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Abstract

Some Topics in Parallel Computation and Branching Programs

by Rakesh Kumar Sinha

Chairperson of the Supervisory Committee: Professor Paul Beame

Department of Computer Science

and Engineering

There are two parts of this thesis: the �rst part gives two constructions of branching

programs; the second part contains three results on models of parallel machines.

The branching program model has turned out to be very useful for understand-

ing the computational behavior of problems. In addition, several restrictions of

branching programs, for example ordered binary decision diagrams, have proven to

be successful data structures in several VLSI design and veri�cation applications.

We construct a branching program of o(n log

3

n) nodes for computing any threshold

function on n variables and a branching program of o(n log

4

n) nodes for determin-

ing the sum of n variables modulo a �xed divisor. These are improvements over

constructions of size �(n

3=2

) due to Lupanov [Lup65].

The second part of this thesis deals with parallel computation. A wide variety

of parallel machines with fundamentally di�erent architectures has resulted in a va-

riety of theoretical models, each trying to capture the behavior of parallel machines

belonging to a particular class.

We �rst prove a separation result between bounded communication width

CREW (concurrent read, exclusive write), and EREW (exclusive read, exclusive

write) PRAMs, where the communication width of a PRAM is de�ned to be the

size of the global memory available for writing. We prove that a Boolean decision

tree of height h can be easily evaluated in time O(

p

h) on a CREW PRAM with

communication width 1 using 2

O(h)

processors but requires 


�

h

m+log

�

h

�

time on

any EREW PRAM with communication width m, even without any restriction on



the number of processors.

We then consider augmented PRAMs that have multipre�x operation for certain

operators available as primitives [Ble90, RBJ88]. We prove that such PRAMs can

be simulated by unbounded fan-in circuits with gates for AND, OR, NOT, and

operations corresponding to the multipre�x primitives of the PRAMs. This gives a

way of translating lower bound results proven for the case of circuits to the case of

these augmented PRAMs.

Our last result is an optimal �

�

log p

log log p

�

running time algorithm for computing

the sum of integers on a

p

p �

p

p sub-bus mesh when each processor starts with

one O(log p) bit integer.
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Chapter 1

INTRODUCTION

The goal of theoretical computer science is to make computers more e�cient by

gaining a better understanding of the computational di�culties of various problems.

For any given problem, ideally we would like to learn the most e�cient way to solve

it. There are two complementary activities that go towards achieving this goal. We

can show an upper bound on the computational resources needed by designing an

algorithm. Alternatively, we can prove a lower bound on the computational resource

requirements by proving that there does not exist an e�cient algorithm for solving

that particular problem.

The study of upper bounds is self-justi�ed. Because computers have �xed re-

sources, there is a clear motivation to develop solutions making e�cient utilization

of those resources.

Study of lower bounds is equally important. Besides the purely intellectual issue

of trying to get a better understanding of the inherent di�culty of problems, there

are several practical advantages. The most important of these is the concentration

of e�orts on the right problems. In other words, we would like to direct our e�orts

so as to maximize the possible gains. Algorithm designers are always in search

of more e�cient solutions to problems. The search stops only when we have a

lower bound that matches the performance of the currently best known algorithm,

because we know that all attempts at further optimization of the algorithm are

going to be wasted. For many problems, even though we have not been able to

prove actual lower bounds, we have been able to provide strong empirical evidence

of their inherent di�culty. For example, while no strong lower bounds are known

for any NP complete problem, we know that researchers all over the world have

not been able to �nd an e�cient solution for them even after decades of e�ort. So
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the NP completeness proof of a particular problem is often taken as an evidence

that we have hit a wall. And even though it is certainly possible to �nd an e�cient

solution for it, common sense dictates that we should diversify our e�orts in trying

to get around NP completeness. Very often such pessimistic results (either actual

lower bounds or evidence of di�culty) force us to reformulate the problems and in

many instances we have been able to develop solutions that are quite acceptable

in practice. For instance, a closer examination of the problem at hand may reveal

that we may be trying to solve a problem more general than what is needed and the

restricted practical problem does admit an e�cient solution. In other cases, it may

be acceptable to settle for algorithms that either give only approximate solutions or

are e�cient most but not all of the time (two examples are probabilistic algorithms

and deterministic algorithms with good average case behavior). In all such cases, a

pessimistic outlook on the original problem channels our e�orts in a direction where

we have a better chance of making progress. The theory of lower bounds has been

indirectly responsible for generating a rich theory of approximate, probabilistic,

and good average case algorithms. Even the purely intellectual issue of gaining

a better understanding of the computational di�culty of problems has often paid

rich dividends in the long term. For example, the concept of nondeterminism has

no basis in real machines but as an intellectual tool its study has greatly enriched

our understanding of the di�culty of many real life problems on real machines (for

example, identifying problems as NP complete and therefore realizing that most

likely they will not admit e�cient solutions).

Out of the two, the study of upper bounds has enjoyed more success. We have

been able to develop a rich body of ideas and e�cient algorithms for a variety

of problems occurring in real life. For many problems, improved algorithms have

enabled us to solve instances several orders of magnitude larger than what was

achievable even ten or twenty years ago.

Unfortunately, the �eld of lower bounds has not been very successful. While

we have been quite successful in identifying candidate problems that appear to

be inherently di�cult to solve (for example, the complete problems for various

complexity classes), we have had very little success in proving actual lower bounds.

The choice of problems for proving lower or upper bounds is critical. Clearly,

one would like to consider problems that practitioners encounter so that the e�orts
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invested in understanding the di�culty of problems has immediate practical bear-

ing. However, most problems arising in practice have too many details. It is more

feasible to study a simpler problem stripped of some of the details if there is an

easy translation of results from the simpler problem to the original problem. There

are at least two advantages of studying the simpler problem: �rst, stripping the

unnecessary details helps us focus on the truly important aspects of the problem;

second, considering a more general problem may in fact speak to a whole class of

related problems arising in practice rather than just one.

It is particularly important to study the behavior of elementary problems. Since

their solutions are used as subroutines in many algorithms, their performance have

a signi�cant impact on the performance of a variety of algorithms for solving other

problems. Another reason to study elementary problems is that their understanding

can be seen as a �rst step towards a better understanding of more complicated

problems.

There are two parts of this thesis: The �rst part of this thesis deals with branch-

ing programs and the second part deals with three di�erent models of parallel ma-

chines.

1.1 Branching programs

Turing machines and random access machines (RAMs) have proven to be very

useful models for the purpose of designing algorithms. However, they do not seem

to be quite adequate for studying lower bounds. A good model should be able

to correctly predict the behavior on real world machines. In the case of Turing

machines, because of their sequential access feature, we have several examples of

problems (details are given in Chapter 2) which have very e�cient solutions on

real machines (with random access) but are provably di�cult to solve on Turing

machines. In other words, there is a danger that any lower bound proved on the

model may not be saying anything meaningful about the behavior of the given

problem on real machines.

RAMs are a more realistic model of practical machines. They would have been

good models to prove lower bounds on, except that there is a growing consensus

that the model is not simple enough to facilitate lower bound arguments. We will
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elaborate more on this in Chapter 2. Branching programs redress many of these

problems.

Informally, a branching program is a directed acyclic graph where each node

reads an input variable and control 
ows to other nodes depending on the value

of that input variable. It is an abstraction of many other computing models: The

nodes of the branching program represent con�gurations of a machine, and edges

de�ne transitions on inputs. It has been a very attractive model to study because

of its simplicity. At the same time the model is powerful enough to model the

performance of real machines.

Recently, variants of branching programs (for example, ordered binary decision

diagrams) have turned out to be very useful data structures for design, veri�cation,

and testing of digital systems (see e.g. Bryant [Bry92], Burch et al. [BCL

+

94]).

The complexity of these design, veri�cation, and testing algorithms is often directly

related to the size of the underlying data structures. This gives added motivation

for e�cient computation of functions by branching programs.

Chapter 2 is an introduction to the branching program model. We outline

some motivation to study the branching program model, state the de�nitions and

summarize some previously known results.

In Chapter 3, we give two constructions of branching programs, each one com-

puting a very natural class of elementary functions. Given n input bits, the k-th

threshold function (for 0 � k � n) is de�ned to have value 1 if and only if at least

k of them are one. For �xed a and d, the mod function is de�ned to have value

1 if and only if the number of 1's in the input is congruent to a mod d. We con-

struct simple branching programs of o(n log

3

n) nodes for computing any threshold

function and o(n log

4

n) nodes for computing any mod function. These are the �rst

improvements in nearly thirty years of a construction of size O(n

3=2

) due to Lu-

panov [Lup65]. Because the behavior of these two classes of functions depends only

on the number of 1's in the input, we introduce a new model Modular Arithmetic

Branching Programs (MA-programs) that operates on integers. There is a direct

mapping from MA-programs to branching programs, and presenting our construc-

tion in terms of MA-programs allows us to highlight the important details without

getting unduly distracted. Our main technical contribution is an MA-program for
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computing \approximate division."

1.2 Parallel Computation

The second part of this thesis deals with parallel computation, whose study has

become a very important part of Computer Science.

Because of the decreased cost of hardware, it has become feasible to have several

processors in a single computer, which suggests a very simple scheme for reducing

the time needed to solve any problem. If we are really lucky, we may be able to

break a given problem into some large number p of independent subproblems such

that solving any of the subproblems takes about

1

p

of the time to solve the original

problem. In this case, having a parallel computer with p processors will enable us

to solve the problem in

1

p

of the time needed on a sequential computer.

Of course, very few problems in practice can be subdivided so easily into in-

dependent parts. Typically, the best we can do is to break the problem into sub-

problems such that each subproblem can be solved much more e�ciently than the

original problem and very little interaction is needed among processors solving the

subproblems. Achieving such a speed-up requires contributions from both algo-

rithm designers and computer architects: The architects build parallel computers

where the interaction between processors can be carried out e�ciently, whereas

the goal of algorithm designers is to minimize the need for interaction between

processors.

Algorithm designers need an abstract model of the parallel machine. The choice

of a good model is critical for the success of the parallel computation �eld. Algo-

rithm designers and computer architects have a symbiotic relationship: The former

have to choose a model that re
ects the realities of real machines. On the other

hand, if many good algorithms are designed on an abstract model then there is

incentive for architects to provide an e�cient implementation of that model in

hardware. However, the two parties put con
icting requirements on the model:

algorithms designers want the model to be abstract enough to hide implementation

details so that it is simple and easy to analyze, whereas the concern of computer

architects is to make sure that the model admits an e�cient implementation.

A model that is very close to the real machines is not necessarily a good model.
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To give an example, every computer (or in fact any �nite system) can be precisely

modeled by a �nite state automaton, but FSAs have not turned out to be a popular

model for designing algorithms. On the other hand, Turing machines or RAMs,

despite their physically unrealizable features of in�nite memory and unlimited word-

size, have proved to be very useful platforms for designing algorithms which run

e�ciently on real machines. The goal of a good model should be to provide a

programmer's view of the machine.

In the case of sequential computers, even with the seemingly endless variations

in the architecture of real machines, RAMs or Turing machines seem to provide

a general model, which up to a �rst approximation, provides a good indication of

performance on any real computer (at least for problems that are not I/O-bound).

Unfortunately, we don't yet have such a general model of parallel computation.

There is a plethora of parallel machines with completely di�erent architectures.

Just as in the case of sequential computers, we would like to have a model such

that algorithms designed on it run e�ciently on machines with seemingly di�erent

architectures. At least for now, there seems to be a consensus among computer

scientists that the di�erences in architectures here are so fundamental that we need

separate design techniques for di�erent architectures.

Because we do not yet have a consensus on appropriate logical realization of

parallel computers, a variety of theoretical models of parallel computation have

been studied.

In the second half of the thesis, we will consider three of these models. We

brie
y outline the results in each chapter. The detailed de�nitions and motivation

for each problem are included at the beginning of each chapter.

In Chapter 4, we will consider parallel random access machines (PRAMs) which

have been the most popular model of shared memory machines for describing par-

allel algorithms and analyzing parallel complexity of problems.

The PRAM model consists of a global shared memory and a set of processors.

Processors operate in lock step, and any processor is allowed to access any location

in the memory. The model has several di�erent variants, which all di�er in whether

or not they allow more than one processors to concurrently access any given memory

location. The three most popular models are CRCW (concurrent read, concurrent
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write), CREW (concurrent read, exclusive write), and EREW (exclusive read, ex-

clusive write) PRAMs. In the case of CRCW PRAMs, we have additional variations

depending on how write con
icts are arbitrated. It is clear from the de�nition that

the CRCW variant is at least as powerful as the CREW variant, which, in turn, is

at least as powerful as the EREW variant.

It is not immediately clear which of these three models is the most appropri-

ate platform for designing algorithms; there is a trade-o� between ease of design

and e�ciency of implementation: the powerful variants are the most attractive for

describing algorithms, but they are also the most expensive to implement.

This makes it important to understand the relative power of these variants. If

there is an e�cient simulation of the CRCW variant by the EREW variant then

algorithms can be designed on CRCW PRAMs and the simulation algorithm can

then act as a compiler to translate them to weaker EREW PRAMs. On the other

hand, if there is a large gap in the powers of CRCW and EREW PRAMs then extra

e�ort should be invested in designing algorithms on the EREW model or �nding

an e�cient way to build CRCW PRAMs.

The two big questions are determining the relative power of (1) CRCW and

CREW PRAMs and (2) CREW and EREW PRAMs.

The results in Cook et al. [CDR86], Kuty lowski [Kut91] and Dietzfelbinger et

al. [DKR94] prove that for computing several functions (including the OR of n bits),

the CRCW model is at least 
(log n) times faster than the CREW PRAM. The

problem of determining the relative power of CREW and EREW PRAMs remains

open.

We make partial progress in Chapter 4 by showing that if the size of the memory

through which processors communicate is severely restricted, then a decision tree

can be evaluated more e�ciently on a CREW PRAM than on any EREW PRAM.

The PRAM model provides a very high level programmer's view of parallel

machines. This is a very appealing feature for algorithm designers. Of course, we

pay a price for this convenience: the read and write primitives, assumed to take

unit cost on the model, are quite expensive to implement in hardware even for the

case of the weakest EREW variant.



8

We argue that this fact in itself is not necessarily a big 
aw of the model.

One can raise a similar objection to the unit cost RAM model, where memory

references and all other primitive instructions are assumed to take unit cost on the

model but may take non-constant time on a real computer. Di�erent machines

have di�erent implementations of primitives of the theoretical model, so that any

general model gives a running time which is not the same as that on real machines.

The usefulness of any model derives mainly from its ability to predict relative

performance of algorithms and problems: so if a model predicts that algorithm A

is more e�cient than algorithm B, it should be the case that an implementation

of A on any computer is indeed more e�cient than an implementation of B. Thus

we can pick an algorithm based on its e�ciency (relatively speaking) on the model

and be sure that it is the best available choice to run on any real machine.

The real danger of having primitives that are expensive to implement on real

machines is in wrongly predicting the relative performance of problems. As an

extreme example, consider functions which have the same complexity as read and

write primitives on real machines. We would like the model to predict that all these

functions have very e�cient solutions. Unfortunately, many of these functions turn

out to have no constant time implementation in terms of read and write primitives of

the PRAM model. (The PARITY function is an example of such a function [BH89].)

There are two possible approaches one can take at this point: One choice is to

strip down the model, leaving only primitives that are easy to implement. This is a

reasonable choice but it goes against the basic philosophy that the most important

function of a model is to provide a high level view of the machine.

The other approach is to augment the PRAM model with a set of primitives

that have the same hardware complexity as reads and writes.

A variety of theoretical and empirical work [Ble89, Ble90, CBZ90, KRS86,

RBJ88, PS88, KRS88] has suggested that parallel pre�x computations for certain

associative operations can be done in time comparable to implementing reads or

writes. Providing these extra primitives makes many algorithms simpler and/or

e�cient. We call these models multi-pre�x PRAMs and parameterize them by

the set of associative operations for which parallel pre�x computations are allowed

at unit cost. The model becomes unreasonable if we allow arbitrary associative
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operations. A natural restriction is to limit the bandwidth of the operations which,

loosely speaking, is a measure of the size of packets that have to be propagated

in the underlying network implementing the multipre�x PRAM. In Chapter 5, we

show that under a natural bandwidth restriction on any such multi-pre�x PRAM,

it can be e�ciently simulated by an unbounded fan-in circuit with special gates

for the associative operations allowed in the multi-pre�x PRAM. This gives one

way of translating the known lower bound results proved on circuits to the case of

multipre�x PRAMs.

Finally in Chapter 6, we consider a sub-bus mesh model. In a mesh connected

computer, there is a processor placed on every grid point of a 2-dimensional mesh.

The processors have the capability to broadcast data to their left, right, up, or down.

In every cycle of computation, processors can dynamically partition themselves into

groups such that the data broadcast by any processor reaches all other processors

in its partition. There are several variants of the model which all di�er in the kinds

of partitioning they allow. The architecture is very attractive because of its regular

design and low cost of processor interconnection. It has been popular both among

practitioners building parallel machines and among theoreticians needing a model

to design parallel algorithms on [Bat80, HS86, Lei92, LS91, MS89, MPKRS93,

RPK88, Sto86]. We will focus on the sub-bus mesh computer, which has been

implemented on the commercially available MasPar MP-1 [Bla90].

The sub-bus mesh computer is a single-instruction multiple-data (SIMD) ma-

chine. All broadcasts in any particular step are in the same direction. In the case of

left or right broadcasts, every row gets partitioned into sets of consecutive columns

so that within any partition, at most one processor broadcasts; similarly, in the case

of up or down broadcasts, every column gets partitioned into sets of consecutive

rows so that within any partition, at most one processor broadcasts. We assume

that broadcasts take unit time.

We consider the problem of computing the sum of bits on a

p

p �

p

p sub-bus

mesh when each processor starts with one input bit, and give an asymptotically

optimal algorithm, running in time O

�

log n

log log n

�

.

Most results in this thesis have already been published as journal or conference

papers. The branching program construction for threshold functions in Chapter 3
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�rst appeared in [ST94]; the separation result of Chapter 4 appeared in [BFS];

and the sub-bus algorithm of Chapter 6 appeared in [CLLS].



Chapter 2

INTRODUCTION TO BRANCHING PROGRAMS

2.1 Motivation and De�nitions

Theoretical computer scientists need to model real machines in order to analyze

the computational behavior of problems.

By far, Turing machines and RAMs have been the two most successful models

for theoretical study of computational problems. They have helped us generate a

large body of algorithms. We have also been able to identify candidate problems

which have strong theoretical and empirical evidence of being inherently di�cult

(for example, complete problems for various complexity classes). Unfortunately,

though, the goal of proving actual lower bounds has been largely elusive. There

has been a growing realization of inadequacies of the Turing machine and RAM

models for proving lower bounds. We �rst outline the di�culties with the Turing

machine model.

A series of relativization results have shown that most of the known lower

bound techniques on Turing machines are not powerful enough to prove strong

lower bounds (see e.g. Baker, Gill, and Solovay [BGS75]). An even more serious

concern is that Turing machines access their memory in sequential order. Because

all real machines have random access, a lower bound proved on Turing machines

that relies crucially on the sequential access feature may not say anything meaning-

ful about resource requirements on real machines. We will give two examples. As

our �rst example, consider the problem of checking whether two halves of a given

input string of length 2n are equal. Cobham's classical result [Cob66] states that

for any Turing machine solving this problem, the product of its time and space

requirement is at least 
(n

2

). However, the proof crucially relies on the fact that in

order to read input symbols located far apart on the tape, the Turing machine has

to spend a lot of time. In current digital technology, where random access is fairly
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e�cient, this problem has an easy solution using space O(logn) and time O(n). In

other words, the model is making false predictions about the computational di�-

culties of certain problems. Even on the Turing machine, if we allow two heads, the

problem becomes simpler (solvable in space O(1) and time O(n)). This again is not

very desirable because for small polynomial lower bounds (the only ones that we

have been able to prove so far) the model is not very robust. As another example,

the Turing machine model can not di�erentiate between the complexity of sorting

n integers and merging two sorted lists of n integers each [Tom78]; even though

merging seems an easier problem to compute on real machines.

RAMs are an attractive model because of their closeness to real machines. The

main objection against the RAM model (which also applies to Turing machines) is

that the model has too many features: A lower bound proof consists of showing that

no matter what an algorithm does, it can not solve the given problem e�ciently.

The complexity of such a proof is often proportional to the number of di�erent

types of activities allowed on the model.

This suggests that while Turing machines and RAMs have been very successful

for many tasks, in order to make progress we need to analyze models that are easier

and at the same time at least as powerful as real machines.

The branching program model seems to ful�ll both these requirements. Its

many variants have long been popular for studying complexity of functions (see,

for example, the survey paper of Razborov [Raz91]). It is a simple model which

is amenable to combinatorial analysis and at the same time is powerful enough to

simulate many other computational models. In particular, it redresses the input

addressing mechanism of the Turing machine model by providing random access

to inputs. We will show its relation to other models, for example, RAMs, circuits,

formulas, and Turing machines. Branching programs have been particularly useful

for proving that, for certain problems, both time and space can not be limited

concurrently. These lower bounds on space and time also apply to the logarithmic

cost RAM model (Proposition 2.3). Recent use of some restrictions on the branching

programs model (for example, ordered binary decision diagrams) as a data structure

in circuit design and veri�cation has given added motivation to construct e�cient

representation of functions in terms of branching programs.
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We de�ne branching programs for computing integer functions of n input bits

x

1

; x

2

; : : : ; x

n

.

De�nition 2.1 A branching program is a directed acyclic graph with a desig-

nated source node and some number of sink nodes. Each sink node is labeled with

an integer. Each non-sink node has out-degree two and the two outgoing edges are

labeled x

i

= 0 and x

i

= 1 for some input variable x

i

. In this case we say that

the node reads the variable x

i

. The branching program computes a function in the

following way: it is easy to see that any setting of input bits x

1

; x

2

; : : : ; x

n

de�nes a

unique path from the source node to one of the sink nodes in which all edge labelings

are consistent with the assignment of x

1

; x

2

; : : : ; x

n

; the label of this sink node is

the value of the function.

There are two interesting measures associated with branching programs: length

and size. If each node takes one clock cycle to decide which of its two outgoing

edges is consistent with the given input then the time needed to compute the value

of the function is exactly the maximum distance from the source node to any of the

sink nodes. This maximum distance is called the length of the branching program.

The hardware requirement is measured by size, which is the number of nodes in

the branching program.

The branching program model is an abstraction of many other computing mod-

els. The nodes of the branching program represent con�gurations of a machine, and

edges de�ne transitions on input bits. We have already de�ned time on branching

program as its length; we de�ne space as the logarithm of its size. The justi�ca-

tion for de�ning space in this way comes from the following two theorems relating

branching programs to Turing machines and RAMs.

2.1.1 Relationship to Turing Machines, Circuits, and Formulas

Since we allow di�erent branching programs for each value of input length, without

requiring any connection between these branching programs, they can even compute

non-recursive functions. To relate their power to those of Turing machines, we also

need to de�ne nonuniform versions of Turing machines. An s(n) space bounded

nonuniform Turing machine is allowed to hardwire 2

O(s(n))

bits of advice. (See

page 279 of Wegner [Weg87] for a de�nition of nonuniform Turing machines.)
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Proposition 2.2 (Cobham [Cob66], Pudl�ak and Z�ak [PZ83]) For any s =


(log n), branching programs using space O(log s) compute exactly the same class

of functions as nonuniform Turing machines using space O(log s).

Proof sketch: We will state the basic intuition of the proof; a complete proof

appears on page 415 of Wegner [Weg87]. Given a branching program, a Turing

machine can compute the same function by simulating the path from source to the

sink node that is consistent with the given input. In order to simulate the branching

program, we need space equal to the logarithm of the size of the branching program

to be able to index its nodes. Conversely, given a nonuniform Turing machine, we

construct an equivalent branching program whose nodes are the con�gurations of

the Turing machine and edge transitions correspond to changes of con�guration on

input bits. 2

In particular this theorem implies that polynomial size branching programs com-

pute exactly the same class of functions as log space bounded nonuniform Turing

machines.

The time and space requirements of branching programs give a lower bound

on the (respective) time and space requirements of logarithmic cost RAMs. (See

page 23 of van Emde Boas [vEB90] for a de�nition of the logarithmic cost RAM

model.) There are several possible ways of de�ning space on logarithmic cost RAMs

(see the discussion on page 27 of [vEB90]). The following proposition holds for

any de�nition of space which ensures that the space requirement of any particular

computation is greater than or equal to the number of bits needed to describe

con�gurations of the machine during this computation. All reasonable de�nitions

of space on the logarithmic cost RAM model satisfy this property.

Proposition 2.3 (Borodin and Cook [BC82]) The time and space complexity of

any Boolean function on the branching program model is at most (up to a constant

multiplicative factor) its time and space complexity on the logarithmic cost RAM

model.

Proof sketch: Given any RAM M , we can construct an equivalent branching

program P on the input variables. P contains a node corresponding to each possible
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con�guration of M . The node corresponding to the initial con�guration of M

becomes the start node of P ; and nodes corresponding to �nal con�gurations of

M become sink nodes of P . We simulate every transition of M as follows. If M

reads the input variable x

i

in con�guration c and achieves con�guration c

0

or c

1

depending on the value of x

i

then we connect the node corresponding to c to nodes

corresponding to c

0

and c

1

by directed edges labeled x

i

= 0 and x

i

= 1. It is

straightforward to verify that P computes the same Boolean function as M . Also,

if M has space complexity s, its con�gurations can be encoded with at most s bits

so that P has at most 2

s

nodes and its space complexity is at most s. It is also easy

to see that the depth of P is equal to the maximum number of input reads on any

computation path of M , so that time on P is bounded above by the cumulative

time spent in reading input variables by M . Notice that this proposition holds even

if we make all computations except reading the inputs free for RAMs. 2

The size complexity of branching programs is known to be closely related to

other well studied models of computation. The following theorem relates the size

complexity of branching programs to size complexities of circuits and formulas (see

Wegner [Weg87] for de�nitions of circuits and formulas).

Proposition 2.4 The size complexity of any Boolean function in the branching

program model is at least one third of its circuit size and at most one more than its

formula size.

Proof sketch: The proof is not very hard (and can be found, for example, on

page 416 of [Weg87]). Given a branching program, we will de�ne a transformation

to obtain an equivalent circuit. First, we reverse all the edges and make the source

node the output node of the circuit. Then we replace each node in the branching

program reading x

i

by a multiplexor which, depending on the value of x

i

, outputs

one of the two values feeding this gate. Because each multiplexor gate can be built

with 3 gates from the DeMorgan basis, we get a circuit of size three times the size

of the original branching program. Showing the relationship between branching

program and formula size is also easy. Given two branching programs computing

Boolean functions f

1

and f

2

, it is straightforward to construct branching programs

for computing f

1

_ f

2

or f

1

^ f

2

in size at most the sum of the sizes of the original

branching programs. On the other hand, since formula size is measured as the
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number of gates, the sum of the sizes of the optimal formulas for f

1

and f

2

is one

less than the size of the optimal formula for computing f

1

_ f

2

or f

1

^ f

2

. An easy

induction on the structure of the formula proves that the branching program size

is at most one more than the formula size. 2

2.1.2 Ordered Binary Decision Diagrams

The recent attention on ordered binary decision diagrams (OBDDs) and their vari-

ants by VLSI chip designers has given fresh motivation for e�cient computation of

functions by branching programs. OBDDs are branching programs with the extra

restriction that there is a �xed ordering of 1 to n such that if a node reading x

i

is an

ancestor of another node reading x

j

then i precedes j in the predetermined order. In

particular, it implies that any input variable appears at most once on any source to

sink path. VLSI researchers need some form of representation for functions. Many

conventional representations, like Karnaugh map or truth table, have the undesir-

able property that their size is exponential in the number of variables. On the other

hand, many concise representations preclude any easy manipulation or formal anal-

ysis. OBDDs seem to have a good balance: they provide compact representation

for many functions arising in practice and at the same time, they can be manipu-

lated very e�ciently. They have been extensively used in the design, veri�cation,

and testing of digital systems (see e.g. Bryant [Bry92], Burch et al. [BCL

+

94]).

In order to make these systems e�cient, the size of the representation has to be

minimized. For many functions, no e�cient representation with OBDDs is possi-

ble. Building on the success of OBDDs, researchers have tried either to de�ne other

models which are similar to OBDDs (see e.g. Bryant and Chen [BC94]) or to relax

some of the restrictions of the OBDDs to allow more e�cient representations while

still retaining the ease of manipulation (see the discussion at the end of [Bry92]).

2.1.3 Restrictions and Extensions of the Branching Program Model

We now discuss some variants of the branching program model. In a leveled branch-

ing program, the nodes are partitioned into levels L

0

; : : : ; L

l

such that every edge

from a node in L

i

goes to a node in L

i+1

. We will say that a node is in level i

when it belongs to L

i

. The width of a leveled branching program is de�ned to be

the maximum number of nodes in any level of the branching program. An oblivious
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branching program is a leveled branching program in which all out-edges from any

particular level access the same input variable.

Given a leveled branching program of width w and length `, it can be easily

converted into an equivalent oblivious branching program of width w+1 and length

at most `w by creating w levels for each level in the original branching program.

It is also possible to de�ne branching programs in a more general manner. We

say that a path is a semantic path if it starts from the source and does not contain

two edges labeled x

i

= 0 and x

i

= 1 for any variable x

i

. Intuitively, on any given

input, control follows one of the semantic paths in the branching program. In a more

general de�nition of branching programs, we allow cycles in the underlying graph as

long as no semantic path contains a cycle. For such a general branching program,

we de�ne its length to be the length of the longest semantic path. Pippenger has

shown an easy way of converting any such general branching program of size s and

length ` into a leveled branching program of size (` + 1)s and the same length `

(details are given in Borodin et al. [BFK

+

81]). Pippenger's transformation makes

` + 1 copies of each node in the original branching program and connects them in

a way such that the ith node on any semantic path is the ith copy of some node in

the original branching program.

There have been two important generalizations of the branching program model.

(1) In the model we have de�ned, any setting of input variables corresponds to a

unique source to sink path. There are several nondeterministic variants of the

branching program model where any setting of input corresponds to zero or more

paths in the underlying graph. The nondeterministic variants di�er in their accep-

tance criteria as well as on the types of underlying graphs they allow (see Razborov's

survey paper [Raz91]). (2) It is also possible to de�ne branching programs to com-

pute function over non-Boolean domains. If each input variable comes from a do-

main of size R, then in the ensuing model each non-sink node has R outgoing edges.

The model was introduced by Borodin and Cook [BC82] and has been subject to

extensive studies ( for example, [Abr91, Abr90, Bea91]).
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2.2 Some Basic Results

2.2.1 Time-Space Trade-o� Results

Because of their ability to model both space and time, branching programs and their

many variants have been particularly useful in proving many time-space trade-o�

results. That is, for solving certain problems, it has been shown that both time and

space can not be limited at the same time [Abr91, Abr90, Bea91, BC82, BFK

+

81,

Yao88, BFMadH

+

87, MNT90, PSP93] (also see Borodin's excellent survey arti-

cle [Bor93]). Unlike Turing machines, branching programs allow random access of

inputs, so that lower bounds proved on the branching program model provide a

strong guarantee of the di�culty of problems on real machines.

The general proof technique is to de�ne some notion of \progress" towards

computing a given function. Then break the computation into many sub-stages and

argue that during any sub-stage most inputs make very little \progress". For many

multi-output functions, the number of outputs has turned out to be a useful notion

of progress. For single output functions, �nding the \right" measures of progress

has been much more di�cult and for that reason it has been more challenging to

prove bounds on single output functions.

2.2.2 Size Complexity Results

As is traditional in complexity theory, we will concentrate on decision functions,

that is, functions with the range faccept, rejectg. Despite the apparent simplicity

of the branching program model, researchers have had very little success in proving

interesting bounds. By a counting argument we know that almost all functions have

size complexity �(

2

n

n

) on branching programs, but the best lower bound for a func-

tion in NP is only 


�

n

2

log

2

n

�

. This bound was �rst proved by Ne�ciporuk [Ne�c66]

for a somewhat contrived function. Beame and Cook (unpublished) noticed that

Ne�ciporuk's technique can be applied to prove the same lower bound for the element

distinctness problem. Ne�ciporuk's technique is essentially a counting argument and

applies to the stronger switching network model (see [Raz91] for de�nition).

Theorem 2.5 [Ne�c66] Let b

1

; b

2

; : : : ; b

m

be any partition of input variables into

m groups. Then setting all variables outside b

i

gives a sub-function of f on the
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variables in b

i

. For any function f that depends on all its input variables, let s

i

(f)

be the total number of distinct such sub-functions on variables in b

i

, obtained by

�xing all variables outside b

i

in all possible ways. Then the size of any branching

program computing f is




 

m

X

i=1

log s

i

(f)

log log s

i

(f)

!

Proof sketch: We will state the basic intuition behind the proof; a complete

proof is given on page 422 of [Weg87]. Start with a branching program for comput-

ing f . Partition the nodes of the branching program based on the input variable

they are reading. Let t

i

be the number of nodes reading a variable in b

i

. We will

prove that t

i

= 


�

log s

i

(f)

log log s

i

(f)

�

. Notice that this is enough to prove the theorem

because the size of the branching program is equal to the sum of the t

i

's.

To prove the bound on t

i

, notice that any setting of all variables outside b

i

leaves a reduced branching program on the nodes reading variables in b

i

. This

branching program has at most t

i

nodes, and must be computing one of the s

i

(f)

sub-functions. It is easily seen by a counting argument that the number of di�erent

branching programs of size at most t

i

is less than t

i

3t

i

. Thus t

i

3t

i

> s

i

(f), which

gives t

i

= 


�

log s

i

(f)

log log s

i

(f)

�

. 2

Beame and Cook considered the element distinctness problem.

De�nition 2.6 Given n bits of input x

1

; x

2

; : : : ; x

n

, divide them into m =

b

n

2 log n

c blocks b

1

; b

2

; : : : ; b

m

of consecutive bits such that every block b

i

contains

at least 2 logn input bits. Then ED(x

1

; x

2

; : : : ; x

n

) = 1 if and only if there exists

i 6= j such that b

i

and b

j

, interpreted as integers, have the same value.

Corollary 2.7 (Beame and Cook) Every branching program computing

ED(x

1

; x

2

; : : : ; x

n

) has 


�

n

2

log

2

n

�

nodes.

Proof sketch: Notice that b

1

; b

2

; : : : ; b

m

form a partition of the input. Beame

and Cook proved that for any i, log s

i

(ED) = 
(n), which combined with the

previous theorem states that the size of any branching program computing the

element distinctness function is 


�

n

2

log

2

n

�

. 2
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Notice that Ne�ciporuk's technique counts nodes associated with di�erent input

variables. Since there is no natural association of nodes and input variables in

circuits, this technique has not yet been extended to the case of circuits. We remind

the reader that the best unconditional size lower bound for circuits computing a

function in NP is less than 3n [Blu84]; a circuit size lower bound of 


�

n

2

log

2

n

�

would

amount to a complexity breakthrough.



Chapter 3

SYMMETRIC FUNCTIONS ON BRANCHING

PROGRAMS

Symmetric functions are a class of Boolean functions that depend only on the

number of 1's in the input. They, being so natural, have been studied by many

researchers. Ne�ciporuk's technique does not prove any non-trivial bounds for sym-

metric functions. It is intriguing that even for these most fundamental functions,

we can not characterize their exact complexity on branching programs.

There is an obvious branching program (Corollary 3.11, to be proved later) of

size O(n

2

) for computing the number of 1's in the input and therefore any symmetric

function; and any branching program computing a non-trivial function must have

at least n nodes. We would like to bridge the gap between these upper and lower

bounds.

We will concentrate on two very natural classes of symmetric functions.

De�nition 3.1 For any k; 0 � k � n, the k-th threshold function, Th

k

, is

de�ned to be one if and only if at least k of the n inputs are one. Majority is the

most interesting of these functions and is de�ned to be one if and only if at least

half of the input bits are one.

De�nition 3.2 For �xed a and d, the mod function, mod

a;d

, is de�ned to be

one if and only if the number of 1's in the input is congruent to a mod d.

We will start by summarizing some known lower and upper bound results, and

will close the chapter by giving two constructions: an oblivious branching program

of size o(n log

3

n) for computing any threshold function; and an oblivious branching

program of size o(n log

4

n) for computing any mod function. All previously known

constructions for these two classes of functions had size 
(n

3=2

) [Lup65]. Our

constructions are better described in terms of a new model Modular Arithmetic
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Branching Programs (MA-programs) that we introduce in Subsection 3.2.3. There

is an easy translation from MA-programs to branching programs, but presenting

our construction in terms of MA-programs lets us highlight the key ideas of our

construction.

3.1 Lower Bounds

Given the lack of success in proving strong lower bounds, many researchers have

turned to the study of restricted branching program models. The hope is that the

insight gained might eventually be of use in attacking the general model.

3.1.1 Constant Width Branching Programs

For the case of width two branching programs, Borodin et al. [BDFP86] proved an




�

n

2

log n

�

length lower bound for computing the majority function. Yao [Yao83]

improved this to a super-polynomial lower bound. Shearer (unpublished) proved

an exponential lower bound for the problem of checking whether the number of 1's

in the input is a multiple of three. For width three or more, the best lower bound

for a symmetric function is much smaller. Chandra et al. [CFL83] were the �rst

to prove a super-linear 
(nW (n)) length lower bound on arbitrary constant-width

branching programs. (W (n) is the inverse of the Van der Waerden function and is

less than 10 for all practical values of n.) They used Ramsey theoretic arguments

and as we noted, their bound is barely super-linear; however, their result applies to

the stronger recti�er-switching model which is one of the natural nondeterministic

extensions of the branching program model. For the class of non-constant threshold

functions, Barrington and Straubing [BS91], using algebraic techniques, improved

this bound to 
(n log log n). Alon and Maass [AM88] and Babai et al. [BPRS90]

independently proved that any oblivious branching program of width w �

p

n

for majority has length 
(

n log n

logw

). Their bounds apply to all but a vanishingly

small fraction of symmetric functions and are currently the best known length

lower bounds for oblivious branching programs computing symmetric functions.

Since any constant-width branching program can be transformed into an equivalent

oblivious branching program with a constant blow-up in length and width, we get

that for computing all but a vanishingly small fraction of symmetric functions, any

constant-width branching program requires length 
(n log n). We will give some
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intuition on this result in the next subsection.

3.1.2 Communication Complexity Technique

Some of the best known lower bound results on branching programs (including

[AM88] and [BPRS90]) are based on communication complexity.

Informally, communication complexity measures the amount of communication

needed to compute the given function when two parties are each given half of the

input.

We assume that two processors (conveniently named Alice and Bob) with un-

limited computational power are each given one half of the input and their goal

is to co-operatively compute the given function with as little exchange of informa-

tion as possible. Communication complexity is de�ned as the minimum number of

bits of information that Alice and Bob have to exchange on any input. In general,

the communication complexity depends on how we partition the input. We will

consider two variations:

(1) worst-partition communication complexity measures the maximum amount

of communication needed, over all possible partitions.

(2) optimal-partition communication complexity measures the minimum amount

of communication needed, over all possible partitions.

The communication complexity measure was �rst introduced by Yao [Yao79] and

has turned out to be very useful in a number of contexts (e.g., circuit depth lower

bound, VLSI time area trade-o�). There are several papers containing detailed and

precise treatment (see, for example, Karchmer's thesis [Kar89]).

As a warm up, we will outline a very simple lower bound argument on the size

of OBDDs.

Proposition 3.3 Any OBDD computing a function with optimal-partition com-

munication complexity C has at least 2

C

nodes.

Proof: Consider any OBDD P computing a function f with optimal-partition

communication complexity C. We will de�ne a communication game for computing

f . Let the order of variables for P be x

i

1

; x

i

2

; : : : ; x

i

n

. Alice gets the �rst

n

2

variables
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in this order and Bob gets the remaining variables. Both Bob and Alice also have

their individual copies of P . Alice starts by simulating the computation of P

until she encounters a variable that doesn't belong to her private set. She then

communicates the identity of the node that is reached by giving its index. Then

Bob takes over and completes the simulation of P .

This protocol exchanges only logm bits where P has m nodes. Because C >

logm, P has at least 2

C

nodes. 2

To give some intuition on the length lower bound on the oblivious branching

program ([AM88] and [BPRS90]), consider the simpler case of proving lower bound

on an oblivious branching program P with the following restriction: If the length

of P is n
 then the levels can be divided into 
 groups of consecutive levels such

that all the odd numbered groups of levels (�rst, third, �fth etc.) read the �rst

n

2

input variables and all the even numbered groups of levels (second, fourth etc.)

read the last

n

2

input variables.

We claim that the communication complexity (under the partition in which the

�rst player receives the �rst half of the inputs) of the function being computed by

this branching program is at most 
 logw, where w is the width of the branching

program. This is very easily proved by the following communication game:

Alice receives the �rst

n

2

input variables and Bob receives the remaining input

variables. Both players also have their individual copies of P . The two players

alternately simulate the computation of P . Whenever the player doing the simula-

tion encounters a variable that does not belong to its private set, it communicates

the identity of the node that is reached and the other player takes over.

There are 
 switch-overs between players and each switch-over involves logw

bits of communication, giving a total of 
 logw bits of communication. If P is

computing a function with communication complexity C (under the partition in

which the �rst player receives the �rst half of the inputs), we obtain a lower bound

of

C

logw

on 
 and a lower bound of

nC

logw

on the length of the branching program.

The heart of [AM88, BPRS90] is a Ramsey like theorem which states that given

any oblivious branching program, there is a restriction that leaves a signi�cant

portion of the variables unset and results in a branching program with a structure

similar to what we have described above.
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Theorem 3.4 [AM88, BPRS90] For any function f , and any m � n, let

C

f

(m) denote the maximum worst-partition communication complexity of f under

a restriction that leaves m variables unset (the maximum is taken over the set of

restrictions). Then there is a constant b > 0 such that every oblivious branching

program of width w �

p

n for computing function f has length at least

n


logw

, where


 = 


�

C

f

�

n

b




��

The previous theorem applies only to oblivious branching programs. For the case

of arbitrary branching programs, Pudl�ak [Pud84] used a Ramsey theoretic argument

to prove an unconditional size lower bound of 


�

n log log n

log log log n

�

for computing most

threshold functions (including majority). Babai et al. [BPRS90] improved this to

an unconditional size lower bound of 


�

n log n

log log n

�

for computing majority. This

bound is a generalization of Theorem 3.4 and also applies to almost all symmetric

functions.

Theorem 3.5 [BPRS90] For any function f , and any m � n, let C

f

(m) de-

note the maximum worst-partition communication complexity of f under a restric-

tion that sets exactly n �m variables to zero (the maximum is taken over the set

of restrictions). Then there is a constant b > 0 such that every branching program

for computing function f has size at least n
, where


 log 
 = 


�

C

f

�

n

b




��

The following is a corollary of Theorems 3.4 and 3.5.

Corollary 3.6 For the problem of computing majority or mod

a;b

p

nc

for any a,

every branching program has size 


�

n log n

log log n

�

and every oblivious branching program

of width w �

p

n has length 


�

n log n

logw

�

.

Razborov [Raz90], and Karchmer and Wigderson [KW93] proved unconditional

size lower bounds of 
(n log log log

?

n) for computing majority on nondeterminis-

tic extensions of the branching program model. Razborov proved it for recti�er-

switching networks; Karchmer and Wigderson proved it for span programs. The



26

results are based on a characterization of nondeterministic branching program size

in terms of the covering number of a set of functionals. These are the only un-

conditional super-linear size lower bounds known on nondeterministic branching

programs.

3.2 Upper Bounds

In the direction of upper bounds, progress has been even more elusive.

3.2.1 Constant Width Branching Programs

The majority function has been the subject of many studies. For a long time it

was widely believed that any constant width branching program for computing

majority must have super-polynomial length. The lower bound results of Borodin

et al. [BDFP86] and Yao [Yao83], described earlier, were seen as steps leading to a

proof of super-polynomial lower bound on the length of constant width branching

programs computing majority.

Barrington [Bar89], in a very surprising result, proved that there are polynomial

size branching programs of width �ve for computing majority. In fact, his result is

much more general and applies to all functions computable by fan-in two Boolean

circuits of logarithmic depth (which includes all symmetric functions).

Theorem 3.7 [Bar89] For any function s(n) which is at least polynomial,

constant width branching programs of size s(n)

O(1)

compute exactly the same class

of functions as fan-in 2 Boolean circuits of depth O(log s(n)).

An e�cient simulation of branching programs by circuits was already known. Bar-

rington [Bar89] proved that a Boolean circuit of depth d can be simulated by a

branching program of width �ve and size d4

d

. He considered a restricted class of

branching programs which can be thought of as computing permutations. For a

given Boolean circuit, he gives a simple recursive way of constructing an equivalent

branching program belonging to this restricted class. The width �ve comes from

the fact that the smallest unsolvable permutation group has order �ve. The size

blow-up in the simulation of circuits by branching programs was later improved by

Cai and Lipton [CL89], and Cleve [Cle91]. Cleve showed that any formula of size t
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can be simulated by a branching program of width w and length t

1+1=O(w)

. Unfor-

tunately, in all these constructions, the resulting branching programs for computing

majority are not e�cient in size; they are, in fact, larger than the obvious O(n

2

)

construction.

3.2.2 Computing Sum of the Bits

For any input ~x, let k~xk denotes the number of 1's in ~x. The most obvious way

to compute any symmetric function is to �rst compute k~xk. Unfortunately we pay

heavily for this direct approach. The following proposition says that at least for

the restricted case of oblivious branching programs, computing k~xk always requires

size 
(n

2

).

Proposition 3.8 Any oblivious branching program computing k~xk on n-bit in-

put ~x has size at least

n+1

X

i=1

i =

(n + 1)(n + 2)

2

:

Proof: For any input variable x

i

, de�ne `

i

to be the highest numbered level

where x

i

is accessed. Assume without loss of generality that `

1

< `

2

< � � � < `

n

.

It is easy to verify that level (`

i

+ 1) has at least (i + 1) nodes, corresponding to

(i + 1) di�erent values of the partial sum x

1

+ x

2

+ � � �+ x

i

. Therefore the size of

the branching program is at least

(Number of nodes in level 0) +

n

X

i=1

Number of nodes in level (`

i

+ 1) =

n+1

X

i=1

i

2

One possible approach is to receive partial information about the input by com-

puting many functions on k~xk, but modulo a set of small, pairwise relatively prime

numbers. Our main technical tool is the following classical theorem which lets us

construct an integer from its values computed modulo many small primes.

The Chinese Remainder Theorem: Given pairwise relatively prime num-

bers p

1

; p

2

; : : : ; p

k

, the set of equations

x � a

j

(mod p

j

) 1 � j � k
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has a unique solution for x between 0 and

Q

p

j

� 1 given by

x =

2

4

k

X

j=1

(a

j

m

j

)((m

j

)

�1

mod p

j

)

3

5

mod

Y

p

j

where m

j

=

Q

p

i

p

j

.

A proof can be found in any standard textbook on Number Theory (for example,

Hardy and Wright [HW79]).

We will illustrate this approach by an example.

De�nition 3.9 For any k � n, the exact-k function, E

k

, accepts an input ~x if

and only if k~xk = k.

Using the Chinese remainder theorem, it is enough to choose a set of primes

with product greater than n and verify that the number of 1's is congruent to k

modulo each one of those primes.

This requires branching programs for computing k~xk modulo �xed positive in-

tegers. The next lemma will give the construction.

To facilitate the presentation of our constructions described later in this chapter,

we will adopt a slightly di�erent view of branching programs. In any branching

program, a given input de�nes a path from the source node to one of the sink

nodes, and we can view the branching program as routing inputs from the source

node to sink nodes. According to our de�nition of branching programs, every

leveled branching program contains exactly one node (the source node) in its level

zero. Sometimes, it will be convenient to relax this to consider leveled branching

programs with more than one node in level zero, where we have not speci�ed which

of these nodes is the source node. Instead, we will think of these leveled branching

programs as routers from nodes in level zero to nodes in the last level, where �xing

the input and the particular node in level zero from which the input starts �xes the

sink node which this input will be reaching.

Proposition 3.10 For any positive integer q > 0, there is an oblivious branch-

ing program with n+ 1 levels, each consisting of q nodes, numbered from 0 to q� 1,
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1-edges

X1

X2

X3

X4

0-edges

Figure 3.1: Branching program for computing (x

1

+ x

2

+ x

3

+ x

4

) mod 3

such that starting from node s, 0 � s < q, in level zero, any input ~x reaches node

(s + k~xk) mod q in the last level.

Proof: We describe this oblivious branching program. All the out-edges from

level i access the input variable x

i

. Transitions between adjacent levels of nodes

are de�ned as follows: node j makes a transition to node j of the next level if its

associated variable is zero; otherwise, it makes a transition to node (j + 1) mod q

of the next level. (See Figure 3.1). 2

Corollary 3.11 There is an oblivious branching program of size O(n

2

) for com-

puting k~xk and therefore any symmetric function.

We can build more complex branching programs by interconnecting many such

routers.

We will be repeatedly using the following corollary of the prime number theorem.

(A proof can be derived from [RS62, Corollary 1 and 2].)



30

Theorem 3.12 For any constant c > 0, there exist constants N; c

0

> 0 such

that for all n � N , there are at least

�

c log n

log log n

�

primes between log n and c

0

log n.

We can use this corollary to construct e�cient branching programs for computing

exact functions.

Proposition 3.13 There is an oblivious branching program of size O

�

nlog

2

n

log log n

�

for computing any exact function on n inputs.

Proof: From the Chinese remainder theorem, in order to compute E

k

, it is

enough to choose a set of primes whose product is greater than n and verify that

the number of 1's is congruent to k modulo each one of these primes. From Propo-

sition 3.10, the resulting branching program will have size equal to (n+1) times the

summation of all the primes. If we use the previous theorem to choose d

log n

log log n

e

primes of size �(logn) each such that their product is greater than n, then the

summation of all the primes is O

�

log

2

n

log log n

�

and therefore the resulting branching

program is of size O

�

nlog

2

n

log log n

�

. 2

Lupanov [Lup65] used the idea of receiving partial information by computing

modulo small primes, combined with a trick of identifying common subcomputa-

tions, to beat the trivial O(n

2

) bound for computing any symmetric function. He

constructed oblivious branching programs of size O(

n

2

logn

) for computing arbitrary

symmetric functions. We will prove this later as Theorem 3.21. We will �rst de-

scribe a model which simpli�es the presentation of Lupanov's result as well as our

improved constructions of branching programs for computing threshold and mod

functions.

The building blocks of all these constructions are branching programs described

in Proposition 3.10. Since the behavior of these branching programs, on any input

~x, depends only on k~xk, it is easier to describe them in terms of a new model that

operates on integers. The basic element of this model are routers that will capture

the behavior of branching programs described in Proposition 3.10.
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3.2.3 Modular Arithmetic Branching Programs (MA-programs)

De�nition 3.14 An MA-program(Modular Arithmetic Branching Program) �

is de�ned by a triplet (B;M; v), where B is a set of boxes, and M de�nes the

connection between the boxes. We will shortly explain v.

Each box has an associated integer constant q > 0, which is called the modulus

of the box. A box with modulus q (also called a q-box) consists of q input nodes and

q output nodes, each of which is numbered from 0 to q � 1.

The connection M maps a subset of the set of output nodes of each box to the

set of input nodes of other boxes; the output nodes which are not mapped by M are

called sinks. We further assume that this mapping does not result in any cycles. v

is one of the input nodes of � that is designated as the source node;

We will be mainly interested in de�ning the sink node that is reached by any

particular integer x starting from the source node v as follows: if x reaches an input

node s of a q-box, it is routed to the output node (x+ s) mod q; if x reaches a non-

sink output node t of some box, it is routed to the input node that the connection

M maps it to.

De�nition 3.15 An MA-program � separates two disjoint sets of integers S

1

and S

2

, if for all x 2 S

1

; y 2 S

2

, x and y reach di�erent sink nodes in �.

The lemma below shows that for computing symmetric functions there is an easy

translation from MA-programs to branching programs.

The size of any MA-program is de�ned as the summation of the moduli of all

its boxes.

Lemma 3.16 Let f be an n-variable symmetric Boolean function and � be an

MA-program of size S that separates the sets

fk~xk : f(~x) = 0g; and fk~xk : f(~x) = 1g:

Then there is a branching program of size (n + 1)S that computes f .
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Proof: Let � = (B;M). We will de�ne a simple transformation to obtain

a branching program P that computes f . We replace every q-box in B with a

branching program described in Proposition 3.10, where the input nodes of the

q-box correspond to the nodes in level 0 of the branching program, and the out-

put nodes of the q-box correspond to the nodes in the last level of the branching

program. If M maps an output node to an input node in �, we identify the corre-

sponding nodes in P . The source and the sinks of � are designated the source and

the sinks, respectively, of P .

Because each q-box in � is replaced with a branching program of size (n + 1)q,

the size of P is (n + 1)S.

It is straightforward to verify that any input ~x reaches the same sink node in

P as integer k~xk in �. Because inputs reaching any sink node in P are either all

from f

�1

(0) or all from f

�1

(1), we label all sink nodes receiving inputs from f

�1

(1)

\accept" and all sink nodes receiving inputs from f

�1

(0) \reject." 2

The above lemma implies that for n-variable symmetric Boolean functions, it is

enough to study the behavior of MA-programs on the set Z

n+1

= fi j 0 � i � ng.

MA-programs provide a general paradigm for computing many symmetric

Boolean functions. But our constructions for computing threshold and mod func-

tions have a particularly simple structure which can be described as a subclass of

MA-programs called chain MA-programs.

De�nition 3.17 A chain MA-program is an MA-program with the added re-

striction that its boxes can be ordered such that the non-sinks of the ith box are

mapped to the input nodes of the (i + 1)-st box. chain< p

1

; p

2

; : : : ; p

k

>, for some

k � 1, is the set of chain MA-programs with k boxes whose i-th box has modulus p

i

(see Figure 3.2).

The corollary below follows easily from Lemma 3.16.

Corollary 3.18 Let f be an n-variable symmetric Boolean function and � be

a chain MA-program of size S that separates the sets

fk~xk : f(~x) = 0g; and fk~xk : f(~x) = 1g:
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Interconnections

p 1

 2

-  box

p    - box

3p    -  box

p    -  boxk

Figure 3.2: chain< p

1

; p

2

; : : : ; p

k

>

Then there is an oblivious branching program of size (n + 1)S that computes f .

For any MA-program �, we de�ne its modulus to be the least common multiple

of the moduli of the boxes in �. The importance of the modulus is explained in the

lemma below.

Proposition 3.19 Let � be an MA-program of modulus m. Then any two

integers x and y satisfying x � y (mod m) reach the same sequence of input/output

nodes in �.
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To keep our notation simple, we will extend the de�nition of input and output

nodes so that for any integer s, the output(input) node s of a q-box will refer to

the output(input) node s mod q. Also, at many places in our construction, it will

be convenient to index a set of p elements as iq mod p, 0 � i < p, for some integer

q that is relatively prime to p. The validity of this indexing scheme follows from

Fact 1 For relatively prime positive integers p and q,

fiq mod p j 0 � i < pg = fi j 0 � i < pg

Our constructions will rely on certain transformations on MA-programs to ob-

tain new MA-programs; this is explained in the proposition below.

Lemma 3.20 (Translation lemma) Let � be an MA-program with modulus

m. Then for any two integers a and l such that a is relatively prime to m, there is

an MA-program �

0

, with the same set of boxes as �, with the following property:

There is a one-to-one mapping � that for each box b, maps the set of in-

put(output) nodes of b in � to the set of input(output) nodes of b in �

0

such that for

any two integers y and x with y � ax + l (mod m), if x in � reaches the sequence

of input/output nodes v

1

; v

2

; : : : ; v

k

, where v

1

is the source and v

k

is a sink, then y

in �

0

reaches the sequence of input/output nodes �(v

1

); �(v

2

); : : : ; �(v

k

).

Proof: We �rst de�ne �.

�(input node s of box b in �) = input node as� l of box b in �

0

.

�(output node t of box b in �) = output node at of box b in �

0

.

The source and sinks of �

0

are respectively the image of the source and sinks of

� under the mapping �.

The connection in �

0

is de�ned as follows: if output node t is mapped to input

node s in � then we map output node �(t) to the input node �(s) in �

0

.

Let x and y be as in the statement of the lemma. Then an easy induction on

i, 1 � i � k, will prove that the ith input/output node reached by ax + l in �

0

is

�(v

i

). Then, from Proposition 3.19, we can infer that y reaches the same sequence

of input/output nodes as ax + l, which proves the lemma. 2
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3.2.4 MA-programs for arbitrary symmetric function

Lupanov constructed a branching program of size O

�

n

2

log n

�

for computing any

symmetric function. This result follows as a corollary of the next theorem.

Theorem 3.21 [Lup65] For every partition of Z

n+1

into two disjoint sets,

there is an MA-program of size O

�

n

log n

�

separating these two sets.

Proof: We will prove that for relatively prime numbers p and q and for every

partitioning of Z

pq

into sets S and T , there is an MA-program of size p + q2

q

separating S and T . Then choosing q = logn� 2 log log n, and p to be the smallest

prime between d

n+1

q

e and 2d

n+1

q

e will give us the desired size bound. (It is a

standard result in Number Theory that for any integer x, there is at least one

prime number between x and 2x. See, for example, [RS62, Equation 3.9].) We will

describe the construction informally. Start with a p-box and designate its input

node 0 as the source node. For 0 � i < p, de�ne S

i

to be the subset of integers

from S that reach the output node i of the p-box. Similarly, de�ne T

i

to be the

subset of integers from T that reach the output node i of the p-box. Let us de�ne

the q-signatures of the these sets as follows:

S

q

i

= fx mod q j x 2 S

i

g

T

q

i

= fx mod q j x 2 T

i

g

It is easy to verify that for every i, S

q

i

and T

q

i

form a partition of Z

q

.

In order to separate S and T , it is enough to separate each of S

i

and T

i

and

because of the above observation, we can separate S

i

and T

i

by using a q-box.

Our �rst attempt will be to use p q-boxes so that the output node i of the

p-box is mapped to the input node 0 of the ith q-box. That, of course, gives an

MA-program of size p+ pq > n, which is less e�cient than the trivial construction

of size n + 1.

To reduce the size, notice that if S

q

i

= S

q

j

(and therefore T

q

i

= T

q

j

), then both

output nodes i and j of the p-box can be connected to the input node 0 of the same

q-box.
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There are 2

q

possible values for the sets S

q

i

, and all the output nodes with the

same value of S

q

i

can be connected to the same q-box. So we need only 2

q

q-boxes,

giving an MA-program of size p + q2

q

.

The size bound can be further reduced to p + 2

q

by noticing that if S

q

i

and S

q

j

are cyclic shifts of each other then they can still be connected to the same q-box

(but to di�erent input nodes). This reduces the number of q-boxes by a factor of q

but does not improve the asymptotic size bound. 2

Applying Lemma 3.16, we get Lupanov's result for computing arbitrary symmetric

functions.

Corollary 3.22 [Lup65] There is an oblivious branching program of size

O

�

n

2

log n

�

for computing any symmetric function on n inputs.

3.3 Branching Programs for Threshold and Mod functions

We would like to improve the O(n

2

= logn) upper bound (Corollary 3.22) on the

size of branching programs computing symmetric functions.

Because nothing better is known for computing general symmetric functions,

attention has turned to computing individual functions. In Proposition 3.13, we

already saw an easy way to compute exact functions more e�ciently. Unfortu-

nately, there is no easy way to replicate this technique to other important classes

of symmetric functions, for example, threshold and mod functions.

Lupanov [Lup65] constructed a branching program of size O(n

3=2

) for computing

any threshold function. No progress had been made on Lupanov's construction in

nearly thirty years. Similarly, for the case of mod functions (that is verifying

whether the number of 1's in the input is congruent to a modulo d, for �xed a and

d), when d is a prime power close to

p

n, all previously known constructions for

computing mod functions had size 
(n

3=2

). (In Section 3.3.4, we outline an obvious

construction of size O(n

3=2

logn).)

This led Razborov [Raz91] to pose the following open problem:

Open Problem (Razborov [Raz91]) Does every recti�er-switching network

computing the majority of n bits have size n

1+
(1)

?
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We settle this problem in a strong negative way. Our main results on branching

programs are:

Theorem 3.23 There is an oblivious branching program of size

O

 

n log

3

n

log log n log log logn

!

for computing any threshold function on n inputs.

Theorem 3.24 There is an oblivious branching program of size

O

 

n log

4

n

(log log n)

2

!

for computing any mod function on n inputs.

For the case of threshold functions, the size bound is within O

�

log

2

n

log log log n

�

of

the size lower bound of Babai et al. [BPRS90] (see Corollary 3.6). Our method

also yields a spectrum of branching programs, one for each width greater than

logn. For width log n � w � n, the length of the resulting branching program

is O

�

n log

2

n

logw log log log n

�

, which is within O

�

log n

log log log n

�

of the length lower bound of

[AM88, BPRS90] (see Corollary 3.6). Our constructions are a generalization of

Lupanov's construction for computing majority [Lup65].

Both of our constructions have other nice properties. For example, for any `, be-

tween levels `n and (`+1)n�1, the variables are accessed in the order x

1

; x

2

; : : : ; x

n

.

This property is strongly reminiscent of the �xed ordering of the input variables in

OBDDs. Hence we believe that our result may be of practical signi�cance.

We �rst state our main technical theorem and then use it to construct MA-

programs for computing threshold function. We then prove the main technical

theorem by constructing MA-programs computing \approximate division." This

should be of independent interest. We close this chapter by giving a construc-

tion of MA-programs for computing mod functions. We give a general scheme

for converting an MA-program computing a threshold function to an MA-program

computing the mod function. This transformation scheme requires that the MA-

program computing threshold functions satisfy some additional properties. The
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heart of the construction for MA-programs computing mod functions is an alter-

nate construction of MA-programs for computing threshold functions that satis�es

these additional properties. Although the alternate construction is slightly ine�-

cient in size, compared to our �rst construction of threshold functions, it has many

nice properties that may make it extensible for computing other classes of functions.

3.3.1 Main Technical Lemma

In order to study the usefulness of MA-programs in constructing branching pro-

grams for threshold and mod functions, we need the following de�nitions:

De�nition 3.25 An interval of length L is the set of integers fb+i j 0 � i < Lg,

for some integer b, which we will denote by [b; b+L). For an interval I and for any

integer t, which is at most the length of I, de�ne I

t

low

to be the set consisting of the

t smallest integers in I and de�ne I

t

high

as InI

t

low

. An integer threshold problem

is a pair (I; t), where I is an interval and t an integer, at most the length of I. An

MA-program solves this integer threshold problem if it separates I

t

low

and I

t

high

.

If � is an MA-program that solves the integer threshold problem (Z

n+1

; t),

then by applying Lemma 3.16, we obtain a branching program that computes the

threshold-t function.

We state our main technical theorem. There are two parts of this theorem: we

will use part (A) to construct branching programs for computing threshold functions

and part (B) to construct branching programs for computing mod functions.

Theorem 3.26 Let k � 2 and let p

1

; p

2

; : : : ; p

k

be any set of pairwise rela-

tively prime numbers with p

k

< minfp

2

; p

3

; : : : ; p

k�1

g. De�ne M =

Q

1�i�k

p

i

and

M

0

= M=p

k

. For t � L � M , let I be the interval [0; L). Then there is a D 2

chain< p

1

; : : : ; p

k

> such that, restricted to integers in I, any sink node in D re-

ceives integers that are either all from I

t

low

or all from I

t

high

or all from I

mid

� I,

where,

(A) If L � (p

k

� k + 2)M

0

then I

mid

is an interval of length (2k � 2)M

0

.

(B) If t < M

0

then I

mid

is a union of two intervals [M � (k � 2)M

0

;M) and

[0; (k � 1)M

0

).



39

We will prove this theorem in Subsection 3.3.3. The proof uses the construction

of an MA-program for computing approximate division (which we will de�ne later).

For intuition on why this theorem is useful for computing the integer threshold

function, let us concentrate on part (A) of the theorem. Any sink which receives

integers that are either all from I

t

high

or all from I

t

low

is properly separating these

sets and can be ignored. We only have to take care of the sinks receiving integers

from I

mid

. If we choose k to be much smaller than p

k

then I

mid

is of a considerably

smaller length than I. We take all sinks receiving integers from I

mid

and connect

them to another chain MA-program which we construct recursively for integers in

I

mid

.

Theorem 3.29, in the next section, makes this intuition precise. For our recursive

construction, we will need to deal with intervals which do not necessarily start from

zero. We restate Theorem 3.26 (A) for a general interval (not necessarily starting

at zero) as a corollary, which can be deduced by applying Lemma 3.20 with a = 1.

Corollary 3.27 Let k � 2 and let p

1

; p

2

; : : : ; p

k

be any set of pairwise relatively

prime numbers with p

k

< minfp

2

; p

3

; : : : ; p

k�1

g. De�ne M =

Q

1�i�k

p

i

and M

0

=

M=p

k

. For t � L, let I be an interval of length L � (p

k

�k+2)M

0

. Then there is a

D 2 chain< p

1

; : : : ; p

k

> such that, restricted to integers in I, any sink node in D

receives integers that are either all from I

t

low

or all from I

t

high

or all from I

mid

� I,

where, I

mid

is an interval of length (2k � 2)M

0

.

3.3.2 MA-programs for Threshold Functions

We will construct a chain MA-program T of size O

�

log

3

n

log log n log log log n

�

that solves

the integer threshold problem (Z

n+1

; t). Theorem 3.23 will then follow by invoking

Corollary 3.18 to give the mapping between T and an oblivious branching program.

We will construct T in stages. Each stage consists of a chain MA-program

from Corollary 3.27 which receives integers from a particular interval. It solves the

given integer threshold problem correctly on some of the integers and passes the

remaining integers | which come from an interval considerably smaller than the

interval for the current stage | to the chain MA-program in the next stage.

Our construction for threshold functions will be using certain facts about prime

numbers.
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Proposition 3.28 There is a constant C such that for all L � C, there exists

k > 0 and k pairwise relatively prime integers p

1

; p

2

; : : : ; p

k

satisfying the following

properties. De�ne M =

Q

1�i�k

p

i

and M

0

= M=p

k

.

(A) p

1

+ p

2

+ � � �+ p

k

= O

�

log

2

L

log logL

�

(B) L < M

0

(p

k

� k + 2)

(C) (2k � 2)M

0

<

8L

log logL

< L.

Proof: From [RS62, Theorem 4] we know that there is a constant C

0

such that

for L � C

0

, the product of all primes between logL and 4 logL is at least

L

4 logL

.

We choose enough primes p

2

> p

3

> � � � > p

k

in this range so that their product is

in [

L

4 logL

; L]. Moreover, because each of the primes is at least logL, k�1 �

logL

log logL

.

Choose p

1

to be a power of two such that

Q

1�i�k

p

i

2 [2L; 4L]. Then p

1

� 16 logL,

which proves (A).

Now we will prove (B).

M

0

(p

k

� k + 2) =

M

p

k

(p

k

� k + 2)

�

2L

p

k

(p

k

� k + 2)

= 2L� (k � 2)

2L

p

k

> L

for all l � C

1

, where C

1

is a constant.

Finally (2k � 2)M

0

�

2 logL

log logL

�

4L

logL

<

8L

log logL

< L for all L � C

2

, where C

2

is a

large constant.

We complete the proof by choosing C = max(C

0

; C

1

; C

2

): 2

The main result on the size of a chain MA-program solving the integer threshold

problem (Z

n+1

; t) is the special case L = n + 1 of the following theorem.
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Theorem 3.29 Let S(L) be the smallest number such that there exists a chain

MA-program of size S(L) that solves any �xed integer threshold problem on an

interval of length L. Then

S(L) = O

 

log

3

L

log logL log log logL

!

:

Proof: We will prove the theorem by induction on L. Let C be the constant

in the previous proposition.

Base case (L < C): If we use a C-box, every integer in the interval will reach a

di�erent sink node. The size of this MA-program is C = O(1).

Induction step : Use the previous proposition to choose pairwise relatively prime

integers p

1

; p

2

; : : : ; p

k

satisfying parts (A), (B), and (C). Let (I; t) be our integer

threshold problem, where the length of I is L. From part (B), L � (p

k

�k+2)M

0

so

we can apply Corollary 3.27 to obtain D. Consider the sinks which do not satisfy

the property that they receive integers which are all from I

t

high

or all from I

t

low

.

By Corollary 3.27, these sinks receive integers that are all from an interval I

mid

of

length at most (2k � 2)M

0

. Our original problem has now been reduced to solving

an integer threshold problem on the interval I

mid

. By the induction hypothesis and

part (C), this can be solved by a chain MA-program to which we connect all the

sinks of D corresponding to I

mid

.

From part (A), the size of D is O

�

log

2

L

log logL

�

, and from part (C), the length of

I

mid

is less than

8L

log logL

.

So, S(L) � O

�

log

2

L

log logL

�

+ S(

8L

log logL

).

The recursion goes for O

�

logL

log log logL

�

levels and each level contributes size

O

�

log

2

L

log logL

�

, which proves our claim. 2

Corollary 3.30 For log n � w � n, there is an oblivious branching program of

width at most w and length O

�

n log

2

n

logw log log log n

�

for computing any threshold func-

tion.

Proof sketch: The construction mirrors the one given in the previous proof.

The only signi�cant di�erence is that in the induction step, we choose primes 4w >
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p

2

> p

3

> � � � > p

k

> w. Then k = O

�

log n

logw

�

and each level of the recursion

contributes a branching program of length kn = O

�

n log n

logw

�

. 2

In a syntactic read-k branching program, every input variable is read at most k

times on any root to leaf path (see Borodin et al. [BRS93] for de�nitions, motiva-

tions, and a survey of results).

Corollary 3.31 For log n � w � n, there is an oblivious branching program

of width at most w for computing any threshold function such that any variable is

read O

�

log

2

n

logw log log log n

�

times on any root to leaf path.

3.3.3 MA-programs for Approximate Division

This section contains the proof of Theorem 3.26. We will be using the following

theorem which is our main technical contribution.

Note: In all our constructions of chain MA-programs in this section, the source

node is the input node 0 of the �rst box and the sinks are the output nodes of the

last box; we will refer to the output node t of the last box as the sink node t.

Theorem 3.32 Let k � 2 and let p

1

; p

2

; : : : ; p

k

be any set of pairwise relatively

prime numbers with p

k

< minfp

2

; p

3

; : : : ; p

k�1

g. De�ne M =

Q

1�i�k

p

i

, M

0

=

M=p

k

. Then there is a D 2 chain< p

1

; p

2

; : : : ; p

k

> such that for all 0 � ` < p

k

,

integers from [0;M) reaching the sink node `M

0

belong to the set

f(`M

0

+ i) mod M j 0 � i < (k � 1)M

0

g:

Note: If we could strengthen this theorem so that the integers from [0;M) reaching

the sink node `M

0

belong to the interval [`M

0

; (` + 1)M

0

) then we would have a

division of the interval [0;M) into p

k

disjoint subintervals. In the present form, we

are performing an approximate division of [0;M) into p

k

overlapping subintervals.

We refer to this as \division" because the MA-program is computing (or approxi-

mating) bx=M

0

c on input x. We have the exact division for the case k = 2 which

forms the basis of Lupanov's construction of branching programs of size O(n

3=2

)

for computing majority [Lup65]. In Theorem 3.43, we give some evidence of the

di�culty of computing exact division for the case k � 3.
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Proof: We will �rst describe the construction of D. Then we will characterize

the set of integers reaching any particular sink node and prove that it satis�es the

conditions of the theorem.

De�nition 3.33 Let p

k+1

= 1, and for all i, 1 � i � k,

N

i

=

M

p

i

p

i+1

:

We state two simple properties of the N

i

's which we will need in the proof of

correctness of our construction. These can be easily deduced from the de�nition of

the N

i

's.

Fact 2 For all 1 � i; j � k,

(a) (N

i

; p

i

) = (N

i

; p

i+1

) = 1.

(b) If j =2 fi; i + 1g then N

i

� 0 (mod p

j

).

We now describe D by giving the connection between the ith box (p

i

-box) and

the (i + 1)th box (p

i+1

-box), for 1 � i < k:

For 0 � u < p

i

, the output node uN

i

of the ith box is connected to the

input node �uN

i

of the (i + 1)th box.

Note that the connections are well-de�ned because of Fact 2(a). We will use

the following lemma to determine the set of integers from [0;M) that reach any

particular sink node of D.

Lemma 3.34 Let X =

P

1�j�k

a

j

N

j

, where 0 � a

j

< p

j

. Then X reaches the

sink node a

k

M

0

of D.

Proof: Applying Fact 2(b), we get

X � a

1

N

1

(mod p

1

): (3:1)
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For 1 < j � k; X � a

j�1

N

j�1

+ a

j

N

j

(mod p

j

): (3:2)

We will prove by induction on j; 1 � j � k, that X reaches the output node

a

j

N

j

of the jth box, which will be enough to prove our claim because N

k

= M

0

.

(Base case, j = 1): X starts at the source, which is the input node 0 of the �rst

box, and the result follows from Equation 3.1.

(Induction step, 1 < j � k): By the induction hypothesis, X reaches the output

node a

j�1

N

j�1

of the (j�1)th box, which is mapped to the input node �a

j�1

N

j�1

of the jth box. Applying Equation 3.2 proves the induction step. 2

Continuing the proof of the theorem, let us now evaluate the set G

`

of integers

from [0;M) reaching the sink node `M

0

. Observe that for any integer X 2 [0;M),

by solving Equations 3.1 and 3.2 repeatedly for j = 1; 2; : : : k, we can determine

a sequence of 0 � a

j

< p

j

, 1 � j � k such that X = (

P

1�j�k

a

j

N

j

) mod M .

Therefore, by Lemma 3.34, we can infer that G

`

is exactly the set

f(`M

0

+

X

1�j<k

a

j

N

j

) mod M j 0 � a

j

< p

j

; 1 � j < kg:

Because p

k

< minfp

2

; p

3

; : : : ; p

k�1

g, for 0 � a

j

< p

j

; 1 � j < k,

a

j

N

j

< p

j

M

p

j

p

j+1

=

M

p

j+1

�

M

p

k

= M

0

; hence,

X

1�j<k

a

j

N

j

< (k � 1)M

0

;

and therefore,

G

`

� f(`M

0

+ i) mod M j 0 � i < (k � 1)M

0

g

2

We are now ready to prove Theorem 3.26.

Proof: (of Theorem 3.26) For both part (A) and part (B), the MA-program

D is obtained by applying Theorem 3.32. Then, restricted to integers in [0;M), the

sink node `M

0

of the kth box receives integers in the set

G

`

� f(`M

0

+ i) mod M j 0 � i < (k � 1)M

0

g:
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If ` � p

k

� k + 1 then `M

0

+ (k � 1)M

0

�M .

So, G

`

� [`M

0

; `M

0

+ (k � 1)M

0

): (3:3)

On the other hand, if p

k

� k + 2 � ` < p

k

then

G

`

� [`M

0

;M)

[

[0; `M

0

+ (k � 1)M

0

�M)

� [M � (k � 2)M

0

;M)

[

[0; (k � 1)M

0

) (3.4)

(because `M

0

� (p

k

� k + 2)M

0

= M � (k � 2)M

0

and `M

0

�M)

We will analyze these sets for each of part (A) and part (B) when the inputs are

actually restricted to come from I = [0; L) � [0;M).

(Part (A)) We claim that for all 0 � ` < p

k

, G

`

\ I is contained in an interval

of length (k � 1)M

0

. This is easily seen by considering two cases:

Case 1 (` � p

k

� k + 1): The claim follows from Equation 3.3.

Case 2 (` � p

k

� k+ 2): Since L � (p

k

� k+ 2)M

0

, Equation 3.4 gives G

`

\ I �

[0; (k � 1)M

0

), which is also an interval of length (k � 1)M

0

.

Now consider any sink that receives an integer from I

t

low

as well as an integer

from I

t

high

. Because of the claim above, any integer reaching this output node

must be at least t � (k � 1)M

0

and at most t + (k � 1)M

0

� 1. Then, setting

I

mid

= [t� (k � 1)M

0

; t + (k � 1)M

0

) proves the theorem.

(Part (B)) Since t < M

0

, from Equation 3.3, we know that for 1 � ` � p

k

�k+1,

G

`

� [M

0

;M) � [t;M), so that G

`

\ I � [t; L) � I

t

high

. This implies that any sink

node `M

0

, which receives integers from I

t

low

as well as I

t

high

, satis�es ` � p

k

� k+ 2

or ` = 0. Hence,

G

0

[

0

B

@

[

p

k

�k+2�`<p

k

G

`

1

C

A

� [0; (k � 1)M

0

)

[

[M � (k � 2)M

0

;M) = I

mid

;

where the containment follows from Equation 3.3 and Equation 3.4. 2

3.3.4 MA-programs for Mod Functions

In this section, we will construct a branching program on n variables of size

o(n log

4

n) that accepts an input ~x if and only if k~xk � a (mod d), for �xed a
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and d. We may assume without loss of generality that a = 0 and 1 < d � n,

because if d > n then the problem is equivalent to computing the exact function

E

a

(which is de�ned to be 1 if the number of 1's in the input equals a), for which

there is a simple branching program of size o(nlog

2

n) (Proposition 3.13), and if

a 6= 0 we can pad the input with (d�a) 1's and maintain the same asymptotic size.

Two of the obvious approaches for computing mod functions are: (1) Use the

construction in Proposition 3.10 to compute the exact sum mod d with a branch-

ing program of size �(nd). (2) Compute the OR of

j

n

d

k

+ 1 exact functions,

E

0

; E

d

; E

2d

; : : :. Each exact function can be computed with a branching program

of size O

�

n log

2

n

�

, giving a total size of O

�

n

2

log

2

n

d

�

.

The �rst construction is e�cient for small values of d; whereas the second one

is better for large values of d. Furthermore, if d is a product of very large or

very small prime powers then we can combine the Chinese remainder theorem with

these approaches to construct e�cient branching programs for checking divisibility

modulo d. The hardest case for all these approaches is when d is a prime power

close to

p

n. In this case, all previously known constructions for computing mod

functions have size 
(n

3=2

).

Our construction is based on a simple yet general scheme (Lemma 3.37 pre-

sented later) for transforming MA-programs computing threshold functions to MA-

programs computing mod functions. Notice that the set of inputs that need to be

accepted are exactly

f~x : k~xk = kd; for 0 � k < tg;

where we set t =

j

n

d

k

+ 1. We will use much of the machinery developed in the

previous sections. By Lemma 3.16, we know that it su�ces to construct an MA-

program M that separates the sets of integers S

d;n

and Z

n+1

nS

d;n

, where

S

d;n

= fxd j 0 � x < tg:

To achieve this, we will �rst suggest a simple scheme to modify the MA-programs

constructed in Theorem 3.29. The modi�cation is based on the corollary below,

which can be easily deduced from the translation lemma, Lemma 3.20. Then,

we will show that this scheme almost works but fails to produce the desired MA-

program. The rest of the proof will be the construction of an alternate MA-program
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that allows the modi�cation to work.

Corollary 3.35 Let � be an MA-program with modulus m that separates the

(disjoint) sets of integers S

1

and S

2

. Then for all integers a, where (a;m) = 1,

there is an MA-program �

0

of the same size and modulus as � that separates the

(disjoint) sets R

1

and R

2

, where for i = 1; 2,

R

i

= fy j y � ax (mod m) for some x 2 S

i

g

Let T be an MA-program of modulus m > n which solves the integer threshold

problem (Z

n+1

; t). Assume for the moment that (d;m) = 1. One way to construct

M is to apply Corollary 3.35 to T with a = d. Then M will separate the sets

fy j y � dx (mod m) for 0 � x < tg = S

d;n

; and

fy j y � dx (mod m) for t � x � ng:

Unfortunately, the latter set does not include all of Z

n+1

nS

d;n

. There are two

possible ways to modify this approach. The �rst possibility is to modify T in a

di�erent manner so that it separates the sets

fy j y � dx (mod n + 1) for 0 � x < tg = S

d;n

; and

fy j y � dx (mod n + 1) for t � x � ng = Z

n+1

nS

d;n

:

Unfortunately we do not know how to do such a modi�cation. The other possible

approach which we actually take is the following: Notice that the MA-program T

has a modulus considerably larger than the length of the interval for which it is

solving the integer threshold problem. (This is because of property (B) in Propo-

sition 3.28 and the fact that the modulus of T is the least common multiple of the

moduli of MA-programs constructed in di�erent stages.) The latter property was

crucial for the proof of Theorem 3.26 (A) and all the constructions in Section 3.3.2.

However, if we start with a T that solves the integer threshold problem over an

interval of length equal to its modulus, we can transform it to obtain a branching

program for computing the mod function.



48

De�nition 3.36 An MA-program solves the strong integer threshold problem

(I; t) if it separates I

t

low

and I

t

high

, and its modulus is equal to the length of the

interval I.

Lemma 3.37 For a �xed 1 < d � n, if we have a chain MA-program � of size

S that solves the strong integer threshold problem (Z

m

; t), where m > n, t =

j

n

d

k

+1,

and (d;m) = 1, then we have a chain MA-program of size S that separates S

d;n

and

Z

n+1

nS

d;n

.

Proof: Apply Corollary 3.35 to � with a = d to obtain another chain MA-

program of size S that separates the sets

fy j y � dx (mod m) for 0 � x < tg = S

d;n

; and

fy j y � dx (mod m) for t � x < mg = Z

m

nS

d;n

� Z

n+1

nS

d;n

:

2

The following theorem states that the chain MA-program promised in the state-

ment of the previous lemma can be constructed.

Theorem 3.38 For k � 2 and pairwise relatively prime numbers p

1

> p

2

>

� � � > p

k

> 2k let M =

Q

1�i�k

p

i

, M

0

= M=p

k

, and r = maxfp

1

; p

2

; : : : ; p

k

g. Then,

for any t < M

0

, there is a chain MA-program T of size O(k

2

r

2

) that solves the

strong integer threshold problem ([0;M); t).

1

The next subsection is devoted to the proof of this theorem. For now, we use this

theorem to prove our main theorem on the size of branching programs computing

mod functions.

Proof: (of Theorem 3.24) Because d is at most n, d has at most

log n

log log n

prime

factors greater than logn. Theorem 3.12 says that we can choose k =

log n

log log n

+ 1

primes p

1

> p

2

> p

3

> � � � > p

k

> max(2k; logn), of size �(logn) each, such that

1

If t � M

0

, we can still construct an MA-program of this size. Although it is not a chain MA-

program, this program can still be mapped to an oblivious branching program. In any case, we

only need t < M

0

to prove Theorem 3.24.
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R S R’

0 t (k-1)M’ M-(k-2)M’ M M+(k-1)M’
*

Figure 3.3: Intervals S, R, and R

0

none of the p

i

's divide d. It is clear that M

0

(in fact the product of any k � 1 of

these primes) is greater than n. Let r = maxfp

1

; p

2

; : : : ; p

k

g:

Because

j

n

d

k

+ 1 � n < M

0

, we can apply Theorem 3.38 to obtain a chain

MA-program and then apply Lemma 3.37 followed by Corollary 3.18 to obtain the

required oblivious branching program.

The size of the resulting oblivious branching program is

O

�

(n + 1)k

2

r

2

�

= O

 

n log

4

n

(log log n)

2

!

:

2

3.3.5 MA-programs for Strong Threshold Problems

This subsection contains the proof of Theorem 3.38.

Proof: Since t < M

0

, we can apply Theorem 3.26(B) to construct D 2

chain< p

1

; p

2

; : : : ; p

k

> for integers in I = [0;M). Then the sinks, that do not

receive integers that are either all from I

t

low

or all from I

t

high

, receive integers in the

set I

mid

= S [ R, where,

S = [M � (k � 2)M

0

;M); and R = [0; (k � 1)M

0

):

Let R

0

= fM + x j x 2 Rg = [M;M + (k � 1)M

0

) so that

S [ R

0

= [M � (k � 2)M

0

;M + (k � 1)M

0

)

(see Figure 3.3). Suppose 	

1

and 	

2

are two chain MA-programs, each of modulus

M , that solve the integer threshold problems (S [ R

0

;M) and (R; t) respectively.

Then, since x 2 R if and only if x + M 2 R

0

, by Proposition 3.19, 	

1

also solves
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the problem of separating S and R. Therefore, the chain MA-program obtained

by �rst connecting those sinks of D reached by integers in I

mid

to 	

1

, and then

connecting those sinks of 	

1

reached by integers in R to 	

2

solves the integer

threshold problem ([0;M); t) and has modulus M| this is the chain MA-program

T that we seek.

In order to construct 	

1

and 	

2

, note that both S [ R

0

and R are intervals of

length at most 2kM

0

. We will show that for any integer threshold problem (I; t)

where the length of I is at most 2kM

0

, we can construct a chain MA-program of

modulus M and size at most k

2

r

2

that solves this problem. The construction is a

special case of the lemma below with j = k � 1, and b = 2k. Before we state and

prove the lemma, we can estimate the size of T which is

Size of D + Size of 	

1

+ Size of 	

2

� kr + 2(k

2

r

2

) = O(k

2

r

2

):

2

Notation: For 1 � j � k, de�ne M

j

= p

1

p

2

: : : p

j

.

Lemma 3.39 For k � 2 and pairwise relatively prime numbers p

1

> p

2

> � � � >

p

k

> 2k, de�ne M

j

= p

1

p

2

: : : p

j

for 1 � j � k. Then for all 1 � j < k < b < p

k

,

and any integer threshold problem (I; t) where I is an interval of length at most

bM

j

, there is a chain MA-program of modulus p

k

M

j

and size at most j

2

r

2

, solving

the problem.

Proof: We will prove this by induction on j. For the base case (j = 1), the

length of I is at most bp

1

< p

k

p

1

< r

2

. Thus we can use a p

1

p

k

-box so that every

element of I reaches a di�erent sink node.

For the induction step, we will assume that the claim holds for j � 1 and show

that it is true for j.

We would like to apply Corollary 3.27 but we have two restrictions that need

to be satis�ed. (1) The modulus of every box in the resulting chain MA-program

should divide p

k

M

j

; this suggests using a partial product of p

i

's as the modulus of

each box. (2) Corollary 3.27 forces the modulus of the last box to be smaller than

the modulus of all other boxes except the �rst.
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We apply Corollary 3.27 to construct a chain MA-program A of modulus p

k

M

j

using

l

j+1

2

m

boxes with the following parameters:

Case 1(j is even): A 2 chain< p

1

; p

2

p

3

; p

4

p

5

; : : : ; p

j�2

p

j�1

; p

j

p

k

>

Case 2(j is odd): A 2 chain< p

1

p

2

; p

3

p

4

; : : : ; p

j�2

p

j�1

; p

j

p

k

>

Notice that Corollary 3.27 can be applied because in each case, the modulus of

the last box is smaller than the moduli of all other boxes (except the �rst box), and

�

p

j

p

k

�

�

j + 1

2

�

+ 2

�

M

j�1

�

�

(p

k

� 1)p

j

+ p

j

�

j + 2

2

+ 2

�

M

j�1

>

�

bp

j

+ 2k �

j

2

+ 1

�

M

j�1

> bp

j

M

j�1

= bM

j

From Corollary 3.27, we know that those sinks that do not receive integers that are

all from I

t

low

or all from I

t

high

receive integers in an interval I

mid

=

^

I of length at

most

2

��

j + 1

2

�

� 1

�

M

j�1

� 2

�

j + 2

2

� 1

�

M

j�1

= jM

j�1

< bM

j�1

:

There must be some t

0

such that

^

I

t

0

low

� I

t

low

and

^

I

t

0

high

� I

t

high

. We can apply the

induction hypothesis to obtain a chain MA-program B of modulus p

k

M

j�1

and size

at most (j � 1)

2

r

2

, solving the integer threshold problem (

^

I; t

0

).

Connecting the sinks of A (corresponding to

^

I) to B gives us the desired chain

MA-program of modulus p

k

M

j

and size at most

�

j + 1

2

�

r

2

+ (j � 1)

2

r

2

�

�

j + 2

2

�

r

2

+ (j � 1)

2

r

2

< j

2

r

2

:

2
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3.4 Conclusion

We have shown a way of computing approximate division very e�ciently. This

allowed us to construct a nearly optimal size branching program for computing any

threshold or mod function. We hope that our techniques can be applied to other

classes of symmetric functions or to Boolean formulas for symmetric functions.

We presented our constructions in terms of MA-programs, which helped us high-

light the key ideas of our constructions. Many of the previously known constructions

are also more easily understood in terms of MA-programs (for example, [Lup65]).

But even for computing symmetric functions, MA-programs do not capture the

full generality of branching programs. They correspond to the subset of branching

programs for which computation can be broken into blocks such that within any

block, a function of the sum of the input bits is computed. It is quite possible that

the most e�cient constructions for symmetric functions do not follow this pattern.

We already know of constructions (for example, Barrington [Bar89]; also see the

discussion following Corollary 3.41) that can not be translated to MA-programs.

For computing majority, E

n=2

, or mod

0;b

p

nc

. the best size lower bound is




�

n log n

log log n

�

[BPRS90], which translates to a size lower bound of 


�

log n

log log n

�

on

MA-programs. The proof is non-trivial and uses a very nice Ramsey theoretic

lemma (Theorem 3.5). There is a well established tradition in theoretical computer

science to look at more structured models if we are unable to prove lower bounds

on general models. Given the limited success in proving lower bounds on branch-

ing programs, we suggest looking at MA-programs as a �rst step. As an evidence

that they indeed are easier to prove lower bounds on, we give a simple argument

for a stronger lower bound of 


�

log

2

n

log log n

�

on the size of MA-programs computing

majority, E

n=2

, or mod

0;b

p

nc

.

Theorem 3.40 For any functions f on integers, we de�ne its discriminator

disc(f) to be the largest integer such that for all ` � disc(f), there are two inputs

that are ` apart and are assigned di�erent values by the function. Then any MA-

program computing a function f with disc(f) � n

�

for � > 0 has size 


�

log

2

n

log logn

�

.

Proof: Suppose � is the MA-program computing such a function, and let the

set of moduli of the boxes in � be fp

1

; p

2

; : : : ; p

k

g. Then by Proposition 3.19, the
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least common multiple of p

1

; p

2

; : : : ; p

k

is at least n

�

. We will prove that this forces

P

p

i

, the size of �, to be at least 


�

log

2

n

log log n

�

.

First divide the set of p

i

's into two sets SMALL and LARGE, where SMALL

consists of those p

i

's that are less than

� log n

4

and LARGE consists of the remaining

p

i

's. It is known that the least common multiple of all integers between 1 and x is at

most (2:83)

x

[RS62, Theorem 12]. Thus the least common multiple of all numbers

in SMALL is at most (2:83)

� logn

4

< (4)

� logn

4

= n

�=2

. Because the least common

multiple of integers in the union of SMALL and LARGE is at least n

�

and the

integers in SMALL have least common multiple at most n

�=2

, the least common

multiple of the integers in LARGE must be at least n

�=2

. We will prove that the

summation of the integers in LARGE, which is a lower bound on the size of �, is




�

log

2

n

log log n

�

.

If any of the integers in LARGE is at least log

2

n we are done; otherwise, they

are all less than log

2

n. Because their least common multiple is at least n

�=2

, there

must be at least

log n

�=2

log log

2

n

=

� log n

4 log log n

integers in LARGE, each one at least

� log n

4

,

proving that the sum of integers in LARGE is 


�

log

2

n

log log n

�

. 2

Corollary 3.41 Any MA-program computing Th

d

or E

d

for 1 � d � n, or

mod

0;d

for d = 
(n

�

) and � > 0 has size 


�

log

2

n

log log n

�

.

This corollary highlights some limitations of the MA-program model. There are

simple branching programs of linear size for computing AND and OR functions,

but any construction based on MA-programs has size 


�

n log

2

n

log log n

�

. From the proof

of Proposition 3.13, we get that the lower bound is tight for the case of exact

functions, but there is a polylog gap between the currently known upper and lower

bounds for the case of computing majority or mod

0;b

p

nc

.

In Theorem 3.32, we construct a D 2 chain< p

1

; p

2

; : : : ; p

k

> such that for all

0 � ` < p

k

, integers from [0;M) reaching the sink node `M

0

belong to the set

I

`

= f(`M

0

+ i) mod M j 0 � i < (k � 1)M

0

g:

When k = 2, integers in each I

`

belong to an interval of length M

0

, such that the

set of I

`

's form a partition of [0;M). However, for k � 3, the I

`

's are overlapping

intervals.



54

De�nition 3.42 An MA-program in chain< p

1

; p

2

; : : : ; p

k

> computes exact

division if

(1) The sinks of the MA-program are the output nodes of the p

k

-box, and

(2) for all 0 � ` < p

k

, integers from [0;M) reaching the sink node ` belong to

an interval of length M

0

, and these intervals, taken together, form a partition of

[0;M).

A chain MA-program computing exact division will obviate the need for recursion

in Theorem 3.29 (because, by padding, we can make the threshold t a multiple of

M

0

), thereby giving an optimal size chain MA-program for computing majority.

More importantly, it will greatly simplify both our constructions. Unfortunately,

we can prove that for k � 3, a chain MA-program computing exact division does

not exist. Therefore any construction for computing exact division has to have a

more complicated structure.

Theorem 3.43 For k � 3, exact division is not possible using a chain MA-

program composed of p

j

-boxes, 1 � j � k, where p

1

; p

2

; : : : ; p

k

are relatively prime

and each p

j

is at least 2.

Proof: For 1 � j � k, de�ne M

j

= p

1

p

2

p

3

� � �p

j

.

The following claim easily follows from the relative primality of M

j�1

and p

j

,

and Proposition 3.19 applied to the �rst j � 1 boxes.

Claim 1 : For 1 � j � k and restricted to an interval of length M

j

, every

output node of the p

j

-box receives M

j�1

integers.

This claim says that, restricted to integers in [0;M), there are exactly M

k�1

=

M

0

integers reaching any output node of the p

k

-box. We would like to prove that

these M

0

integers do not come from an interval of length M

0

. We will prove this by

contradiction. Suppose that these M

0

integers come from the interval [b; b + M

0

).

Then we can make several claims restricted to the integers in this interval.

Claim 2 : Every input node of the p

k

-box receives a multiple of p

1

integers.

From Claim 1 (for j = k� 1), every output node of the p

k�1

-box receives M

k�2

integers, which is a multiple of p

1

. Claim 2 holds because every input of the p

k

-box

receives integers from zero or more output nodes of the p

k�1

-box.
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Claim 3 : At least one input node of the p

k

-box receives two integers that are

di�erent modulo p

k

.

We will prove Claim 3 by contradiction. Partition the interval [b; b + M

0

) into

G

i

's for 0 � i < p

k

, where

G

i

= fx j x � i (mod p

k

)g

\

[b; b + M

0

):

If the present claim is not true then integers reaching every input node of the p

k

-

box all come from the same G

i

, and from Claim 2, every input node of the p

k

-box

receives some multiple of p

1

integers. That implies that p

1

divides jG

i

j for all

0 � i < p

k

. Because [b; b + M

0

) is an interval,

maxfjG

i

jg �minfjG

i

jg � 1:

Because

P

jG

i

j = M

0

is not divisible by p

k

( = the number G

i

's), the jG

i

j's can not

all be equal. Therefore

maxfjG

i

jg �minfjG

i

jg = 1:

But p

1

divides every jG

i

j so that p

1

divides maxfjG

i

jg � minfjG

i

jg); that is, p

1

divides 1: This is a contradiction, so Claim 3 must be true.

To complete the proof of the theorem, notice that the integers reaching the

input node speci�ed in Claim 3 are going to reach di�erent output nodes of the

p

k

-box. 2

Constant width branching programs present an interesting challenge. The

length lower bound on oblivious branching programs in [AM88, BPRS90] (Corol-

lary 3.6) also applies to the function E

n=2

and is tight for width w 2 
(log n)

(by choosing primes of size �(w) in the proof of Proposition 3.13), but there is

a relatively large gap between lower and upper bounds for width w 2 o(logn).

Because of Proposition 3.19 and the fact that the product of all primes less than

x is 2

O(x)

( [RS62, Equation 3:15]), any MA-program computing a function with

non-constant discriminator (we de�ne discriminator in Theorem 3.40) has at least

one box with non-constant modulus. In other words, for computing functions with

non-constant discriminators, MA-programs can not be used to construct constant
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width branching programs. In particular, discriminator of every function in Corol-

lary 3.41 is 
(n

�

), so MA-programs can not be used to construct sub-logarithmic

width branching programs for computing any of those functions. MA-programs

capture one very natural way of computing symmetric functions. Concentrating

on constant width branching programs will force us to look beyond MA-programs,

hopefully resulting in yet another general technique for computing symmetric func-

tions.

We already know of polynomial size constant width branching programs for

computing majority. But all such constructions are based on Barrington's con-

struction [Bar89], which is indirect in nature as it starts from a Boolean formula

and constructs an equivalent branching program. To the best of my knowledge,

the resulting branching programs for speci�c functions (like majority) have no easy

description. In order to better understand the computational power of constant

width branching programs, it is important to have alternate constructions of con-

stant width branching program that have simple, short descriptions.

Open problem: Construct a simple branching program of polynomial size and

width o(log n) for computing majority.

Open problem: Can the length lower bound in [AM88, BPRS90] be improved

for width w 2 o(log n)?



Chapter 4

CREW PRAMS VERSUS EREW PRAMS

4.1 Introduction

Parallel random access machines (PRAMs) have been the model of choice for de-

scribing parallel algorithms on shared memory machines.

A PRAM consists of a number of processors and a global shared memory. Each

processor has its local storage and control. The global shared memory consists of

cells, which can be individually addressed and are of equal size, called the word-size

of the machine. Any processor is allowed to access any cell.

Global memory cells are of two types: for computing a function on n inputs,

we have n read-only cells which store the input; the remaining cells can be read

as well as written and are called common cells. The processors of the PRAM act

synchronously. Computation proceeds in rounds consisting of \read", \compute",

and \write" cycles. In the \read" cycle, every processor possibly reads a cell; it

then performs some computation during the \compute" cycle and may write into

one of the (common) cells in the \write" cycle.

One of the common cells is designated the output cell and its contents at the

end of the computation is designated to be the output. We measure time as the

number of rounds in the computation.

Depending on whether or not we allow more than one processor to concurrently

read from or write to a memory cell, we obtain di�erent models of PRAMs and

complexity classes associated with them. In the case of exclusive access, we allow

at most one processor to access any particular cell, whereas in concurrent access

we allow any number of processors to access any given cell at the same time. The

three most popular models are the CRCW (concurrent read, concurrent write),

CREW (concurrent read, exclusive write), and EREW (exclusive read, exclusive

write) PRAMs (see [J�aJ92, Fic93].) In the case of concurrent write, we need some
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way to arbitrate write con
icts. There are several variations; we will describe two

of them. In a priority CRCW PRAM, processors are assigned distinct priorities

and in the case of more than one processor trying to write into the same cell, the

cell receives the value that the highest priority processor is trying to write. In the

common CRCW PRAM model, any valid algorithm must ensure that all processors

trying to write into any given cell at the same time are all trying to write the same

value, which becomes the contents of the cell at the end of the write step.

The PRAM model has been very successful for developing algorithms. A large

body of algorithms has been discovered for a variety of problems (see, for example,

[J�aJ92]). Unfortunately, we have not had the same kind of success in proving lower

bounds. We will survey some of the known lower bound results.

Cook, Dwork, and Reischuk [CDR86], by an elegant argument, showed that any

CREW PRAM takes 
(logn) time to compute the OR of n bits. The result was

improved by Kuty lowski [Kut91] and Dietzfelbinger et al. [DKR94] who determined

the exact complexity of OR.

The results in [CDR86, Kut91, DKR94] (as well as many other lower bound

results on PRAMs) all have a similar 
avor: they prove that a CREW PRAM

running for a small number of steps can distinguish very few inputs. At any step

of a given PRAM algorithm, we can partition the input into equivalence classes

so that the algorithm can not distinguish between two inputs belonging to the

same equivalence class. Clearly at the end of the computation, inputs belonging

to any particular equivalence class are all going to be either accepted or rejected.

At the start of the computation, the algorithm can not distinguish any two inputs,

that is, all the inputs belong to the same equivalence class. As the computation

progresses, the partitioning of equivalence classes gets �ner and �ner. There are

several measures (for example, sensitivity, certi�cate complexity, polynomial degree,

granularity; see Nisan [Nis91] for de�nitions) to estimate how �ne the partitioning

of inputs is and therefore to measure the \progress" of the computation.

A lower bound proof consists of choosing one of these measures and then showing

that any algorithm running for a short time makes less progress than what is needed

to compute the given function.

Nisan [Nis91] gave several characterizations of complexity of any function on
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CREW PRAMs in terms of these measures.

Beame and H�astad [BH89], in a very important breakthrough, proved optimal




�

log n

log log n

�

bounds for computing the parity of n bits on a priority CRCW PRAM

for the case when either the number of processors or the number of shared memory

cells is bounded by a polynomial. Their proof combines the restriction technique

(used to prove size lower bounds on constant depth circuits [H�as87, FSS81]) with a

degree argument and also applies to many other functions such as computing the

sum of the bits.

The results we have described so far are very appealing because they place

absolutely no restrictions on the instruction set of individual processors or the

word-size of the machine. So lower bounds are more of a communication lower

bound. That is, they show the intrinsic limitation of global memory as a medium of

communication. The results of [CDR86, Kut91, DKR94] do not put any restrictions

on the number of processors either.

4.2 Communication Width

The PRAM model provides a very high level abstraction of real parallel machines.

This is an attractive feature for the programmer, but this ease of programming

comes with a heavy price: implementing PRAMs in hardware is non-trivial. In

particular, no e�cient implementation of global shared memory is known. There

has also been a growing realization among practitioners that communication is the

single most precious resource in parallel computing. Because shared memory is the

only medium of communication among processors, and restricting the size of shared

memory will restrict the number of messages that can be concurrently transmitted,

it is important to treat the size of shared memory as a very important complexity

measure.

We de�ne communication width of a PRAM to be the number of common

cells, that is cells that are available for reading as well as writing. We denote

by EREW(m), CREW(m), and CRCW(m) the respective PRAM models with

communication width m. Vishkin and Wigderson [VW85] initiated the study of

PRAMs with bounded communication width. Their paper gives several motiva-

tions for studying such models. For example, the \Ethernet" can be thought of
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as a PRAM with one common cell. They proved lower bounds on the CREW(m)

model in terms of two measures { everywhere sensitivity and somewhere sensitivity.

Their results imply an 
(

q

n=m) lower bound on the problem of computing the

PARITY of n bits and an 


�

�

n

m

�

1=3

�

lower bound on the complexity of the OR

function. Beame [Bea86], by considering a di�erent measure, granularity, proved

a stronger 
(

q

n

m

) lower bound on the OR function. Azar [Aza92] analyzed the

threshold function Th

k

on priority CRCW PRAM(m) with a polynomial number

of processors. He proved a lower bound of 


�

k

m

�

for the case k � n

1=2��

and a

lower bound of 


�

n

1=2��

m

�

for k � n

1=2��

, where � is any number greater than zero.

Mansour et al. [MNV94] consider a CRCW(m) model with n >> p >> m

(where p is the number of processors) and determine the exact complexity of the

list reversal problem. Their paper also contains several justi�cations for restricting

the communication width of the model.

4.3 Separating Di�erent Variants of PRAMs

A basic issue in parallel complexity theory is to understand the relative power of

di�erent variants of PRAMs. When computer architects propose new designs, a lot

of e�ort goes into selecting the right set of primitives. Providing a very powerful

set of primitives usually means increased hardware and software cost, and it is

not always clear that having powerful primitives makes it easier to solve problems.

Determining relative power can take one of two paths: (1) we can either show that

the models have comparable power by means of a simulation or (2) we can prove a

separation between their powers, where a separation result entails (a) the choice of

a problem whose performance is interesting to study, (b) an e�cient algorithm for

that problem on the stronger model, and (c) a lower bound proof that no algorithm

on the weaker model can match the performance on the stronger model.

Both kinds of results have their rewards: In the case of an e�cient simulation of

the powerful variant by a seemingly weaker variant, algorithms can be designed on

the powerful variant and then translated to the weaker variant for implementation

purposes. On the other hand, a separation result gives at least a partial justi�cation

for providing the set of primitives available on the stronger model because certain

problems are provably more e�cient in the presence of those primitives.
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Boppana [Bop89] proved that given n integers, determining whether they are

all distinct requires at least A(n; p) time on a common CRCW PRAM with p � n

processors, where

A(n; p) =

n logn

p log

�

n log n

p

+ 1

�

:

Because this problem has an O(1) time algorithm on a priority PRAM with n

processors, this result shows a separation between the priority and common variants

of the n processor CRCW PRAM model. Boppana, generalizing the results of

Ku�cera [Ku�c82] and Chlebus et al. [CDHR88], also showed that one step of any n-

processor priority CRCW PRAM can be simulated in O(A(n; p)) steps by a common

CRCW PRAM with p processors.

Boppana's result uses Ramsey's theorem and his lower bound argument does

not work if the input integers are restricted to come from a small domain. Ed-

monds [Edm91] improved Boppana's result to prove the same lower bound even if

the input integers are restricted to come from a domain of size 2

�(n)

.

Because the OR of n bits can be computed easily in constant time on a CRCW

PRAM, the 
(log n) lower bound results of [CDR86, Kut91, DKR94] prove a

separation between the powers of CRCW and CREW PRAMs.

Since CRCW, CREW and EREW are the three most popular variants of the

PRAM model and separations between variants of the CRCW, and between the

CRCW and CREW models have already been shown, the big open problem is to

determine the relative power of CREW and EREW PRAMs.

4.4 Previous Attempts at Separating CREW and EREW PRAMs

Snir [Sni85] proved that the problem of searching a sorted list is more di�cult on

the EREW PRAM than on the CREW PRAM. This result is unsatisfactory on two

counts: (1) Separation is proved for a partial function, which may not say anything

about their relative power for problems de�ned over complete domains: to give an

example, later in the chapter, we will de�ne the CROW PRAM (concurrent read,

owner write) model. It is known that the problem of computing the OR of n bits,

when at most one of the bits is 1, is more e�ciently solvable on a CREW PRAM

than on any CROW PRAM, but Nisan [Nis91] has proved that CROW and CREW
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PRAMs take the same time (up to a constant) for problems de�ned over their full

domains.

(2) The result uses Ramsey theory and relies crucially on the fact that the input

integers come from an extremely large domain relative to the number of inputs (at

least doubly exponential in the number of inputs). Essentially, the author shows

that there is a large subset of the domain for which the state of computation at

each point depends only on the relative ordering of the input values. The use of

such enormous inputs is unsatisfactory. The unlimited word-size assumption of the

PRAM model (just as in the case of unit cost RAMs) is a convenient abstraction to

keep the model simple. We certainly do not want our results to exploit this feature.

Such results may say more about the di�culty of handling very large numbers than

about the inherent di�culty of solving the problem on reasonable size domains.

The problem size n should be a fair measure of the input size. That is, we should

be able to divide the input into n reasonable size pieces, so that each input integer

is small. As an example, consider the problem of �nding the largest element from a

set of n integers on an n-processor CRCW PRAM. With no restrictions on the size

of the inputs, Fich et al. [FMadHRW85] have shown a lower bound of 
(log logn),

but if the input integers are restricted to be at most O(n

k

) in value, an algorithm

running in time O(k) is known [FRW88].

Gafni, Naor, and Ragde [GNR89] extended Snir's result to a full domain. This

takes care of our �rst objection but their result still uses Ramsey theory and requires

a very large domain for input integers. The other extreme, when each of the n inputs

is a single bit, is open.

Open problem: Is there a function f : f0; 1g

n

�! f0; 1g that can be

computed faster by a CREW PRAM than by an EREW PRAM.

Fich and Wigderson [FW90] have made some progress by resolving this question

in a special case when there is a restriction imposed on where processors can write

in shared memory. The EROW PRAM is an EREW PRAM in which each processor

is said to \own" one shared memory cell and that is the only cell to which it is

allowed to write. Processors are still allowed to read from any cell. The CROW

PRAM [DR86] is the CREW PRAM restricted in the same manner. Fich and

Wigderson proved that the EROW PRAM requires 
(

p

logn) time to compute a
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Boolean function that requires only O(log log n) time on the CROW PRAM. The

CROW PRAM never requires more than a constant factor more time than the

CREW PRAM to compute any function de�ned on a complete domain (although

the simulation may require a substantial increase in the number of processors)

[Nis91]. However, the restriction to the owner write model with a single memory cell

per processor seems more drastic for exclusive read machines. A fast simulation of

EREW PRAMs by EROW PRAMs seems unlikely. In the case of CROW PRAMs,

allowing processors to own more than one shared memory cell does not change

the power of the model. But in the case of the EROW model, we do not even

see any obvious way to extend the lower bound proof of Fich and Wigderson to

allow each processor to own an arbitrary number of memory cells. There is another

issue here: for an exclusive write machine, information can be communicated by

the fact that no processor writes into a cell at a given time step. This is not

allowed in the case of owner write machines. A close examination of the proofs

in [CDR86, Kut91, DKR94] reveals that bounding the amount of information

communicated in this way is usually the hardest part of the lower bound argument.

For example, in [CDR86], the proof for the CROW PRAM model is presented as

a warm up step and the bulk of the proof is devoted to proving a slightly weaker

lower bound for the case of CREW PRAMs.

This leaves open the following question: Is there a separation between CREW

and EREW PRAMs for any function f : f0; 1g

n

! f0; 1g without the owner-write

restriction? We cannot answer this question in general but we can when the amount

of shared memory through which processors can communicate is small. Our main

result in this chapter is:

Theorem 4.1 For all m 2 o(

p

log n), there is a function on n Boolean vari-

ables that can be solved asymptotically faster on a CREW(1) PRAM than on any

EREW(m) PRAM.

The rest of this chapter is devoted to proving this theorem.

4.5 A separation result between CREW(m) and EREW(m) PRAMs

We show that a special case of the problem considered by Fich and Wigderson can

be solved in time O(

p

logn) by a CREW(1) PRAM, but requires 
(

log n

log

�

n

) time on
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any EREW(1) PRAM, where the log

�

function is de�ned as follows: Let log

(j)

n be

the result of taking j successive logarithms of n, and de�ne log

�

n to be the smallest

integer j such that log

(j)

n � 2.

It is easy to see that the sequential time complexity of this problem is log

2

n,

which is almost matched by our lower bound for the EREW(1) PRAM. Because

an EREW(1) PRAM can simulate one step of an EREW(m) PRAM in m steps,

an 
(

log n

m log

�

n

) lower bound for EREW(m) PRAM is immediate. We can prove a

somewhat stronger lower bound of 
(

log n

m+log

�

n

) on any EREW(m) PRAM.

We would like to extend our separation between CREW and EREW PRAMs to

larger communication width. Our hope is that some of the techniques developed for

small communication widths will turn out to be useful even for the general case. For

example, the technique in the lower bound result for the OR function on CREW(1)

PRAMs [VW85, Bea86] is very similar to the technique that Kuty lowski [Kut91]

eventually used in his optimal bound for the OR on general CREW PRAMs.

Our lower bound proof consists of three parts. First we show that any

EREW(1) PRAM running for a short time can only have a small number of proces-

sors doing useful work. We then determine the time complexity of our problem on

CREW(1) and CRCW(1) PRAMs with limited numbers of processors. This also

implies an 
(log

2=3

n) time bound for the EREW(1) PRAM. Finally, we show that

there are subproblems (obtained via restrictions) on which the number of proces-

sors doing useful work is drastically reduced. Applying this result recursively, we

obtain a nearly optimal EREW(m) PRAM lower bound for small m.

4.5.1 A Bound on the Number of Processors Doing Useful Work

For a function de�ned on n variables, we assume that a PRAM starts with its input

stored in n read-only cells. In addition, there are m common cells. We do not place

any restrictions on the number of processors, word size, or the computational power

of individual processors.

For any EREW or CREW PRAM computing a function f , we say that a pro-

cessor p writes by time t if, on some input to f , p writes into some memory cell

during the �rst t steps. Since shared memory is the only means of communication,

we can assume that for any PRAM running for t steps, only the processors that
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write by time t are involved in the computation.

The bounds in [Bea86] (see also [VW85]) show that for any CREW(1) PRAM at

time t and for any given input vector e, at least a 2

�O(t

2

)

fraction of all inputs vectors

are indistinguishable from e, from the point of view of any individual processor. If a

processor writes on e it also writes on all the other inputs that it can not distinguish

from e, in this case at least 2

�O(t

2

)

fraction of all inputs. Because the machine only

has exclusive writes, that is, in any time step at most one processor can write on

any given input, it is easily seen that there are at most 2

O(t

2

)

processors that write

by time t. This bound is tight { see, for example, the algorithm given in the proof of

Theorem 4.5. For EREW(m) PRAMs, we now show a considerably smaller bound.

Lemma 4.2 Consider any EREW(m) PRAM computing a function with do-

main f0; 1g

n

. Then for all t � 0, at most m(2

t+1

+ 2

t

� 3) � m2

t+2

processors

write by time t.

Proof: For any processor P , time t, and input x, let P

t

(x) be the set of input

variables that P reads during the �rst t steps on input x. Since a processor reads

at most one cell per step, jP

t

(x)j � t.

For 1 � j � t, let R(j) be the set of processors that do not read any common

cell on any input for the �rst j � 1 steps, but do read one of them on some input

at step j.

Consider any processor P 2 R(j) and suppose that, on input x 2 f0; 1g

n

, P

reads some common cell at step j. At step j, processor P must decide whether

to read that common cell based on the values of the variables in P

j�1

(x). The

fraction of all inputs that agree with x on these variables is at least 2

�(j�1)

, since

jP

j�1

(x)j � j � 1. On all these inputs, P reads the same common cell in step j.

At most one processor can read that cell in step j on any particular input, so that

there are at most 2

j�1

processors in R(j) which do so over all inputs. Since there

are m such cells, jR(j)j � m2

j�1

.

Similarly, if W (j) is the set of processors that do not read any common cell

on any input during the �rst j steps, but do write into one of them on some

input at step j, then jW (j)j � m2

j

. (jW (j)j = jR(j + 1)j because a proces-

sor reads at step j before writing in step j.) Notice that any processor that
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writes by time t has either read the common cell during the �rst t steps or not.

In the �rst case, it belongs to

t

[

j=1

R(j), and in the second case, it belongs to

t

[

j=1

W (j). Thus the number of processors that write by time t is bounded above by

t

X

j=1

jR(j)j+

t

X

j=1

jW (j)j �

t

X

j=1

m2

j�1

+

t

X

j=1

m2

j

� m(2

t

� 1 + 2

t+1

� 2): 2

We will now construct an EREW(m) PRAM computing a function with domain

f0; 1g

m2

t

such that there are at least m2

t�2

processors that write by time t. Thus

the bound in Lemma 4.2 is optimal to within a small constant factor. We begin by

considering the case m = 1.

Lemma 4.3 There is an EREW(1) PRAM computing a function with domain

f0; 1g

2

t

for which, over all inputs, there are at least 2

t�2

processors that write during

step t.

Proof: Before beginning the construction, we examine the write operation of

an EREW(1) PRAM. We view the selection of a processor to write during step t

as a competition among processors, where the selection is arbitrated by the input

vector. A processor is a `potential winner' if there is some setting of the input bits

that would cause it to write during step t. Let b

1

= 1, b

j

=

P

j�1

i=1

[b

i

+ 1] < 2

j

,

k

1

= 1, and k

j

=

P

j�1

i=1

k

i

= 2

j�2

, for j � 2. For any j, we construct an EREW(1)

PRAM algorithm that has k

j

potential winners. This algorithm runs for j steps,

does not access the common cell, and is arbitrated by only b

j

bits of input. Notice

that this is enough to prove the lemma as we can modify the algorithm to make

the winning processor write at step j.

The claim is proved by induction on j. The case j = 1 is trivial. For larger

values of j, consider an input of length b

j

which is partitioned into disjoint groups

X

1

; X

2

; : : : ; X

j�1

of length b

1

; b

2

; : : : ; b

j�1

, respectively, as well as one extra group of

j�1 bits: y

1

; y

2

; : : : ; y

j�1

. Let G

1

; : : : ; G

j�1

be disjoint sets containing k

1

; : : : ; k

j�1

processors, respectively, for a total of k

j

. By our induction hypothesis, for each

i < j, we can select a winner from among G

i

during step i based on the input in

X

i

. The winner from G

i

reads y

1

; y

2

; : : : ; y

j�i

in steps i+1; i+2; : : : ; j respectively.
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This processor is a winner in step j if and only if y

1

= y

2

= � � � = y

j�i�1

= 0 and

y

j�i

= 1. It is easy to verify that read con
icts never occur. 2

Corollary 4.4 There is an EREW(m) PRAM computing a function with do-

main f0; 1g

m2

t

for which, over all inputs, there are at least m2

t�2

processors that

write during step t.

Proof: Run m separate copies of the algorithm in Lemma 4.3, one per common

cell, on separate portions of the input. 2

4.5.2 A CREW(1) Upper Bound for Evaluating Decision Trees

We now de�ne a Boolean function and show that it can be computed in O(

p

logn)

time on a CREW(1) PRAM. In the next two sections, we will prove that this

function requires signi�cantly more time to be computed on an EREW(1) PRAM.

Speci�cally, we interpret the n = 2

h

� 1 input variables as the labels of the internal

nodes in a complete Boolean decision tree D

h

of height h, taken in some �xed

order. (For example, we could use breadth �rst order, that is, the root is labeled

x

1

and the left and right children of the node labeled x

i

are labeled x

2i

and x

2i+1

respectively.) The leaves of D

h

that are left children are labeled 0; those that are

right children are labeled 1. Given an input, proceed down from the root, going

left when a node labeled by a variable with value 0 is encountered and going right

when a node labeled by a variable with value 1 is encountered. The value of the

function F

h

: f0; 1g

2

h

�1

! f0; 1g is the label of the leaf node that is reached.

There is a trivial sequential algorithm that computes F

h

in h steps. It is un-

known whether one can do better than this on an EREW(1) PRAM (see Theo-

rem 4.14). However, the following lemma shows that F

h

can be computed substan-

tially faster on a CREW(1) PRAM.

Theorem 4.5 If

�

t

2

�

� h, then there is a CREW(1) PRAM that computes F

h

in t steps.

Proof: For each of the 2

h

root-leaf paths in the decision tree D

h

, we assign a

group of t� 1 processors. Exactly one of these root-leaf paths is the correct path.
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In the following algorithm, the common cell will contain values of the variables

labeling the �rst

�

j+1

2

�

nodes on the correct root-leaf path at the end of step j + 1.

The jth processor in each group is active for the �rst j+1 steps. During the �rst

j steps, it reads the j variables labeling nodes

�

j

2

�

+1 through

�

j+1

2

�

on its root-leaf

path. At step j + 1, it reads the common cell, which contains the values of the

variables labeling the �rst

�

j

2

�

nodes on the correct root-leaf path. (When j = 1,

the common cell contains no information.) At this point, the jth processor in each

group knows whether or not its root-leaf path agrees with the correct root-leaf path

at the �rst

�

j+1

2

�

nodes. Among the processors whose paths agree on these �rst

nodes, a prespeci�ed one (for example, the jth processor in the leftmost of these

groups) appends the bits that it has read to the previous contents of the common

cell. Thus, at the end of step j + 1, the common cell contains values of the labels

of the �rst

�

j+1

2

�

nodes along the correct root-leaf path.

To compute F

h

, we modify the algorithm slightly so that at the last step, instead

of appending bits to the common cell, a processor writes the value of the leaf

determined by the h internal nodes on its path, i.e. the leaf node in D

h

that is

reached. 2

4.5.3 Lower Bounds for Processor-limited PRAMs

In this section, we show that to compute F

h

quickly we need to have many processors

doing useful work even on a CRCW(1) PRAM. Using our bounds from Lemma 4.2

on the number of processors doing useful work, this will give an 
(h

2=3

) lower

bound for the EREW(1) PRAM. In the next section, we will improve this bound to

a nearly optimal 
(

h

log

�

h

) by combining the techniques of this section with a new

restriction technique.

A restriction is a partial function that sets the values of some input variables.

For any restriction r that sets some input variables to 0 or 1, let r(F

h

) be the

function F

h

with restriction r applied to it. De�ne the depth of r, d(r), to be the

minimum depth of any node v in D

h

, the underlying decision tree of F

h

, such that

the path from root to v is consistent with r and the subtree rooted at v does not

contain any variables set by r. Note that in order to compute r(F

h

), we must

compute F

h�d(r)

.
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De�ne the history of common cells on any input to be the sequence of vectors of

values which they take on that input with one vector per step of the PRAM. Our

lower bound proofs proceed by �xing the history of the common cells. We use the

following result of Vishkin and Wigderson [VW85].

Lemma 4.6 [VW85] For any CRCW(m) PRAM computing any function F

and running for t steps, there is a restriction r of F which sets at most m

�

t+1

2

�

variables such that the history of the common cells for the �rst t steps is the same

for all inputs consistent with r.

Proof sketch: We will sketch the essential ideas of the proof for the case m = 1.

We will prove by induction on t that there is a restriction r

t

such that the history

of the (unique) common cell for the �rst t steps is the same for all inputs consistent

with r

t

.

r

0

is the empty restriction, that is, r

0

does not set any variables. For t � 1, we

will show a way to obtain r

t

from r

t�1

by setting at most t� 1 additional variables,

which will be enough to prove the claim. From now on, consider only the inputs

consistent with r

t�1

. We consider two di�erent cases.

Case 1: If in step t, no processor writes (in the common cell) on any input then

r

t

= r

t�1

. Clearly in this case, if the history of the common cell is the same up to

step t� 1 then it is also the same up to step t.

Case 2: If in step t, there is at least one processor P and at least one input e

such that P writes on e then we will extend r

t�1

to obtain r

t

such that P can not

distinguish between e and any other input consistent with r

t

. Then P is going to

write the same value on all inputs consistent with r

t

, and therefore if the history

of the common cell is the same up to step t� 1 then it will also be the same up to

step t.

There are two possible avenues for P to gain information about input e: by

reading the common cell and by reading the input variables in read-only cells.

Because the history of the common cell has been the same for all inputs, P can not

distinguish between e and any other input, based on what it has learned by reading

the common cell. P reads at most t� 1 input variables on e in the �rst t� 1 steps,

so we obtain r

t

by setting those t� 1 variables to their values in e.
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2

Lemma 4.7 For any CRCW(m) PRAM computing F

h

for h � 0 and running

for t steps, there is a restriction of depth at most m

�

t+1

2

�

such that the history of

the common cells for the �rst t steps is the same for all inputs to F

h

consistent with

this restriction.

Proof: If h � m

�

t+1

2

�

, we can apply a restriction of height h so that there is

exactly one input consistent with this restriction, and the lemma is trivially true.

So assume that h � m

�

t+1

2

�

. By Lemma 4.6, there is a restriction r which sets at

most m

�

t+1

2

�

variables such that the history of the common cells for the �rst t steps

is the same for all inputs consistent with r.

We de�ne a restriction r

0

that is consistent with r by tracing a path of length

at most m

�

t+1

2

�

from the root of F

h

one node at a time, as follows. If r sets the

variable at the current node then let r

0

sets this variable to be consistent with r

and takes the branch corresponding to this value. Otherwise, consider the number

of variables that are set by r in each subtree and take the branch which leads to

the subtree with the smaller number of such variables. Each time we extend the

path by one node there is at least one less variable set by r in the subtree reached

by that path. So, by the time the path reaches length m

�

t+1

2

�

, we will have reached

the root of a subtree with none of its variables set. We set all variables outside this

subtree in some manner consistent with r. Clearly, the resulting restriction r

0

has

depth at most m

�

t+1

2

�

and for all inputs consistent with r

0

, the common cells have

the same history for the �rst t steps. 2

In particular, this implies that the CREW(1) PRAM algorithm to compute F

h

given in the proof of Theorem 4.5 is within one step of optimal:

Theorem 4.8 If a CRCW(1) PRAM computes F

h

in t steps, then

�

t+1

2

�

� h.

Proof: Consider any CRCW(1) PRAM that computes F

h

in t steps. By Lemma

4.7, there is a restriction r of depth at most

�

t+1

2

�

such that the history of the

common cell for the entire computation is the same for all inputs to F

h

consistent

with r. In particular, the answer produced by the computation is the same for all
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these inputs. Thus r(F

h

) must be a constant function, which in turn implies that

�

t+1

2

�

� h. 2

The following theorem shows that, with a limited number of processors, a larger

lower bound may be obtained.

Theorem 4.9 Any CRCW(1) PRAM with p processors that computes F

h

re-

quires at least

2h

3d1+

p

log pe

steps.

Proof: If p = 1, an easy adversary argument shows that computing F

h

has

complexity at least h �

2h

3d1+

p

log 1e

. Therefore, assume p � 2. The proof proceeds

by induction on h. The base case when h = 0 is trivial. We will prove it for higher

values of h. Let t = d

p

log pe � 1.

Suppose there is a CRCW(1) PRAM with p processors that computes F

h

in T

steps. Then, from Theorem 4.8,

�

T+1

2

�

� h. If

�

t+1

2

�

� h=3, then T (t+ 1)=2 � h=3.

(This is most easily seen by a case analysis: if t � T , then

�

T+1

2

�

� h implies

T (t+ 1)=2 � h; on the other hand, if t < T , then

�

t+1

2

�

� h=3 implies T (t+ 1)=2 �

h=3.) This implies that T � 2h=3(t + 1) as required. Therefore, assume that

�

t+1

2

�

< h=3.

By Lemma 4.7, there is a restriction r of depth at most

�

t+1

2

�

that �xes the

history of the common cell for the �rst t steps. Consider the computations of the

CRCW(1) PRAM on all inputs consistent with r. Since each input variable has at

most two di�erent values and the value of the common cell is �xed at each time

step, it follows that each processor is in one of at most 2

i

states at the end of step

i < t. Now the state of a processor determines which memory cell it will read next.

Thus at most p

P

t�1

i=0

2

i

< 2

t

2

+t

di�erent input variables are read during the �rst t

steps by all processors on all these inputs.

Let v be any node of depth d(r) such that the path from the root to v is

consistent with r and the subtree rooted at v does not contain any variables set by

r. Consider the 2

t

2

+t

nodes at distance t(t+ 1) from v. There is at least one node

w such that the subtree rooted at w contains input variables that no processor can

possibly read in the �rst t steps. Let r

0

be a restriction that extends r by setting

the variables labeling all ancestors of w so as to cause the path from the root of
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D

h

to w to be followed. Only the variables labeling nodes in the subtree rooted at

w are left unset. All remaining variables are set arbitrarily. The restriction r

0

has

depth at most

�

t+1

2

�

+t(t+1) = 3

�

t+1

2

�

< h. By construction, the functions F

h�d(r

0

)

and r

0

(F

h

) are identical, up to the renaming of variables. Since no processors have

read any input variables of this subfunction at time t, it follows from the induction

hypothesis that at least

h

2h� 6

�

t+1

2

�i

=3(t + 1) additional steps are required to

compute this subfunction. Therefore T � t +

h

2h� 6

�

t+1

2

�i

=3(t+ 1) =

2h

3(t+1)

. 2

We note that this lower bound is asymptotically optimal even for a CREW(1)

PRAM:

Corollary 4.10 For all integers 1 � p � 2

h

, the complexity of F

h

on a

CRCW(1) or CREW(1) PRAM with p processors is �(h=

p

log p).

Proof: The lower bound follows from Theorem 4.9. For the upper bound, no-

tice that the algorithm in Theorem 4.5 shows that, with p processors, a CREW(1)

PRAM can evaluate a decision tree of height �(log p) in time O(

p

log p). To com-

pute F

h

with p processors on a CREW(1) PRAM, we simply apply this algorithm

sequentially O(h= log p) times to obtain a running time of O(h=

p

log p). 2

Using the bounds of Lemma 4.2 we have:

Corollary 4.11 Any EREW(1) PRAM computing F

h

must run for at least

1

3

h

2

3

steps.

Proof: Suppose the EREW(1) PRAM runs for T steps. Then, by Lemma 4.2,

we can assume that it has at most p = 2

T+2

processors. Now, applying Theorem

4.9, it follows that T �

2h

3d1+

p

T+2e

. Since d1 +

p

T + 2e � 3

p

T for all integers

T > 0, we obtain T �

1

3

h

2=3

, as required. 2

4.5.4 A Near Optimal EREW(m) Lower Bound for Small m

We strengthen the arguments of the previous section to prove a nearly optimal


(

h

log

�

h

) lower bound on the time for an EREW(1) PRAM to compute F

h

and,

more generally, to obtain an 
(h=(m + log

�

h)) lower bound for an EREW(m)
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PRAM computing F

h

. The key to this improvement is a new lemma that replaces

Lemma 4.2 in the argument which shows that we can select a large subset of inputs

on which very few processors ever do useful work. We use this to obtain a stronger

version of Lemma 4.7 for the EREW(m) PRAM. This involves recursively applying

the argument of the previous section to obtain a better lower bound.

Lemma 4.12 For integers T and h � 2T + 2 + dlogme, and any EREW(m)

PRAM computing F

h

, there is a restriction r of depth 2T + 2 + dlogme such that

at most 2mT processors write by time T on inputs consistent with r.

Proof: From Lemma 4.2, we can assume that the EREW(m) PRAM has at

most m2

T+2

processors. For each processor P , let s(P ) denote the set of input

variables that P reads before it reads any common cell during the �rst T steps

of computation on any input to F

h

. De�ne S =

[

P

s(P ). As in the proof of

Theorem 4.9, since each input variable has at most two di�erent values, js(P )j < 2

T

and thus jSj < m2

2T+2

.

Consider m2

2T+2

of the nodes at depth 2T + 2 + dlogme from the root of D

h

.

For at least one such node v, none of the nodes in the subtree rooted at v is labeled

by variables in S. Set the variables labeling ancestors of v so that the path from

the root to v is followed in D

h

. All variables labeling nodes in the subtree rooted

at v are left unset. Set all other variables outside this subtree arbitrarily. Let r be

the resulting restriction.

From now on, consider only the inputs consistent with r. The subtree rooted

at v does not contain any input variables from S, so no processor reads any unset

variable until after it has read one of the common cells. Since the PRAM is exclusive

read, for each step j � T and for each common cell, there is at most one processor

that does not read any common cell on any input for the �rst j � 1 steps but does

read that cell on some input at step j. Hence, at most mT processors read some

common cell in the �rst T steps. Similarly, at most mT processors from among

those that have not read any common cell may write in the �rst T steps. So,

altogether, there are at most 2mT processors that can write into some common cell

on inputs consistent with r. 2
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In order to describe the behavior of our recursive construction it is convenient

to introduce a simple notation for the bounds that we obtain. Let A(m; 2) = 3m

for m � 1 and

A(m; T ) = (2T +2+dlogme)+

&

T

dlog T e

'

(A(m; dlogT e)+2dlog T e+1+dlogme);

for m � 1 and T � 3.

We will sketch a proof that A(m; T ) 2 O(Tm+ T log

�

T ).

A(m; T )

< (2T + 3 + logm) +

 

1 +

T

dlog T e

!

[A(m; dlog T e) + 2dlog T e+ logm + 2]

=

 

1 +

T

dlog T e

!

A(m; dlog T e) +

 

4T +

2T

dlog T e

+ 2dlog T e+ 5

!

+ logm

 

T

dlogT e

+ 2

!

<

 

1 +

T

dlog T e

!

A(m; dlog T e) + 8T

 

1 +

logm

dlog T e

!

:

(Because T � 3)

De�ne dloge

(j)

T as follows:

dloge

(j)

T = T; if j = 0

=

l

log

�

dloge

(j�1)

T

�m

; if j > 0.

De�ne F

�1

= 1, and

F

i

=

Y

0�j�i

0

@

1 +

dloge

(j)

T

dloge

(j+1)

T

1

A

; G

i

= dloge

(i)

T

0

@

1 +

logm

dloge

(i+1)

T

1

A

; for i � 0.

Expanding the recursive expression for A(m; T ), we get

A(m; T ) < F

i

� A

�

m; dloge

(i+1)

T

�

+ 8

X

0�j�i

F

j�1

G

j

; for i � 0.
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Because F

i

2 O

�

T

dloge

(i+1)

T

�

, F

j�1

G

j

2 O

�

T

�

1 +

logm

dloge

(j+1)

T

��

, and

P

0�j�i

F

j�1

G

j

2 O

�

iT +

T logm

dloge

(i+1)

T

�

;

A(m; T ) = O

2

4

T

dloge

(i+1)

T

�A

�

m; dloge

(i+1)

T

�

+ iT +

T logm

dloge

(i+1)

T

3

5

; for i � 0.

Choose i = log

�

T � 1. Then from the de�nition of the log

�

function,

T is greater than a tower of 2's of height i + 1, and T is less than or equal to a

tower of 2's of height i + 2.

It is easily seen by induction that for any 0 � j � i+1, dloge

(j)

T is greater than

a tower of 2's of height i+ 1� j and is less than or equal to a tower of 2's of height

i + 2 � j. So, 1 < dloge

(i+1)

T � 2, and A(m; T ) 2 O(Tm + T log

�

T + T logm) �

O(Tm+ T log

�

T ).

Lemma 4.13 For any integer T � 2, and h � A(m; T ), and any EREW(m)

PRAM computing F

h

, there is a restriction r of depth at most A(m; T ) such that

the history of the common cells for the �rst T steps is the same for all inputs to F

h

consistent with r.

Proof: The proof is by induction on the value of T .

For T = 2, A(m; T ) = 3m = m

�

T+1

2

�

and the claim follows from Lemma 4.7.

For larger values of T , �rst use Lemma 4.12 to obtain a restriction r

0

of depth

2T + 2 + dlogme such that at most 2mT processors write by time T on inputs

consistent with r

0

. Let ` = dlog T e. Break the T steps of the computation into

dT=`e subintervals each of length at most `. It is su�cient to prove the following

claim:

Claim: For all i � d

T

`

e, there is an extension r

i

of r

0

of depth at most

2T+2+dlogme+i(A(m; `)+2`+1+dlogme) so that restricted to inputs consistent

with r

i

and during the �rst i subintervals,

1. the history of common cells is the same, and

2. none of these 2mT processors read any variables left unset by r

i

.
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This is proved by induction on i. The case i = 0 is trivial, so suppose i � 1.

Assume that a restriction r

i�1

with the desired properties exists. We will �rst

extend r

i�1

to a restriction r

0

i

satisfying (1), and then extend r

0

i

to r

i

satisfying

(2) as well.

Without loss of generality, we may assume that r

i�1

sets all variables labeling

nodes outside of some tree of height h�DEPTH(r

i�1

). Then r

i�1

(F

h

) is the same

as F

h�DEPTH(r

i�1

)

up to the renaming of variables. Since ` < T , it follows from

the induction hypothesis that there is a restriction of depth A(m; `) such that

the history of the common cells for the �rst ` steps is the same for all inputs to

F

h�DEPTH(r

i�1

)

consistent with this restriction. None of the 2mT processors have

read any variables left unset by r

i�1

during the �rst i� 1 subintervals on inputs to

F

h

consistent with r

i�1

. Therefore there is also a restriction r

0

i

that extends r

i�1

with depth d(r

i�1

) + A(m; `), such that the history of common cells for the �rst i

subintervals is the same for all inputs to F

h

consistent with r

0

i

.

As in the proof of Theorem 4.9, each of the 2mT processors can read at most

2

`

� 1 input variables during the ith subinterval, over all inputs. Thus there is

an extension r

i

of r

0

i

with depth d(r

0

i

) + dlog(2mT )e + ` � 2T + 2 + dlog(m)e +

i(A(m; `) + 2` + 1 + dlogme) so that none of the processors have read any inputs

of F

h

left unset by r

i

during the �rst i subintervals. This is what was required. 2

We can use this lemma to derive the near optimal lower bound for the EREW(m)

PRAM for small m.

Theorem 4.14 Any EREW(m) PRAM computing F

h

must run for 
(

h

m+log

�

h

)

steps.

Proof: Suppose there is an EREW(m) PRAM computing F

h

that runs for T

steps, where A(m; T ) � h � 1. By Lemma 4.13, there is a restriction r of depth

A(m; T ) such that the answer in the common memory cells is the same for all

inputs to r(F

h

). However, there are two inputs in r(F

h

) that reach the same node

of depth h � 1, but should have di�erent answers. Thus A(m; T ) � h. Since

A(m; T ) 2 O(Tm + T log

�

T ), it follows that T 2 
(

h

m+log

�

h

). 2

Theorem 4.14 and Theorem 4.5 immediately give our main theorem.
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Theorem 4.15 There is a function on n Boolean variables that can be solved

in O(

p

log n) time on a CREW(1) PRAM but requires 
(

log n

m+log

�

n

) time on every

EREW(m) PRAM.

Our main separation theorem is a straightforward corollary of the above theo-

rem.

Theorem 4.1 For all m 2 o(

p

log n), there is a function on n Boolean vari-

ables that can be solved asymptotically faster on a CREW(1) PRAM than on any

EREW(m) PRAM.

4.6 Conclusion

We would like to extend this separation result between CREW and EREW models

to the case of larger communication width. We de�ne general PRAMs as PRAMs

with unlimited communication width. The separation result of [CDR86, Kut91,

DKR94] applies to general CRCW and CREW PRAMs and it would be nice to

prove a similar result about CREW and EREW PRAMs. We hope that our lower

bound argument gives some insight even for the general case. There is at least some

precedence for this: Kuty lowski's [Kut91] optimal lower bound for general CREW

PRAMs, computing the OR function, uses techniques similar to the lower bound

result, for the OR function, on CREW(1) PRAMs [VW85, Bea86].

Evaluating a Boolean decision tree, the function for which we showed a separa-

tion between CREW(1) and EREW(1), has the same complexity (up to a constant

additive term) on general CREW and EREW PRAMs, so it can not be used to

separate general CREW and EREW PRAMs:

Proposition 4.16 The complexity of F

h

on CREW or EREW PRAMs is

log h + �(1).

Proof sketch: The lower bound on CREW PRAMs follows from a degree

argument [DKR94]; the upper bound follows from the following algorithm: for each

node of D

h

, assign a processor and a common cell. In the �rst step, every processor

reads the value of the corresponding input variable. If this input variable is zero,

the processor writes the index of the left child in the corresponding common cell;
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otherwise, the processor writes the index of the right child in the corresponding

common cell. Now interpreting the contents of common cells as values of pointers

in a list, the path that is taken in the decision tree is precisely the path obtained

by following these pointers starting from the root node. We can use a standard

EREW PRAM pointer doubling algorithm to evaluate F

h

in log h+O(1) steps. 2

However a generalization of this function, considered in Fich and Wigder-

son [FW90], seems like a good candidate function.

De�nition 4.17 [FW90] Given any m(2

h

� 1) + 2

m

bits of input, they can be

interpreted as a Boolean decision tree of height h�1, where each node is labeled with

one of fx

1

; x

2

; : : : ; x

m

g. The �rst m(2

h

�1) bits of the input are interpreted as giving

labels of each of the 2

h

�1 nodes in the decision tree; and the last 2

m

bits of the input

are interpreted as giving values of x

1

; x

2

; : : : ; x

m

. F

m;h

: f0; 1g

m(2

h

�1)+2

m

! f0; 1g

is de�ned as the value of this decision tree.

Proposition 4.18 [FW90] The complexity of F

m;h

on CREW PRAMs is

�(logm+ log h), and it can be solved on an EROW PRAM in O(2

m

+ log h) steps.

Open problem: Determine the exact complexity of F

m;h

on general EREW

PRAMs.



Chapter 5

MULTIPREFIX PRAMS

5.1 Introduction

In the study of parallel computation, the PRAM has been a very useful model.

The model is attractive because it abstracts away most of the messy details of

implementing algorithms on parallel machines. The 
ip side of this is that the

model has no e�cient implementation. The read and write primitives are typically

implemented by routing packets on a �xed connection network of processors. Global

memory is distributed among these processors and any processor, wanting to access

a memory location, sends a packet to the node containing the desired memory

location. If the access is \read" then a packet with the contents of the memory

location is returned to the originating processor; whereas if the request is \write",

the contents of the designated cell are updated. If many processors try to access

the block of memory located at the same node, memory contention can really slow

the system down. The usual solution in this case is to combine messages destined

for the same memory location in a single read or write cycle. Such a simulation of

a PRIORITY CRCW PRAM by an FFT Network was shown by Ranade [Ran87]

and this was extended to a variety of other networks by Leighton, Maggs, and Rao

[LMR88] among others. Currently there is no practical solution for implementing an

n-processor read or write that does better than O(log

2

n) for deterministic schemes

or O(logn) for probabilistic schemes. This is of some concern because the PRAM

model assumes reads and writes to be primitive operations which take unit cost.

But we realize that the assumption of unit cost for primitives is never strictly

true on any model. The usefulness of algorithmic models is in supplying a suitable

abstraction of real machines that helps in algorithms design. The real concern is

the following: any algorithm can be thought of as giving a two step simulation of

the given problem in hardware: �rst, the problem is solved in terms of primitives

of the machine; second, each of those primitives is simulated in hardware. The
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danger of having very powerful primitives is that for certain problems, this two

step simulation process may be lot more expensive than a direct simulation in

hardware. For example, Beame and H�astad [BH89] have shown that the parity

function, which can be solved on realistic machines in essentially the same time as

a multiprocessor read or write, requires 
(log n= log log n) time on a PRIORITY

CRCW PRAM. In other words, computing parity on PRIORITY CRCW PRAM

will take time 
(log n= log log n) times the time to implement reads or writes, which

is a slow-down of 
(log n= log logn).

As we argued in Chapter 1, the solution is to augment the model with a set of

primitives that can be implemented in time comparable to implementing reads and

writes, in the hope that a richer instruction set will help algorithm designers.

Some practical and theoretical works for parallel machines [Ble89, Ble90,

CBZ90, KRS86, RBJ88, PS88, KRS88] have suggested that multipre�x operations

for certain multiary operators be allowed at unit cost. We will call all such models

multipre�x PRAMs. Later we will give a precise de�nition of multipre�x operations

and multipre�x PRAMs. Informally, the e�ect of computing a multipre�x opera-

tion

J

on arguments x

1

; x

2

; : : : ; x

k

is to compute the k pre�xes

J

(x

1

; x

2

; : : : ; x

i

) for

1 � i � k. In every round of the computation of a multipre�x PRAM, processors

partition themselves into groups. Within certain groups, all processors belonging

to the group perform a multipre�x operation on their private data. As a result of

this computation, each processor receives the pre�x corresponding to its position

in the order, sorted according to the processor indices. There are several models

which di�er in the kinds of partitioning (of processors) they allow.

Multipre�x operations have a basis in many existing parallel machines and pro-

posed architectures. In the implementation of the CRCW PRAM on the NYU

Ultracomputer, a number of additional operations such as Fetch-and-add were in-

cluded [GGKR83]. These operations used the combining network to perform com-

putation during a concurrent memory access and were used as synchronization

primitives. Blelloch [Ble89] considered scan operations, where all processors are

restricted to be in the same group. He also considered segmented scans where

every group consists of processors with consecutive processor indices, and all pro-

cessors perform multipre�x operation based on the same multiary operator. Blel-

loch [Ble89] showed that scan primitives for integer-add, integer-max, integer-min,
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OR, and AND can be implemented as e�ciently as reads and writes on a connec-

tion machine [Hil85]. He gives many examples where these primitives reduce the

running time, sometimes by as much as a factor of �(log n). In many cases, this

also simpli�es the program. Chatterjee et al. [CBZ90] discuss implementation of

scan operations on a CRAY Y-MP [Cra88]. Again the scan primitives turn out to

be very powerful, even for the normally hard case of manipulating irregular and

dynamically changing structures. The appendix in Blelloch's Ph.D. thesis [Ble90]

gives a brief history of the scan operation.

Ranade et al. [RBJ88] consider a generalization of the scan operation, where ar-

bitrary partitioning of processors is allowed. The authors give strong justi�cation

for an architecture providing these primitives. Because we will be giving a sim-

ulation of multipre�x PRAMs, we adopt this (strongest) de�nition of multipre�x

operations.

The fetch-and-op of Gottlieb et al. [GLR83] is an indeterminate version of the

mutipre�x operation. The e�ect of fetch-and-op is also to compute a set of pre�xes,

but the order of inputs is undetermined. In this regard, the multipre�x operation

can be considered a particular implementation of fetch-and-op.

We begin by de�ning a multipre�x (MP) operation. We number the processors

of the (multipre�x) PRAM as P

1

; P

2

; : : :

De�nition 5.1 A multipre�x operation MP(L; v;

J

) takes three arguments: L

is the address of a memory location; v is the private data of the processor perform-

ing this operation; and

J

is a multiary operator. Let S = fP

i

j

: 1 � j � kg be any

set of k processors such that i

j

� i

j+1

for 1 � j < k. Suppose that the memory

location L contains the value v

0

, each processor P

i

j

in S performs the operation

MP(L; v

j

;

J

), and no processor outside S performs a multipre�x operation refer-

ring to memory location L. Then, as a result of these multipre�x operations, each

processor P

i

j

will receive

J

(v

0

; v

1

; : : : ; v

j�1

), and L will contain

J

(v

0

; v

1

; : : : ; v

k

).

A valid algorithm makes sure that in any round of the computation, all processors

performing a multipre�x operation referring to a particular memory location have

the same multiary operator.

To give an example, if the memory location L contains value 0, and for 1 � i � n,
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the i

th

processor P

i

performs MP(L; i;+), then as a result of this operation P

i

will

receive 1 + 2 + � � �+ i� 1 and L will contain 1 + 2 + � � �+ n.

The cost of implementing multipre�x computations as part of the PRAM simu-

lations by a network of processors is that each processor or switch in that network

becomes a little more complicated for each new multipre�x operator added. We

parameterize the multipre�x PRAM by a set O of allowable multipre�x operators.

De�nition 5.2 Let O be any set of operations. Then an O-multipre�x PRAM

is a priority CRCW PRAM with extra multipre�x primitives from the set O. For

computing a function of n inputs, we start with input values stored in n designated

memory locations. The computation proceeds in steps. Each step consists of a

\write" phase, followed by a \multipre�x" phase, followed by a \read" phase. In

the write (multipre�x, read) phase, each processor can perform at most one write

(respectively, multipre�x, read) operation. The output is the contents of a specially

marked output cell at the end of the computation.

The two most interesting complexity measures to us are time and number of

processors.

It is easy to show that arbitrary multipre�x operations can lead to unreasonable

models. For example, if concatenation of bit strings is allowed as a multipre�x

primitive then, as shown in the algorithm below, the entire input can be collected

into a single location in a single step.

Algorithm:

Comment x

1

; x

2

; : : : ; x

n

is the input

Step 1 For 2 � j � n, processor P

j

reads x

j

.

Step 2 Comment: Let L be the memory location holding x

1

.

For 2 � j � n, processor P

j

executes MP(L; x

j

,\concatenate").

Comment: At this point L contains concatenation of x

1

; x

2

; : : : ; x

n

.

There are two objections to this: �rst, if, as is traditional in lower bound study of

PRAMs, we do not place any restrictions on the computational power of individ-

ual processors, a processor can read all input bits in one more step and compute



83

the given function. The more serious objection is that such operations require the

transmission of n-bit values in the network. A natural limitation then is on band-

width of the operation, de�ned as the number of bits of information of each input

and output value. It is reasonable to set this to be equal to the word-length of the

machine. Our main result shows that if bandwidth of the multipre�x operation is so

limited (and the domain of the operation has an identity element) then the PRAM

itself may be very e�ciently simulated by an unbounded fan-in circuit with special

gates for the operations in O. Notice that other than a word-length restriction we

are not making any assumption which otherwise limits the power of processors in

the PRAM.

In order to route messages in a network of p processors, addresses must be

transmitted so that a word-length of at least log p is most desirable. Furthermore,

most speci�c operations that have been proposed can be implemented using log p-

bit values. If the word-length is �(log p), our results imply that anything that can

be computed by a multipre�x PRAM in time T using p processors can be computed

by an unbounded fan-in circuit of depth O(T ) and size polynomial in p

T

, having

gates for the operations in O.

Bellantoni [Bel91] showed a simulation of restricted word-sized PRIORITY

CRCW PRAMs by unbounded fan-in circuits. We extend his result and the tech-

niques are very similar although there are some signi�cant di�erences in the details

required to handle multipre�x operations. We should note that our simulation is

not limited to multipre�x operations based on associative binary operations and

thus we can handle a wider variety of functions, for example, threshold functions.

5.2 De�nitions

To keep our simulation result strong, we do not place any restrictions on the com-

putational power of individual processors. However, as we argued earlier, we only

allow multipre�x operations with bounded \bandwidth."

De�nition 5.3 For any integer � > 0, VALID(�) is the set of operations

J

such that
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1. For all k � 0, if each of x

1

; x

2

; : : : ; x

k

is less than 2

�

then

J

(x

1

; x

2

; : : : ; x

k

)

is also less than 2

�

. Notice that \addition" does not satisfy this, but many

simple variations on addition, for example, addition modulo 2

�

satisfy this

property.

2.

J

has a unit. That is, there exists 1

J

such that adding arguments with value

1

J

does not change the operation's value. Formally, for all x

1

; : : : ; x

k

, if there

exists 1 � i

1

< i

2

� � � < i

m

� k such that i 62 fi

1

; : : : ; i

m

g implies x

i

= 1

J

then

J

(x

1

; : : : ; x

k

) =

J

(x

i

1

; : : : ; x

i

m

):

Notice that VALID(�) includes a wide variety of functions including all threshold

functions. We call � the word-length of the machine and make sure that the contents

of any memory location can be represented by at most � bits.

De�nition 5.4 For any p; � > 0, and O � VALID(�), an MP-PRAM(O; p; �)

is an O-multipre�x PRAM with p processors such that any value that any processor

attempts to write is less than 2

�

.

Next, we de�ne the family of circuits that will be used to simulate these PRAMs.

De�nition 5.5 For any � > 0, and O � VALID(�), MP-Circuit(O; �) is the

set of unbounded fan-in circuits, with gates computing AND, OR, NOT, and func-

tions in O. We assume that each gate computing a function in O receives its set

of inputs encoded in binary, and has its output also encoded in binary. For small

values of �, this assumption is hardly restrictive since we can always compute any

function of these inputs or outputs by additional circuitry of size O(�2

�

).

5.3 Simulation

There are several motivations for designing e�cient simulations between di�erent

models. If seemingly di�erent models have e�cient simulations on each other then

it is an evidence of the robustness of those models. That is, results proved on such

models are indeed saying something about the complexity of the problem, rather

than quirks of the model. Because we have had very limited success in proving

lower bounds, simulation results are also attractive because they give an easy way
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of translating known lower bound results on the model that is simulating to the

model being simulated.

Between circuits and PRAMS, it is well known that an unbounded fan-in circuit

with s gates, e edges, and depth d can be simulated by a common CRCW PRAM

with e processors and s shared memory cells in time d + 1. The simulation is

straightforward: the PRAM has a cell for each gate of the circuit and a processor

for each edge and values are propagated from the input of the circuit towards its

output node.

Stockmeyer and Vishkin [SV84] showed a simulation of CRCW PRAMs by

unbounded fan-in circuits. Their result is somewhat unsatisfactory because, for

their simulation, they have to severely restrict the instruction set of processors in

CRCW PRAMs, disallowing even natural operations like multiplication.

Theorem 5.6 (Stockmeyer and Vishkin [SV84]) A priority PRAM with p pro-

cessors running in time T , where each processor has a limited instruction set and

the input is given in n blocks of n bits each, can be simulated by an unbounded

fan-in circuit of depth O(T ) and size bounded by a polynomial in n; p, and T .

Using the known lower bounds on parity [H�as87, FSS81, Yao85, Ajt83], they man-

aged to prove a non-constant time lower bound for the problem of computing parity

on PRAMs with polynomial number of processors.

By completely di�erent techniques, Beame and H�astad [BH89] proved an op-

timal lower bound without placing restriction on the instruction set of individual

processors of CRCW PRAMs.

For the case of limited word-size, Bellantoni gave a simulation of PRAMs by

unbounded fan-in circuits, without any restriction on the computational power of

individual processors of PRAMs.

Theorem 5.7 (Bellantoni [Bel91]) A priority CRCW PRAM with word-size

� and p processors running in time T can be simulated by an unbounded fan-in

circuits of depth O(T ) and size 2

O(T�)

p

O(1)

.

We prove a similar theorem regarding simulation of multipre�x PRAMs by MP-

circuits.
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Theorem 5.8 For any p; �; T > 0, and O � VALID(�), any MP-

PRAM(O; p; �) running in time T can be simulated by an MP-Circuit(O, �) of

depth O(T ) and size O(2

4�T

(pT )

O(1)

�).

We also state a corollary of the above theorem. The rest of the chapter is devoted

to proving this theorem and the corollary.

Corollary 5.9 If m is a prime, and r is not a power of m then for any

p = 2

log

O(1)

n

, any MP-PRAM(fMOD

m

g; p; log p) solving MOD

r

on n bits runs

for 
(

log n

log log n

) time, where MOD

m

(x

1

; : : : ; x

n

) is de�ned to be 0 if

P

X

i

� 0

(mod m), and 1 otherwise.

Following the model of Bellantoni [Bel91] in our simulation, we initially assume that

we do not have to worry about simulating memory. This motivates the following

de�nition.

De�nition 5.10 For any p; � > 0, and O � VALID(�), let a memoryless MP-

PRAM(O,p,�) be an MP-PRAM(O; p; �) such that after each step its entire global

shared memory is reset to zero.

The proof consists of two parts: �rst, we show that a memoryless machine can be

e�ciently simulated by circuits; next, we show how to simulate a general multipre�x

PRAM by a memoryless multipre�x PRAM.

5.3.1 Simulation of Memoryless PRAMs by Circuits

Lemma 5.11 For any p; �; T , and O � VALID(�), any memoryless MP-

PRAM(O,p,�) running in time T can be simulated by an MP-Circuit(O; �) of depth

O(T ) and size 2

2�T

p

O(1)

�T .

Proof: In any step, a processor reads � bits of information and receives another

� bits of information by performing a multipre�x operation. Thus, after t steps,

a processor can be in one of at most 2

2�t

possible states. Since, in any step, a

processor can be in one of three (\write", \multipre�x", or \read") phases, there

are at most N(t) = 3p

P

t

j=1

2

2�j

� 3p2

2�(t+1)

memory locations that ever get

accessed during the �rst t steps by any processor.
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If the memoryless multipre�x PRAM runs for T steps then there are at most

N(T ) memory locations that possibly ever get accessed. We can index these mem-

ory locations by using logN(T ) bits.

For any t, we construct a constant depth circuit to simulate step t of the com-

putation of the memoryless multipre�x PRAM. We refer to this as the stage(t)

circuit.

As we remarked earlier, any processor by the end of step t � 1 has received

2�(t� 1) bits of information. Together, the p processors receive 2p�(t� 1) bits of

information. The stage(t) circuit takes as input these 2p�(t� 1) bits and outputs

2p�t bits which will be input to the stage(t + 1) circuit. Next, we describe the

stage(t) circuit.

First, we use 2�(t � 1) bits, for each processor P , to extract the following

information for step t.

1. W

P

= Index of the memory location into which P writes.

2. M

P

= Index of the memory location for multipre�x operation of P .

3. R

P

= Index of the memory location that P reads.

4. Multipre�x operation of P .

5. Value that P is going to write.

6. Value for the multipre�x operation of P .

Altogether this is O(logN(t)+�) = O(logN(t)) bits of information. For each of

the p processors, we can build a decoder which, given 2�(t� 1) bits, outputs these

O(logN(t)) bits for that processor. Each of these decoders can be constructed as a

constant depth circuit of size O(2

2�t

logN(t)). So, this part of the simulation can

be performed by a constant depth circuit of size O(p2

2�t

logN(t)).

Our task is to compute the 2� bits of information that any processor P receives

as a result of the READ and multipre�x operation in step t. Since a processor does

not receive any information by writing into a cell, we do not need to simulate the
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WRITE operation explicitly. As we will see later, we still need to know the value in

certain memory cells at the end of the write phase in order to simulate the READ

and multipre�x operations.

Assume that the gates have been arranged in such a fashion that the gates corre-

sponding to lower indexed processors are to the left of higher numbered processors.

Let us �rst consider the multipre�x operation. Compare M

P

with W

Q

for every

processor Q. Select the highest priority matched processor L. From the gates en-

coding L's state extract the value v that L is going to write. Then memory location

M

P

will contain the value v at the end of the write phase in step t. Consider a

gate g computing the multipre�x operation of P . The leftmost input to g is v. To

compute the other inputs of g, compare M

P

with M

Q

for every processor Q strictly

to the left of P . If there is a match then the value for the multipre�x operation

of Q is sent to g; otherwise the unit for the multipre�x operation of P is sent to

gate g. The output of this gate is what P receives as a result of the multipre�x

operation.

The simulation of the READ operation is done similarly. As in the previous

simulation, we �nd the value v that memory location R

P

will contain at the end

of the write phase in step t. Next, we �nd out if a multipre�x operation has been

performed on memory location R

P

. We compare R

P

with M

Q

for every processor

Q. All the matched processors should have the same multipre�x operation. If

there is a match, the value in the location R

P

has been updated by a multipre�x

operation. Consider a gate g computing the multipre�x operation of these matched

processors. The leftmost input to g is v. For each processor Q, if there is a match

we send the value, which Q inputs to its multipre�x operation de�ned above, to

gate g, otherwise we send the unit for the function computed by g. The output of

this gate is what P receives as a result of the multipre�x operation.

In both these constructions, we are comparing O(logN(t)) bits of information

among processors. So this can be performed by circuits of constant depth and

p

O(1)

logN(t) size. For each processor P , placing the 2� bits of information next

to the 2�(t� 1) bits that P has received in the �rst (t� 1) steps (which is input to

the stage(t) circuit) constitutes the input to the stage(t + 1) circuit.

The stage(t) circuit has constant depth and O(2

2�t

p logN(t)) + p

O(1)

logN(t)
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size. Since N(t) � 3p2

2�(t+1)

, logN(t) is O(log p+ �t). This says that the stage(t)

circuit has constant depth and O(p

O(1)

2

2�t

�t) size which in turn implies that the

�nal circuit has depth O(T ) and size

O

0

@

p

O(1)

X

1�t�T

2

2�t

�t

1

A

= O

0

@

p

O(1)

�T

X

1�t�T

2

2�t

1

A

= O

�

p

O(1)

�T2

2�T

�

:

2

Next, we show how to simulate a general multipre�x PRAM by a memoryless

multipre�x PRAM.

5.3.2 Simulation of Multipre�x PRAMs by Memoryless Multipre�x PRAMs

Lemma 5.12 For any p; �; T > 0, and O � VALID(�), any MP-

PRAM(O; p; �) M running in time T can be simulated by a memoryless MP-

PRAM(O,2pT + n,�) M

0

running in time 2T � 1, where n is the size of the input.

Proof: The essential idea of this proof follows that of Bellantoni [Bel91] but

there are some additional complications due to the multipre�x phase. The 2pT +n

processors of M

0

are numbered Q

1

; : : : ; Q

n

, and P

0

tj

; P

00

tj

; 1 � t � T; 1 � j � p.

The p processors of M are numbered P

1

; : : : ; P

p

. We will sketch a simulation that

almost works but has a few problems. Later, we will suggest modi�cations to �x

these problems.

Each step t of M is simulated by the set of p processors P

0

t1

; : : : ; P

0

tp

of M

0

.

Somehow, we need to remember the contents of all the relevant memory locations

of M . In the very �rst step of M

0

, Q

1

; : : : ; Q

n

read the input from memory locations

L

1

; : : : ; L

n

. In all subsequent steps they write back the input in the corresponding

locations. The general idea is that any processor updating the contents of a memory

location should write that value in all subsequent steps. For any t, the set of p

processors P

0

t1

; : : : ; P

0

tp

acquire the necessary information about the input in the

�rst t � 1 steps so that they can simulate step t of M . In all steps subsequent to

t, they perform the same write and multipre�x operation as in step t. We need to

arrange the priorities of processors so that the processor writing the current value

has the highest priority. It is useful to think of any processor being in either read

or write mode. In the read mode, a processor receives all the information without
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making any writes. It then simulates the behavior of a processor in M , and makes a

transition to the write mode where it writes the same value in all subsequent steps.

This simplistic scheme has its problems: any processor in its read mode should

be able to get the information that the corresponding processor of M receives by

a multipre�x operation. However, unlike READ, we can not allow multiple copies

of the same processor to perform a multipre�x operation. We �x this problem

by doubling the number of steps. The real simulation is performed in odd steps,

whereas even steps are used to pass the information received as a result of the

multipre�x operations.

Another problem is that both WRITE and multipre�x operations a�ect memory

locations, and they may interact in a tricky way. For example, if a series of writes

and multipre�x operations are performed on the same memory location L, then the

net result is the same as obtained by performing that series of operations starting

with the last WRITE. Furthermore, we restrict all processors performing multipre�x

operation on the same memory location in M

0

(as well as in M) to have the same

operation. So, if for a particular memory location L, the operation for round t

1

is

J

1

and for round t

2

it is

J

2

, we cannot allow these two multipre�x operations to

be done in the same step (which our simplistic scheme would have required in all

steps subsequent to t

1

and t

2

).

We avoid all these complications by letting another set of p processors

P

00

t1

; : : : ; P

00

tp

remember the contents of the memory locations on which a multi-

pre�x operation has been performed in step t. Now, it su�ces for processors

P

0

t1

; : : : ; P

0

tp

; P

00

t1

; : : : ; P

00

tp

to perform only a WRITE (and not multipre�x) operation

in all steps subsequent to t. Assume that the processors of M have been assigned

priorities according to the order P

p

< P

p�1

< � � � < P

2

< P

1

. The 2pt+n processors

of M

0

are assigned priorities according to the order Q

n

� � � < Q

1

< P

0

1p

� � � < P

0

11

<

P

00

1p

� � �P

00

11

< P

0

2p

� � � < P

0

21

< � � � < P

0

pp

� � � < P

00

p1

. The details are as follows.

In step 2t� 1; 1 � t � T ,

� If t > 1 then Q

1

; : : : ; Q

n

WRITE X

1

; : : : ; X

n

back into input locations

L

1

;: : : ; L

n

respectively.

� P

0

t1

; : : : ; P

0

tp

perform the same WRITE as P

1

; : : : ; P

p

in step t of M.
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� P

0

k1

; : : : ; P

0

kp

; for k < t, perform the same WRITE operation as they did in

step 2k � 1.

� P

00

k1

; : : : ; P

00

kp

; for k < t, WRITE back the values they READ in step 2k � 1.

� P

0

t1

; : : : ; P

0

tp

perform the same multipre�x operation as P

1

; : : : ; P

p

in step t of

M.

� If t = 1 then Q

1

; : : : ; Q

n

READ the input X

1

; : : : ; X

n

from input locations

L

1

; : : : ; L

n

respectively.

� P

0

k1

; : : : ; P

0

kp

; P

00

k1

; : : : ; P

00

kp

; for k > t, perform the same READ as P

1

; : : : ; P

p

in step t of M.

� P

00

t1

; : : : ; P

00

tp

READ the memory locations where P

0

t1

; : : : ; P

0

tp

have performed

the multipre�x operation.

In step 2t; 1 � t � T � 1,

� P

0

t1

; : : : ; P

0

tp

WRITE the value that they received as a result of their multi-

pre�x operation in step 2t� 1 in some designated p memory locations.

� P

0

k1

; : : : ; P

0

kp

; P

00

k1

; : : : ; P

00

kp

; for k > t READ those designated memory loca-

tions.

2

We are now ready for the proofs of Theorem 5.8 and Corollary 5.9. We restate

them for convenience.

Theorem 5.8 For any p; �; T > 0, and O � VALID(�), any MP-

PRAM(O; p; �) running in time T can be simulated by an MP-Circuit(O, �) of

depth O(T ) and size O(2

4�T

(pT )

O(1)

�).

Proof: Immediate from Lemma 5.11, Lemma 5.12 and the observation that if

the output of the MP-PRAM(O; p; �) depends on n inputs then pT � n. 2

For the special case � = log p, we have the following corollary.
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Corollary 5.13 For any T; p > 0, and O � VALID(log p), any MP-PRAM(O,

p, log p) running in time T can be simulated by an MP-Circuit(O, log p) of depth

O(T ) and size p

O(T )

.

Corollary 5.9 If m is a prime, and r is not a power of m then for any

p = 2

log

O(1)

n

, any MP-PRAM(fMOD

m

g; p; log p) solving MOD

r

on n bits runs

for 
(

log n

log log n

) time, where MOD

m

(x

1

; : : : ; x

n

) is de�ned to be 0 if

P

X

i

� 0

(mod m), and 1 otherwise.

Proof: Suppose that the MP-PRAM(fMOD

m

g; p; log p) runs for T steps. Then

by Corollary 5.13, there is an unbounded fan-in circuit with AND, OR, NOT,

MOD

m

gates of depth O(T ) and size p

O(T )

which computes MOD

r

. However,

Smolensky[Smo87] proved that any such circuit has size 
(2

n

1=2T

). This says that

p

O(T )

= 
(2

n

1=2T

):

Substituting p = 2

log

O(1)

n

, we get T = 
(

log n

log log n

). 2

5.4 Conclusion

We showed that a multipre�x PRAM with restricted bandwidth can be very ef-

�ciently simulated by an unbounded fan-in circuit with special gates for comput-

ing the multipre�x operations. In the case of PRIORITY CRCW PRAMs, lower

bounds for unbounded fan-in circuits [H�as87] provided the pattern for PRAM lower

bounds [BH89]. What we demonstrate is that for natural restrictions of multipre�x

PRAM word-length, bounds for circuits with pre�x operations directly translate

into bounds for the multipre�x PRAM. In the case of lower bounds, it still remains

to extend the results for unbounded fan-in circuits with more powerful gates as

primitives such as those described in [Raz87], [Smo87] and [HMP

+

93].

Parberry and Schnitger [PS88] de�ned and analyzed TRAMs (Threshold RAMs)

that are CRCW PRAMs whose write resolution rule corresponds to computing a

threshold function of the values that processors are attempting to write. Parberry

and Schnitger, by using techniques of Stockmeyer and Vishkin [SV84], were able to

show an e�cient simulation of TRAMs by threshold circuits which are unbounded

fan-in circuits with gates computing AND, OR, NOT, and threshold functions. Our

techniques can be employed to give an alternate proof of their result.



Chapter 6

COMPUTING SUM ON THE SUB-BUS MESH

6.1 Introduction

6.1.1 The Sub-Bus Mesh Model

Mesh connected computers have found a lot of appeal with computer architects

because of their low cost of processor interconnections. Their simple and regular

design has also made them an attractive model with theoreticians interested in de-

signing parallel algorithms. The model has several variants which have all been the

subject of extensive study [HS86, Lei92, LS91, MS89, MPKRS93, RPK88, Sto86].

We will focus on the sub-bus mesh model, which has been implemented on the

commercially available MasPar MP-1 [Bla90].

A sub-bus mesh is a single-instruction multiple-data (SIMD) two-dimensional

array of processors. An m

1

�m

2

sub-bus mesh has a processor placed at every grid

point of a mesh with m

1

rows and m

2

columns. The processors are connected by

m

1

row-busses and m

2

column-busses. Each row-bus connects all the processors

belonging to a given row. Similarly, each column-bus connects all the processors

belonging to a given column. There is a switch on every segment of the bus con-

necting two adjacent grid points. In every computational cycle, the processors, by

using these switches, can dynamically segment the busses so that each segment

becomes a dedicated bus for the use of the set of consecutive processors connected

to this segment.

Because of the SIMD nature of the machine, we assume that all broadcasts in

any particular step are in the same direction (that is, left, right, up, or down);

furthermore, any valid algorithm makes sure that in any broadcast step, exactly

one processor on any segment of the bus does the broadcast which reaches all other

processors connected to this segment.

Now we de�ne the model formally. As is standard practice, to keep the model
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simple, we describe a rather simple version of the sub-bus mesh computer architec-

ture. Actual machines have a richer organization.

Each processor knows its row and column index. The sub-busses go in four

directions, up, down, right, and left. All the row and column busses are assumed

to be circular. Processor (x; y) is immediately below processor (x; (y+ 1) mod m

1

)

and immediately to the left of processor ((x + 1) mod m

2

; y). Each processor is

a RAM with local memory. The instruction set of processors includes direct and

indirect Boolean operations, arithmetic operations, shifts, and comparisons. In

addition, for any �xed q > 0, we allow the processors to compute q-parity(x) for

1 � x < max(m

1

; m

2

) in one step, where for any integer x, q-parity(x) is de�ned as

the summation modulo q of the digits in the base q representation of x. Processor

(0; 0) is the special front-end processor which runs the parallel program. The front-

end can also perform normal branching operations and issue parallel instructions.

We �nd it somewhat unsatisfactory to treat q-parity as a primitive instruction,

but our main result in this chapter | an optimal algorithm for computing SUM |

is crucially dependent on the availability of this instruction. For any �xed q; ` � 0,

and any integer x between q

`

and q

`+1

� 1,

q-parity(x) = [1 + q-parity(x� q

`

)] mod q:

Thus, on any one processor, we can compute q-parity(x) for a �xed q and all

integers x between 0 and max(m

1

; m

2

) in O(max(m

1

; m

2

)) steps of preprocessing.

Also notice that if q > x then q-parity(x) = x. So we can compute q-parity(x)

for all required values of q and x, that is, for 0 < q < x < max(m

1

; m

2

), in

O((max(m

1

; m

2

))

2

) steps of preprocessing. If preprocessing is not allowed, q-parity

can be computed in uniform NC

1

[BIS90] (details are given in [CLLS]).

A parallel instruction issued by the front-end has the form \if <condition> then

<statement>." Each processor evaluates the condition, which can be any sequence

of non-branching operations which evaluates to a Boolean value. If the condition

is true then the processor is said to be active, otherwise it is said to be inactive.

Only the active processors execute the statement part of the instruction.

There are two kinds of statements, local operations and segmented broadcasts.

A local operation is just a typical non-branching RAM operation executed at each
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processor. A segmented broadcast has the form

broadcast direction[distance].variable  variable;

The direction can be either left, right, up or down. The variable distance must

be the same for all processors. When an active processor i executes the instruction

broadcast right[d].y  x then the location y at the processors (i + 1) mod

m

2

; (i + 2) mod m

2

; :::; (i + j) mod m

2

receive the value stored in location x of

processor i, where processors (i+ 1) mod m

2

; (i+ 2) mod m

2

; :::; (i+ j�1) mod m

2

are inactive and either j = d, or j < d and processor (i+ j) mod m

2

is active. The

segmented broadcasts to the left, up, or down are similar in nature. In all case, the

particular row or column bus is partitioned into non-overlapping segments. Each

segment behaves like a sub-bus of the bus which includes all the processors. The

MasPar MP-1 implements the segmented broadcast as xnetc. Table 1 describes

the result of a segmented broadcast to the right on processors in a given row.

broadcast right[2].y = x

PID 0 1 2 3 4 5 6 7

active no no yes yes no no no yes

x a b c d e f g h

y h h * c d d * *

Table 1. Demonstration of segmented broadcast. The * indicates that the value of

y did not change because of the broadcast.

We say that an m

1

� m

2

mesh computes a function on p = m

1

m

2

inputs, if

we start with the p inputs distributed one per processor, and at the end of the

computation, the front-end knows the answer.

The most important complexity measure for us is time. For the purpose of

analyzing our algorithms we consider time to be evaluated using the unit cost

RAM criterion where the values operated upon must have length O(log p). Each

sequential operation by the front-end, each parallel operation used in evaluating

the condition in a parallel instruction, and each statement of a parallel instruction

costs 1 in our model. We do not charge for the broadcast of parallel instructions
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by the front-end to the mesh processors. We assume that cost is dominated by the

cost of executing the parallel instruction.

We consider the problem of summing the input bits on a

p

p�

p

p mesh when

each processor starts with an input integer of length O(log p). It is a very basic

operation and is used as a subroutine in many important algorithms.

Theorem 6.1 [CLLS] Any algorithm for computing SUM on the

p

p�

p

p sub-

bus must run for at least 


�

log p

log log p

�

steps.

Proof: It was shown in [CLLS] that a priority CRCW PRAM can simulate

a sub-bus mesh computer to within a constant factor of the time and within a

polynomial number of processors.

Since Beame and H�astad [BH89] have proved a lower bound of time 


�

log p

log log p

�

on the time to compute SUM on a priority CRCW PRAM with a polynomial

number of processors, a similar lower bound follows for the case of sub-bus mesh.

2

There is a trivial algorithm (Proposition 6.4) to compute any associative func-

tion in time �(log p). Our main result in this section is an optimal algorithm for

computing SUM.

Theorem 6.2 On a

p

p�

p

p mesh with each processor having an input integer

of length O(log p), SUM can be computed in time

O

 

log p

log log p

!

:

The algorithm uses mixed radix arithmetic, the Chinese remainder theorem and

recursion to achieve the result.

6.1.2 Related Results

A great deal of research has been done on the sub-bus mesh and related models.

The sub-bus mesh architecture was �rst investigated by Reisis and Prasanna

Kumar [RPK88]. We will restate their observations about computing several basic
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functions. These will be used as subroutines in our optimal algorithm for computing

SUM.

Proposition 6.3 The OR or AND of input bits can be computed in constant

time on any sub-bus mesh.

Proof: We will give the algorithm for computing OR.

First, each processor, whose input bit is 1, tries to broadcast 1 to all other

processors in its row. Clearly a processor receives 1 if and only if at least one input

bit in its row is 1. This has the e�ect of computing OR within each row. Then

every processor in the leftmost column, for which the OR of input bits within its

row is 1, tries to broadcast 1 to all other processors in its column. The front-end

processor receives a 1 if and only if the OR of all the input bits is 1.

Using DeMorgan's law, AND can similarly be computed in constant time. 2

Proposition 6.4 For any binary associative operation, �, the function

REDUCE-� (x

0

; x

1

; : : : ; x

p�1

) = x

0

� x

1

� � � �� x

p�1

can be computed in O(log p)

time on any m

1

�m

2

sub-bus mesh such that m

1

m

2

= p:

Proof: On an m

1

�m

2

sub-bus mesh, using a \binary-tree algorithm" (that is,

by repeatedly combining adjacent pairs of inputs and thereby halving the number

of inputs in each step) we can reduce inputs within any row in time dlogm

2

e. This

leaves m

1

partial results, one per row. Another \binary tree algorithm" on these

m

1

partial results lets us reduce all the inputs in an additional dlogm

1

e steps. The

running time is dlogm

2

e+ dlogm

1

e = O(log p). 2

For the case of the 1 � p sub-bus mesh, Condon et al. [CLLS] proved a lower

bound of log p on the PARITY function and a lower bound of log

3

(2 min(k; p� k))

on the kth threshold function. That paper also contains Theorem 6.2 and an e�-

cient simulation of sub-bus meshes by CRCW PRAMs. The lower bound on PAR-

ITY on the 1� p sub-bus mesh was (earlier) independently obtained by MacKen-

zie [Mac93]. This lower bound is tight because of Proposition 6.4.

Two variants of the mesh computer are closely related to the sub-bus mesh.

First, there is the full-bus mesh, which does not allow segmentation of busses.
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That is, on a left or right broadcast, at most one processor on any row is ac-

tive and its data reaches all other processors in its row, and similarly for up and

down broadcasts. The MPP of Goodyear and NASA is an example of a full-bus

two-dimensional mesh computer [Bat80]. Full-bus meshes are generally less power-

ful than sub-bus meshes: Both PARITY and �nding the minimum of input vales

requires 
(p

�

) time for some � > 0 on full-bus meshes [BNP91, PKR87].

Second, there is the recon�gurable mesh, in which every processor connects to

the busses by 4 ports (N, S, E, W) { 3 for processors on the sides; 2 for processors in

the corners. By internally connecting some subsets of these ports to each other, the

executing program is allowed to change the topology of the mesh[LS91]. Several

prototype of recon�gurable mesh computers, though non-commercial, have been

built. The model comes in two 
avors: In the cross-over model, processors are

allowed to independently connect their N-S ports together and their E-W ports

together; such connections are not allowed in the non-cross-over model.

It is well known that PARITY can be computed in constant time on the cross-

over m

1

�m

2

mesh if m

1

; m

2

� 3. The basic idea of the algorithm is the same as

in the branching program for computing parity in Proposition 3.10 (see [LS91] for

details). Thus the �(log p) bound for PARITY on the sub-bus mesh demonstrate

that the sub-bus mesh computer architecture is strictly more powerful than the full-

bus mesh computer architecture, but strictly less powerful than the recon�gurable

cross-over mesh computer. In another work on the PARITY function, MacKenzie

[Mac93] proved a lower bound of 
((logm

1

)=m

2

) for computing PARITY on an

m

1

�m

2

non-cross-over recon�gurable mesh model, thereby showing a separation

between the powers of the two 
avors of the recon�gurable mesh model.

The SUM function has also been previously studied on the recon�gurable mesh.

Nakano [Nak93], improving a result of Nakano, Masuzawa and Tokura [NMT91],

developed algorithms for summing n binary values on an n�m recon�gurable mesh

in time O(logn=

q

m= logn). His result also uses the Chinese remainder theorem,

but does not apply directly to the sub-bus mesh architecture.
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6.2 Algorithms

This section gives an optimal algorithm for computing SUM on a

p

p�

p

p sub-bus

mesh model (Theorem 6.2). As a warm-up step, we �rst solve a simpler problem:

We show that on a

p

p �

p

p sub-bus mesh, where each processor starts with an

input bit, the PARITY function can be computed in time O

�

log p

log log p

�

.

6.2.1 PARITY Algorithm

We will introduce a series of problems, in increasing order of di�culty. The algo-

rithm for each problem will lead to the next one with some fresh tricks. This will

help us concentrate on one idea at a time.

We will describe the algorithms informally. Each of the algorithms below can be

executed on a sub-array of the

p

p�

p

p mesh. By an array or sub-array, we mean

a sub-bus mesh of the full mesh which may be non-square and non-contiguous. In

the case it is non-contiguous, it is assumed that the processors between any two

processors in the sub-array are inactive so as not to interfere with communication

between the processors in the sub-array. Furthermore, any of the algorithms below

can be executed in parallel on disjoint sub-arrays of the full

p

p�

p

p array such that

their computations do not interfere with each other. If the algorithm is executed

on an m� n sub-array, then we say processor (i; j) is the processor in the (i; j)-th

position (the i-th column and j-th row) of the sub-array, where 0 � i < n and

0 � j < m. Although it is not generally the case that processor (i; j) has its

column-index = i and row-index = j, it will always be the case that i, j, and the

dimensions of the sub-array can be computed from the row and column index of

the processor and other local data in constant time.

Lemma 6.5 On a 2

n

� n array with each processor in the bottom row having

an input bit, the parity of the input bits can be computed in constant time.

Proof: If we think of the input vector as the bit representation of an integer,

each input corresponds to an integer between 0 and 2

n

� 1. The basic idea is for

processors in row j (for 0 � j < 2

n

) to check if the input corresponds to integer j.

This will be enough because then any processor with knowledge of j can compute

the PARITY function as 2-parity(j).
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First the processors in the bottom row do a broadcast of the inputs up the

columns. Then processor (i; j) checks whether the input agrees, on the ith bit, with

the bit representation of integer j. A constant time AND (Proposition 6.3) within

every row will tell the processors in the leftmost column if the input corresponds

to an integer equal to their row index. For j, such that the input{ considered as an

integer{ equals j, the processor (0; j) communicates the value of j to the front-end

processor, which in turn computes 2-parity(j). 2

We saw that with exponentially many rows we can compute the parity in con-

stant time. In general, if we have more than a constant number of rows, we can

beat the straightforward O(logn) time algorithm.

Lemma 6.6 On an m� n array with each processor in the bottom row having

an input bit, the parity of the input bits can be computed in time O

�

log n

log logm

�

.

Proof: Let ` = blogmc. Subdivide the original m�n array into d

n

`

e sub-arrays

placed side by side such that each sub-array has m rows and at most ` columns (see

Figure 6.1). As in the previous proof, we can compute the parity of ` input bits in

any sub-array in constant time. This leaves d

n

`

e partial results in the bottom row of

a sub-array of dimension m� d

n

`

e. Repeating the process O

�

logn

log `

�

= O

�

log n

log logm

�

times we have the parity of all the n bits. 2

So far we have been assuming that only the processors in the bottom row have

inputs. Let us now consider the case where each processor has an input.

Lemma 6.7 On an m � n array with each processor having an input bit, the

parity of the input bits can be computed in time O

�

logm +

log n

log logm

�

.

Proof: First, in parallel, the processors within each column run the one-

dimensional PARITY algorithm described in Proposition 6.4. This part takes

O(logm) time. At this point, we have partial results stored in the bottom row.

From the previous lemma, the parity of these partial results can be computed in

an additional O

�

logn

log logm

�

steps. 2

We are ready to give our PARITY algorithm.
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Figure 6.1: Subdivision in Lemma 6.6

Theorem 6.8 On a

p

p �

p

p mesh with each processor having an input bit,

PARITY can be computed in time O

�

log p

log log p

�

.

Proof: Subdivide the original

p

p�

p

p mesh into b

p

p

m

c sub-arrays placed on top

of each other such that each sub-array has

p

p columns and its number of rows is

between m and 2m (see Figure 6.2). Each of these sub-arrays computes the parity

of its input bits in parallel. By the previous lemma, this takes O

�

logm +

log

p

p

log logm

�

time and leaves b

p

p

m

c partial results in the leftmost column. Consider the b

p

p

m

c�

p

p

sub-array such that each processor in the leftmost column knows one of the b

p

p

m

c

partial results. Apply Lemma 6.6, with 90 degrees rotation, to compute the parity

of these partial results in an additional O

�

log (

p

p=m)

log log

p

p

�

time. The total running time

is

O

 

logm +

log p

log logm

+

log p

log log p

!

:

Choosing m =

&

2

log p

log log p

'

, we get a bound of O

�

log p

log log p

�

. 2
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Figure 6.2: Subdivision in Lemma 6.8

6.2.2 SUM Algorithm

As in the PARITY algorithm, we will solve a series of problems, in increasing order

of di�culty. The last of these algorithms will be our algorithm for computing the

SUM function on a

p

p�

p

p sub-bus mesh. Figure 6.6 summarizes the major steps

in the computation of the SUM function.

Computing PARITY is the same as computing the sum of the inputs modulo

2. As in the construction of branching programs for threshold and mod functions

(Chapter 3), we will be using the Chinese remainder theorem (Section 3.2.2) to

construct the value of SUM from its value computed modulo many small primes.

Lemmas 6.5 and 6.6 can be generalized to compute the sum, modulo a small

integer, of inputs on the bottom row. For all the problems below we assume that

the inputs are non-negative integers of length O(log p).

Lemma 6.9 If q > 0, then on a q

n

� n array with each processor having q,

and with each processor in the bottom row having an input integer, the sum of the

inputs modulo q can be computed in constant time.
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Figure 6.3: Subdivision in Lemma 6.10

Proof: The proof mimics that of Lemma 6.5. If we reduce each of the n inputs

modulo q, there are q

n

possible values of input. For 0 � j < q

n

, think of j as an

integer written in base q. As in the computation of parity, processors in row j are

responsible for checking whether the input reduced modulo q is the same as the

integer j written in base q. In particular, processor (i; j) checks whether the i-th

input, reduced modulo q, is equal to the i-th q-ary digit of j. In a constant number

of steps, the front-end knows the value of the integer j such that the inputs reduced

modulo q are the same as the integer j written in base q. It can then compute the

summation modulo q in one extra step as q-parity(j). 2

Lemma 6.10 If q > 0, then on an m � n array with each processor having q,

and with each processor in the bottom row having an input integer, the sum of the

inputs modulo q can be computed in time O

�

log n

log(log

q

m)

�

:

Proof: Let ` = blog

q

mc. The original m � n array can be divided into d

n

`

e

sub-arrays placed side by side such that each sub-array has m rows and at most

` columns (see Figure 6.3). As in the previous proof, we can compute the sum
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Figure 6.4: Subdivision in Lemma 6.11

modulo q of ` input bits in any sub-array in constant time. This leaves d

n

`

e partial

results in the bottom row of a sub-array of dimension m � d

n

`

e. Repeating the

process O

�

log n

log `

�

= O

�

log n

log(log

q

m)

�

times gives the sum of all the n integers modulo

q. 2

By the Chinese remainder theorem we know that if we can compute the sum

modulo su�ciently many small integers, we can compute the exact sum.

For any integer t > 0, let P [t] denote the product of all primes between 1 and t.

Lemma 6.11 If 0 < t < min(m;n) and t = O(log p), then on an m � n array

with each processor in the bottom row having an input integer, the sum of the inputs

modulo P [t] can be computed in time O

�

log t +

log n

log(log

t

m)

�

:

Proof: Subdivide the original m � n array into t sub-arrays placed on top of

each other such that each sub-array has n columns and its number of rows is either

b

m

t

c or b

m

t

c+1 (see Figure 6.4). We already know how to compute the sum modulo

small primes. Our plan is to let the jth (say, from bottom) sub-array compute the



105

sum modulo j and then apply the Chinese remainder algorithm to compute the

sum modulo P [t].

To begin with, processors in the bottom row broadcast the input values up the

columns. Because the Chinese Remainder Theorem only needs the value of the

summation modulo prime numbers, we compute the summation modulo j only if j

is a prime. The jth sub-array decides whether j is a prime in two stages: A number

j is prime if and only if it is not divisible by any number between 1 and

p

j. In the

�rst stage, assign

p

j processors in the �rst row to check for each possible divisor. In

the second stage, these processors compute an AND of their results. Only processors

in the j-th sub-array for prime j participate in all subsequent steps. The j-th sub-

array computes a

j

, the sum of the inputs modulo j. By Lemma 6.10, this can be

done in

O

 

log n

log(log

j

(m=t))

!

= O

 

logn

log(log

t

(m=t))

!

= O

 

logn

log(log

t

m)

!

time.

Next, in O(log t) steps, each processor in the j-th sub-array computes P [t] (using

Proposition 6.4), and m

j

= P [t]=j. The processors in the j-th sub-array compute

(a

j

m

j

)((m

j

)

�1

mod j). This can be done in constant time. The nontrivial part is

computing ((m

j

)

�1

mod j). There are at most j possible values for the inverse. We

assign j processors in the top row of the j-th sub-array for each possible value of

the inverse. In one step, each of these assigned processors can check whether it has

the right value of the inverse. The processor corresponding to the right value of the

inverse broadcasts this to all other processors. By the Chinese remainder theorem,

the summation modulo P [t] is [

P

(a

j

m

j

)((m

j

)

�1

mod j)] mod P [t], which can be

computed in O(log t) steps (using Proposition 6.4).

The running time of the algorithm is O

�

log t +

logn

log(log

t

m)

�

: 2

We now consider the case where each processor has an input.

Lemma 6.12 If 0 < t < min(m;n) and t = O(log p), then on an m � n array

with each of the mn processors having an input integer, the sum of the inputs modulo

P [t] can be computed in time O

�

logm +

log n

log(log

t

m)

�

:
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Figure 6.5: Subdivision in Lemma 6.13

Proof: First compute the sum within every column in time O(logm) and then

apply the algorithm in the previous lemma. The running time is

O

 

logm + log t +

log n

log(log

t

m)

!

= O

 

logm +

logn

log(log

t

m)

!

:

2

Lemma 6.13 If 0 < t < m < n and t = O(log p), then on an n� n array with

each of the n

2

processors having an input integer, the sum of the inputs modulo P [t]

can be computed in time O

�

logm +

log n

log(log

t

m)

�

:

Proof: Subdivide the original n � n mesh into b

n

m

c sub-arrays placed on top

of each other such that each sub-array has n columns and its number of rows is

between m and 2m (see Figure 6.5). Each of these sub-arrays computes, in parallel,

the sum of their inputs modulo P [t]. By the previous lemma, this takes time

O

 

logm +

log n

log(log

t

m)

!
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and leaves b

n

m

c partial results in the leftmost column. Assume that the remaining

n � b

n

m

c procesors in the leftmost column are holding the value 0. Now apply

Lemma 6.11, with 90 degrees rotation, on the n � n array to obtain the requisite

summation modulo P [t] in an additional

O

 

log t +

log n

log(log

t

n)

!

= O

 

logm +

logn

log(log

t

m)

!

time. 2

We are ready to prove our main theorem, which we restate below.

Theorem 6.2 On a

p

p�

p

p mesh with each processor having an input integer

of length O(log p), SUM can be computed in time

O

 

log p

log log p

!

:

Proof: Let t be the smallest integer such that P [t] is greater than the largest

possible value of the SUM. Because each of the p input integers is an O(log p) bit

integer, from [RS62, Equation 3:16, page 70], we get t = O(log p).

Now apply the algorithm in the previous lemma on a

p

p �

p

p mesh, for this

choice of t, and m =

&

2

log p

log log p

'

. Then we compute the summation of input integers

modulo P [t].

1. Because P [t] is greater than the largest possible value of SUM, computing

summation of inputs modulo P [t] is actually giving us the SUM.

2. Running time of the algorithm is

O

 

logm +

log p

log(log

t

m)

!

:

But for large values of p, log

t

m = 


�

log p

(log log p)

2

�

. Thus the running time of

the algorithm is

O

 

log p

log log p

!

:
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2

Figure 6.6 summarizes the major steps in the computation of the SUM function.

It is interesting to note that if we assume that the individual processors can

operate on integers of arbitrary length in constant time, then using the technique

of Theorem 6.2, the sum of p integers of length 2

O(

p

log p= log log p)

can be computed

in time O

�

log p

log log p

�

.

6.3 Conclusion

Because machines based on the sub-bus mesh model are commercially avail-

able [Bla90], this model deserves further study. We gave an optimal algorithm

for computing the SUM function, but it is unsatisfactory on two counts: First, the

algorithm is complicated and the speed-up by a factor of �(log log p) has too large

a constant factor to be signi�cant. Second, it depends on the availability of q-parity

functions as primitives. Even though the algorithm is impractical, we believe that

it introduces some nice ideas. Hopefully, some of these ideas can be used to design

a practical algorithm for computing SUM and other functions. To borrow a term

from David Johnson, in the current form, ours is a \negative-negative" result, that

is, it rules out an !

�

log p

log log p

�

lower bound on the SUM function.

Open problem: Design a simple practical algorithm for the SUM function

that runs in o(log p) steps.
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(by recursion, Lemma 6.10)
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input
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Back to original n x n mesh:

n

n

subdivided into

"t" sub-arrays
broadcast to each

   sub-array

SUM mod J

Chinese Remainder

        Theorem

    Final  Result

J-th sub-array computes 

(by recursion, Lemma 6.9)

            Figure 6.6:  The SUM Algorithm

Figure 6.6: the SUM algorithm



Chapter 7

FINAL THOUGHTS

We have proved several results on branching programs and models of parallel

computation. Many of these results suggest obvious open problems related to their

possible extensions. We have included all such open problems at the end of each

chapter.

OBDDs have opened up a whole new area of research. For any form of repre-

sentation, there is a trade-o� between the size of the representation and the ease

of manipulation. Among variants of branching programs, OBDDs form one ex-

treme of the spectrum: they are very easy to manipulate but the resulting sizes are

not always small. For applications where the size of the representation becomes a

bottle-neck, we have to look beyond OBDDs { to more powerful forms of representa-

tions. The study of any such model has to be a two prong attack: designing e�cient

representations for interesting functions as well as developing better manipulation

routines. Unfortunately, with the majority of these representation forms, simple

counting arguments prove that only a negligible fraction of functions can possi-

bly have e�cient representation. Luckily for us, this minuscule fraction includes

many functions that are needed in real applications. But it also makes the task of

choosing the right representations more challenging because this activity has to be

somewhat empirical in nature. That is, we have to choose a data structure that

works on the subset of applications that are of interest to practitioners.

For the case of parallel computation, one of the biggest challenges is to develop

better theoretical models. Some of the initial e�orts on modeling were a little

misdirected because we concentrated on the computational cost but ignored the

communication cost. This had the unfortunate e�ect of generating a whole class of

algorithms with a very �ne grain of parallelism. These algorithms were predicted

to run very e�ciently on models ignoring the communication cost, but had terri-

ble performance on real parallel machines. This suggests that communication cost
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should be an important complexity measure of any algorithm. The wide variety

of architectures of parallel machines and the resulting lack of a universal theoret-

ical model has also hindered growth of the �eld of parallel algorithms. \Porting"

{ tuning an application running on one parallel machine to run e�ciently on an-

other parallel machine { is a nontrivial activity often requiring detailed knowledge

of architectures of both machines. It would be nice to avoid this replication of

e�ort. Ideally one would like to have a theoretical model such that algorithms can

be described on this model and then �ne-tuned for individual machines. Unfortu-

nately, we do not see that happening in the near future. In the meanwhile, parallel

algorithm designers have to continue working on a variety of models with an eye

towards developing a more general universal model.
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