation and piecewise-constant functions to represent

spatial variation of light. As mentioned above, diffuse reflection is a simple spe-

cial case of glossy reflection and can easily be handled by finite-element solution

methods for glossy global illumination. Specular reflection is slightly more dif-

ficult. Even though glossy reflection is specular in the limit, the finite-element

solution method is not suitable for specular reflections since spiky light distri-

butions are difficult to represent in a basis. However, specular reflection can be

incorporated by extending the method used for combining diffuse and specular

global illumination: multiple specular reflections are simulated when comput-

ing the influence of glossy light distributions on each other, and a ray tracing

pass computes the specular reflections reaching the eye directly. In this way, the

specular reflections are taken fully into account, even though the light distribu-

tion of the solution does not contain specular spikes.

In our research, we use the finite-element solution method since it promises

better convergence than the Monte Carlo method. We focus on glossy reflec-

tions since diffuse reflection is a simple special case and specular reflections

can be incorporated along the lines of Sillion et al. [84, 85]. If we can solve the

glossy global illumination problemmore efficiently, the general global illumina-

tion problem can also be solved more efficiently.
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1.4 Hierarchical Techniques

This dissertation describes efficient hierarchical techniques to improve the finite-

element solution method for the glossy global illumination problem. Two hier-

archical representations of light are used: wavelets for detailed representation

of light at surface patches, and a clusters for approximate representation of light

from collections of surfaces. Furthermore, importance is used to refine the hier-

archy such that light transports are computed with an accuracy proportional to

their contribution to the image.

With nonhierarchical representations of light with spatial and directional

variation, light is transported from each basis function to all basis functions on

surface patches visible within its directional support. This requirement leads to

algorithms where the number of transports is quadratic in the number of pat-

ches in the scene and O(n1:5
b ), where nb is the number of basis functions in the

solution. (The order is O(n1:5
b ), and notO(n2

b) as one might expect at first glance,

since each basis function only transports light to other basis functions within its

directional support.) The asymptotic complexity can be improved using hierar-

chical techniques: the number of transports becomes linear both in the number

of patches and in the number of basis functions. The reduction to a linear num-

ber of transports is significant since the numbers of patches and basis functions

are large for accurate solutions in realistic environments.

1.4.1 Wavelets

Asmentioned above, hierarchical bases reduce the complexity fromO(n1:5
b ) to li-

near in the number of basis functions nb. Multiresolution analysis provides firm

theoretical ground for describing hierarchical bases. Wavelets are a set of orthog-

onal basis functions; in awavelet basis, a function is representedas a coarse over-

all shapewith detail at increasing resolutions. Alpert [3] discovered that in awa-
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velet representation, a smooth integral operator can be represented as a sparse

matrix without introducing significant error. This approximation can be utilized

for global illumination, since light transport can be represented as an operator.

Wavelets have also been used in as diverse fields as signal analysis, approxima-

tion theory, image compression, mathematics, and numerical analysis.

Hierarchical bases were first used for diffuse global illumination by Hanra-

han et al. [45, 46] and for glossy global illumination by Aupperle and Hanra-

han [9]. Wavelets were first used for diffuse global illumination by Gortler et al.

[41, 78] and for glossy global illumination by Christensen et al. [19], Schröder

and Hanrahan [79], and Pattanaik and Bouatouch [70]. The application of wa-

velets to global illumination introduces special requirements in the hierarchical

basis, and the trade-offs come out differently than in other fields.

In this dissertation, the criteria for selecting wavelet bases for glossy global

illumination aredescribed. A four-dimensional wavelet basis, as required to rep-

resent directional light distributions, is constructed from a univariate wavelet

basis. The possible choices of operator decomposition are also described. The

operator decomposition determines which basis functions can interact. The rea-

sons for choosing a standard operator decomposition are discussed.

1.4.2 Clustering

Realistic environments contain many surface patches, and light must be trans-

ported between all these patches to simulate a physical light transport. How-

ever, there is no need to transport light directly between the surface patches. Sig-

nificant performance gains can be obtained by clustering groups of patches to-

gether and transport light between these clusters. Without a method to cluster

surface patches, light has to be transported directly between all patches, result-

ing in a computational complexity that is quadratic in the number of patches.

We use a clustering technique to reduce to linear complexity. The use of error
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bounds ensures that the cluster approximation is only used if the error intro-

duced by the approximation is acceptable. Initially, light is transported between

large clusters. Later, the transports are refinedwhere higher accuracy is needed,

so that transports are between smaller clusters or patches.

Clustering techniques were first developed for applications in astrophysics.

Appel [5], Barnes and Hut [11], and Greengaard [43] considered efficient solu-

tions to the n-body problem; that is, how n bodies influence each other through,

for example, gravitational or electrostatic forces. When the number of bodies is

in the thousands or millions, as occurs for simulating development of galaxies, a

quadratic complexity is prohibitive. They therefore devised techniques to group

bodies into a hierarchy of clusters and to compute the relatively weak forces be-

tween distant clusters instead of between all pairs of bodies. In this way, the

computational complexity is reduced to linear in the number of bodies.

Similar clustering algorithms for diffuse global illumination have recently

been proposed [55, 76, 83, 88, 104]. These techniques extend the hierarchy of ba-

sis functions upward to a hierarchy of clusters of surface patches. In many re-

spects, the most successful work to date is that of Smits et al. [88]. Their method

creates the clusters automatically, uses error bounds to guide the solution pro-

cess, and has O(np lognp) complexity in the number of patches np. They distin-

guish between two types of transports: α-links and β-links. To compute a bound

for an α-link transport between two clusters, a bound is first computed on the

flux density incident on the receiving cluster due to the sending cluster. This is

done by bounding the contribution of each source patch (taking into account its

area, orientation, and radiance, but ignoring occlusion within the cluster), and

summing these contributions. Next, by considering the projected area andmax-

imum reflection of each receiving patch, a bound on the transfer can be com-

puted. The time to compute the bound is linear in the sum of the number of

patches in the two clusters, giving a total link cost ofO(np lognp). An asymptot-
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ically lower total link cost can be achieved using coarser bounds called β-links.

These bounds ignore the orientations of the patches contained in each cluster.

For a given transport between clusters, it is assumed that each source patch is

directly facing and visible to all the receivers, each receiving patch is highly re-

flective, and all the patches are as close as possible (within each cluster) to the

other cluster. This bound can be computed in constant time, resulting in a total

link cost linear in the number of patches. Because this bound is so crude, β-links

are only used to represent the most negligible transports between clusters.

In this dissertation, an alternative clustering method that also works for

glossy global illumination is described. The geometry of each cluster of surfaces

is represented as a point that emits and reflects light according to some direc-

tional distribution. Such an approximation is less accurate when considering

transports between clusters that are near each other, and ismore accurate for dis-

tant clusters. The point approximation simplifies the calculation of light trans-

fers between clusters since the geometry inside the cluster is abstracted away.

Light is not transported between two clusters when the point approximation is

too coarse; instead, light is transported between their subclusters or individual

patches. When light has been transported between clusters, the light incident on

each cluster is reflected off the patches inside the cluster, and light on the patches

is added up to compute the distribution of light leaving the cluster.

1.4.3 Importance

Use of importance-driven refinement reduces the number of transports drasti-

cally by reducing the asymptotic constants. With importance, a transport is only

refined if it is at a position and direction that contributes significantly to the im-

age and has significant error.

Importance has been used in nuclear engineering since the 1940’s [57]. It was

introduced to the computer graphics field by Smits et al. [89]. They considered a
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view-dependent solution of the diffuse global illumination problem. By know-

ing the viewpoint of the image of the scene, the computations can be focused

on the light transports that have a high contribution to the image. This does not

mean that light not contributing directly to the image is ignored; it is just com-

puted to an accuracy proportional to its contribution. Smits et al. defined impor-

tance as an adjoint function of radiosity, and developed a transport equation for

this type of diffuse importance.

The use of importance has been extended to glossy global illumination. Aup-

perle and Hanrahan [9] and Pattanaik [68, 69] defined directional importance to

be an adjoint of radiance. This type of importance directly gives the contribution

of a given radiance distribution. In Christensen et al. [17] we found it advanta-

geous to define directional importance in a differentway. We define it so that im-

portance is transported exactly like radiance, simplifying the algorithm. Later,

Schröder and Hanrahan [79] and Veach and Guibas [96] used the same type of

importance for a spatial parameterization of radiance and for a Monte Carlo so-

lution method, respectively.

1.5 Contributions

The global illumination problem is challenging because all light in a scene is in-

terdependent. For scenes with glossy reflections, the problem is even more chal-

lenging because of the high dimensionality of the unknown light distributions.

Whereas diffuse global illumination is concerned with how light reflecting from

every surface point affects light reflecting from all other points, in glossy global

illumination one must consider how light reflecting in every direction from ev-

ery surface point affects light reflecting in all directions from all other surface

points. This higher dimensionality makes solution of global illumination prob-

lems in glossy environments much more difficult than in diffuse environments.
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The contributions of this dissertation are a variety of techniques to improve

the efficiency of the finite-element solution method for glossy global illumina-

tion. The techniques are generalizations and extensions of techniques known

from the simpler problem of diffuse global illumination. Themain contributions

are:

� Directional importance: The most obvious type of importance for glossy

global illumination is an adjoint of radiance. Instead, a type of importance

that is algorithmically more convenient than an adjoint of radiance is in-

troduced.

� Wavelet representation: Wavelet representation of the radiance at each sur-

face reduces the number of transports from O(n1:5
b ) in the number of basis

functions nb to linear.

� Clustering: Clustering groups of surface patches reduces the number of

transports from quadratic in the number of surface patches to linear.

A somewhat smaller contribution concerns adjoints. The radiance equation [24]

and Kajiya’s rendering equation [54] are alternative descriptions of light trans-

port. They are shown to be adjoint equations, and radiance and two-point trans-

port intensity are shown to be adjoint functions.

1.6 Dissertation Overview

Chapters 2 and 3 contain the background for the contributions of this disserta-

tion: detailed descriptions of the glossy global illumination problem and a sim-

ple finite-element solution method. In chapter 2, the propagation and reflec-

tion of light is described and the integral equation that governs light transport

is presented. There are two alternative formulations of this integral equation:
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the radiance equation [24] and Kajiya’s rendering equation [54]. Even though

these two formulations are equivalent, the radiance equation is preferred since

it has a parameterization local to each patch. The radiance equation is contin-

uous; it describes the light at a point (in some direction) as the weighted inte-

gral of light from all other points. In chapter 3, a finite-element solution method

for this equation is described. If a sufficiently fine basis is chosen, this solution

method will iteratively compute an accurate solution, but the number of trans-

ports is quadratic in the number of patches and O(n1:5
b ) in the number of basis

functions nb.

The speed of the finite-element solution method is improved by adaptive hi-

erarchical techniques presented in chapters 4, 5, and 6. In chapter 4, importance

and its use for refinement is described. Importance gives the contribution of light

to the image, and based on this contribution and an estimate of the error in each

light transport, it is decided which transports to refine. The theory of importance

is motivated by its use in hierarchical bases, but is derived directly from light

transport theory. Chapter 5 covers the adaptive representation of light from a

surface patch in a wavelet basis, as well as light transports between wavelets.

Severalwavelet bases are described, and their advantages anddisadvantages for

use in the glossy global illumination problem are discussed. Also, the construc-

tion of four-dimensional wavelet bases for light (and importance) is described,

followed by a description of several operator decompositions for sparse and effi-

cient transports. In chapter 6 the grouping of surface patches into clusters is de-

scribed. Each cluster is a directional point approximation of the light and impor-

tance leaving the surface patches contained in the cluster. Efficient directional

bounds are given on light transfers, and these bounds are used for refinement.

Together, these three techniques — importance, wavelets, and clustering — en-

able an initially very coarse solution to be refined only where the improvement

is significant to the final image. The use of wavelet representation of radiance
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makes the number of transports linear in the number of basis functions, and clus-

tering of surface patches makes the number of transports linear in the number

of patches.

In chapter 7, an efficient algorithm, using the previously discussed improve-

ments, is presented. Various practical issues such as data structures, visibility

computation, and rendering using a final gather pass are also discussed. Results

from the implementation are presented in chapter 8. The method is tested on a

simple scene to show convergence, and on more complex scenes to demonstrate

the ability to handle complicated scenes. The most complex scene has nearly

8,000 surface patches. Finally, conclusions from the research presented here, as

well as suggestions for future research, are given in chapter 9.



“LUX SIT” (Let there be light)

Genesis

Chapter 2

Global Illumination

Light is electromagnetic radiation at wavelengths visible to the human eye. In

general, light is a function of position, direction, wavelength, phase, polariza-

tion, and time. Here we will make several simplifying assumptions, to empha-

size the global illumination.

This chapter is a formal description of the aspects of light transport that are of

interest when solving the global illumination problem. First, radiance— a mea-

sure of light — is defined. Then the propagation and reflection of light is de-

scribed. Equilibrium distribution of light can be formulated as two equivalent

equations, and we choose the equation that is advantageous for our purposes.

The simplifications from assuming glossy reflection (no ideal specular reflec-

tions) that we will utilize are discussed, and further assumptions and simplifi-

cations utilized in the extensive research in diffuse global illumination are men-

tioned. Radiance can beparameterizeddirectionally or spatially. The directional

parameterization gives a smaller number of initial light transports.
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2.1 Simplifications

To simplify the simulation of light transport and reflection, we eliminate manyof

the variables that light depends on. These simplifications aremade to emphasize

the global and glossy aspects of light transport.

� The scene is assumed to consist of objects in a clear medium such as dry

air or vacuum. The medium does not participate in the light transport; all

emission, reflection and absorption takes place at surfaces. This gives a re-

duction of the dimension of the position from three to two since a point on

a surface can be specified by two parameters. By contrast, with participat-

ing media, such as fog and smoke, light is absorbed and reflected in the

medium. Therefore, a three-dimensional (volume) description of the light

is necessary. Global illumination in scenes with participating media is con-

sidered, for example, by Rushmeier et al. [77].

� Thebandof visible wavelengths is approximatedwith three discrete wave-

lengths: red, green, and blue. We also assume that there are no phospho-

rescent or fluorescent materials in the scene so that we can ignore interac-

tion between wavelengths. These assumptions enable us to consider the

three color bands independently, in effect solving three instances of the

same (monochrome) problem simultaneously. Peercy [71] used a descrip-

tion of reflection for all visible wavelengths. Glassner [35] and Peercy et al.

[72] describe the effects of phosphorescent and fluorescent reflection.

� Light propagation is approximated with ray optics. This approximation

eliminates effects ofwave optics such as diffraction and interference,which

are due to phase. Gondek et al. [38] modeled interference effects caused by

the phase of light.
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� Only uniformlypolarized light is considered. Polarization can bedescribed

as a linear combination of polarization in just two directions, and therefore

is not too difficult to model. Each light ray has two parameters, and the

reflection model has to take polarization into account. Wolff and Kurlan-

der [103] considered polarization effects in computer graphics.

� A static scene with an equilibrium of light is assumed. Caused by the ex-

tremely high velocity of light and the relatively small scenes we consider,

light equilibrium occurs very fast after a change in the scene or illumina-

tion. With this assumption we can ignore time-dependence in all equa-

tions.

Furthermore, transmission of light through surfaces is not modeled. How-

ever, this extension is straightforward since transmission does not increase the

dimensionality of the problem. It merely doubles the amount of work at each

transport since there is both reflection and transmission each time light hits a sur-

face. Wallace et al. [97] showed how transmission effects could be incorporated

into global illumination computations.

2.2 Radiance

Let x and y be points on surfaces, and let ~! and ~

!xy be directions. The direction

from x to y is denoted ~

!xy, thus ~!xy =�~!yx.

Definition Radiance:

Radiance L(y, ~!) is the power emanating fromy per unit solid angle in the direc-

tion ~

! per unit projected area perpendicular to that direction,

L(y, ~!)�
d�

d~! �d~Ay

=

d�

d~!dAy cos�
:

For an illustration of these terms, see figure 2.1.
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dAy
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�
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Figure 2.1

Radiance L at point y in direction !. The surface normal at y is de-
noted n, and the angle between the normal and direction ! is �.

Radiance is measured in watts per square meter per steradian [W=m2sr]. Radi-

ance is a four-dimensional quantity since a point on a surface can be described

by two parameters, and a direction also can be described by two parameters.

The radiance L from a point y in direction ~

! is the sum of two terms: emitted

radiance Le and reflected radiance Lr,

L(y, ~!)= Le(y, ~!)+Lr(y, ~!) :

In the global illumination problem, the emitted radiance is known, while the re-

flected radiance is the unknown we have to determine.

The radiance in the entire scene (or in parts of the scene) can be represented

by a radiance distribution L. We call this function a “distribution” since it is non-

negative everywhere.

Radiance is defined in terms of power emanating from a surface. There is a

similar definition for power incident on a surface.

Definition Incident radiance1:

Incident radiance Lin(y, ~!) is the power incident on y per unit solid angle in di-

rection ~

! per unit projected area perpendicular to that direction.

1This quantity is also called “field radiance” by some authors [8].
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Radiance along a ray is invariant, so if points x and y are mutually visible,

we have

Lin(y, ~!xy)= L(x, ~!xy) , (2.1)

as illustrated in figure 2.2.

x

y

L(x,~!xy)

Lin(y,~!xy)
~!xy

Figure 2.2

Radiance along a ray is invariant.

We shall now see how light is transported in the scene. The transport consists

of two parts, propagation from one point to another point, and reflection at the

receiving point.

2.3 Propagation

Consider two points x and y that are facing each other and unoccluded. With

each point is associated a differential area, dAx and dAy respectively. The angles

between the line segment xy and the respective normals of dAx and dAy are �x

and �y. These terms are illustrated in figure 2.3.

Seen from point x, the solid angle d~! subtended by the differential area dAy

is cos�ydAy

.

kx�yk2. In the direction towards y, the differential area dAx has

projected area cos�xdAx. Now consider the flux flowing in the beam from dAx

to dAy; see figure 2.4. This flux is the product of radiance L(x, ~!xy), the solid an-
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x
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nx

ny

�x

�yxy

Figure 2.3

Geometry at points x and y. The surface normals of differential ar-
eas dAx and dAy are nx and ny, respectively. The angles between the
line segment xy and the normals of dAx and dAy are �x and �y.

gle subtended by dAy, and the projected area of dAx,

d�= L(x, ~!xy)
cos�ydAy

kx�yk2
cos�xdAx :

The flux is zero if the points are occluded or facing away from each other.

x

y

dAx

dAy

L(x,~!xy)

d�

Figure 2.4

Flux from differential area dAx to differential area dAy.

To simplify notation, we will use the following definition.

Definition Geometric term:

The geometric term G(x,y) is defined as

G(x,y)�V(x,y) �
cos�x cos�y
kx�yk2

, (2.2)
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where V(x,y) is 1 if x and y are mutually visible (that is, the line segment xy is

unoccluded and x and y are on surfaces that are facing each other) and 0 other-

wise.

Thegeometric termhas units steradian per squaremeter [sr=m2], and is symmet-

ric in its arguments:

G(x,y)=G(y,x) :

Now we can write the flux flowing in the beam from dAx to dAy as

d�=G(x,y)L(x, ~!xy)dAxdAy : (2.3)

We will now define a quantity that is the product of radiance and the geometric

term.

Definition Two-point transport intensity2:

Two-point transport intensity L�(x,y) from point x to point y is flux per unit dif-

ferential area at the sender and receiver,

L�(x,y)�
d�

dAxdAy
=G(x,y)L(x, ~!xy) : (2.4)

Two-point transport intensity has units [W=m4]. It is a function of four variables

since each of its endpoints can bedescribed by twoparameters. The propagation

of light is illustrated in figure 2.5.

If we let G denote the operator that multiplies a function by the geometric

term G, we can write equation (2.4) in operator notation,

L� = GL : (2.5)

We call the operator G the “propagation operator”.

2Kajiya [54] introduced the term “two-point transport intensity”. He used the symbol I for
this quantity, but I is the standard symbol for radiant intensity. Instead, we use the symbol L�

since two-point transport intensity will turn out to be an adjoint function of radiance L.
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x

y

L(x,~!xy)

L�(x,y)

Figure 2.5

Light propagation from point x to point y.

Similar to equations (2.4) and (2.5), we canwrite the emitted two-point trans-

port intensity as L�e(x,y)=G(x,y)Le(x, ~!xy), or simply L�e = GLe.

2.4 Reflection

To describe reflection from a surface, we first have to define a few terms: irradi-

ance, differential irradiance, and bidirectional reflectance distribution function.

Definition Irradiance:

Irradiance E is the energy per unit area received from other surfaces,

E(y)�
Z

Ω+

Lin(y, ~!) cos�yd~! , (2.6)

where the integration is over the hemisphere Ω+ above point y.

The units of irradiance are watts per square meter [W=m2].

Differential irradiance is the contribution to irradiance from a differential

solid angle. The differential irradiance at a point y from a differential solid an-

gle d~! in direction ~

! is

dE(y,d~!)� Lin(y, ~!) cos�yd~! ,

see figure 2.6a. We will now rewrite this expression in terms of areas instead of

solid angles. At point y, the differential solid angle subtended by a differential
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area dAx is

d~!xy =
cos�xdAx

kx�yk2
, (2.7)

as illustrated in figure 2.6b.

(a) y

d~!

Lin(y,~!)

(b)

x

y

dAx

L(x,~!xy)

Figure 2.6

Differential irradiance to a point y. (a) From a differential solid angle,
(b) from a differential area.

Using equations (2.1), (2.2), (2.4) and (2.7), we can rewrite differential irradi-

ance as

dE(y,d~!xy) � Lin(y, ~!xy) cos�yd~!xy

= L(x, ~!xy) cos�y
cos�xdAx

kx�yk2

= L(x, ~!xy)G(x,y)dAx

= L�(x,y)dAx : (2.8)

Now that we knowwhat differential irradiance is, we can define the bidirec-

tional reflectance distribution function.

Definition Bidirectional reflectance distribution function, BRDF:

The BRDF is the ratio of reflected radiance (in some direction ~

!r) to differential

irradiance from some solid angle d~!i of incident directions,

fr(~! i,y, ~!r)�
dLr(y, ~!r)

dE(y,d~!i)
: (2.9)
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The BRDF has units [sr�1]. It is called “bidirectional” because it depends on two

directions, and “distribution function” because it is non-negative everywhere.

As a consequence of Helmholtz reciprocity [64], the BRDF stays unchanged if

the incident and exitant directions are swapped3:

fr(~!,x, ~!
0)= fr(�~!

0,x,�~!) ;

see figure 2.7. The Helmholz principle is equivalent to saying that if a photon

moves along a path, it will follow the same path if its direction is reversed.

~!

y
~!

0

�~!

y
�~!

0

Figure 2.7

Helmholz reciprocity: the BRDF for incident direction ! and exitant
direction !0 is the same as for incident direction�! 0 and exitant direc-
tion �!.

The reflected radiance in direction ~

! is the integral of reflection of differential

irradiance from the entire hemisphere above y,

Lr(y, ~!)=
Z

~

!i2Ω+

fr(~!i,y, ~!)dE(y,d~!i) : (2.10)

Using the expression for irradiance in equation (2.8), we can rewrite equation

(2.10) as

Lr(y, ~!)=
Z

x
fr(~!xy,y, ~!)L

�(x,y)dAx : (2.11)

The integration is over all points on all surfaces in the scene. This version of re-

flection is illustrated in figure 2.8.

3The BRDF is most often expressed with both incident and exitant directions specified by
directions pointing away from the reflecting point. This, we feel, is counter-intuitive since the
BRDF is defined as a ratio of an incident and an exitant quantity. Here we use the convention
that the incident direction points towards the reflecting point, and the reflected direction points
away.
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x

x

x

y

L�(x,y)

Lr(y,~!)

Figure 2.8

Light reflection at point y.

If we let R denote the operator that multiplies a function by the BRDF and

integrates over all surfaces in the scene, we canwrite equation (2.11) in a simpler

form using operator notation as Lr = R L�. Since radiance is the sum of emitted

and reflected terms, L= Le+Lr, we get

L= Le+R L� : (2.12)

2.5 Equilibrium Equations

We will now describe the equations that have to be solved for the global illumi-

nation problem. The equations describe two things at the same time. First, each

equation describes the light at a given point, given light everywhere else. Sec-

ond, each equation describes an equality that holds everywhere at equilibrium.

We will describe two equivalent equations: a formulation using radiance giv-

ing the radiance equation, and a formulation using two-point transport intensity

giving the “rendering equation”.

Combining the previously introduced relations, equations (2.5) and (2.12),

between radiance and two-point transport intensity,

L� = GL and L= Le+R L� ,
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we can write two equivalent equilibrium equations. The first is the radiance

equation

L= Le+R GL , (2.13)

or, equivalently,

L= Le+T L , (2.14)

where T � R �G is the operator for combined propagation and reflection. We

call the operator T the “transport operator” since it transports light emanating

at one surface to light emanating at another surface. Writing the operators in

equation (2.13) out in full yields

L(y, ~!)= Le(y, ~!)+
Z

x
fr(~!xy,y, ~!)G(x,y)L(x, ~!xy)dAx :

These terms are illustrated in figure 2.9. The radiance equation was used by Im-

mel et al. [51], Sillion et al. [85], Aupperle and Hanrahan [9] and others.

x

x

x

y

L(x,~!xy)

L(y,~!)

Figure 2.9

The radiance equation: radiance from point y in direction ! depends
on radiance from all points x towards y.

The second equilibrium equation that can be created fromequations (2.5) and

(2.12) was introduced by Kajiya [54], who named it “the rendering equation” :

L� =GLe+GR L� , (2.15)
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or, equivalently,

L� = L�e+T �L� , (2.16)

wherewe define T ��G �R . (It will later turn out that this operator is the adjoint

of T , and for this reason we use the symbol T �.) Writing the operators in this

equation out in full yields

L�(y,z) = L�e(y,z)+G(y,z)
Z

x
fr(~!xy,y, ~!yz)L

�(x,y)dAx :

These terms are illustrated in figure 2.10.

x

x

x

y

z

L�(x,y)

L�(y,z)

Figure 2.10

The “rendering equation”: two-point transport intensity from point y
to point z depends on two-point transport intensity from all points x
to y.

Both equilibrium equations are multidimensional Fredholm integral equa-

tions of the second kind [28, 48]. Such equations are in general written

f(y)= g(y)+
Z

D
K(x,y) f(x)dx ,

where the function f is to be determined, and functions g (the “boundary condi-

tion”) and K (the “kernel”) are known. They are integral equations because the

unknown function f appears inside the integral. They are Fredholm equations

since the domain of integration is constant. And they are of the second kind be-

cause the unknown function f is also outside the integral. (A Fredholm integral

equation of the first kind is g(y)=
R

xK(x,y) f(x)dx.)
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Informally, we call a single application of the operator T or T � a “bounce”

since it corresponds to one propagation and reflection of light. For example, if

L is a radiance distribution, then T L is that distribution after exactly one bounce.

2.6 Further Simplifications

As it was described in the introduction, reflection can be divided into diffuse,

glossy, and specular components. Here we will first describe glossy global il-

lumination, the topic of the remainder of this dissertation. Afterwards, we will

discuss the further simplification to purely diffuse reflection since that problem

has lower dimensionality, but the same solution method. A lot of previous work

has been done for the diffuse case, work that served as inspiration for the solu-

tion methods described here.

2.6.1 Glossy Global Illumination

In this dissertation we simplify the general global illumination problem by not

simulating specular reflections. As already mentioned, specular reflection can

easily be incorporated using a method similar to Sillion et al. [85], where the ba-

sis functions only store glossy radiance distributions, but specular reflections are

incorporated in the transports by other means.

There are many models of glossy reflection, ranging from the very simple

Phong model [15] to more accurate models such as the Beckmann-Spizzichino

[12], Torrance-Sparrow [94], and other models [25, 47, 53, 74, 98]. Any of these

reflection models can be used for our glossy global illumination algorithm. In

fact, anymodel that simulates realistic reflection can be used. We useWard’s re-

flection model [98] since it is a good compromise betweenphysical accuracy and

speed of computation.
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Some of these glossy reflection models (including Ward [98]) incorporate an-

isotropic reflection. The reflection from a surface is anisotropic if a rotation

(about the normal) of the material changes the reflection. Examples of materi-

als with anisotropic reflection are brushed metal, scales on a butterfly, feathers,

and the semiprecious stone “tiger-eye”.

It is interesting to note that even realistic models of reflection from real, matte

surfaces are not perfectly diffuse; that is, they have some angular variation [66,

102].

2.6.2 Diffuse Global Illumination

Diffuse global illumination is a special case of glossy global illumination and is

easily handled by our method. If both the reflection and the emitted radiance

are independent of direction, then the radiance everywhere in the scene will be

independent of direction, and fr(~!,y, ~!
0) and Le(y, ~!) can be written as fr(y) and

Le(y), respectively. This simplification means that radiance is two-dimensional

instead of four-dimensional since it only depends on position on a surface. As a

consequence, we have the simpler diffuse radiance equation ,

L(y)= Le(y)+
Z

x
fr(y)G(x,y)L(x)dAx : (2.17)

In this case, the BRDF fr is independent of x and can be moved outside the inte-

gration:

L(y)= Le(y)+ fr(y)
Z

x
G(x,y)L(x)dAx : (2.18)

This equation might not look much simpler than the general radiance equation

(2.13), but since the unknown L is two-dimensional instead of four-dimensional,

it is much faster to solve. There has been a significant amount of research on this

simplified problem [22, 23, 24, 39, 41, 46, 48, 49, 50, 59, 60, 61, 75, 78, 81, 86, 88,

89, 95, 104, 105].
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Traditionally, this equation is often formulated in termsof radiosity B, andwe

show that formulation here for completeness and comparison. The radiosity of

a point is the integral of radiance leaving the point in all directions. For a diffuse

surface, radiosity is proportional to radiance,

B(x)�
Z

Ω+

L(x) cos�xd~! =
Z

Ω+

cos�xd~!L(x)= πL(x) :

Substituting radiosity for radiance in equation (2.18), and letting π on both sides

cancel, yields

B(y)= Be(y)+ fr(y)
Z

x
G(x,y)B(x)dAx :

Instead of the BRDF, we can use the reflectance ρ, the ratio of all reflected radi-

ance to irradiance. It can be shown that for diffuse reflection, ρ(y) equals πfr(y)

(see Cohen andWallace [24]). Substituting diffuse reflectance for the BRDF, we

get the well-known radiosity equation

B(y)= Be(y)+
ρ(y)

π

Z

x
G(x,y)B(x)dAx :

The fact that the first finite-elementmethods in global illumination computed

radiosity in diffuse scenes has caused a use of the radiometric term “radiosity”

to also mean “a finite-element method for diffuse global illumination”.

2.7 Choice of Representation

Recall from section 2.5 that there are two equivalent formulations of equilibrium:

the radiance equation and the rendering equation. In this section, we decide

which formulation to use and how to parameterize the unknown distribution.

The choice is based on efficiency and the minimum number of transports.

Kajiya [54] introduced the use of rigorous equilibrium equations in global il-

lumination. He expressed his equilibrium equation (the “rendering equation”)

using two-point transport intensity. Since then, radiance has been preferred by
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most researchers [9, 19, 51, 70, 79, 85] because it is a standard term in the radio-

metry field.

Two fundamentally different parameterizations of radiance have been used

for glossy global illumination. Immel et al. [51] and Sillion et al. [85] represent

the light in the scene as directional radiance distributions, a function of two spa-

tial and two angular variables on each surface patch. The radiance distribution

in a scene can be divided into radiance distributions on patches; each such radi-

ance distribution is a function of only local variables. By contrast, Aupperle and

Hanrahan [9], Pattanaik and Bouatouch [70], and Schröder and Hanrahan [79]

represent the radiance from one point towards another. This gives a parameter-

ization with four spatial variables. The relation between directional and spatial

parameterization of radiance is simply L(x,y)= V(x,y)L(x, ~!xy).

A clustering approach (like the one presented in chapter 6) reduces the com-

plexity to O(np), independent of the parameterization. However, here we will

argue that the minimum number of light transports is lower for a directional

parameterization than for a spatial parameterization. Even with a hierarchy of

clusters, there is a significant minimumnumber of light transports. The reason is

that light should only be transported between clusters that are some minimum

distance apart (at the very least, they should not overlap), for the approxima-

tion to be valid. With a directional parameterization, the light transports are be-

tween pairs of clusters, while with spatial parameterization, the transports are

between triples of clusters. For a given scene, the minimum number of non-

overlapping pairs of clusters is significantly lower than theminimum number of

non-overlapping triples of clusters. In short, theminimumnumber of transports

with clustering is O(np) for both parameterizations, but the asymptotic constant

is lower for directional parameterization than with spatial. We therefore choose

a directional parameterization of radiance, like Immel et al. and Sillion et al.

Without clustering, the difference between spatial and directional parame-



36

terization is even more dramatic. Assume that the scene is initially split into

np patches. The coarsest possible directional parameterization of radiance has

no directionality; it is constant over the entire patch and in all directions on the

hemisphere, and requires only one basis function per patch. Therefore, the ini-

tial, very rough solution of the radiance transport equation requiresO(n2
p) trans-

ports between basis functions. For a spatial parameterization, the coarsest rep-

resentation at each patch has one basis function in the direction of every other

patch, that is, np basis functions per patch. At the coarsest level, all np basis func-

tions leading to a patch transport light to all np basis functions leaving that patch.

Since there are np patches, O(n3
p) light transports are required. So with a spatial

parameterization,O(n3
p) transports are necessary, while for a directional param-

eterization, O(n2
p) transports are sufficient.



“What is it else? Amadnessmostdiscreet,

a choking gall and a preserving sweet.”

“Romeo and Juliet” by Shakespeare

Chapter 3

Discretization

In the formulation of the glossy global illumination problem described in the

previous chapter, the emitted radiance, as well as geometry and reflectance of

the scene, are known. The unknown that needs to be solved for is the radiance

in the entire scene (at all surface points in all directions).

The solution to the radiance equation L=Le+T L is formally L= (I�T )�1Le.

Furthermore, reflections are energy dissipating so the operator norm of T is less

than 1, and therefore we know that the inverse, (I �T )�1, exists. So one might

think that computing the radiance L is simple. However, the complex geometry

of nontrivial environments makes the transport operator T very complicated, so

analytical solution is hopeless.

Instead, we have to solve the radiance equation numerically. There are two

widespread methods for numerical solution of integral equations: Monte Carlo

and finite elements. Monte Carlo methods [34, 67, 96, 99, 100] sample the so-

lution by simulating the transport of selected photons (forwards from the light
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sources, backwards from the eye, or both). Such sampling methods generally

give noisy artifacts and have slow convergence, unless only specular reflections

are considered. Recent advances in finite-element techniques (such as hierarchi-

cal representation [9, 19, 41, 46, 79, 88, 89], importance-driven refinement [17, 89],

error control [8, 59], discontinuity meshing [49, 60], etc.) have made it a promis-

ing approach.

We therefore use a finite-element solution method: we approximate the un-

known radiance in a finite basis and compute an approximate solution using the

Galerkin method. This method replaces the continuous operator T with a finite

matrix eT, whose entries represent the influence of each basis function on every

other basis function. So instead of transporting light between infinitely many

points, we transport light between a finite number of basis functions. With this

finite matrix formulation, the solution can be found by iteratively solving a li-

near system of equations.

First, we introduce some concepts necessary to describe the discrete solu-

tion method. Then we describe how radiance can be represented in a basis. The

Galerkin solution method for the radiance equation is described, both for exact

and approximate solution. Lastly, a simple iterative solution method with fixed

resolution is described.

The basis can be either nonhierarchical [39, 51, 85, 95, 105] or hierarchical [9,

19, 22, 41, 46, 70, 79, 88, 89]. Hierarchical bases enable faster, adaptive solution.

In this chapter, we only consider nonhierarchical bases to keep the initial pre-

sentation simple. In chapters 5 and 6, more efficient hierarchical bases will be

described.



39

3.1 Preliminaries

In the following, we will describe general concepts such as inner products, or-

thogonality, and function spaces.The concepts apply to all functions, but wewill

concentrate on radiance distributions since these are the functions we are inter-

ested in here.

We use the following standard definition of an inner product of two func-

tions, although many other inner products are possible.

Definition Inner product:

The (standard) inner product of two functions f and g (both defined on do-

main D) is

hf jgi �
Z

D
f(x)g(x)dx : (3.1)

Example The inner product of two radiance distributions, L1 and L2, is

hL1 jL2i =

Z

Ω+

Z

S
L1(x, ~!)L2(x, ~!)dAxd~! ,

where S is all surfaces in the environment, and Ω+ is the hemisphere above each

point x.

To describe hierarchical bases, the concept of orthogonality is necessary.

Definition Orthogonal functions:

Two functions f and g are orthogonal if their inner product is zero,

hf jgi = 0 :

If f and g are orthogonal, we write f ? g.

Example The functions f(x)= sinx and g(x)= cosx are orthogonal on thedomain

[0,2π] since hsin j cosi =
R 2π
0 sinx cosxdx= 0.
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In order to formalize the concept of hierarchical bases, we need to know to

which function space radiance distributions belong.

Definition Square-integrable functions:

The space of square-integrable functions is the set of functions f that fulfill

Z

jf(x)j2dx< ∞ :

The space of square-integrable functions is often denoted L2.

Radiance distributions belong to the function space of square-integrable func-

tions since real radiance distributions fulfill the criterion

Z

Ω+

Z

S
jL(x, ~!)j2dAxd~! < ∞ :

We also use the terminology that radiance is a square-integrable function and

that radiance is an L2 function.

A linear space with a norm is called a Banach space . A Hilbert space is a

Banach space where the norm comes from an inner product. The norm for the

Hilbert space of square-integrable functions L2 is
p

hf j fi.

Example The norm of a radiance distribution L is

kLk=
p

hL jLi=

�

Z

Ω+

Z

S
L(x, ~!)2dAxd~!

�1=2

:

3.2 Bases

Aradiance distribution L canbe represented in the basisB= [b1(x, ~!) b2(x, ~!) � � � ]

by writing L as a series expansion,

L(x, ~!)=
∞

∑
i=1

`ibi(x, ~!) , (3.2)
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where `i are the coefficients of the representation. Each basis function b is de-

fined on a four-dimensional domain. It has two spatial parameters to describe

a point on a surface and two angular parameters to describe a direction. For a

given space V, there are many possible sets of orthogonal basis functions that

span V . But once the basis functions are chosen, the representation of L is

uniquely determined (that is, the coefficients ` are unique).

Equation (3.2) can be written in matrix form as L(x, ~!)=B(x, ~!)L, where L is

an infinite column matrix whose i -th entry is `i. When no confusion can arise,

we suppress the arguments and simply write

L= BL :

Examples Let’s look at a very simple, finite-dimensional space: the space of li-

near functions on the interval [0,1]. A basis for this space consists of the linear

B-splines

b1(x)= 1�x and b2(x)= x ,

see figure 3.1. The linear function f(x)= 2+3x on the interval can be represented

as f(x)= 2b1(x)+5b2(x).
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x

b1(x) b2(x)

Figure 3.1

Example of a basis B = [b1,b2].

In the original formulation of diffuse global illumination, by Goral et al. [39],

piecewise-constant functions were used as a basis for spatial variation of radio-

sity. In subsequent work, Heckbert [48], Zatz [105], and Troutman andMax [95]
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used orthogonal polynomials to improve the ability of the basis to represent ra-

diosity distributions.

In the more general context of radiance, Immel et al. [51] used piecewise-

constant basis functions for both spatial and angular variation. Later, Sillion

et al. [85] used spherical harmonics for the angular variation and piecewise-

constant basis functions for the spatial variation. Spherical harmonics are con-

tinuous, and therefore give angularly continuous solutions.

Given a radiance distribution L, how do we compute the coefficients ` ? This

is the topic of the following section.

3.3 Dual Bases

One method for computing the coefficients of the representation of a radiance

distribution requires a dual basis. To describe dual bases, we first extend the def-

inition of an inner product (3.1) to entire matrices of inner products.

Definition Matrix of inner products:

Let [hF jGi] be the matrix whose entries are the inner products of elements of F

and G. Specifically, if F = [f1 f2 � � � ] and G = [g1 g2 � � � ] are two row matrices

of functions, then [hF jGi] is the matrix whose ij-th entry is hf i jgji. Likewise, the

inner product of a row matrix of functions with a single function, [hF jgi], is the

row matrix consisting of elements hf1 jgi, hf2 jgi, ... .

Definition Dual basis:

Let bi be a linear combination of b’s such that hbi jb ji = δi j, where δi j is Kro-

necker’s delta. The function bi is the dual function of bi. The dual basis asso-

ciated with basis B is B= [b1(x, ~!) b2(x, ~!) � � � ]. In matrix form, the dual basis is

characterized by the relation [hB jBi]= I, where I is the identity matrix.
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The dual basis is unique when it is required to be formed by linear combination

of primals, as above.

Example The dual basis corresponding to the previous example consists of the

functions

b1(x)= 4b1(x)�2b2(x) and b2(x)=�2b1(x)+4b2(x)

since with these duals, hb1 jb1i and hb2 jb2i equal 1, and hb1 jb2i and hb2 jb1i

equal 0. These functions are shown in figure 3.2.
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Figure 3.2

Example of a dual basis B= [b1,b2].

Definition Self-dual bases:

For orthonormal bases, hbi jb ji= δi j, so bi= bi. Therefore, orthonormal bases are

self-dual, meaning that the dual basis is identical to the basis itself, B= B.

Example A basis for piecewise-constant functions on the interval [0,1] is the

n functions evenly dividing that interval:

bi(x)=

8

<

:

p

n, for i�1
n
� x< i

n

0, elsewhere

An example of such a basis (with n equal to 4) is shown in figure 3.3. These func-

tions are known as the “normalized box functions”. They are orthonormal and

therefore self-dual.
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Figure 3.3

Example of a self-dual basis consisting of the normalized box functions
b1, : : : ,b4.

We can use dual functions to compute the coefficients of a representation of a

function, for example a radiance distribution. Let b be a set of basis functions for

function space L2, and b their duals. The coefficients `i of the linear combination

L=∑∞
i=1 `ibi are computed as inner products with dual functions,

`i = hbi jLi ,

since

hbi jLi= hbi j ∑ j ` jb ji= ∑ j ` jhbi jb ji= `i :

Wewill use this type of computation in the following description of the Galerkin

method.

3.4 The Galerkin Method

An integral equation can be approximately solved using the Galerkin method .

We will now describe this method, and show how it can be used to solve the

discrete radiance equation exactly or approximately.

3.4.1 Exact Solution

Let B be a basis for radiance L, and let BL and BLe be the representations of ra-

diance and emitted radiance in this basis. The coefficients Le are known since
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Le and B are known and Le = [hB jLei]. The coefficients L are the unknowns we

want to solve for in order to determine the radiance L. We can obtain a system

of equations for the unknown entries of L by substituting L= BL and Le = BLe

into the radiance equation (2.13), and using linearity of the operator T to yield

BL=BLe+T (BL)=BLe+ (T B)L :

By applying the linear operator [hB j �i] to both sides of this equation, we get

[hB jBLi]= [hB jBLei]+ [hB j (T B)Li] :

Using linearity and the duality relation [hB jBi]= I, we arrive at the discrete ra-

diance equation ,

L= Le+TL : (3.3)

In this infinite system of linear equations, T� [hB jT Bi] is an infinite matrix rep-

resenting the transport operator T . We call this matrix the transport matrix .

3.4.2 Transport Coefficients

The rs-th entry of T is a transport coefficient , representing the influence of the

coefficient of bs on the coefficient of br. It can be written explicitly as

Tr s = hbr jT bsi

=

Z

~

!

Z

y
br(y, ~!) (T bs)(y, ~!)dAyd~!

=

Z

~

!

Z

y
br(y, ~!)

Z

x
fr(~!xy,y, ~!)G(x,y)bs(x, ~!xy)dAxdAyd~! , (3.4)

where the notation “r s” is to emphasize that Tr s represents the influence of

the sender s on the receiver r . In this integral, the domain of x is the spatial

support of the sending basis function bs; the domain of y is the spatial support of

the dual receiving basis function br; and the domain of ~! is the angular support
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of br (directions on a hemisphere above y). Figure 3.4 shows an example of the

meaning of a transport coefficient. With the directional parameterization, most

transport coefficients are known a priori to be zero since the directional support

of the sending basis function only coincides with the spatial support of a small

fraction of the other basis functions. Therefore, the transport matrix is sparse. In

section 3.6 we argue that O(n1:5
b ) out of the O(n2

b) elements are nonzero.

x

y

bs

T bs

br

Figure 3.4

Computation of transport coefficient between two basis functions: the
inner product of T bs and br.

3.4.3 Approximate Solution

Above, we used an exact representation LB of L in the infinite basis B. In such

an infinite basis, the discrete radiance equation (3.3) is an exact solution to the

radiance equation (2.13). Now we will use a finite basis to get an approxi-

mate solution of the radiance equation. We approximate L in a finite basis eB=

[b1(x, ~!) � � � bn(x, ~!)] as L� eBeL :

The truncated radiance equation is

eL= eLe+
eTeL : (3.5)

This approximate solution method for the original integral equation (2.13) is

known as the Galerkin method. The Galerkin method seeks a solution that is
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exact once T and Le have been approximated in the finite-dimensional space

spanned by the finite basis eB.

The accuracy of a solution can be improved either by introducing more basis

functions with smaller support, by using higher-order basis functions with the

same support (Heckbert [48], Zatz [105], and others), or by choosing basis func-

tions that more closely match the solution (such as discontinuity meshing [49,

60]).

3.4.4 Related Methods

There are a number of related methods to solve discretized equations approxi-

mately. They differ in the requirement to the solution, more specifically to the

residual

r � eBeLe+T eBeL� eBeL :

� The Galerkin method insures that the residual is orthogonal to the basis

functions bi.

� The least squares method ensures that the residual is orthogonal to the im-

ages of the basis functions, T bi.

� The point collocation method ensures that the residual is zero at a finite

number of points and directions, r(xi, ~!i)= 0.

The term finite elements is a common name for all these methods. More on

the theory behind the Galerkin method and other finite-element methods can be

found in Delves and Mohamed [28] and the excellent course notes by Arvo [6].

3.5 Simple Algorithm

Here we will describe a simple, iterative, nonhierarchical solution method for

the truncated radiance equation. Later, when we improve the solution method
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with hierarchical bases and adaptive refinement, this simple algorithm will be

the core of the improved algorithms. The simple solution method has four com-

ponents:

1. Decide on the finite basis eB for radiance in the scene.

2. Compute the influence of each basis function on every other basis function

by forming the matrix eT= [heB jT eBi].

3. Solve the truncated radiance equation eL= eLe+
eTeL.

4. Render an image of the radiance distribution eBeL.

The matrices eL, eLe, and eT are approximate, both because they are truncated

versions of infinite matrices and because their entries are computed numerically.

Choosing a good finite basis eB (in step 1) would seem to require a priori

knowledge of the final radiance distribution. Thus, in practice, global illumina-

tion computations often require some degree of manual intervention: a coarse

solution is computed; the user determines where the solution needs to be more

accurate; then a new solution is found; etc. It can take several trials to get an ac-

ceptable solution. In contrast, with an automatic, adaptive solution method, as

described in the following chapters, this manual intervention can be avoided.

Step 2, computation of the entries of the transport matrix eTwas described in

section 3.4.2.

Let us now elaborate on step 3. The truncated radiance equation (3.5) can be

solved directly as

eL= (I� eT)�1eLe :

However, inversion of the matrix I�eT (using Gauss elimination) requiresO(n3
b)

operations in general, where nb is the number of basis functions. This is much

too expensive for accurate solutions in nontrivial environments.
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Fortunately the energy-absorbing nature of reflections helps us. Since some

energy gets absorbed at each reflection, the norm of the transport operator T is

less than 1. This means that the inverse can be expressed as a Neumann series,

(I� eT)�1 = ∑∞
i=1
eT
i
. We can then express the radiance as an infinite sum

eL=

 

∞

∑
i=1

eT
i

!

eLe =

∞

∑
i=1

(eT
i
eLe) :

This sum can be computed iteratively,

eL
(0)
 

eLe
eL
(k+1)

 

eTeL
(k)
+

eLe :

Furthermore, only few iterations are required to obtain a good approximation to

the solution. The less reflective the surfaces in the scene are, the faster the solu-

tion converges. Each multiplication requires O(n1:5
b ) operations since there are

O(n1:5
b ) nonzero elements in the transport matrix T (as shown in section 3.6). So

the solution time isO(n1:5
b ) with the constant depending on the reflectivity in the

scene. This iterative method is known as Jacobi solution.

We can improve the Jacobi method by using new values as soon as they are

computed. This is called the Gauss-Seidel method:

eL
(0)
 

eLe L(k+1)
r  Le,r+

r�1

∑
s=1

TrsL
(k+1)
s +

n

∑
s=r+1

TrsL
(k)
s

Thismethod can be implemented efficiently by substituting new values in place.

Golub and van Loan [37] describe these iterative solution methods in more de-

tail.

Step 4, rendering the resulting radiance distribution eBeL is straightforward:

cast a ray from the eye point through each pixel in the image. For each ray, find

the nearest intersection point with a surface in the scene, and evaluate the radi-

ance distribution there in each of the red, green, and blue color bands. These val-

ues give the color of the pixel. If an anti-aliased image is desired, several rays can

be cast through each pixel, and the radiance values averaged. More advanced
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rendering techniques can be used instead, for example Gouraud shading [42] or

a final gather as described in section 7.9.

The following pseudocode illustrates this solution method using the Gauss-

Seidel iterative solution:

procedureGlossyGlobalIllumination :

choose finite basis eB

eT [heB jT eBi]

eL  eLe

Solve(eL, eLe, eT)

RenderSolution(BL)

end procedure

procedure Solve(eL, eLe, eT):

repeat

for for each basis function coefficient `r do

`r  `e,r+∑sTrs`s

until convergence of eL

end procedure

3.6 Complexity of the Simple Algorithm

The simple algorithm is quadratic in the number of surface patches since trans-

port coefficients are computed between all scaling functions on mutually visible

patches. It is also simple to see that the algorithm is O(n1:5
b ) in the number of

basis functions nb. Let s be the number of basis functions in each dimension on

each patch. Then there are�(s4) four-dimensional basis functions on each patch.

Consider a point on a sending patch. Only O(s2) basis functions will have spa-

tial support at that point, and their directional supports divide the hemisphere

above the point. Between them, theseO(s2) basis functions can atmost transport
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light to all O(s4) basis functions on the receiver. So there are at mostO(s4) trans-

ports from basis functions covering a given point to another patch. The sending

patch is divided intoO(s2) different spatial supports, so the total number of pos-

sible transports between two patches is O(s6). Since the number of transports is

O(s6) and the number of basis functions nb is �(s
4), the number of transports is

O(n1:5
b ). This result was also indicated in Immel et al. [51].

In the following chapters, we will improve this basic algorithm with two hi-

erarchical approaches (wavelets and clustering), importance-driven refinement,

and a final gather in the rendering stage.



“We come now, however, to a point which is of importance.”

Memoirs of Sherlock Holmes

Chapter 4

Importance

For global illumination, we are often interested in generating an image from just

a single viewpoint, or a few images from a restricted set of views. Knowledge of

the viewpoint can be exploited by computing a view-dependent solution, where

the accuracy of different parts of the solution is determined by their potential

contribution to the image. How can we assure high accuracy of the radiance so-

lution where needed, but avoid wasting effort by computing radiance to high

accuracy everywhere? The answer is importance-driven refinement .

This chapter describes the theory of importance for glossy global illumina-

tion. First we give the background for the use of importance, and further moti-

vate it. Then we introduce a convenient mathematical notation, the concept of

adjoints. It follows directly from the definition of adjoints that the radiance equa-

tion and Kajiya’s “rendering equation” [54] are adjoint equations. We then de-

fine two equivalent types of importance. One is the adjoint of radiance, and the

other is related to the adjoint in the same way as radiance is related to two-point
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transport intensity. Even though these two types of importance are equivalent,

the second type is most convenient for glossy global illumination computations.

Finally, we describe the simpler case of importance for diffuse global illumina-

tion. It turns out that irradiance is the adjoint of radiosity, and since the diffuse

importance of Smits et al. [89] is also an adjoint of radiosity, it is transported like

irradiance.

4.1 Motivation

For refinement, we want to know how much each part of the radiance distribu-

tion contributes to the image. This contribution is useful to see if it is worthwhile

refining the solution at the (spatial and angular) support of that part. If the con-

tribution is small, there is no need to refine there.

Each part of the radiance distribution contributes to the image throughmulti-

ple bounces in the scene. To determine this contribution directly, wewould have

to solve the global illumination problem with each part as the only emitter, and

see how much light reached the eye after multiple bounces. But this computa-

tion requires solving a global illumination problem for each part of the solution

we consider for refinement, hardly a desirable method.

However, there is a surprisingly simple alternative that builds on the reci-

procity of light transport: Turn off the light sources, shine light of radiance 1

from the image in the directions that are within the field of view, and let that

light bouncemultiple times in the scene (reaching equilibrium). Now the contri-

bution of radiance fromeach part of the solution is proportional to the amount of

light reaching that part. The advantage of solving this global illumination prob-

lem is that with this solution, we can simply compute the contribution of each

part of the solution, without solving a new global illumination problem for each

part we consider for refinement. Still, we have to solve one global illumination
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problem (for importance) in order to make the solution of another global illumi-

nation problem (for light) more efficient. Where is the big win? The big win is

that we only solve each problem coarsely at first, and then use these solutions

together to guide the refinement of both. In this way, light is only refined where

important, and importance is only refined where bright.

The advantage of using importance-driven refinement is even larger for the

glossy global illumination problem than for diffuse global illumination: direc-

tional radiance is only refined if it is in an important part of the scene and in an

important direction .

4.2 Background and Overview

The first work on importance was done in nuclear physics (neutron transport

simulation); see for example Lewins [57]. Lewins mentions that the term “im-

portance” was coined by Soodak [90].

Smits et al. [89] introduced the use of importance for diffuse global illumina-

tion. Here we develop a directional type of importance for glossy global illumi-

nation.

The simplest definition of importance is as the adjoint of radiance. We de-

note this type of importance � �. By definition, it is transported like two-point

transport intensity L�. We then proceed to define a different, but related, kind

of importance that is transported like radiance L. This type of importance is de-

noted � .1 These two types of importance are equally “valid”; both can be used

to compute how much a given radiance distribution contributes to the image.

With the first type, the contribution is computed as a simple inner product, while

it will turn out that the second type requires multiplication by the geometric

1We chose the capital letter gamma as the symbol for importance since importance � and � �

is transported like radiance L and two-point transport intensity L�, respectively, and since “�” is
an “L” upside down.
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term G in the inner product. We nevertheless prefer the second definition, � ,

since it is algorithmically convenient to transport importance like radiance —

the same data structures and the same algorithm can be used.

More formally, we define importance as a dimensionless distribution, emit-

ted from the eye and transported like light. An inner product of importance and

a radiance distribution gives the power contributed to the image by that radi-

ance distribution. Importance and radiance are defined as solutions to the same

equation; only the boundary conditions are different.

4.3 Adjoints

In order to prove properties about importance, the concept of adjoints is a conve-

nientmathematical formalism. We define adjoint and self-adjoint operators, and

also adjoint equations and functions. In addition, we give some algebraic rules

for operators. Algebra textbooks, for example Lang [56] and Lipschutz [58], give

more complete descriptions of adjoints.

Recall from section 3.1 that the inner product of two functions f and g, both

defined on domain D, is

hf jgi �
Z

D
f(x)g(x)dx :

Definition Adjoint operators:

Two operators O and O� are adjoint (with respect to the inner product) if

hf jOgi= hO�f jgi

for all functions f and g.

The adjoint O� of an operator O is unique [56, 57]. Using the definition of adjoint

operators, it is easy to verify the following three algebraic rules: The adjoint of
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the adjoint of an operator is the operator itself,

(O�)� = O :

The adjoint operator is linear, that is, the adjoint of a sum of operators is the sum

of the adjoint operators,

(O+P )� = O�+P � :

Furthermore, the adjoint of an operator composed of two operators is the com-

position of the adjoint operators in reverse order,

(O �P )� = P � �O� :

Definition Self-adjoint operator:

The operator O is self-adjoint if O� = O.

With these definitions, we can now show that the operators for propagation

and reflection are both self-adjoint, and that T and T � are adjoint.

Lemma The propagation operator G is self-adjoint.

Proof Utilizing the symmetry of the geometric term G, we get

hL1 jGL2i =

Z

L1(y, ~!yx)G(x,y)L2(x, ~!xy)dAxdAy

=

Z

G(y,x)L1(y, ~!yx)L2(x, ~!xy)dAxdAy

= hGL1 jL2i

2

Lemma The reflectance operator R is self-adjoint.

Proof Reordering integrals and using Helmholz reciprocity of the BRDF fr, we

get

hL�1 jR L�2i =
Z

zy
L�1(z,y)

Z

x
fr(~!xy,y, ~!yz)L

�

2(x,y)dAxdAydAz

=

Z

xy

Z

z
fr(~!zy,y, ~!yx)L

�

1(z,y)dAzL
�

2(x,y)dAydAx

= hR L�1 jL
�

2i

2
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Theorem T � and T are adjoint operators.

Proof Since T � � G �R = G� �R � = (R �G)� and T � R �G it follows that T �

and T are adjoint. (This was shown in [17, 79, 96].) 2

Adjoint equations and adjoint functions are defined as follows:

Definition Adjoint equations and adjoint functions:

For an equation

g= Of

the adjoint equations are the set of equations

h= O�f �

for all functions h. Two functions f and f � are adjoint functions if they satisfy

adjoint equations. (The source term of the adjoint equation, h above, can be ar-

bitrary.)

Since adjoint equations are not unique, neither are adjoint functions. However,

given an adjoint equation and a specific source term h, the adjoint function f � is

unique if O� is invertible.

Examples The radiance equation (2.13) and the rendering equation (2.15) are

adjoint equations. Radiance L and two-point transport intensity L� are adjoint

functions since they satisfy adjoint equations.

4.4 Two-point Importance

Smits et al. [89] introduced importance for diffuse global illumination as the ad-

joint of radiosity. Here we will first show the most straightforward generaliza-

tion to glossy global illumination, importance as the adjoint of radiance.
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Definition Two-point importance:

Two-point importance � � is an adjoint function of radiance L that satisfies an ad-

joint equation of the radiance equation

�

�

= �

�

e +T �� � (4.1)

Equation (4.1) is of the same form as the rendering equation (2.15), but with a

different source term.

We want emitted importance to be defined such that the inner product

h�

�

e jLi=
Z

�

�

e (x,y)L(x, ~!xy)dAxdAy

is the power contributed directly to the image by radiance L. At the same time,

we know that the direct (“no-bounce”) contribution of radiance L(x, ~!xy) to the

power reaching the image is given by equation (2.3),

d�=G(x,y)L(x, ~!xy)dAxdAy

if y is on the image and ~

!xy points towards the eye point e. Hence we get the

following definition of the emitted two-point importance.

Definition Emitted two-point importance:

�

�

e (y,x)�

8

<

:

G(y,x), if y is on the image and on the line segment ex,

0, otherwise.

With this definition, the units of � � are the same as the units of the geometric

term, steradian per square meter [sr=m2]. The inner product h� �e jLi is illus-

trated in figure 4.1.

With this definition of emitted importance, the importance of directly visible

points depends on their distance and orientation. This is desirable since an in-

correct radiance is less significant if it covers only a single pixel than if it covers

many pixels.
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Figure 4.1

The direct contribution of radiancedistribution L to the image is the in-
ner product (over points in the scene and points on the image) of emit-
ted importance � �e and the radiance distribution L.

Now we need to prove that the expression for the direct contribution can be

generalized to total contribution through infinitely many bounces.

Theorem The power that a radiance distribution L contributes to the image is

the inner product h� � jLi.

Proof Since reflections are energy dissipating, the norm of T � is less than unity.

Therefore I �T � is invertible (I is the identity operator), and the inverse can be

expressed as a Neumann series, (I �T �)�1 = ∑∞
i=0(T

�)i. This sum can be rewrit-

ten using linearity of the adjoint as (∑∞
i=0T

i)
�

. It follows that we can rewrite the

equilibrium equation for two-point importance (4.1) in the form

�

�

= (I�T �)�1� �e = ∑∞
i=0(T

�)i� �e = (∑∞
i=0T

i)
�

�

�

e :

A radiance distribution L bounces infinitely in the scene (getting weaker with

each bounce), resulting in the radiance distribution ∑∞
i=0T

iL. The contribution

to the image (through all bounces) of distribution L is h� �e j ∑
∞
i=0T

iLi. This con-

tribution can be rewritten as follows:

h�

�

e j ∑
∞
i=0T

iLi = h(∑∞
i=0T

i)
�

�

�

e jLi= h�
�

jLi :

2
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Importance defined as the adjoint of radiance was used by Pattanaik [68, 69]

forMonte Carlo radiance computations, and byAupperle andHanrahan [10] for

a finite-element method.

4.5 Directional Importance

It might seem natural to use two-point importance � �(x,y) since the inner prod-

uct h� � jLi is exactly the contribution we need to know for refinement. But it is

easier to represent and transport importance like radiance (for the same reasons

as for using radiance L rather than two-point transport intensity L�, and also be-

cause we already chose to use radiance).

Lewins [57] suggests the use of a weight function to define a function re-

lated to the adjoint, but satisfying a more suitable equation — for example the

same equation as the primal quantity (neutron density in his case, radiance in

our case). For radiance, theweight function turns out to be the geometric termG,

and we can define a term, � , related to the adjoint � � by an equation similar to

the definition of two-point transport intensity (2.4).

Definition Directional importance:

Directional importance � is defined by the following relation to two-point im-

portance

�

�(x,y)=G(x,y)� (x, ~!xy) : (4.2)

Using operator notation, we can write this definition more compactly as

�

�

=G� :

We defined two-point transport intensity, in equation (2.4), as the product of the
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geometric term and radiance. Here the definition works in the opposite direc-

tion. Directional importance is defined such that, when multiplied by the geo-

metric term, it becomes two-point importance. In this definition, y is the first

point visible along direction ~

!xy. For other points along that direction, the geo-

metric term is zero, and hence the equation does not impose any constraint on

the value of � . It follows from the definition that directional importance is di-

mensionless.

Recall that h� � jLi is the power that radianceL contributes to the image. With

directional importance, this contribution can be expressed as hG� jLi, or equiv-

alently as h� jGLi. It follows that hG� jLi = h� jGLi is the power that radiance

distribution L contributes to the image . Now we want to show that this type of

importance is transported like radiance. But first a necessary lemma concerning

the geometric operator:

Lemma Thegeometric operatorG has aunique inverse in a closed environment.

Proof Recall that G is the operator that converts radiance into two-point trans-

port intensity. In a closed environment, every radiance uniquely determines the

two-point transport intensity from its point of origin to the nearest point in its

direction. Conversely, each radiance is uniquely determined by the two-point

transport intensity from its point of origin to the first point in the direction of

the radiance. Therefore, if a radiance distribution L is known for the environ-

ment, the two-point transport intensity distribution L� is uniquely determined,

and vice versa. Therefore, G is invertible. 2

Theorem Directional importance � satisfies an equilibrium equation like the ra-

diance equation (2.13),

� = �e+T � : (4.3)
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Proof Starting from the equilibrium equation for two-point importance (4.1), us-

ing the definitions of � , T �, and T , and the lemma above, we get

�

�

= �

�

e +T �� �

, G� =G�e+ (G �R )(G� )

, � = �e+R �G�

, � = �e+T �

2

The theorem can also be seen directly: since � � and � are adjoint, and L� and L

are adjoint too, and since L� satisfies the same equation as � �, � must satisfy an

equilibrium equation like radiance L does.

Since the emitted two-point importance is G(x,y) if y is on the line segment

ex, and since directional importance is defined by equation (4.2), the emitted di-

rectional importance �e has to be 1 in all directions from the eye through the im-

age:

�e(y, ~!ey)�

8

<

:

1, if y is a point on the image,

0, otherwise.

In conclusion, wedefine directional importance � such that the inner product

hG� jLi = h� jGLi is the power that radiance L contributes to the image, since

this definition makes importance fulfill an equilibrium equation like the radi-

ance equation. Put another way, the contribution of radiance to the image can

be found by solving a (light) transport problem with the image emitting light.

The fact that importance is propagated like light allows us to use data structures

and transport algorithms that treat importance as if it were another set of color

channels.

This type of importance was introduced by Christensen et al. [17] (there it

was called “exitant directional importance”), and used byChristensen et al. [19],
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Schröder and Hanrahan [79] with a spatial parameterization, and Veach and

Guibas [96] for a Monte Carlo method.

4.6 Diffuse Importance

The first work on importance in global illumination was done by Smits et al. [89]

for the diffuse case. They showed that importance, defined as the adjoint func-

tion of radiosity, could be used to determine the influence on the image. Here we

will show that radiosity and irradiance are adjoint functions and satisfy adjoint

equations. Then we show that diffuse importance, as defined by Smits et al., is

transported like irradiance, and discuss their choice of source term for impor-

tance.

Recall that irradiance E is the integral of all radiance incident on a point,

E(y)�
Z

Ω+

Lin(y, ~!) cos�yd~! =
Z

x
G(x,y)L(x)dAx ,

where the change of integration domain was done using equation (2.7) and the

definition of the geometric term (2.2). We canwrite the diffuse radiance equation

(2.18) as

L(y)= Le(y)+ fr(y)E(y) :

Then the irradiance at point z is

E(z) =

Z

y
G(y,z)L(y)dAy

=

Z

y
G(y,z)

�

Le(y)+ fr(y)E(y)
�

dAy

=

Z

y
G(y,z)Le(y)dAy+

Z

y
G(y,z) fr(y)E(y)dAy :

If we consider
R

yG(y,z)Le(y)dAy a source term Ee for irradiance, we get an

equilibrium equation equivalent to the diffuse radiance equation (2.18), but ex-

pressed in irradiance,

E(z)= Ee(z)+
Z

y
G(y,z) fr(y)E(y)dAy : (4.4)
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Wewill now show that the equilibrium equation for irradiance (4.4) is adjoint

to the diffuse radiance equation (2.18), and that irradiance and radiosity are ad-

joint functions.

The transport operator for diffuse radiance (applied to a radiance distribu-

tion) is

(TdL)(y)� fr(y)
Z

x
G(x,y)L(x)dAx :

The transport operator for irradiance (applied to an irradiance distribution) is

(T �d E)(x)�
Z

y
G(y,x) fr(y)E(y)dAy :

It is simple to show that these transport operators are adjoint, as already indi-

cated by the choice of notation Td and T �d :

hE jTdLi =
Z

y
E(y) fr(y)

Z

x
G(x,y)L(x)dAxdAy

=

Z

x

Z

y
G(y,x) fr(y)E(y)dAyL(x)dAx

= hT �d E jLi :

Since these operators are adjoint, it follows that equations (2.18) and (4.4) are ad-

joint equations, and therefore, radiosity and irradiance are indeed adjoint func-

tions.

Smits et al. defined diffuse importance, “	”, as an adjoint of radiosity. It ful-

fills an equilibrium equation like (4.4),

	 (z)= 	e(z)+
Z

y
G(y,z) fr(y)	 (y)dAy :

They defined emitted importance such that everything visible has importance 1,

independent of orientation and distance to the eye. With their definition of emit-

ted importance, the inner product h	 jBi is the power contributed by a radiosity

distribution B to surfaces visible in the image.

Apart from the directionality, the main difference between 	 and our two

types of glossy importance is thatwe prefer a definition of emitted importance in
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which orientation and distance to the eye are taken into account. In otherwords,

we prefer a definition that makes the inner product of importance and radiance

be the power contributed to the image rather than the power contributed to the

visible surfaces.



“I praise thy resolution”

Euripides

Chapter 5

Wavelet Representation

A straightforward method for approximate solution of the discrete radiance

equation (3.3) was introduced in chapter 3. It represents the solution with a fixed

number of basis functions and transports light between all basis functions to

compute the solution. Ifnb is the number of basis functions, this method requires

O(n1:5
b ) transports to compute an approximate solution.

Instead, we use a hierarchical, or multiresolution , method, which results in

onlyO(nb) transports. With this method, we first compute a very rough solution,

and then refine the representation and transports based on that solution. After

the refinement, an improved solution can be computed, new refinements can be

performed, and so on. The multiresolution method utilizes two facts: in some

parts of the scene, radiance distributions can be represented with sufficient ac-

curacy using only a few basis functions; and even where the radiance distribu-

tion is representedwithmany basis functions, only a fewof these basis functions

need to transport light to many other basis functions.
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In this chapter, we only consider transports between pairs of patches and

how these transports can be represented hierarchically. In the following chap-

ter, we extend this hierarchical method to clusters of patches. Importance can be

represented in a hierarchical basis and transported discretely in exactly the same

way as radiance. In this chapter, we will therefore focus on radiance. We first

motivate the use of hierarchical bases and describe the development of these

in the area of global illumination. We then present some background on mul-

tiresolution analysis, a convenient framework for describing hierarchical bases.

We describe one-dimensional wavelet bases and the properties that are desirable

when choosing awavelet basis. The four-dimensional bases necessary for repre-

senting radiance distributions can be constructed from one-dimensional wave-

let bases. Then, the discrete transport of radiance represented in a wavelet basis

is described. Finally, a glossy global illumination algorithm using wavelets and

adaptive refinement is described.

Details of our implementation of the algorithm, such as how each transport

coefficient is computed efficiently and adaptively, how visibility is computed,

etc., are described in chapter 7.

5.1 Hierarchical Bases

For a given function space V, there aremany possible sets of basis functions that

span V . We are free to choose one that makes computations efficient; for ex-

ample, a hierarchical basis. Results by Alpert [2, 3, 4], Beylkin et al. [13, 14],

Gortler et al. [41, 78], Hanrahan et al. [45, 46] and others indicate that significant

performance gains can be achieved by using a hierarchical basis.

Alpert [3] and Beylkin et al. [13] discovered that a large class of operators

can be approximated with sparse matrices in a wavelet basis. In particular, they

studied integral operators where the kernel K(u,v) is singular along the diago-
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nal (when u= v), and the kernel is sufficiently smooth away from the diagonal.

They showed that for a univariate wavelet basis with nb basis functions, certain

wavelet decompositions result in a matrix with O(nb) significant entries.

The use of hierarchical bases in global illumination started with Cohen et al.

[23]. They observed that, in many cases, to get a satisfying result when trans-

porting light between two patches, the accuracy at the receiving patch needs to

be higher than at the sending patch. They therefore set up transports from basis

functions covering an entire patch to many smaller basis functions at the receiv-

ing patch. The large basis function at a patch corresponds to the average of all

the smaller basis functions at that patch. This means that there are two levels of

representation of the radiosity at all patches.

Hanrahan et al. [45, 46] introduced a radiosity algorithm that uses a fully hi-

erarchical approach. Their algorithm uses a hierarchical set of basis functions at

both the sending and receiving patch. At the coarsest level, there is a single basis

function on each surface patch. If the transport between two such basis functions

is too coarse, it is refined to a transport between smaller basis functions. A basis

function is allowed to transport to another only if the error in the transport falls

below a given threshold. In general, coarse basis functions suffice for long dis-

tances and dim light, while more detailed basis functions are required for shorter

distances and brighter light. Gortler et al. [41, 78] generalized the hierarchical ra-

diosity method to use a wavelet representation.

In themore general context of radiance, Aupperle andHanrahan [9] used hi-

erarchical piecewise-constant basis functions for a spatial parameterization of

radiance; Schröder and Hanrahan [79] and Pattanaik and Bouatouch [70] used

wavelets for spatial parameterization of radiance; while Christensen et al. [19]

used wavelets for a directional parameterization of radiance. In this chapter, we

construct a hierarchical basis for efficiently representing radiance distributions

along the lines of Christensen et al. [19].
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5.2 Multiresolution Analysis

Hierarchical bases can be formally described with multiresolution analysis. Be-

fore describing multiresolution analysis in detail, it is interesting to compare it

to function sampling and Fourier analysis. If a function is sampled at certain

points, the value of the function is fully known at these points, but no informa-

tion about the frequency of the function is known. A Fourier analysis of the func-

tion gives information about the frequencies of the function, but no information

about the values of the function. In contrast, a multiresolution analysis gives in-

formation about local variation of the function, a mix of value and frequency in-

formation.

Multiresolution analysis as formulated by Mallat [62] provides a convenient

framework for studying hierarchical bases. Chui [20], Daubechies [27], DeRose

et al. [29], Stollnitz et al. [93] and others givemore elaborate explanations ofmul-

tiresolution bases.

There are two basic ingredients for a multiresolution analysis: an infinite

chain of nested linear function spaces V 0
� V1

� V 2
� �� � and an inner prod-

uct hf jgi of functions f , g in V j. The basis functions for the spaces V j are called

scaling functions and are usually denoted by the symbol �.

Example The simplest multiresolution basis is theHaar basis in one dimension.

Let us consider the Haar basis on the interval [0,1]. The space V j consists of

piecewise-constant functions on [0,1] with discontinuities at f0,1=2 j,2=2 j, :::,1g.

The space V j is spanned by scaling functions �
j
i(u). In the Haar basis, the scal-

ing functions are piecewise-constant functions known as the Haar functions or

“box” functions,

�

j
i(u)=�(2

ju� i) for i= 0, : : : ,2 j
�1
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with

�(u)=

8

<

:

1, for 0� u< 1

0, otherwise.

A few Haar scaling functions are shown in figure 5.1. Clearly the condition

V j
�V j+1 holds since we can represent any function in space V j in space V j+1 by

copying each coefficient: �
j+1
2i = �

j+1
2i+1 = �

j
i. The Haar scaling functions shown

here can be normalized to form an orthonormal, self-dual basis (as discussed in

section 3.3).
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Figure 5.1

Haar scaling functions �
j
i.

As discussed above, a function can be approximated by a weighted sum of

scaling functions. Alternatively, we can represent the same approximation as

scaling functions in V 0, giving coarse overall shape, along with detail at finer

and finer resolution. Detail is accounted for by functions in the orthogonal com-

plement spaces W j defined by

W j
� ff 2 V j+1

j hf jgi= 0 8g2 V j
g:

SpaceW j is the orthogonal complement of V j in V j+1. Intuitively, wavelet space

W j contains the functions that are in V j+1, but “missing” from V j. Wavelets re-

fer to basis functions for the orthogonal complement spacesW j, and are usually

denoted by the symbol  . The spaces W j are sometimes called wavelet spaces .
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Example Thewavelet spacesW j corresponding to theHaar scaling functions are

spanned by piecewise-constant wavelets  
j
i(u),

 

j
i(u)= (2 ju� i)

with

 (u)=

8

>

>

<

>

>

:

1, for 0� u< 1=2

�1, for 1=2� u< 1

0, otherwise.

Each wavelet is a linear combination of scaling functions from the next higher

space:  
j
i =�

j+1
2i ��

j+1
2i+1. A few Haar wavelets are shown in figure 5.2.
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Figure 5.2

Haar wavelets  
j
i.

Orthogonal complements are often written as V j+1
= V j

�W j. Any function

f j+1 2V j+1 can bewritten uniquely as an orthogonal decomposition f j+1= f j+g j,

where f j 2 V j and g j
2W j. The space V j can be fully decomposed as

V j
= V 0

�W 0
��� ��W j�1

:

Therefore, a hierarchical basis forV j canbe formedby selecting a scaling function

basis forV0 together withwavelet bases for the spacesW 0, : : : ,W j�1. The scaling

functions spanningV0 represent coarse shape, while the wavelets provide detail

at increasing resolutions.

In the remainder of this section, we will give examples of some of the most

commonly used wavelet bases: spline wavelets, Daubechies’s coiflets, multiwa-



72

velets and flatlets. In order to appreciate the properties of these wavelet bases,

the concept of vanishing moments is necessary.

Definition Vanishing moments:

A function f has m vanishing moments if it is orthogonal to all monomials of

degree less than m,

f ? xd for 0� d<m :

A basis is said to havem vanishing moments if some of the basis functions have

m vanishing moments. In general, the more vanishing moments a basis has,

the fewer coefficients it will take to represent a function resembling a low-order

polynomial.

The Haar wavelets have only a single vanishing moment; they are orthogo-

nal to constant functions, but not to linear functions. The following families of

wavelets have as many vanishing moments as the order of the basis. However,

they also have some serious drawbacks, as will be described in section 5.3.2.

Example Another example of a hierarchical basis is the basis consisting of piece-

wise-linear functions, the linear B-splines. We call the corresponding wavelets

splinelets . A few of these scaling functions and wavelets (defined on the inter-

val [0,1] for this example) are shown in figure 5.3. The basis shown is contin-

uous, but not smooth. Smooth bases can be constructed from higher-order B-

splines [29, 31, 93]. The corresponding wavelets have vanishing moments equal

to the order of the spline.

Example Daubechies [27] defined a class of wavelets called “coiflets”. These

basis functions have as many vanishing moments as their orderN, and are con-

tinuous and even smooth for higher orders. For orderN= 2, the scaling function

and wavelet are continuous, but not smooth; they are shown in figure 5.4. The

scaling functions and wavelets are orthonormal and therefore self-dual. On the
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Figure 5.3

Linear B-splines and splinelets.

down side, they have irregular structure and significant overlap, and aredefined

on the infinite interval. Meyer [63] andChui andQuak [21] describe away to de-

fine similar (but slightly more complicated) wavelets on a bounded interval.
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Daubechies’s scaling function and “coiflet” of orderN= 2.

Example Gortler et al. [41, 78] used wavelet bases to represent radiosity. They

used two families of non-overlapping wavelets: multiwavelets (defined by Al-

pert [4]) and flatlets , shown in figures 5.5 and 5.6. Multiwavelets of order n are

constructed from pieces ofmonomials of order up to n, and flatlets of order n are
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constructed from 2n piecewise-constant pieces. These wavelets have many van-

ishing moments and do not overlap translates of themselves — desirable prop-

erties for some applications, as will be explained in section 5.3.2. Schröder and

Hanrahan [79] used multiwavelets to represent radiance.
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Figure 5.5

Multiwavelets of order 2.

V 0

z }| {

1
1

1

u

�

0
0(u)

-1
1

1

u

�

0
1(u)

V 1

z }| {

-1
1

1

u

�

1
0(u)

-1
1

1

u

�

1
1(u)

-1
1

1

u

�

1
2(u)

-1
1

1

u

�

1
3(u)

-1
1

1

u

 

0
0(u)

-1
1

1

u

 

0
1(u)

| {z }

W 0

-1
1

1

u

 

1
0(u)

-1
1

1

u

 

1
1(u)

-1
1

1

u

 

1
2(u)

-1
1

1

u

 

1
3(u)

| {z }

W1

� � �

� � �

Figure 5.6

Flatlets of order 2.
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5.3 Multidimensional Wavelet Bases

With the formalism described in the previous section, we are ready to construct

wavelet bases for four-dimensional radiance distributions. As is common, we

split the surfaces into patches such that the spatial variables on each patch can

beparameterized on the unit square [0,1]2; see figure 5.7. Then three possibilities

for parameterization of the remaining two dimensions are described: spatial pa-

rameterization, wavelets defined on the hemisphere, and transformation of the

hemisphere to a square. We discuss the properties of each of these possibilities.

-

-

6

u1

u2

3D surface patch 2D parameter space

Figure 5.7

Spatial projection: mapping between a 3D surface patch and the 2D
parameter space.

Once the domain is chosen, we want to construct bases for it using tensor

products of univariate basis functions. We have a choice of how to combine one-

dimensional wavelet bases to form the required four-dimensional wavelet bases.

These choices are called standard and nonstandard constructions, respectively.

5.3.1 A Convenient Domain for Radiance

A spatial parameterization of radiance, like Schröder and Hanrahan [79] and

Pattanaik and Bouatouch [70] used, gives the domain [0,1]2 on both the send-

ing and receiving patch, so the domain of the radiance distribution is the four-

dimensional hypercube [0,1]4. Aswe shall see in section 5.3.3, it is simple to con-

struct bases for [0,1]4 from tensor products of one-dimensional wavelets.
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However, we want a directional parameterization of radiance since it leads

to a small number of initial light transports between basis functions (see sec-

tion 2.7). The domain of the radiance distribution on each patch is then [0,1]2�

Ω+, where Ω+ is the unit hemisphere. Schröder and Sweldens [80] describe wa-

velets defined on a spherical domain. Using their wavelets, a basis for radiance

can be constructed froma tensor product of bases for the unit square and the unit

hemisphere.

We use a simpler method, mapping the hemisphere to a unit square. Bymap-

ping Ω+ onto [0,1]2, we get a domain [0,1]4 for directional radiance. This pro-

cess is described below. We can then use straightforward tensor products of one-

dimensional basis functions for both angular and spatial variations.

Mapping the hemisphere to a unit square is done in two steps. First we use

gnomonic projection to map between points in Ω+ and points on a disc with ra-

dius π=2. As shown in figure 5.8, gnomonic projectionmapsgreat circles through

the pole ofΩ+ to radial lines, andpreserves arc length along these curves. We use

this map because it is easily computed and introduces only mild distortion. An

alternative would be “flat” projection of Ω+ onto a unit disc by simply ignoring

the height component, but this projection results in points near the equator being

mapped very densely near the circumference of the circle.

The gnomonic projection is followed by a radial “stretch” of the disc to ex-

actly cover the unit square, also shown in figure 5.8. The composition of these

mappings is an invertible mapping between the unit hemisphereΩ+ and the unit

square [0,1]2.

One might worry that this mapping distorts radiance distributions to an un-

acceptable degree. However, figure 5.9 shows a typical radiance distribution (re-

sulting fromglossy reflection of light from a single point) before and after the an-

gular mapping. After the mapping, the distribution is still continuous, but has

a first-derivative discontinuity along the diagonals of the unit square.
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Angular projection: gnomonic projection and radial “stretch”.
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Radiance distribution before and after angular mapping.

5.3.2 Choice of Wavelet Basis

There aremanydesirable properties for a hierarchical basis for radiance, andnat-

urally trade-offs are necessary. Here, wefirst summarize the properties desirable

in a wavelet basis for use in glossy global illumination, and then evaluate the

wavelet bases described in section 5.2 with respect to these properties. Themost

important properties are:

� Bounded domain. Multiresolution analysis is usually formulated for

functions on the unbounded real line, whereas we wish to represent ra-

diance distributions defined on bounded domains. Unbounded wavelets

could be used on a bounded interval by artificially extending the functions

of interest [27], but it is unclear how radiance would be extended beyond

the geometric extent of surface patches without introducing a number of

artifacts. We have found it more convenient to use wavelets defined on a

bounded interval.
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� One-dimensional V 0. The high dimensionality of the radiance trans-

port problem makes it advantageous to have only one scaling function in

spaceV0: A single scaling function leads to a single light transport between

two patches at the coarsest level, while (as shown in section 5.3.3) having

two one-dimensional scaling functions leads to 16 four-dimensional scal-

ing functions, requiring 256 transports between two patches at the coarsest

level.

� Sparse matrix. The sparseness of the transport matrix is related to the

number of vanishing moments of the wavelets [3, 4, 41]. The more vanish-

ingmoments, the sparser thematrix will be. However, waveletswithmore

vanishing moments are either of higher polynomial order or have larger

support. In both cases, numerical integration required for computing the

matrix entries becomes more expensive. Also, as the support of the wave-

lets increases, nonsmooth features such as singularities and shadow edges

will fall under the support of more basis functions and will result in more

non-negligible coefficients.

� Efficient numerical integration. The Galerkin method requires that we in-

tegrate the transport operator with basis functions (and their duals, if the

basis is not orthonormal) to compute transport coefficients. It is advanta-

geous to use basis functions forwhichwe can develop inexpensive numeri-

cal integration formulas. Such inexpensive formulas require small support

and low polynomial order.

We will now judge several wavelet bases in light of the listed requirements.

The Haar basis has several advantages, including a one-dimensional space

V 0, orthonormality (and therefore self-duality), compact support, and simple

numerical integration formulas. It has two disadvantages: it is discontinuous,

and the transport matrix is not as sparse as for bases with more vanishing mo-



79

ments. The discontinuities can be ameliorated by performing a final gathering

step during rendering [19, 61, 75, 87]. The non-optimal sparsity is to some extent

overcome by the compact support and simple numerical integration.

Splinelets can be defined on a bounded domain as in the example in sec-

tion 5.2. Also, splinelet bases can be “extended” such that space V 0 becomes

one-dimensional by including extra levels in the basis. For an example, see fig-

ure 5.10. This basis is both continuous and fulfills the two first requirements

above. However, having continuous basis functions on each patch is not suffi-

cient to ensure a continuous solution; continuity must also be enforced across

boundaries between adjacent patches, or the basis functions must be defined

over complex shapes with arbitrary topology. Both approaches seem unneces-

sarily complicated compared to the alternative: a discontinuous basis with a fi-

nal gathering step. but at the same time the splinelets have wider support and

more costly integration formulas.
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Figure 5.10

A continuous linear wavelet basis with just one scaling function: Li-
near B-splines and wavelets on domain [0,1] extended down to a con-
stant function.

The “coiflets” defined by Daubechies are a family of wavelets where both

scaling functions andwavelets havemanyvanishingmoments. For coiflets of or-
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derN, the scaling function is orthogonal tomonomials of degree less thanN (ex-

cept constants), and the wavelets are orthogonal to all monomials of degree less

than N. Furthermore, coiflets are smooth: the higher the order N, the smoother

the coiflet and scaling function are. The many vanishing moments and smooth-

ness are very desirable properties in a wavelet basis. However, coiflets are de-

fined on the real line and are therefore not directly useful for our purposes.

Meyer [63] modified these to be defined on the interval [0,1]. If these wavelet

bases were extended to have a one-dimensional spaceV 0, they could be used for

glossy global illumination. They have many vanishing moments, so if the ker-

nel of the transport operatorwere everywhere-smooth, these wavelets would be

ideal. However, the basis functions overlap each other. With a nonsmooth ker-

nel, as the transport operator has, many basis functions will have support on a

discontinuity or singularity. This overlap reduces the potential sparsity.

Flatlets are defined on the interval [0,1] and can easily be extended to have a

one-dimensional space V 0. They have more vanishing moments than the Haar

basis, increasing the sparsity of the transport matrix. On the other hand, flatlets

have wider support and more costly integration formulas. Multiwavelets also

require costly integration formulas.

There are more wavelet bases than the ones described here, each with its

own set of advantages and disadvantages. We have experimented with spline-

lets [18], Daubechies’s coiflets, and the Haar basis. As a result of these exper-

iments — and weighing the trade-offs above — we have chosen to implement

our glossy global illumination algorithm using the Haar basis.

Schröder andHanrahan [79] presented a comparison of wavelet bases for ra-

diance inwhich they examined rates of convergence, integration expense and ac-

curacy, and the amount ofwork required to obtain a solution of a given accuracy.

They showed that linear bases are best for reasonable accuracies. Higher-order

bases converge at a faster rate, but the gain only shows for very high accuracies.
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5.3.3 A Wavelet Basis for Radiance

Now we want to construct basis functions on the four-dimensional hypercube

[0,1]4 using tensor products of univariate basis functions. Here, the construc-

tions are done for the Haar basis, but the tensor-product constructions can be

used for any wavelet basis.

A uniresolution basis for spaceV j
�V j
�V j
�V j consists of all tensor products

�

j
i1
(u1)�

j
i2
(u2)�

j
i3
(u3)�

j
i4
(u4) with 0� i1, i2, i3, i4 < 2 j

:

For hierarchical bases, there are two alternative methods: the so-called “stan-

dard” and “nonstandard” constructions [13].

The standard construction forms a basis from all possible tensor products of

univariate basis functions: scaling functions inV0 andwavelets in higher spaces.

For the Haar basis, the univariate basis functions are �
0
0,  

0
0,  

1
0,  

1
1, ...,  

j�1

( j�1)2�1.

So the four-dimensional basis consists of the set

n

�

0
0, 

0
0, 

1
0, 

1
1, : : : ,  

j�1

( j�1)2�1

o4

:

In the nonstandard construction , each tensor product consists of univariate basis

functions in the same spaceV j, including scaling functions at all levels. Four uni-

variate scaling functions make a four-dimensional scaling function for spaceV 0.

All other combinations of four univariate scaling functions and wavelets make

four-dimensional wavelets for higher spaces W j.

�
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j
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j
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j
i4
j 0� j< J; 0� i1, i2, i3, i4 < 2 j

o

:

This construction restricts the support of multivariate Haar basis functions to be

square.

Example As four-dimensional bases are hard to visualize, consider the Haar

spaceV2 for twodimensions. The standard andnonstandard basis constructions
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are illustrated in figure 5.11. To get a feel for the shape of these basis functions,

a few of them are shown in figure 5.12.
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Figure 5.11

The standard and nonstandard constructions of a two-dimensional
Haar wavelet basis for spaceV 2. The crosses “�” indicate the univari-
ate basis functions that are combined in the two-dimensional basis.
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Examples of two-dimensional Haar basis functions. The functions
are 1 in the white areas, �1 in the black areas, and 0 in the gray areas.

We chose the nonstandard basis construction primarily because the required

data structures are simpler than for the standard basis construction (see sec-

tion 7.7). In the remainder of this section, we will describe some of the details

of the nonstandard construction.

Let u= (u1,u2,u3,u4) denote a point in [0,1]4, and let i= (i1, i2, i3, i4) denote a

four-componentmulti-index of integers. The four-dimensional scaling functions

for V j take the form

����

j
i(u) � �

j
i1
(u1)�

j
i2
(u2)�

j
i3
(u3)�

j
i4
(u4) :
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That is, the scaling functions for resolution j consist of all possible products of

the one-dimensional scaling functions for resolution j. The four-dimensional wa-

velets spanning the orthogonal complement W j are formed by taking all other

products of scaling functions and wavelets for resolution j. These wavelets con-

sist of 15 types:

��� 

j
i(u), �� �

j
i(u), ��  

j
i(u), : : : ,     

j
i(u) :

We take as our basisB the set of basis functions spanningV 0,W0,W1, : : : for each

patch in the scene.

As for univariate bases, we need dual basis functions to compute basis func-

tion coefficients. Fortunately, multivariate dual functions are simple to construct

fromunivariate dual functions since duals of products are products of duals. For

example,

��  

j

i(u) = �

j

i1
(u1)�

j

i2
(u2) 

j

i3
(u3) 

j

i4
(u4) :

Gortler et al. [41, 78] and Schröder and Hanrahan [79] use a scaling function

representation at all levels (for radiosity and radiance, respectively). Their ap-

proach therefore requires “pushing” and “pulling” to distribute transported ra-

diance to other levels of the hierarchy before the next transport iteration. By con-

trast, we use a wavelet representation inwhich all basis functions are orthogonal

to basis functions at other levels.

It seems that there is great potential advantage in separating the spatial from

the angular resolution. For instance, a small glossy patch should bemore refined

in the directional dimensions than in the spatial dimensions; and a large, slightly

glossy patch needs more refinement in the spatial dimensions than in the angu-

lar. We have not experimented with such standard basis construction, but sug-

gest it as a topic for future research.
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5.4 The Hierarchical Galerkin Method

When the basis is nonhierarchical, light has to be transported between all basis

functions with appropriate support, meaning that O(n1:5
b ) transport coefficients

have to be computed. The use of hierarchical bases allows the transport operator

to be expressedas a sparsematrixwith onlyO(nb) significant entries. Thismeans

that the multiplication with the transport matrix in each Gauss-Seidel iteration

(see section 3.5) can be performed in time linear in the number of basis functions.

Hanrahan et al. [46] usedHaar scaling functions for a hierarchical representation

of radiosity. Gortler et al. [41, 78] also used a hierarchical scaling function rep-

resentation of radiosity, but used scaling functions corresponding to multiwa-

velets and flatlets. Schröder and Hanrahan [79] used a similar scaling function

representation for radiance while Christensen et al. [19] used a wavelet repre-

sentation.

Here we will describe the choices in operator decomposition, that is, which

basis functions are used to represent the radiance distribution and which basis

functions can transport light to with each other. We distinguish between three

decomposition of an operator: the so-called “standard” and “nonstandard” de-

compositions [13] and a “HR-style” decomposition [46].

To illustrate the advantages of a wavelet decomposition, let us first consider

an example of a matrix in a nonhierarchical basis. To ease illustration of the

concepts, it is necessary to reduce the dimensionality of the global illumina-

tion problem. We consider glossy reflection in “Flatland” [1, 41, 50, 78], a two-

dimensional environment. In Flatland, radiosity only falls off linearly with the

distance, and not with the square of the distance (as in three-dimensional envi-

ronments). Radiance distributions in Flatland are two-dimensional: one param-

eter corresponds to position and the other to direction.
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Example A very simple scene consists of two parallel line segments of unit

length with unit distance between them. Figure 5.13 shows this scene. Radiance

is transported from point x= (u,0) on one line segment to point y= (v,1) on the

other line segment. The receiving line segment has a simple Phong-like glossy

reflection with exponent 2.

In space V3, each line segment is discretized into 8 positional scaling func-

tions, and the semicircle of directions at each patch is divided into 8 angular scal-

ing functions. The matrix entries (transport coefficients) of the matrix are

Trs = h�
3
�

3

r jT �
3
�

3
si=

Z

�

3
(v)�

3
(~!) fr(~!uv,v, ~!)G(u,v)�

3
(u)�

3
(~!uv)dudvd~! :

The direct matrix is shown in figure 5.14. It is sparse: 654 coefficients out of 84=

4096 are nonzero.

We will return to this example in two following examples, to illustrate the

advantage of a wavelet decomposition.

-
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0 1
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y

Figure 5.13

Parallel lines in Flatland.

5.4.1 Standard Operator Decomposition

We can change the basis of the radiance distribution into a wavelet basis, as de-

scribed in section 5.3.3. By doing so, most radiance coefficients— corresponding

to fine detail — will be small. Furthermore, many transports will be very weak

since small details in the radiance distribution in one part of the scene do not

have significant influence on small details elsewhere in the scene.
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Figure 5.14

Matrix in space V3 for parallel lines. The radius of each dot is propor-
tional to the magnitude of the corresponding matrix entry.

Utilizing coherency in both spatial and directional dimensions allows better

compression — even in Flatland. Therefore, the nb� nb matrix is transformed

into a four-dimensional hypercubewith side-length
p

nb. The basis for radiance

is transformed similarly: rather than considering it as one long vector of ba-

sis functions, it can be more efficiently compressed when considered as a two-

dimensional matrix. (For three-dimensional scenes, the matrix can be trans-

formed into an eight-dimensional hypercube with sidelength 4
p

nb and the radi-

ance is transformed into a four-dimensional hypercubewith sidelength 4
p

nb.) As

for a uniform basis, many entries are known a priori to be zero.

Example Let us again consider the case of two glossy lines in Flatland. If we

perform a standard decomposition of the matrix in figure 5.14, we get thematrix

shown in figure 5.15. This matrix is less sparse than the original matrix: in the

standard matrix, 1228 entries are larger than 1% of the largest entry.

When the original matrix is sparser than the transformed matrix, why use a

wavelet decomposition? The sparsity of the matrix itself does not tell the whole

story. It is more relevant to consider the accuracy of multiplying the matrix on

a radiance distribution. When a radiance distribution represented in a wavelet
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Standard Haar matrix in space V 3 for parallel lines.

basis is multiplied by the matrix, few multiplies are required for a given accu-

racy. The number of multiplies is significantly less than if the radiance and ma-

trix were not in a wavelet representation.

Example To illustrate the reduction in the number of multiplications to reach a

given accuracy, we consider again theparallel lines in Flatland. For this example,

the sending patch emits directional radiance. The emitted radiance distribution

is computed according to Ward’s reflection model [98] as if the sending patch

was reflecting light from a single point. The receiver reflects light according to

Ward’s model with parameters ρs = ρd = 0:5 and α= 0:2. The specular peak of

this BRDF is about 10 times as bright as the diffuse portion.

We evaluate the accuracy of the radiance distribution at the receiving patch

as the number of transports increases. The transports are included in order of de-

creasing magnitude of transport coefficient times sending basis coefficient. The

error is computed as L2 distance between the computed distribution and a ref-

erence solution. The reference solution was computed using a nonhierarchical

basis in a higher space. The results are shown in figure 5.16. The wavelet matrix

decompositions require a much smaller number of transports than the original
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matrix to achieve a given level of accuracy.

Similar tests with perpendicular lines and occlusion are presented in Chris-

tensen et al. [16].
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Figure 5.16

Error vs. number of transports: original matrix, standard decomposi-
tion, and nonstandard decomposition (described in section 5.4.2).

5.4.2 Nonstandard Operator Decomposition

The nonstandard operator decomposition utilizes an overrepresentation of the

basis with both scaling functions and wavelets at all levels. This allows a basis

function to only transport to basis functions at the same level. The “missing”

transports are taken care of by pushing and pulling . The pushing and pulling

ensure a consistent representation at all levels of the hierarchy. One can infor-

mally say that the fine scaling functions act as proxies for the wavelets in coarser

spaces and the scaling function in V 0. Beylkin et al. [13] showed that the non-

standard operator decomposition gives a linear bound O(nb). The nonstandard

decomposition is not a basis change since the function is overrepresented. When

a matrix entry (a transport coefficient) is refined, it is set to zero and new coeffi-

cients between finer basis functions are computed.

Since the nonstandard decomposition requires an overrepresentation of the
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basis, the matrix is larger in each dimension than the original and standard ma-

trices. But only a fraction of the elements canbenonzero at the same time. For ex-

ample, in a fully refinedmatrix in space V3, light is transported between scaling

functions inV 2 andwavelets in spaceW2, while there are no transports between

the scaling functions and wavelets in coarser spaces. In figure 5.16, the accuracy

of multiplying by this matrix was compared to the accuracy of the original and

standard matrices.

5.4.3 HR-style Operator Decomposition

The wavelet functions can be replaced by scaling functions at a finer resolution

since each wavelet is a linear combination of scaling functions at the next finer

level. Then the hierarchical representation consists of scaling functions at all lev-

els, and the transport matrix connects scaling functions. We call this operator

decomposition “HR-style” since it was first used in the hierarchical radiosity

method by Hanrahan et al. [46]. Gortler et al. [41, 78] and Schröder and Han-

rahan [79] used this type of decomposition for radiosity transport and radiance

transport, respectively. Aswith the nonstandard decomposition, “pushing” and

“pulling” operations [41, 46] are required tomake the overrepresentation consis-

tent. Like the nonstandard decomposition, theHR-style decomposition isO(nb).

5.4.4 Choice of Decomposition

The nonstandard decomposition andHR-style decomposition have been shown

to beO(nb) while the standard decomposition has been shown to beO(nb lognb)

[13, 46]. (More precisely, it has been shown that for a given tolerance larger than

zero,O(nb) orO(nb lognb)multiplies are sufficient to apply an operator to a func-

tion.) However, experimental results [16, 52, 78] show that the standard decom-

position is often more sparse than the nonstandard decomposition. It is on this
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basis that we informally say that the standard decomposition is O(nb); there is

no formal proof, but it appears to be the case in practice for our type of opera-

tor. If one desires a decomposition that is provably O(nb), the nonstandard or

HR-style operator decomposition should be used.

In our implementation, we chose the standard decomposition since it (as

mentioned above) is often the most sparse in practice.

5.5 Wavelet Algorithm

The solution method for radiance transport makes use of a wavelet representa-

tion and importance-driven refinement. The algorithm computes a view-depen-

dent solution to the radiance equation; that is, the solution is refined most in the

parts that contributemost to the image. In some respects, the algorithm is similar

to the approach described by Gortler et al. [41] for wavelet radiosity. However,

there are a number of areas, in addition to the higher dimensionality, in which

the algorithm described here differs significantly from this previous work.

In this section, the main algorithm is presented and we discuss which trans-

port coefficients are computed as the refinementproceeds. Theprimary task is to

solve two systems of linear equations, one for radiance and one for importance:

eL = eLe+
eTeL and e

� =

e

�e+
eTe� :

We first compute a small number of entries of the matrix eT and solve the equa-

tions, then compute more entries of eT and solve again, and so on. The high di-

mensionality of the global illumination problemmakes the entries of eT very ex-

pensive to compute, so we strive to compute as few of these entries as possible

while generating a good approximation to the solution. Put briefly, only entries

of eT that are estimated to be large — and that connect large and important basis

function coefficients — are computed.
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The main part of the algorithm alternates between computing approximate

radiance and importance solutions eL and e� and improving the finite represen-

tation of the transport operator eT. Quantities with a tilde are approximate, both

because they are computed numerically and because they are truncated versions

of infinite matrices. Initially, we approximate Le and �e in space V 0, the space

spanned by the coarsest-level scaling functions, to give eLe and e�e. We also com-

pute the entries of T for transports between scaling functions in V 0 (as described

in section 7.4), giving eT. The algorithm is given in pseudocode below:

procedureGlossyGlobalIllumination :

eT [heB jT eBi], where eB consists of all scaling functions in V 0

eL eLe

e

� 

e

�e

for a series of decreasing tolerances ε do
eL Solve(eT, eL, eLe)

e

� Solve(eT, e�, e�e)

if not finest tolerance then eT Refine(eT, eL, e�,ε)

end for

RenderSolution(eBeL)

end procedure

Initially only a diffuse solution is found, the basis functions (scaling func-

tions) are constant over each patch and in all directions on the hemisphere above

each patch. Then the spatial and directional resolution of the solution is refined

where needed, based on estimates of error and contribution to the image. In

parts that contribute very little to the image, the solution is never refined.

The radiance and importance systems are solved simultaneously, with the

solution in one system determining the refinements in the other. Importance is

used to refine the radiance solution only in parts that are significant to the fi-

nal image. Likewise, radiance is used to refine the importance solution only in

bright parts of the scene. We use Gauss-Seidel iteration to solve the approximate
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transport equations eL = eLe+
eTeL and e� = e�e+

eTe�, just as for radiance in the sim-

ple algorithm in section 3.5. Refinement is determined by an “oracle”, described

in the following section.

5.6 Refinement

In many applications of wavelets in numerical analysis [13], the goal is to ob-

tain a sparse representation of a given matrix, therebymaking repeatedmatrix–

vector multiplications much faster. The wavelet decomposition of the matrix is

done once and for all as a preprocess, and the cost of computing all the matrix

elements is amortized bymany fastmatrixmultiplications. Inwavelet-based ap-

proaches to global illumination, the cost of explicitly constructing an entire trans-

port matrix far outweighs the expense of any matrix–vector multiplications that

follow. Therefore, it is essential to restrict the number of computed transport co-

efficients.

With nb basis functions in the solution, there areO(n1:5
b ) nonzero entries in the

approximate transport matrix eT. We conjecture from section 5.4 that only O(nb)

entries are necessary to obtain a solution of high accuracy. If we knewwhich el-

ements were significant, all of them could be computed at the same time, and a

solution found. Unfortunately we do not know a priori which elements are sig-

nificant. At the same time, it is too expensive to compute all nonzero matrix ele-

ments and then discard the smallest ones. Instead we use a progressive method:

Compute a fewelements of the transportmatrix (corresponding to transports be-

tween all scaling functions) and solve the resulting truncated radiance and im-

portance equations. Then based on these solutions decide which new elements

of the transport matrix to compute; solve again, and so on.

The goal of the refinement oracle1 is to determine which of the entries of T

1This procedure is like a “real” oracle in that it predicts the future. It is different in that it is
not always right.
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missing from eT should be computed to reduce the visible error in the current

radiance solution. The two most important sources of error are:

� truncation error due to significant entries missing from eT, and

� integration error in computing the entries of eT.

In this section we describe how our oracle reduces truncation error. Section 7.5

outlines a method for simultaneously reducing integration errors.

The refinement oracle uses concepts from the brightness refinement criterion

for hierarchical radiosity [46], the oracle used by Gortler et al. for wavelet radio-

sity [41], and the importance-based refinement strategy used by Smits et al. [89].

The idea is to estimate the influence on the visible image that would result if a

new transport coefficient were to be added to eT. If this quantity falls below some

threshold, the expensive computation of the transport coefficient can be avoided

without resulting in significant error in the solution.

Consider two basis functions bs and br with no transport coefficient between

themyet; see figure5.17. We compute anew transport coefficientTr s= hbr jT bsi

if we estimate that the resulting transport contributes sufficiently to the image,

that is, if a sufficiently large value results from the product of

� radiance : the magnitude of the sending basis function coefficient e`s,

� estimated transport coefficient : the estimated new transport coefficient

eTr s between the basis functions, and

� importance : the contribution hG e� jbsi of the receiving basis function to the

image.

The product of the first two quantities estimates the amount of light transported

between the two basis functions, that is, the change in the coefficient of the re-

ceiving basis function due to this transport. Multiplying by the inner product of
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the receiving basis function and importance (and the geometric term) gives the

contribution to the image. The sending basis function coefficient and approxi-

mate importance of the receiving basis function are known from the interim so-

lution. Our estimate of the transport coefficient uses kernel variation. For Haar

wavelets, variation is a good estimate of thewavelet coefficient. For higher-order

wavelets, it is necessary to estimate how closely the computed solution resem-

bles the true solution [41, 78].

bs

br

e

�

Figure 5.17

Sending and receiving basis functions.

There are infinitely manynew transport coefficients to be considered for com-

putation. We need a scheme for considering only some of them in each iteration,

while making it possible to eventually consider all. Associate with each basis

function b (except for the basis functions in V 0 andW 0) a unique “parent” basis

function b0 that overlaps b and is in a space one level coarser. Also, let the parent

of the wavelets in space W0 be the scaling function in V 0. For example, for the

simple case of the one-dimensional Haar wavelet basis, the parent of  
j
i is  

j�1

bi=2c

and the parent of  
0
0 is �

0
0. In our implementation, we only consider comput-

ing a new transport coefficient eTr s if there is already a transport coefficient eTr s0

or eTr0

 s.

Since the kernel variation is the same for all fifteen transport coefficients from

a given basis function to the fifteen wavelets sharing the same support, the esti-

mated contribution to the image will be the same for all these fifteen wavelets.
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We therefore compute all fifteen transport coefficients at once. This approach

savesmany kernel-evaluations since the same kernel-evaluations can be re-used

in computing all 15 transport coefficients. Efficient computation of the transport

coefficients is described in section 7.4. At the same time as the computation of the

15 transport coefficients, the transport coefficient between the two scaling func-

tions that share support with the sending and receiving basis functions is com-

puted. This transport coefficient is not used for light transports, but for adaptive

improvements of other transport coefficients, as described in section 7.5.



“Our life is frittered away by detail ... Simplify, simplify!”

Henry D. Thoreau

Chapter 6

Clustering

When sufficiently far away from a collection of complex objects, the complex

geometry can be approximated as a single point. The advantage of such a sim-

plification is that light can be transported between clusters of surface patches in-

stead of directly between all the individual patches. This simplification reduces

the number of transports between two clusters from the product of the number

of patches in the two clusters to just one; see the sketch in figure 6.1. Counting

all clusters, the number of transports is reduced from quadratic to linear in the

number of patches. Realistic environments contain thousands or millions of pat-

ches, so in order to compute global illumination solutions, this reduction in the

number of transports is essential.

Of course, such approximations are only applicable if we know a priori that

the impact on the global illumination solution is acceptable. To determine the

impact, bounds on the error are used.

The previous chapter described a hierarchical technique for light transports
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S R

S R

Figure 6.1

Accurate and approximate light transport between two clusters. For
the accurate transport, light is transported directly from all patches in
cluster S to all patches in cluster R . For the approximate transport, a
single transport suffices.

between patches. It works well for scenes with few large patches [9, 19, 79]. We

want a similar hierarchical approach for scenes withmany small patches. In this

chapter we extend the hierarchy upward, to allow light to be transported be-

tween many patches with a single transport. We first describe how our method

differs from previous work. Then we describe how a hierarchy of clusters is

formed from patches, and how approximate light transports take place between

clusters. Then importance, as described in chapter 4, is generalized for clusters.

We give bounds for each transfer, to use for refinement. The discrete representa-

tion of light and importance from and to clusters is described, as well as discrete

light and importance transport. Finally, a glossy global illumination algorithm

using clustering is described, along with the initial construction of the cluster hi-

erarchy and the refinement of clusters.
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6.1 Background

Related work on clustering was done in physics by Appel [5], Barnes and Hut

[11], and Greengard [43], among others. They considered the so-called n-body

problem , where the forces between a set of bodies have to be computed — for

example, gravitational forces between stars in a galaxy or electrostatic forces be-

tween elementary particles. Instead of letting all O(n2) pairs of bodies interact,

they found it advantageous to cluster nearby bodies together, and compute the

approximate force between clusters of bodies, thereby getting a linear algorithm.

However, there are some differences between gravity and light. First, grav-

ity and the electrostatic field from a body are rotationally symmetric (isotropic),

while the light leaving a surface can differ significantly in different directions

(anisotropic distributions). Second, the superposition principle holds for gravity

and electrostatic forces, but not for light. The gravity or electrostatic field from

individual bodies can be added to get the total gravity field. In contrast, sur-

face patches might occlude each other. Therefore the equilibrium light distribu-

tions resulting from individual patches can not be added without taking occlu-

sion into account. Another difference is that in the n-bodyproblem, each “body”

has a very small extent, whereas some of the surfaces in our setting can be quite

large, even comparable in size to the entire scene.

Clustering algorithms have recently been proposed for global illumination

computations in diffuse environments [55, 76, 83, 88]. Themethod of Smits et al.

[88] creates the clusters automatically, uses error bounds to guide the solution

process, and has O(np lognp) complexity. Smits et al. use two different types of

links between clusters: α-links and β-links. The α-links use information about

the orientation of patches inside a cluster for each transport, giving relatively

accurate estimates of the transport. In contrast, the β-links ignores this informa-

tion, and therefore get coarser approximations faster.

It is possible to extend the bounds of Smits et al. on the transfer between
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clusters to account for glossy BRDFs and for directional radiance distributions.

Thus, hierarchical glossy global illumination algorithms can benefit from clus-

tering the same way as diffuse global illumination, by replacing theO(n2
p) initial

links with links between clusters costing only O(np lognp).

Here we go a step further and present a new andmore efficient clustering al-

gorithm for glossy environments, with complexity O(np). Themain idea behind

our algorithm is to represent each cluster as a point source (and receiver) with an

anisotropic directional distribution of outgoing (and incoming) light. Collaps-

ing clusters into points in this manner produces sufficiently accurate approxi-

mations when the sizes of the clusters are small relative to the distance between

them. We shall refer to a transport between a pair of clusters with such direc-

tional distributions as an Ω-link.

The idea of representing the light leaving complex geometry by a single di-

rectional distribution is not new. BRDFs are commonly used to model the reflec-

tion of light by complexmicrofaceted surfaces. Also, real light fixtures are speci-

fied in a similar way, with manufacturers providing goniometric diagrams from

far-field measurements. Rushmeier et al. [76] used a directional representation

of the reflectance of clusters of small surfaces. Representing clusters by means

of directional distributions was also suggested (but not implemented) by Sil-

lion [83]. Part of the novelty of our approach is in providing estimates of bounds

on the errors associated with such approximations. These bounds permit the use

of approximations in a controlled fashion, when the errors are acceptable.

An Ω-link (like a β-link in the Smits et al. algorithm) can be bounded in con-

stant time. Computing the bound on an Ω-link between two clusters does not

require any knowledge of the geometry inside the clusters; directional distribu-

tions associated with each cluster encode all the necessary information. The cost

ofmaintaining such a data structurewith each cluster depends on the directional

resolution of the cluster representation and the number of child patches and sub-
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clusters, but not on the number of links to and from the cluster or on howmany

patches the subclusters contain. As a result, the algorithm has linear time and

space complexity in the number of initial surfaces. By providing a bound on the

error incurred, we can use the Ω-link approximation to simplify the calculation

of light transport between clusters.

Our method not only handles glossy reflections, it also performs asymptoti-

cally faster than previousmethods—even in diffuse environments. The applica-

bility of our method to diffuse environments is not so surprising if one observes

that a collection of diffuse surfaces, when considered as a cluster, is likely to have

an overall reflectance that is highly directional. Thus, representing clusters as

anisotropic point sources is advantageous for both glossy and diffuse environ-

ments, yielding a much more accurate representation than either Smits et al.’s

β-links or Sillion’s density volumes [83], both of which treat clusters as isotropic

entities.

6.2 Light Transfer between Clusters

Wewant an approximation such that light can be transported between small dis-

tant clusters with a single transport, rather than transporting between all pairs

of patches. Bounds, derived in section 6.4, will ensure that the error introduced

by the approximation is acceptable. In this section, it will be shown that a cluster

can be approximated as a point with an anisotropic distribution of light. Like-

wise, light incident on a cluster can be approximated as an anisotropic distribu-

tion of incident light.

6.2.1 Far-field Approximation

First we describe the far-field approximation , a cluster approximation of light

transport between patches. The far-field light transport is divided into three
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steps: approximating light distributions on patches with distributions on clus-

ters, transporting between clusters, and reflecting light incident on clusters to

light distributions on patches.

Let S = [s be the surfaces of all patches in a sending cluster, and R= [r the

surfaces in the receiving cluster. The radiance coming from cluster S that is re-

flected by a point y on a surface in cluster R is:

LSR(y, ~!) =

Z

x2S
fr(~!xy,y, ~!)G(x,y)L(x, ~!xy)dAx

=

Z

x2S
fr(~!xy,y, ~!)

cos�x cos�y
kx�yk2

V(x,y)L(x, ~!xy)dAx :

If the clusters are far apart compared to their size, we can approximate ~

!xy with

~

!SR, the direction from the center of S to the center of R . We can also substitute

the exact �x and �y with the angle between the direction ~

!SR and the normal at x

and y. And we can approximate kx�yk with the distance between the centers

of the two clusters, dSR. With these approximations we get

LSR(y, ~!) �
Z

x2S
fr(~!SR,y, ~!)

cos�x cos�y

d2
SR

V(x,y)L(x, ~!SR)dAx :

Since ~

!SR is independent of x, we can move the BRDF fr and cos�y outside the

integral. The distance dSR is also independent of x and can be moved:

LSR(y, ~!) � fr(~!SR,y, ~!)
cos�y

d2
SR

Z

x2S
L(x, ~!SR) cos�xV(x,y)dAx :

Now we split the visibility V into three parts: VS, VSR, and VR. VSR is the av-

erage visibility between the clusters S and R, and VS and VR accounts for self-

occlusion within each cluster. The visibility within S, the term VS(x, ~!), equals 0

if the ray leaving x in direction ~

! intersects one of the surfaces inside the cluster,

and 1 otherwise. The visibility VR(y, ~!) within the receiver is similar. Using this
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approximation we get

LSR(y, ~!) � fr(~!SR,y, ~!)VR(y, ~!RS) cos�y
| {z }

receiving cluster

VSR

d2
SR

Z

x2S
L(x, ~!SR)VS(x, ~!SR) cos�xdAx

| {z }

sending cluster

:

This separation of visibility is a very rough approximation. However, in sec-

tion 6.4 we introduce bounds that ensure that this approximation is acceptable.

In the following, we will show how this approximate transport can be di-

vided into three steps: converting radiance on patches into radiant intensity on

a cluster, transporting radiant intensity on a cluster to incident radiance on other

clusters, and finally reflecting incident radiance on a cluster to radiance on pat-

ches.

6.2.2 Exitant Approximation

Wewish to approximate the light leaving a cluster as light leaving a single point.

In order to do so, we need the following definition of light leaving a point:

Definition Radiant intensity:

Radiant intensity I(~!) is the power emanating from a point in direction ~

! per

unit solid angle in that direction.

The unit of radiant intensity is [W=sr]. Radiant intensity is two-dimensional

since a direction can be specified by two parameters.

How do we compute the radiant intensity corresponding to a cluster? In the

case of children that are patches, we need to convert the radiance leaving each

patch into radiant intensity. For each direction ~

! the radiant intensity leaving a

patch s is given by integrating over its area:

I(~!)=
Z

s
L(x, ~!)VS(x, ~!) cos�xdAx :

where VS(x, ~!) accounts for occlusion within the cluster. The angle �x is the an-

gle between the normal at x and direction ~

!. Summing contributions from all
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patches in the cluster we get

I(~!)=∑
s2S

Z

s
L(x, ~!)VS(x, ~!) cos�xdAx =

Z

S
L(x, ~!)VS(x, ~!) cos�xdAx :

We approximate this spatial and angular distribution with a point with the same

directional light-distribution, see figure 6.2.

L(x, ~!)

I(~!)

Figure 6.2

Cluster of patches and exitant point approximation.

Suppose we are given a cluster containing subclusters. In this case, the radi-

ant intensity function I(~!) of the cluster is given by the sum of the radiant inten-

sities of the subclusters in direction ~

!, except for internal occlusion. The internal

occlusion is explained in section 7.6.3.

Adding contributions from both patches and subclusters, the radiant inten-

sity of a cluster is:

I(~!)=
Z

S
L(x, ~!)VS(x, ~!) cos�xdAx+ ∑

children

Vchild(~!) Ichild(~!) :

This distribution is stored with each cluster to make transports faster.

6.2.3 Incident Approximation

Light is transported from one cluster to another in the following way: First the

radiant intensity distribution IS of the sending cluster is evaluated in the direc-

tion of the receiving cluster. Then this radiant intensity is multiplied by the aver-

age visibility VSR between the clusters and divided by the square of the average
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distance dSR between the clusters. This gives an incident radiance at cluster R,

which is added to the incident radiance already at R . See figure 6.3 for an illus-

tration of this approximation.

This transport is done between all pairs of clusters that are interacting. The

radiance incident on a cluster R from all clusters in direction ~

! is then

Lin(~!)�∑
S

VSR

d2
SR

IS(~!) :

Radiance (including incident radiance) is defined per unit area. In the point ap-

proximation we only parameterize incident radiance with a direction— the area

is implicitly assumed to be perpendicular to the direction. The distribution of in-

cident radiance is stored with each cluster.

Lin(~!)

Lin(~!)

Figure 6.3

Cluster of patches and incident point approximation.

6.2.4 Reflection

To push the incident radiance of a parent cluster to its cluster children, we add

incoming radiance Lin of the parent (attenuated by internal visibility) to the in-

cident radiance of each child.
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The incident radiance on a cluster is reflected off each patch in the cluster.

For a point y on a patch, this is done by integrating the incident radiance over

the hemisphere Ω+ above y, weighting each incoming direction ~

! by the corre-

sponding value of the BRDF at y :

L(y, ~! 0)=
Z

Ω+

fr(~!,y, ~!
0)VR(y, ~!) cos�yL

in(~!)d~! :

6.3 Importance

Here the concept of importance is extended from being between points on sur-

faces to being between clusters. We show that also in this setting, importance

can be transported and represented just like light.

Recall from chapter 4 that directional importance is defined such that

hG� jLi=
Z Z

� (y, ~!yx)G(x,y)L(x, ~!xy)dAxdAy

is the power that radiance distribution L(x, ~!) contributes to the image. The total

contribution of all light from cluster S to cluster R is the integral over contribu-

tions from all pairs of points x in S and points y in R :

Z

y2R

Z

x2S
� (y, ~!yx)G(x,y)L(x, ~!xy)dAxdAy :

Approximating ~

!xy with ~

!SR and splitting visibility into three as in section 6.2.1

we get the approximation

�

Z

y2R
� (y, ~!RS)VR(y, ~!RS) cos�ydAy

�

VSR

d2
SR

�

Z

x2S
L(x, ~!SR)VS(x, ~!SR) cos�xdAx

�

:

The right integral is the radiant intensity I of cluster S . We define the left integral

to be a similar quantity for importance:
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Definition Importance intensity:

Importance intensity � (~!) is the importance emanating from a point in direc-

tion ~

!,

� (~!)�
Z

y2R
� (y, ~!)V(y, ~!) cos�ydAy : (6.1)

The units of importance intensity are [m2].

Using the definitions of radiant intensity and importance intensity, we can

write the approximate contribution to the image as

�SR � � (~!RS)
VSR

d2
SR

I(~!SR) : (6.2)

Thus, to estimate the contribution of the transfer between S and R we need to

approximate the distance and visibility between the clusters as well as I(~!SR)

and � (~!RS). Note that the time required to compute this contribution does not

depend on the number of patches within each of the participating clusters if we

already have a representation of I(~!) and � (~!) at each cluster.

Importance and importance intensity are approximated, stored, and trans-

ported in exactly the same manner as radiance and radiant intensity, respec-

tively.

6.4 Bounds

Bounds are used to determine where light can be transported between clusters

without introducing significant error. Here we give an overview of the previous

work on bounds for clustering and present our bounds. Also, the distributions

of bounds that need to be stored at each cluster are introduced.
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6.4.1 Previous Work on Bounds

Following Smits et al. [88] we denote the maximumvalue of a function f (of two

variables) over some domain A�B as

df eA,B � max
x2A,y2B

f(x,y) :

Smits et al. present both L1 norms and L∞ norms. Here we will concentrate

on L1 norms since they correspond to energy, while L∞ norms representmaxima.

Alpha Links

When all reflection is purely diffuse, the total flux from cluster R caused by light

from cluster S is

�SR =

Z

Ω

Z

R

Z

S
fr(y)G(x,y)L(x)dAxdAyd~! = π

Z

R

Z

S
fr(y)G(x,y)L(x)dAxdAy :

The symbol Ω is the sphere of directions. For α-links, the upper bound on this

flux is

�SR � π
�

∑
r

Ar

�

fr(y) cos�y
�

S,r

�

 

∑
s

�

cos�x
kx�yk2

�

s,R

Z

s
L(x)dAx

!

:

This upper bound is a product of two terms: the upper bound of the radiance

leaving S reaching R, and an upper bound of the fraction of this radiance that is

actually reflected by R . For each patch s in cluster S, the radiance is integrated

(this radiance is direction-independent since all reflections are diffuse), andmul-

tiplied by an upper bound on the solid angle of cluster R seen from patch s. All

these upper bounds are summed to give an upper bound on the radiance leav-

ing S in the direction of R . To compute the fraction that is reflected by cluster R,

the upper bounds on cosine of the angle of incidence times reflectance times area

of each patch r are computed and added.

In short, this upper bound takes into account area, orientation, radiance, min-

imum distance, and reflectance. The upper bound on visibility is set to 1, corre-

sponding to full visibility everywhere.
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The time to compute a bound is O(m+n), where m and n are the numbers

of patches in the sending and receiving clusters, respectively, since all patches in

the sending cluster have to be evaluated and all patches in the receiving cluster

have to reflect. Smits et al. show that transporting light within a fixed tolerance

in a hierarchy of clusters containing np initial patches results inO(np) transports

with total transport cost of O(np lognp).

Beta Links

An asymptotically lower total link cost is achieved using coarser bounds. These

bounds are obtained by ignoring the orientations of the patches in each clus-

ter. Thus, for a given cluster-to-cluster transport, it is assumed that each source

patch is directly facing and visible to all the receivers, that each receiving patch

is highly reflective, and that all the patches are as close as possible (within the

bounding box) to the other cluster:

�SR � π
�

∑
r

Ar

��

1

kx�yk2

�

S,R

�

Z

S
L(x)dAx

�

:

If∑A and
R

L(x)dAx are storedwith each cluster, this bound can be evaluated

in constant time. Thus the total link cost is O(np). Links using this bound are

referred to as β-links. Because this bound is so crude, β-links are only used to

represent the most negligible transports between clusters.

In their implementation, Smits et al. used β-links where possible, α-links

where higher accuracy is required, and patch-to-patch transports for high accu-

racy. Since most transports require the use of α-links, the total cost of the clus-

tering algorithm is O(np lognp).

6.4.2 Bounds using Omega links

Consider first a transport between two patches, r and s. The amount of power

that is reflected by patch r due to illumination by patch s and that ultimately
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reaches the image is given by

�sr =

Z

r

Z

s
� (y, ~!yx)G(x,y)L(x, ~!xy)dAxdAy : (6.3)

Replacing the integration over patches r and s in equation (6.3) with the product

of their areas times an upper bound on the integrand, we obtain the bound

�sr � ArAs

�

� (y, ~!yx)G(x,y)L(x, ~!xy)
�

s,r

= ArAs

�

� (y, ~!yx)
cos�y cos�x

kx�yk2
V(x,y)L(x, ~!xy)

�

s,r

:

Splitting this upper bound into several parts yields

�sr � ArAs

�

� (y, ~!yx) cos�y
�

s,r

�

1

kx�yk2

�

s,r

dV(x,y)es,r
�

L(x, ~!xy) cos�x
�

s,r

= Ar

�

� cos�y
�

s,r

�

1

kx�yk2

�

s,r

AsdLcos�xes,r :

Here the upper bound on visibility V(x,y) is simply set to 1.

This bound easily extends to a bound on the transfer between two clusters R

and S . We only need to replace maxima over the areas of the patches with max-

ima over the bounding volumes of the clusters and sum over the patches in each

of the clusters:

�SR �

 

∑
r2R

Ar

�

� cos�y
�

S,r

!

�

1

kx�yk2

�

S,R

 

∑
s2S

AsdLcos�xes,R

!

: (6.4)

The term d� cos�xeS,r is the importance (weighted by a cosine) of the receiving

patch r maximized over all directions towards cluster S. The term
�

Lcos�y
�

s,R
is

the radiance (weighted by a cosine) of the sending patch s maximized over all

directions towards cluster R.

Unfortunately, we do not have the true, exact radiance and importance from

each patch, only the approximate solutions computed so far. So we have to use

an approximate upper bound, where the true radiance and importance is substi-

tuted by the approximate quantities:

�SR �

 

∑
r2R

Ar

l

e

� cos�y
m

S,r

!

�

1

kx�yk2

�

S,R

 

∑
s2S

As

l

eLcos�x
m

s,R

!

: (6.5)
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6.4.3 Bounds Computable in Constant Time

We could use the bound in equation (6.4) as an alternative to the α-links of Smits

et al. [88]. This bound involves a sum over source patches and a sumover receiv-

ing patches, yielding a clustering algorithm of complexity O(np lognp). Here it

is described how storing directional informationwith each cluster yields bounds

that are computable in constant time, leading to a clustering algorithm of com-

plexity O(np).

As mentioned earlier, we would like to treat clusters as point sources with

angular distributions. With this goal in mind, we define a maximum outgoing

radiant intensity function I (~!), which gives an upper bound on the radiant in-

tensity leaving a source cluster S in direction ~

!:

I (~!)=∑
s2S

Asmax
x2s

[L(x, ~!) cos�x] :

The units of radiant intensity are watts per steradian [W=sr]. Similarly, we de-

fine a maximum outgoing importance intensity function � (~!), which gives the

importance intensity leaving a receiving cluster R in direction ~

!:

� (~!)=∑
r2R

Armax
y2r

�

� (y, ~!) cos�y
�

:

Importance intensity has units of square meters [m2]. It follows from these defi-

nitions that if we maximize over directions between clusters S and R we get the

bounds

∑
s2S

AsdLcos�xes,R �
�

I (~!xy)
�

S,R

and

∑
r2R

Ar

�

� cos�y
�

S,r
�

�

� (~!yx)
�

S,R
:

Finally, substituting the previous two inequalities into equation (6.4)), we get

�SR �
�

� (~!yx)
�

S,R

1

d2
SR

�

I (~!xy)
�

S,R
(6.6)
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Thus, to estimate a bound on the transfer between R and S we need to ap-

proximate the minimum distance between clusters as well as the maxima of

� (~!yx) and I (~!xy) over the directions between the two clusters. Note that the

time required to perform this computation does not depend on the number of

patches within each of the participating clusters since a precomputed represen-

tation of � (~!) and I (~!) is stored with each cluster.

6.5 Discretization

In this section we describe how the six directional distributions on each cluster

(radiant intensity, incident radiance, importance intensity, incident importance,

upper boundon radiant intensity, and upper bound on importance intensity) are

represented in a discrete basis. We also describe how radiance and importance

are transported using these discrete basis functions on clusters.

6.5.1 Discrete Bases for Cluster Distributions

The six directional distributions can be approximated using any finite set of ba-

sis functions [b1(~!), : : : ,bn(~!)] defined over the sphere. Thus, each of the six di-

rectional distributions described above is represented as an array of coefficients,

one coefficient for each basis function. For example, the radiant intensity I(~!) is

represented as a linear combination

I(~!)=
n

∑
i=1

Iibi(~!):

In our implementation we use a piecewise-constant basis. Thus, each coeffi-

cient describes the averagemagnitude of the represented quantity over the solid

angle corresponding to the support of the basis function. Since we use a dis-

continuous basis, an extra discontinuity at the sphere’s equator does not matter,
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so we represent the sphere as two hemispheres. The distribution on each hemi-

sphere is represented on a square domain — like radiance from a patch, see sec-

tion 5.3.1.

If we wanted a continuous basis for the distributions, a split of the sphere

into two hemispheres would be unacceptable since it gives a discontinuity at the

equator. Instead a more general framework must be applied: wavelets defined

directly on a spherical domain; see Schröder and Sweldens [80].

The storage required for a cluster is proportional to the number of directional

basis functions used, but does not depend on the number of patches in the clus-

ter. Each cluster therefore requires a constant amount of storage, for a fixeddirec-

tional resolution. Because the number of clusters depends linearly on the num-

ber of input patches np, the entire cluster hierarchy requires O(np) storage.

6.5.2 Discrete Transport

As for the continuous case, we divide the transport into three phases: pulling of

radiance and importance from patches up through the cluster hierarchy, trans-

port between clusters and pushing (giving incident distributions), and reflection

of incident radiance and importance at the surfaces.

Discrete Exitant Approximation

To pull the radiance from a patch, we sample the radiance distribution on the

patch. The integral

I(~!)=
Z

s
L(x, ~!)V(x, ~!) cos�xdAx :

is estimated numerically by point-sampling the patch.

Pulling radiance and importance from subclusters to a cluster is just adding

coefficients (attenuated by precomputed internal visibility; see section 7.6.3).
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Discrete Incident Approximation

To perform a transfer along a link from a source cluster S to a receiving clus-

ter R, we need to convert the radiant intensity leaving S into incoming radiance

arriving at R . Transport between basis functions is simply multiplication by the

average visibility and division by the square of the average distance.

If the support of the i -th basis function contains the direction ~

!SR, and the

support of the j -th basis function contains the direction ~

!RS, the transfer is per-

formed by updating the j -th receiving coefficient:

Lin
j  Lin

j +
VSR

d2
SR

Iibi(~!SR) ,

where the visibility VSR is estimated in constant time as described in section 7.6.2.

The transfer of importance from S to R is performed analogously,

�

in
j  �

in
j +

VSR

d2
SR

�i bi(~!SR) :

Pushing incident radiance and importance from a cluster to its subclusters is

simply adding coefficients attenuated by internal visibility.

Discrete Reflection

For each patch, we need to convert the incoming radiance of the parent cluster

into radiance reflected off the patch. The radiance reflected from point x on the

patch in direction ~

! is given by the following integral of the incoming radiance

over the hemisphere Ω+ above x :

L(x, ~!)=
Z

Ω+

fr(~!
0,x, ~!) cos�0V(x, ~! 0)Lin(~! 0)d~! 0:

In our implementation, incoming radiance that gets pushed down to a patch

from its parent cluster is only used to update the coarsest basis function on the

patch. The coarse basis function represents the average radiance of the patch
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over all points and directions. In terms of directional distribution coefficients,

this update is accomplished by increasing the patch’s coefficient by

1

π ∑
i

ρch(x,∆~! i)ViL
in
i ∆~! i :

Here ρch is the conical-to-hemispherical reflectance of the patch [24], and ∆~! i is

the solid angle corresponding to the support of the i -th basis function on the

sphere.

The quantities derived from importance are pushed and pulled in exactly the

same manner as those derived from radiance.

6.5.3 Discrete Bounds

Equation (6.6) tells us that in order to bound the transfer between R and S we

need to determine theminimumdistance betweenclusters aswell as themaxima

of � (~!yx) and I (~!xy), for x2 S and y2R. Similarly to Smits et al. [88], we estimate

this bound by sampling. A fixed number of pairs (x,y) are chosen randomly,

where x is a point in the bounding volume of R and y is a point in the bound-

ing volume of S . For each pair (x,y), we evaluate � (~!yx), I (~!xy), and kx�yk�2,

recording the maximum value for each of these three quantities. The product of

the three maxima is taken as the estimate of the bound. No visibility checks are

performed since our upper bound assumes full visibility.

The upper bounds on radiant intensity and importance intensity leaving a

patch are also estimated by point sampling. These upper bounds are pulled up

the cluster hierarchy similarly to the radiant intensity but not transported on to

other clusters.
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6.6 Clustering Algorithm

The algorithm starts by constructing a cluster hierarchy containing all the initial

patches in the environment. Each cluster has several directional distributions de-

scribing its outgoing and incoming radiance and importance, upper bounds on

the radiance and importance leaving the cluster in each direction, and visibility

in each direction. The outgoing cluster distributions are initialized by pulling

emitted radiance and initial importance from the patches towards the root of the

cluster hierarchy. Initially, a single link is established from the root cluster to it-

self. The algorithm then alternates between refining the links (transports) and

solving the resulting linear system, until reaching some desired tolerance.

This process is summarized in the following pseudocode:

procedureGlossyGlobalIllumination :

Preprocess

for a series of decreasing tolerances ε do

Solve

if not finest tolerance ε then Refine(ε)

end for

Render

end procedure

procedure Preprocess :

Construct cluster hierarchy

Initialize approximate visibility data-structures

Set up initial links

end procedure
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procedure Solve :

repeat

Pull radiance and importance from patches to clusters

Transport radiance and importance along links

Push radiance and importance from clusters to patches

until convergence

end procedure

procedure Refine(ε):

for each link ` do

if ErrorBound(`) > ε then RefineLink (`)

end for

end procedure

In procedure “Solve”, the transport of radiance along links is both between

clusters, between clusters and patches, and between radiance basis functions on

patches.

In the rest of this chapter we describe the remaining major components of

this algorithm: the creation of clusters and the refinement process. In sections

7.6.2, 7.6.3, and 7.9 the more implementation-dependent stages of the algorithm

are described: visibility computation between and within, and rendering using

final gather.

6.7 Creation of Clusters

We start by creating a single root cluster containing all surface patches in the

scene. The bounding box of the cluster is divided into eight octants. For each

patch in the cluster, one of two things happens:
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1. If the size of the patch is smaller than an octant, the patch is assigned to the

octant containing its centroid.

2. Otherwise, the patch becomes a direct child of the cluster.

Then every octant containing more than a few patches is made into a child clus-

ter. (Patches in the remaining nearly empty octants become direct children of the

parent cluster.) The above process is repeated recursively on any newly created

clusters — the recursion terminates for a cluster when there are only a few pat-

ches in it.

The above algorithm assigns each patch to a single cluster, without splitting

any of the patches. The construction results in a hierarchy of clusters whose

bounding boxes may overlap. The bounding box of each child cluster is strictly

contained within that of its parent. The children of a cluster can be smaller clus-

ters as well as patches, as illustrated in figure 6.4.

(a) (b)

Figure 6.4

A cluster with cluster children and patch children: (a) geometry;
(b) schematic view.

If we assume a relatively uniform distribution of np patches, the cluster con-

struction described above will result in a hierarchy with O(lognp) levels. At

each level of the hierarchy, the construction has to consider O(np) patches to

distribute them into octants. The construction of the entire hierarchy therefore
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takes O(np lognp) time. Note that a similar hierarchy could also be constructed

from the bottom up, by first associating each input patch with a cell on some

fine uniform grid. Then adjacent non-empty cells could be grouped together

into larger cells. This approach would construct a hierarchy of depth O(lognp)

in O(np) time. Our experience has been that the hierarchy construction takes

only a small fraction of the total running time, so we have not found it neces-

sary to improve the complexity of this stage.

6.8 Refinement

If the bound corresponding to a link exceeds the current tolerance, the link is re-

fined. In our implementation, a link between two clusters is refined by splitting

the “largest” cluster, linking its children to the “smaller” cluster, and recursively

considering those new links for refinement. We define the size of a cluster as the

sum of the areas of the patches contained within it. For a link between a patch

and a cluster, the cluster end of the link is refined. A link between two patches

is refined as described in chapter 5. New links that are established in the refine-

ment process will be used later to transfer energy, so an approximate visibility

term is computed and stored with each link when it is created, as described in

section 7.6.2.

Another possible type of refinement is to increase the accuracy of the direc-

tional distributions stored with each cluster, rather than replace links between

two clusters with links between their subclusters. We avoid increasing the an-

gular resolution of directional distributions in order to maintain constant space

requirements for clusters (and time requirements for updating them). It is im-

portant to emphasize that using a fixed resolution for clusters does not limit the

accuracy of the simulation: so long aswe bound the error in each transfer, all sig-

nificant transfers will eventually be refined down to the patches. At this point,
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the algorithm of chapter 5 will resolve these transfers to the required accuracy.

Following Greengard [43], Hanrahan et al. [46], and Smits et al. [88], we as-

sume that the number of links from each cluster to other clusters in the hierarchy

is a constant that depends on the current tolerance, but not on the number of pat-

ches np. Because the hierarchy contains O(np) clusters, there are O(np) cluster-

to-cluster links that can possibly be refined. As mentioned earlier, the transfer

can be bounded in constant time, and visibility is ignored for refinement. As a

result, each refinement stage requires only O(np) time. The corresponding cost

in the algorithm described by Smits et al. is O(np lognp), because their α-links

cannot be bounded in constant time.

Our approach to clustering, aswell as that of Smits et al., might raise concerns

regarding the accuracy of the resulting solutions. In both clustering algorithms,

transfers between clusters are approximated very coarsely. Furthermore, refin-

ing a transport between two clusters by breaking it into several smaller pieces

does not in itself guarantee an improvement in the accuracy of the resulting ap-

proximation: this will only be the case if the sum of the errors corresponding to

these pieces is smaller than the error of the original transport.

Clustering provides a reliable way of determining where we can get away

with coarse approximations. All significant transfers, on the other hand, are re-

fined until they take place between patches, where transfers are treated much

more accurately. The philosophy behind clustering algorithms is that clusters

need not be treated particularly accurately. In a typical complex environment,

many of the transfers between clusters are very small because energy falls off

with the square of the distance. These transfers have little or no impact on the

solution, and even a very coarse approximation suffice.



“The three dots ’...’ here suppress a lot of detail

— maybe I should have used four dots.”

Donald Knuth

Chapter 7

Implementation

Implementing the hierarchical techniques described in the previous chapters re-

quires a number of practical considerations. In this chapter, the features of the

implementation are described. The specification of the scene defines geometry,

emission, and reflection. The geometry consists of surface patches that are quad-

rilaterals and Bézier patches. The emission from a light source can have both

spatial and angular variation. The eye emits importance in the directions within

view. The reflection is a combination of an anisotropic glossy reflection model

and texture maps. Transport coefficients are computed with adaptive accuracy

to make the initial computations fast, while still ensuring that the solution con-

verges to the correct solution. There are three types of visibility being computed.

One is the visibility betweenpatches, which has to be computed to high accuracy.

The second is visibility between clusters, where a fast, coarse approximation suf-

fices. The third is visibility inside each cluster. The data structures to represent

basis function coefficients and transport coefficients are also described. Finally,
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rendering using a final gather pass is described. A final gather improves the vi-

sual quality of the image by computing smooth radiance, exact shadows, and

textures at pixel-resolution.

7.1 Surface Geometry

Since the hierarchical techniques are independent of the geometry of thepatches,

as long as they can be parameterized on a unit square, it is natural to incorporate

curved surfaces. In our implementation, a patch can be either a Bézier surface or

a quadrilateral. It would also be straightforward to add non-uniform rational B-

spline surfaces [30]. In fact, the only requirements are that we need to be able to

quickly

1. compute a position, surface normal, and differential area associated with

a given parametric point (u1,u2), and

2. determine the intersection of a ray with the surface.

The images in figure 8.9 show a sphereflake consisting of 728 Bézier patches. The

images in figure 8.11 show a scene containing several curved objects. For exam-

ple, the teapot consists of 28 Bézier patches, themug consists of 20, and the door-

knob consists of 16.

7.2 Light Sources

By storing the wavelet decomposition of an image as coefficients on a patch, we

canmodel a light source that emits a spatially-varying radiance (like a television

screen). In general, not all coefficients of the emitting image will have links from

them, but the coefficients are ready to be transported into the scene if the refine-
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ment procedure so decides. This technique allows a complex environment to be

displayed using simple geometry.

A simple approach to angular variation is to let the emission dependon direc-

tion. For example, we model “spotlights” using a Phong-like function in which

emission depends on some power of the cosine of the angle between the emis-

sion direction and the surface normal of the patch. Spotlights appear dark from

most directions because of the very narrow distribution of light they emit. The

eye is emitting importance within a frustum, so that the source term for impor-

tance is 1 in directions within the view.

Wedemonstrate the use of spotlights and a spatially-varying emitter (the out-

door environment seen through the window) in figure 8.5. More complex effects

such as a slide projector or sunlight through a stained-glass window could be

modeled by combining spatial and angular variations in an emitter.

7.3 Reflection Models and Texture Maps

As mentioned in section 2.6.1, we use the Ward isotropic and anisotropic reflec-

tion models [98] since they are physically valid and fast to evaluate. Examples

of this reflection model can be seen in figure 7.1 and also in figures 8.5, 8.9, and

8.11. In addition to angular variation in reflectance, we use spatially varying re-

flectances to simulate details of the materials in the scene. We take the BRDF to

be the product of a texture and the Ward model. Figures 8.5 and 8.11 demon-

strate both texture (on the floor, brick walls, etc.) and an anisotropic reflectance

function (on the teapot).

In the course of numerically approximating a transport coefficient, the geo-

metric term and the BRDF are sampled at a number of quadrature points. The re-

flectance for each quadrature point is determined by a look-up in a texture map,

multiplied by the angular value given by Ward’s model. Multiresolution tex-
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(a) (b) (c)

Figure 7.1

Ward’s reflection model: (a) isotropic reflection, αu = αv = 0:2; (b) an-
isotropic reflection, αu = 0:1,αv = 0:5; (c) anisotropic reflection, αu =

0:5,αv = 0:1.

tures could be incorporated in our method by using a pyramid of texture aver-

ages instead of sampling. This approach would eliminate sampling errors from

sampling the texture. Gershbein et al. [33] present an alternative approach, us-

ing wavelet decompositions of textures for radiosity.

7.4 Efficient Computation of Transport Coefficients

The algorithm requires computation of transport coefficients betweenbasis func-

tions, as described in section 3.4.2. Each transport coefficient is defined in equa-

tion (3.4) as a six-dimensional integral, which we approximate using numerical

integration. For example, the influence of wavelet � �
j
i(us) on another wave-

let  ���
j 0

i0 (ur) is

Tr s = h ���
j 0

i0 jT � �
j
ii :

The domain of radiance is position and direction, for example x and ~

!, while the

domain of our tensor-product basis functions is the four-dimensional hypercube

[0,1]4. The transformations were described in section 5.3.1. For convenience, we

make the spatial and angular transformations implicit, and write the arguments
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of the basis functions as points and directions: let the sending position x corre-

spond to the two parameters u1 and u2, and let the direction ~

!xy correspond to

parameters u3 and u4 (and similarly for the parameters y and ~

! of the receiving

basis function). Then the inner product above takes the form

Tr s = h ���

j 0

i0 jT  � �
j
ii

=

Z

~

!y
 ���

j 0

i0 (y, ~!)
Z

x
fr(~!xy,y, ~!)G(x,y) � �

j
i(x, ~!xy)dAxdAyd~!

=

Z

xy

�

Z

~

!

 ���

j 0

i0 (y, ~!) fr(~!xy,y, ~!)d~!

�

G(x,y) � �
j
i(x, ~!xy)dAydAx :

(7.1)

Note that only the BRDF and the receiving basis function depend on the direc-

tion ~

!. Our numerical integration routine samples these two functions in its in-

nermost loop, while the remaining functions are evaluated only as the positional

variables change.

We approximate integrals such as (7.1) using slightly jittered uniform sam-

pling of the integrand. More accurate rules such as Gauss-Legendre or Gauss-

Kronrod quadrature could be employed instead [41, 73, 105].

7.5 Adaptive Numerical Integration

If we always use a numerical integration rule of high accuracy to compute trans-

port coefficients, time is wasted evaluating the kernel for many transports that

have little effect on the final image. On the other hand, the significant transport

coefficients must be computed to high precision; otherwise, the solution will not

converge to the correct value. It is therefore advantageous to use an adaptive

numerical integration technique that reduces error in transport coefficients, par-

ticularly on transport coefficients that are refined by the oracle. We have imple-

mented such an adaptive integration as part of the refinement procedure.
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At the time a transport coefficient is computed, the numerical integration

technique described in section 7.4 is used. Later, if more detailed transport co-

efficients are computed between the same supports, the kernel is sampled more

densely. These samples are re-used to recompute the coarse transport coefficient

more accurately.

As described in section 5.6, the transport coefficient between two scaling

functions is computed at the same time as the transport coefficients between

other basis functions with the same support (at practically no extra cost since the

necessary kernel-evaluations have been done already). Since wavelets in a cer-

tain space can be expressed as a linear combination of scaling functions in higher

spaces, coarse-level transport coefficients between wavelets can be recomputed

by taking linear combinations of the transport coefficients between finer-level

scaling functions. In this way, transport coefficients are adaptively recomputed

where the kernel is sampled densely.

7.6 Visibility

As pointed out many times already, solving the glossy global illumination prob-

lem is much more demanding than solving the diffuse global illumination prob-

lem. However, visibility computations are an exception: the visibility compu-

tations required to solve the glossy global illumination problem are exactly the

same as for diffuse global illumination.

7.6.1 Visibility between Patches

When computing the transport coefficient between twobasis functions using nu-

merical integration as described above, the visibility between two points has to

be determined. To avoid checking all patches in the entire environment for oc-

clusion, we use the hierarchy of clusters and their bounding boxes. Starting with
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the top-level cluster, it is recursively determined which cluster bounding-boxes

the line segment intersects, and only patches withing these clusters are checked

for occlusion. This hierarchical method requires order O(lognp) patches to be

checked for occlusion instead of O(np) without the hierarchy.

7.6.2 Visibility between Clusters

For transports between clusters, a more approximate estimate of visibility is

used. This is necessary since sampling the visibility would require tests for in-

tersection with objects on the path between the two clusters, which would cost

O(lognp) tests for each transport between two clusters.

We would like to compute visibility by dividing the scene into voxels, com-

puting visibility for each voxel, and then compositing the visibilities. But exact

visibility can not be computed in such a simple way because visibilities can not

simply be composited to give an exact composite visibility. Instead, we can give

a bound on the composite visibility. Consider first composition of occlusion, for

example the composition of two occlusions o 1 and o 2. if the objects causing oc-

clusions o 1 and o 2 overlap completely, the composite occlusion o 12 equals the

maximum occlusion max(o 1, o 2). If the objects do not overlap, the composite

occlusion is the sum of the occlusions. For partial overlap the composite occlu-

sion is between these two extreme cases, so a bound on the composite occlusion

is:

max(o 1, o 2) � o 12 � min(1, o 1+ o 2) :

For visibility v= 1� o , these bounds correspond to

max(v1+v2�1,0) � v12 � min(v1,v2) :

Following Sillion [83], we compute approximate composite visibility bymul-

tiplication of visibilities,

v12 � v1v2 :
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This product is within the bounds above. Also following Sillion [83], we approx-

imate visibility for a voxel with an isotropic volume density. As part of the pre-

processing, the environment is divided into a fixed number of voxels, and the

total area of the patches within each voxel is computed. This preprocessing can

be done in time linear in the number of patches. The area within a voxel cor-

responds to a density (extinction coefficient) κ inside the voxel. This is a good

approximation for many small, randomly distributed patches; however, it is a

very rough approximation for large patches with nonrandom orientations. The

visibility between any two points x and y can be approximated by casting a ray

from x to y and visiting each voxel intersected by the ray. The visibility of a ray

traveling a distance d through a voxel is given by e�κd. The visibility of the entire

ray is approximated by the product of the visibilities through each voxel. The av-

erage visibility for a link between clusters is estimated by tracing a fixed number

of rays and averaging the values. The way visibilities are computed and com-

posited makes this visibility computation method very approximate. The one

redeeming quality about this method is that visibility can be approximated in

constant time independent of the complexity of the geometry.

There are some more sophisticated methods for visibility computations that

havenear-constant expected time per visibility ray. Among themare the ray clas-

sification scheme proposed by Arvo and Kirk [7] and the ray coherence scheme

of Ohta and Maekawa [65]. These schemes are nontrivial to implement, but

could perhaps improve the accuracy of the visibility computations without in-

terfering with the linear complexity of our algorithm.

7.6.3 Visibility within Clusters

The pulling and pushing operations described in section 6.5.2 redistribute quan-

tities from a cluster to its children and vice versa. To account for internal occlu-

sionwithin a cluster, we need to know the fraction of radiance leaving each child
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of the cluster that is unoccluded by other children of the cluster. There is no need

to compute visibility within a cluster every timewepull or push, as the geometry

and the hierarchy remain fixed. Therefore, once the cluster hierarchy has been

created, we use a preprocessing step that computes the internal visibility func-

tionV(~!) for each child. This function gives the probability that a ray leaving the

child in direction ~

! exits its parent cluster without occlusion. This function is es-

timated by shooting a fixed number of rays for each directional basis function.

Each ray is tested for intersection with all the siblings of the child.

Since the patches within each cluster are organized hierarchically, the ex-

pected time per ray isO(logn), for a parent cluster whose subtree contains a total

of n patches. A cluster hierarchy containing p patches has logp levels. It follows

that a cluster at level k (the root being level 0) is the root of a subtreewith logp�k

levels containing 8logp�k patches (assuming a branching factor of 8). Therefore,

a ray intersection test takes time proportional to log(8logp�k) � logp�k. There

are 8k clusters at level k, so the total time for the visibility preprocessing within

clusters is given by

c
logp�1

∑
k=0

8k(logp�k)� cp :

The constant c depends on the time it takes to perform a single ray–patch inter-

section test, on the number of children per cluster, on the number of rays shot

per directional basis function (four in our implementation), and on the number

of directional basis functions (thirty-two in our implementation). All of the these

quantities are independent of np, and therefore the total time taken by this stage

of the algorithm is O(np).

7.7 Data Structure for Basis Function Coefficients

As in hierarchical radiosity algorithms [24], the matrices eT, eL, eLe, e�, and e�e are

never formed explicitly. Entries of eL, eLe, e�, and e�e are associated with the surface
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patches, while entries of eT are stored as “links” between radiance coefficients

(and between importance coefficients). The coefficients and links are allocated

dynamically as the solution is refined.

A hierarchy of basis function coefficients is associated with each patch. We

have implemented the hierarchy as a tree where each node contains all coeffi-

cients `with the same indices (space j and translations i1, : : : , i4). Each node con-

tains the 15 wavelet coefficients and one scaling function coefficient for each of

six “color bands”: red, green, and blue radiance; and red, green, and blue impor-

tance. Only the scaling function coefficients within root nodes (corresponding

to space V0) are part of the hierarchical representation. The remaining scaling

functions are used for adaptive numerical integration as explained in section 7.5.

Each node contains 16 pointers to child nodes that contain the coefficients in the

next, more refined, space. The child nodes correspond to coefficients with all

16 combinations of indices 2i1 or 2i1+1, ..., 2i4 or 2i4+1. The pointers between

nodes are illustrated in figure 7.2. Initially, each patch has only a single node

containing a scaling function coefficient in space V 0 for each color band.

`

j
i1 ,i2

`

j+1
2i1 ,2i2

`

j+1
2i1+1,2i2

`

j+1
2i1,2i2+1

`

j+1
2i1+1,2i2+1

Figure 7.2

Tree of basis function coefficients on a patch (simplified to 2DFlatland,
where each node has only 4 children). Each node contains all coeffi-
cients of wavelets with the same support, and the root node also con-
tains scaling function coefficients.
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7.8 Data Structure for Transport Coefficients

The transport coefficients that describe the transport between radiance (and im-

portance) basis functions at different patches are stored on links . As described in

section 5.6, the transport coefficients froma sending basis function to all 15wave-

lets and the scaling function sharing support are computed at the same time. In

our implementation, these 16 transport coefficients are stored on the same link.

Alternatively, each transport coefficient could be stored on a separate link, but

the extra storage overhead makes this impractical since each link needs to point

to the two basis functions between which it is transporting light. As another

alternative, the transport coefficients between all 152 possible combinations of

wavelets on sender and receiver could be stored on the same link. This method

would also waste memory since it sets up links with room for many transport

coefficients that are never computed, for example, if the sending coefficient are

too low.

Each link contains:

� a pointer to the node from which it is transporting radiance and impor-

tance,

� information about what type of basis function it is transporting from,

� 15 entries of eT for each of the three color bands,

� the sample variation encountered while computing those transport coeffi-

cients (used for refinement as described in section 5.6),

� a scaling-function-to-scaling-function transport coefficient for each of the

three color bands (used for adaptive improvement of transport coefficients

as described in section 7.5), and

� a pointer to the next link to the same receiving basis functions.
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Note that there can be several links between the same pair of nodes, each con-

necting different basis functions with the same support, as illustrated in fig-

ure 7.3. All links pointing to a given node are organized in a linked list. Initially

links are set up between root nodes for all pairs of patches that are mutually vis-

ible.
-
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Figure 7.3

Example of links between basis functions (in Flatland).

We only consider creating new links between basis functions bs and br where

there is a link from bs to br’s parent, or where there is a link from bs’s parent to br;

see figure 7.4. This restriction reduces the number of new links that have to be

considered for refinement at one time, while still allowing all possible links to

be created eventually. The existing link contains information about the kernel

variation encountered while computing that transport coefficient; this variation

is used as an estimate of the yet uncomputed transport coefficient to or from a

child basis function. The one exception to this scheme is root nodes since they

have no parent. Here the link between the two scaling functions is used for in-

formation about kernel variation for the wavelets in W0.
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New links to be considered (in Flatland).

Links are never destroyed in our algorithm. By contrast, the approach de-

scribed by Gortler et al. [41] removes a link at one level of the hierarchy and re-
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places it with multiple links at a finer level of detail (because they use a scaling

function representation at all levels of detail).

The adaptive numerical integration takes place after new links have been set

up. The integration involves a bottom-up traversal of all links. For each link, we

first check whether the two nodes this “parent link” connects have children, and

if so, whether there are links between some of the children. If there are links be-

tween the children, the transport coefficients on the parent link are recomputed

by linear combination of the scaling-function-to-scaling-function transport coef-

ficients on links between the children.

7.9 Final Gather

The finite-element solution eventually converges to a physically accurate and vi-

sually pleasing image. Unfortunately, it takes too much time to compute the so-

lution and toomuch space to represent it in this way. Instead, we can compute an

overall approximation to the solution with the finite-element method, and then

use a final radiance gathering pass to get a visually pleasing image.

Following the ideas that Reichert [75], Lischinski et al. [61], and Smits [87]

used for radiosity, we have implemented a final radiance gathering pass. For

each pixel in the image, we perform a final gathering of light to the surface point

that corresponds to themidpoint of the pixel. If supersampling is desired, a final

gather is done to the center of each subpixel.

The computed radiance solution is used to solve the rendering equation for

each point corresponding to a pixel center. This avoids the last reprojection onto

the finite-element basis. Let y be the point in the scene corresponding to the cen-

ter of a pixel, let p be the patch y is on, and let e be the eye point. For each patch s

with a link to p, we evaluate the radiance equation (2.13) with sending radiance
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over patch s,

L(y, ~!ye)=
Z

s
fr(~!xy,y, ~!ye)G(x,y)L(x, ~!xy)dAx :

Since the receiving position y is fixed and the radiance is reflected towards the

eye e, the integration is only over sending positions x on patch s.

For patch-to-cluster links to the cluster containing patch p, we perform the

same final gather as for links between patches. However, visibility can be com-

puted less accurately since a patch-to-cluster link supposedly carries less impor-

tant radiance — otherwise it would have been refined in the solution.

For a cluster-to-patch link to p, or a cluster-to-cluster link to the cluster con-

taining p, a different final gather is performed. A small number of points x in

the cluster (ten in our implementation), are selected at random. For each point,

the distribution of radiant intensity of the cluster is evaluated in the direction to

point y. That value is multiplied by the average visibility from the cluster, the

cosine term at the receiving point, and the inverse square of the distance:

L(y, ~!ye)= fr(~!xy,y, ~!ye)
cos�y

d2
xy

V(x,y) I(~!xy) :

Formally, the final gather corresponds to changing to a piecewise-constant

basis, where the support of each basis function is the projection of a pixel onto a

surface in the scene. Intuitively, this basis is tailored to be visually pleasing. The

final gather smooths the discontinuities in the wavelet representation, makes

highlights and textures crisper, and creates the correct soft shadows from area

light sources. The improvement brought about by the final gather can be seen

by comparing figures 8.5(e–f) and 8.11(a–f).

Another way of describing the final gathering step is in the context of distri-

bution ray tracing [26]. When a ray cast from the eye intersects a surface in the

scene, a group of reflected rays are traced from the intersection point to points on

other surfaces in the scene. A constant number of rays are cast to the support of
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each selected basis function in the radiance solution. In thisway, the directions of

the rays are guided by the solution. Thus, the most refined areas of the radiance

solution are sampled themost by the distribution of reflected rays. Note that the

costly “explosion” of the number of recursive bounces used in distribution ray

tracing is avoided since only a single bounce is followed.

We utilize the different characteristics of direct and global illumination to

speed up the computation. Direct illumination has high intensity and fast varia-

tion, so it needs to be computed to high accuracy. Fortunately, it is cheap to com-

pute when there are few light sources in the scene, so we can sample it 16 times

for each pixel. Global illumination, on the other hand, often has low intensity

and slow variation. At the same time, it is expensive to compute, so we save

time by computing it only once per pixel, or even reuse values over several pix-

els where the variation is low. The texture is evaluated 16 times per pixel, just

like the direct illumination.

What is the complexity of the final gather pass? Consider the cost for one

ray cast from the eye. First we need to find the nearest intersection with a patch

(point y), which takes O(lognp) time on the average. Then we need to gather

radiance across all the links that contribute to the basis functions whose sup-

port includes y. Each cluster and basis function have roughly the same constant

number of links, so the total number of links to gather from is proportional to

the depth of the hierarchy. There are O(lognp) levels of the cluster hierarchy to

gather from, and for these links visibility is computed in constant time. There

are d levels of the patch basis function hierarchy to gather from, where d de-

pends on the accuracy of the solution but not on np, and each link from a patch

basis function requiresO(lognp) time for computing visibility. The total cost per

ray from the eye is therefore O(lognp+ lognp+d lognp)= O(lognp). Note that

the final gather, too, benefits from clustering: Without clustering the solution at

a surface point y is influenced by asmany asO(np) links frompatches. Each link
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needs to be checked accurately for visibility, taking O(lognp) time. So without

clustering, the final gather would spend O(np lognp) time per ray from the eye.

Once a finite-element radiance solution has been computed, the final gather

requires no additional memory. We often use a strategy of computing as accu-

rate a solution as thememory of our computer can store, and then performafinal

gather pass to improve the visual quality. However, some of our results (see sec-

tion 8.7) suggest that perhaps a coarser solution would suffice for creating plau-

sible images with global illumination effects. If so, there are many interesting

trade-offs involved in deciding when to stop the finite-element solution.



“Look here, upon this picture, and on this.”

“Hamlet” by Shakespeare

Chapter 8

Results

In this chapter, tests of different aspects of the algorithm are shown. The algo-

rithm is first tested on a very simple scene consisting of three patches. For the

simple scene, a reference solution is easy to obtain, so convergence and con-

vergence rates can be tested. Next, the algorithm without clustering is tested

on a scene consisting of 152 patches. Then we experimentally verify the theo-

retical predictions regarding the O(np) asymptotic complexity of our clustering

method, and compare its performance with the α-links of Smits et al. Next, we

examine the accuracy and effectiveness of our cluster representation. Then, we

examine the results produced by our method on a highly glossy environment

and make qualitative comparisons withWard’s RADIANCE system [99]. Finally,

the effectiveness of the method for complex glossy environments is demon-

strated using an architectural interior containing nearly 8000 initial surfaces.
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8.1 Three Patches

To test convergence and convergence rates, we tried a simple scene consisting of

two tiny patches and a large patch. The geometry is shown in figure 8.1. Patch 1

is emitting radiance Le, and this light is reflected by patch 2 according to Ward’s

glossy reflection model [98] with α = 0:2. This glossy reflection results in a di-

rectional radiance distribution on patch 2. The light from patch 2 is received at

patch 3, which is a diffuse reflector.

1

2

3

1 2
3

Figure 8.1

Three patches seen from the side and from above.

The angular variation of the radiance distribution on patch 2 is shown in the

rightmost image in figure 8.2. This reference solution was computed as

L2(y, ~!) = fr(~!xy,y, ~!)G(x,y)Le(x, ~!xy)A1 ,

for directions ~

! on the hemisphere (transformed from the unit square by the

transformation described in section 5.3.1). Here x is themidpoint of patch 1, y is

the midpoint of patch 2, andA1 is the area of patch 1. Converging finite-element

approximations of this angular variation are shown in figure 8.2, along with dif-

ference images illustrating the difference between the approximations and the

reference image. The corresponding convergence is shown in the graph in fig-

ure 8.4(a).

The spatial variation of the radiance on the large diffuse receiver is shown in

the rightmost image of figure 8.3. This reference solution was computed as

L3(z, ~!) = fr(~!yz,z, ~!)G(y,z)L2(y, ~!yz)A2 ,
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reference

Figure 8.2

Refinement of radiance distribution on patch 2. The distribution is
shown as a function of angular parameters for a fixed position. The
rightmost image is the reference solution. The bottom row shows the
difference between the images and the reference image, red is used
where the reference is highest, and blue where the approximation is
highest.

for points z on patch 3, where A2 is the area of patch 2. Here the direction ~

!

is unimportant since patch 3 is a purely diffuse reflector. The top row of im-

ages shows the convergence of the wavelet representation. The first four images

are identical, because all refinements take place between patches 1 and 2 (since

larger radiance is involved in that transport, and importance is not taken into ac-

count). From the fifth image on, the light transports to patch 3 are also refined.

Difference images are shown directly below each wavelet solution.

Themiddle pair of rows shows converging solutions (and difference images)

when there is importance at the receiving patch. The transports are refinedmore

at the receiver than in the previous test.

The bottom pair of rows of images in figure 8.3 shows the solutionwith afinal

gathering step, but without importance. Here the rendering takes advantage of

the refinements of the transports to patch 2 even before the transports to patch 3

are refined.

The convergence of the radiance distribution on patch 3, with and without

importance, and with final gathering, is shown in the graph in figure 8.4(b).

As these results show, a final gather improves the solution, and gives a bet-
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reference

Top row: the solution. Bottom row: the difference between the solution and the
reference image, red is used where the reference is highest, and blue where the
approximation is highest.

reference

Top row: solutionwith importance at patch 3. Bottom row: the difference between
the solution with importance and the reference.

reference

Top row: solution with final gather (without importance). Bottom row: the differ-
ence between the solution with final gather and the reference.

Figure 8.3

Refinement of radiance distribution on patch 3. The three rightmost
images are identical, they are the reference solution for patch 3.
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Figure 8.4

(a) Convergence of the radiance distribution on patch 2. (b) Conver-
gence of the radiance distribution on patch 3: The top curve is the so-
lution without importance, the middle curve is the solution with im-
portance, and the bottom curve is the solution with final gather (with-
out importance). The CPU times were measured on a DEC 3000/400
“Alpha” computer.

ter solution in the same amount of CPU time. However, the final gathering step

does not appear to improve the convergence rate significantly. The final gather

is only useful for display since the result is an image and not a set of basis func-

tions that can be used for further refinement and solution. Future research could

examine how far the solution would have to proceed before the final gather is

performed, if a given accuracy in the solution is required.

Faster convergence may be obtained by several means:

1. Selecting wavelets withmore vanishing moments (butwith acceptable nu-

merical integration complexity) would make the transport matrix more

sparse.

2. In the example of figure 8.1, a standard construction of the basis would

eliminate some basis functions and transports since patch 2 has little spa-

tial variation and patch 3 has no angular variation.
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8.2 Scene of Medium Complexity

As a more complex test scene, we used a maze of hallways with a glossy Bézier-

patch teapot in the center (see figure 8.5). The scene consists of 152 patches, in-

cluding 28 Bézier patches, and has 12,603 mutually visible pairs of patches. The

teapot’s reflectance function uses Ward’s reflection model [98], and is anisotro-

picwith specularities αu= 0:2 andαv= 0:5, specular reflectivity ρs = (0:1,0:1,0:1)

and diffuse reflectivity ρd = (0:2,0:15,0). The illumination consists of 24 “spot-

lights”, patches that emit directional radiance. There is a patch outside the win-

dow that emits light according to a scanned image of an outdoor scene, giving

the appearance of a full environment beyond the window. The radiance emitted

by the lights and reflected in the scene is shown in figure 8.5(a). The objective is

to generate an image of this complex scene as seen from the eye, a small patch in

the hallway in front of the teapot. All back faces,where no radiance is computed,

are rendered gray.

Importance is emitted from the eye and reflected to the important parts of

the scene, as shown in figure 8.5(b). This picture demonstrates how small a frac-

tion of the model significantly influences the solution visible from the eye. Fig-

ure 8.5(c) is a gray-scale encoding of the number of links between the basis func-

tions on each surface patch. This “refinement image” verifies that most work is

performed in areas that are bright and important. Note that we could get arbi-

trarily large speed-ups, compared to a solution obtained without using impor-

tance, by choosing a sufficiently complex scene where many parts do not con-

tribute significantly to the final image.

The program begins by creating 12,603 links between scaling functions, and

then solves for the equilibrium distribution. This initial solution can be seen in

figure 8.5(d). After six iterations of refinement and solution, there are 126 scaling

functions in V0, 1,518 wavelets in W 0, 18,852 wavelets in W1, 160,248 wavelets

in W2, 165,495 wavelets inW3, and approximately 1.73 million links. This solu-
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(a) (d)

(b) (e)

(c) (f)

Figure 8.5

Solutions for scene of medium complexity: (a) radiance seen from
above; (b) importance seen from above; (c) refinement; (d) initial ra-
diance solution; (e) refined radiance solution; (f) final gather of (e).
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tion can be seen in figure 8.5(e). In some refinements, new links are only created

within already existing spaces, so the solution space reaches V4 after six itera-

tions. Running times on a DEC 3000/400 “Alpha” machine were approximately

5 minutes to compute the initial solution, then 100 minutes to iterate the main

algorithm and refine as far asV4 in important parts of the scene. Given this solu-

tion, an image of it needs to be created, either by evaluating the solution directly

or using a final gather step. It takes 15minutes to render a 600�600 image using

ray casting and evaluation of the solution (see figure 8.5(e)). Alternatively, using

a final gathering step for the rendering takes approximately twohours, making it

comparable to the solution process itself, and the result is shown in figure 8.5(f).

Note the significant color bleeding from the brick walls to the dim ceiling. Also

note the glossy highlights on the teapot.

8.3 Asymptotic Behavior

The following experiment is designed to examine the observed asymptotic time

complexity of our clusteringmethod and to compare it to that of Smits et al. [88].

Since their algorithm was designed for diffuse global illumination, we perform

the comparison using a diffuse environment. Our test environment consist of

two tessellated spheres: a hollow sphere of radius 2 containing a sphere of unit

radius. Triangles on each sphere emit the same constant radiance. This test case

is similar to the one used by Smits et al., except the interior sphere added to test

the effects of occlusion.

We timed our method on tessellations containing 256, 1024, 4096, 16,384, and

65,536 triangles. Each of the runs involved constructing the cluster hierarchy, ini-

tializing internal visibilities for each cluster, pulling, refining to a specified tol-

erance, transporting energy through the links, and pushing. The graph in fig-

ure 8.6 shows how the times spent in the different stages of our method grow
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with the complexity of the environment, for a fixed tolerance. As a reference, we

also plotted the function y= 0:002x. This graph demonstrates that all the stages

exhibit growth that is roughly linear in the environment size.
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Figure 8.6

The time spent in various stages of the newmethod as a function of the
number of initial patches.

The graph in figure 8.7 compares the total running time of our algorithm to

that of Smits et al. [88]. Since their algorithm ignores internal occlusion within

clusters, we omitted the time of the internal visibility precomputation from the

total time for our algorithm. Both methods ran on the same machine, with the

same tolerance, resulting in roughly the same number of links in each case. The

difference in the asymptotic time complexities of the twomethods is revealed by

the difference in the slopes of the two log-log plots. Note that for the tessellation

with 65,536 triangles, Ω-links exhibit a speedup by a factor of 2.5 over α-links.

Since Ω-links are asymptotically more efficient than α-links, the improvement

in performance should become even larger for more complex environments.
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Figure 8.7

The time spent by different clustering strategies as a function of the
number of initial patches.

8.4 Accuracy of Cluster Approximation

To test the accuracy of the cluster approximation employed by our method we

used a “sphereflake” [44] made of 91 spheres and illuminated by a single square

light source. A schematic view of themodel is shown in figure 8.8(a). A color im-

age of the same sphereflake (with a wood-textured polygon added behind it) is

shown in figure 8.9. The gray, cyan,magenta, and yellow spheres are diffuse; the

red, green, and blue spheres are isotropically glossy; and the black, copper, and

chrome spheres are anisotropically glossy. In our implementation each sphere

is approximated by eight Bézier patches. In total, the sphereflake consists of 728

surface patches, of which 432 are glossy.

A cluster hierarchy containing all of the sphereflake’s patches was construc-

ted as described in section 6.7. The sphereflake was directly illuminated by a

single light source, and the reflected radiance was pulled up through the cluster

hierarchy. The reflected light was evaluated in several differentways at densely-
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728 terms
285 terms

1 term

(a) (b)

Figure 8.8

Glossy sphereflake: (a) sketch; (b) polar plots of cluster approxima-
tions. The solid line represents radiance evaluated on all 728 patches.
The dashed line represents the evaluation of 285 terms: radiance from
189 patches, and radiant intensity from 96 clusters. The dotted line
shows the coarsest approximation, the radiant intensity from a single
cluster.

spaced locations on an orbit around the sphereflake. The ratio of the orbit ra-

dius to the sphereflake radius was about 10:1. The results are shown in the form

of polar plots in figure 8.8(b). The solid curve corresponds to results obtained

by directly integrating the radiance from each of the 728 patches. This curve

serves as our reference solution since no clustering approximations were used in

its computation. The coarsest approximation is obtained by evaluating the radi-

ant intensity distribution leaving the cluster that contains the entire sphereflake.

Also plotted is an approximation of intermediate accuracy, where the transferbe-

tween the sphereflake and the receiver on the orbit is refined into 285 transports:

189 with patches, and 96 with clusters.

As the polar plots in figure 8.8 show, the approximation of the entire sphere-

flake as a single cluster is fairly coarse, yet it captures the most prominent char-

acteristics of the radiant intensity distribution. As the approximation is refined

by evaluating more terms, more details are captured and the approximation be-

comes more accurate.
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8.5 Results for a Highly Glossy Scene

The sphereflake model described in the previous section was also used to test

the ability of our method to correctly handle different types of interreflections

in a scene with highly glossy surfaces. One solution computed by our method

is shown in figure 8.9. The finite-element solution shown in figure 8.9(a) took 42

CPUminutes to compute on an IBMRS6000 POWERstation. Of this time, 2 min-

utes were spent building the hierarchy and performing visibility preprocessing,

and the remaining 40minutes were spent refining and solving. The solution has

1,389 links between clusters, 4,445 links between a patch and a cluster, and 4,052

links between patch scaling functions. There are also 411,645 transports between

313,918 wavelet coefficients representing the radiance distributions on patches.

(a) (b)

Figure 8.9

A sphereflake computed using our method: (a) finite-element solu-
tion; (b) after final gather.

The image in figure 8.9(b) was computed using a final gather at a resolution

of 3200�3200, and then was reduced to 800�800 pixels using a Gaussian filter.

The final gather took 240 minutes in addition to the finite-element solution time,
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resulting in total computation time of 4.7 hours.

A careful examination of figure 8.9 reveals that all of the possible combina-

tions of diffuse and glossy transport mechanisms are present. Diffuse-to-diffuse

transport creates subtle yellow, blue, and red color bleeding on the large gray

sphere. Diffuse-to-specular transport creates the reflection of the diffuse spheres

in the shiny ones. Specular-to-specular transport creates the reflections of high-

lights in the shiny spheres. Finally, specular-to-diffuse transport illuminates the

base of the small, yellow, diffuse sphere near the top of the image.

8.6 Comparison with a Monte Carlo Method

Aqualitative comparison of ourmethod and the RADIANCE system [99]wasper-

formed using the sphereflake scene described above. Both methods were used

on the same machine to compute images at 3200�3200 resolution, and then the

images were reduced to 800�800 pixels using a Gaussian filter. The RADIANCE

system took 6.2 CPU hours, resulting in the image shown in figure 8.10(a). Af-

ter 4.7 CPU hours, our method produced the image in figure 8.10(b). (This is

the same image as in figure 8.9(b).) Note that the RADIANCE system had the ad-

vantage of performing all its computations with 91 spheres, while in our solu-

tion these spheres were represented as 728 Bézier patches. We did, however, use

spheres for visibility rays.

Figure 8.10 shows that our solution and that of RADIANCE converge toward

the same final result. While RADIANCE is a mature product that has been de-

bugged and optimized over the past decade, clustering and wavelet techniques

for glossy global illumination are still in their infancy. Undoubtedly, ourmethod

could benefit enormously from further algorithmic refinement and fine-tuning,

and our implementation could benefit from further optimization. Our conclu-

sion from this experiment is that hierarchical finite-elementmethods are a viable
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(a) (b)

Figure 8.10

A comparison of sphereflake images. (a) Image computed in 6.2 hours
using RADIANCE. (b) Image computed in 4.7 hours using our method
(same as figure 8.9(b)).

andpromising alternative toMonte Carlo for efficiently simulating glossy global

illumination.

8.7 A Complex Interior

To test the effectiveness of our clustering method for complex glossy environ-

ments, we experimented with the architectural interior environment shown in

figure 8.11. This environment consists of 7,721 patches: 7,653 quadrilaterals and

68 Bézier patches. The teapot, mug, tabletop, door, doorknob, window frames,

plant, and pot all have reflectances that are partially glossy and partially diffuse,

giving a total of 6,629 glossy surfaces. The remaining surfaces are purely diffuse.

The room is illuminated by a single diffuse area light source.

A solution without clustering requires 77212� 60,000,000potential transport

coefficients to be considered in the initial linking stage. An optimistic estimate
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(a) (d)

(b) (e)

(c) (f)

Figure 8.11

An interior with both glossy and diffuse surfaces. (a-c) Finite-element
solutions computed by our method. (d-f) The same solutions after a
final gather (local pass).
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says that one would need 4 gigabytes of memory and nearly five days to com-

pute the initial links.

By contrast, a coarse solution was obtained after just 11 minutes with our

clustering algorithm (on a DEC 3000/500X “Alpha” workstation with 512MB

virtual memory). A cluster hierarchy consisting of 1629 clusters was construc-

ted during the first 4 minutes, and the remaining 7 minutes were spent creating

initial links and computing the solution shown in figure 8.11(a). Of 111,983 to-

tal links in this solution, only 14,087 links are between two patches. Two more

refined solutions are shown in figures 8.11(b) and (c). The statistics for each of

these solutions are:

image coefficients transports solution time final gather time
(a,d) 7,694 111,983 11 min 135 min
(b,e) 63,237 218,354 31 min 271 min
(c,f) 686,048 1,313,296 109 min 290 min

A final gather pass was performed on these solutions; the resulting images

are shown in figure 8.11(d-f). The images were rendered at a resolution of 900�

600 pixels with supersampling using sixteen rays per pixel. The final gather pass

is currently the most time consuming stage of the simulation Nevertheless, the

final gather is very beneficial. Even for the coarsest finite-element solution the

final gather is able to produce an image of high quality: all the direct illumina-

tion, including shadows and glossy highlights, and the textures are reproduced

correctly. However, since this finite-element solution has no directional varia-

tion, the glossy reflection of the teapot-highlight in the table top is not present in

figure 8.11(d). As the representation of the radiance leaving the teapot is refined

in the second solution (figure 8.11(b)), the reflection appears in the correspond-

ing image after the final gather, even though the table top has not yet been re-

fined enough to reveal the reflection in the solution. Eventually the table top is

refined as well, and evidence of the reflection becomes visible even without the
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final gather (figure 8.11(c)).

Note that for this particular environment, there is no significant difference

between the images in figure 8.11(e) and (f). Thus, for most practical purposes,

the finite-element solution has effectively converged after only 31 minutes. The

progression of solutions demonstrates that our method lends itself well to pro-

gressive image generation, with useful images obtained early in the process.



“O you who have borne even heavier things,

God will grant an end to these too.”

Virgil

Chapter 9

Conclusion

Synthetic images of existing or virtual scenes are useful in many areas includ-

ing architectural design, interior design, illumination engineering, industrial de-

sign, virtual reality, and special effects formovies. To generate realistic images, it

is essential to simulate the effects of global illumination. Efficient computation

of global illumination is challenging because all light in a scene is interdepen-

dent. For scenes with glossy reflections, the problem is even more challenging

because of the high dimensionality of the unknown light distributions.

9.1 Contributions

This dissertation describes efficient hierarchical techniques for simulating light

transport in complex scenes with glossy and diffuse reflections. The efficiency

comes from using a wavelet representation of radiance, a clustering method for

approximate representation of radiant intensity from groups of patches, and im-
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portance-driven refinement for a view-dependent solution.

� We first showed that the radiance equation and Kajiya’s rendering equa-

tion are adjoint equations, and that radiance and two-point transport in-

tensity are adjoint functions. This relationship is particularly helpful for

describing the properties of importance. The most obvious type of impor-

tance for glossy global illumination is an adjoint of radiance. Instead, a

type of importance that is algorithmically more convenient than the adjoint

of radiance was introduced. This type of importance is a dimensionless

distribution emitted from the eye and transported like radiance.

� Wavelet representation of the radiance at each surface reduces the num-

ber of transports fromO(n1:5
b ) to linear in the number of basis functions nb.

We used the simplest possible wavelet basis, the Haar basis, since it is or-

thonormal and has compact support and simple numerical integration for-

mulas. To reduce the number of initial transports, we found it advanta-

geous to use a parameterization of radiance and importance with two spa-

tial parameters specifying a position on a surface, and two directional pa-

rameters specifying a direction.

� Clustering groups of surface patches reduces the number of transports

from quadratic to linear in the number of surface patches. Light leaving

a collection of patches is estimated as radiant intensity emanating from a

point. When transported, this radiant intensity turns into incident radi-

ance on other clusters, and this radiance is reflected off the patches in these

clusters. A bound on the error associated with the point approximation is

given.

Our method is the first finite-element method capable of handling complex

nondiffuse environments. The results prove that the finite-element method is a
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viable alternative to the Monte Carlo method for solving the glossy global illu-

mination problem. With better wavelet bases and more advanced strategies for

cluster refinement, the discrete method can be improved even further.

9.2 Future Directions

There are many possible extensions to the present method.

� Refinement strategy. One area of interest is the refinement strategy. For

example, which end of a link between two clusters should be refined to re-

duce the error most?

� Multiresolution representation of radiant intensity. It could be interest-

ing to develop an adaptive multiresolution representation for directional

distributions on clusters. At present, we use fixed angular resolution, and

when that resolution is insufficient, the transport from the cluster is sub-

stituted by transports from its subclusters. Perhaps spherical wavelets [80]

would be beneficial.

� Better bases. The basis functions for radiance always have the same level

of detail for the directional and spatial parameters. But for a small glossy

patch, more refinement is required in the angular domain than in the spa-

tial. In contrast, a large slightly glossy patch usually requires more spa-

tial refinement than angular. So it seems that using basis functions with

independent resolution for spatial and angular parameters could poten-

tially reduce the number of basis functions and transports considerably.

It would also be interesting to test other wavelet bases. Higher-order wa-

velets [41, 78] have more vanishing moments than the Haar basis, which

will give fewer significant transport coefficients. But higher-order wave-

lets also have wider support, which might reduce the advantage of using
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them.

� Specular reflection. Wavelet representation of radiance is not suited for

specular (mirror) reflection. Instead, a ray tracing step for ideal specular

reflection could be incorporated in the same fashion as in Sillion et al. [85].

� Transmission. Surfaces that transmit light in addition to reflecting it could

be incorporated into our algorithm by using basis functions defined on the

entire sphere of directions.

� Participating media. In scenes with participating media, radiance has to

be computed everywhere in the volume containing the scene—computing

the radiance at surfaces is insufficient.

� More accurate visibility. Our method is only linear in the number of pat-

ches when visibility is computed in linear time. The approximation of vi-

sibility between clusters we use is linear, but very coarse. More accurate

linear-time algorithms would improve the accuracy of the algorithmwith-

out increasing the algorithmic complexity.

� Incremental final gather. Is there a way to improve the final gather image

incrementally, to get a more progressive algorithm?

� Plausible global illumination. For some applications, a physically accu-

rate solution is not necessary: a solution that looks plausible is sufficient.

To generate such pseudorealistic images, the effects of global illumination

are necessary, but the effects do not have to be correct as long as they look

correct.

� Fast walk-throughs. Fast walk-throughs of glossy scenes by postprocess-

ing global illumination solutions.
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� Incremental refinement. Updating the solution incrementally for moving

viewpoint and moving objects.

� Parallelism. The method seems well suited for a parallel implementa-

tion to get images faster. For applications such as virtual reality, the goal is

real-time computation, butmanyapplications could also benefit frommore

modest speed-ups. A large fraction of the computation time is spent com-

puting transport coefficients. These computations are completely indepen-

dent (but all depend on the geometry of the scene). Another large contribu-

tion to the computation time is the gathering of radiance along links. This

requires many reads of coefficient values.
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David K. Kahaner. QUADPACK: A subroutine package for automatic in-
tegration. Springer Verlag, Berlin, 1983.

[74] Pierre Poulin and Alain Fournier. A model for anisotropic reflection. In
Proceedings of ACM SIGGRAPH ’90, pages 273–282, August 1990.

[75] Mark C. Reichert. A two-pass radiosity method driven by lights and
viewer position. Master’s thesis, Program of Computer Graphics, Cornell
University, Ithaca, New York, January 1992.

[76] Holly E. Rushmeier, Charles Patterson, and Aravindan Veerasamy. Geo-
metric simplification for indirect illumination calculations. InProceedings
of Graphics Interface ’93, pages 227–236, May 1993.

[77] Holly E. Rushmeier andKenneth E. Torrance. The zonal method for calcu-
lating light intensities in the presence of a participating medium. In Pro-
ceedings of ACM SIGGRAPH ’87, pages 293–302, July 1987.
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