
Optimizing Data Locality by Array Restructuring

Shun-Tak Leung and John Zahorjan

Department of Computer Science and Engineering

University of Washington

Technical Report 95-09-01

September 1995

Optimizing Data Locality by Array Restructuring

Shun-Tak Leung and John Zahorjan

�

Department of Computer Science & Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

fshuntak, zahorjang@cs.washington.edu

September 14, 1995

Abstract

It is increasingly important that optimizing compilers restructure programs for data locality to obtain

high performance on today's powerful architectures. In this paper, we focus on array restructuring , a

technique that improves the spatial locality exhibited by array accesses in nested loops. Speci�cally, we

address the following question: Given a set of such accesses, how should the array elements be laid out

in memory to match the access pattern and thus maximize locality?

Our approach is based on an invertible linear transformation of array index vectors. We present

algorithms to choose a suitable transformation, and hence array layout, given the set of array accesses.

Our analysis places no restrictions on the loop's nesting structure or dependence pattern. Although we

focus on cases where the array indexing expressions are a�ne functions of loop variables, our techniques

can be applied to the non-a�ne case as well.

We have implemented our technique in the SUIF compiler [17]. Experimental results show that array

restructuring improves loop execution performance substantially, often with no or little runtime overhead.

Moreover, the performance improvement of array restructuring compares favorably with that achieved

by loop restructuring.

1 Introduction

To obtain high performance on today's powerful processor architectures, optimizing compilers increasingly

have to restructure programs for data locality. This paper focuses on locality exhibited by array accesses in

nested loops. There are several approaches a compiler might take to enhance this kind of locality. Since the

access pattern results from an interaction between the order of the accesses and the data layout, a compiler

can optimize for locality by reordering the accesses, changing the data layout, or doing both. Let us consider

these possibilities.

One common approach to locality optimization is to reorder the accesses through restructuring of the

loops. The iterations are reordered so that under the new order accesses to the same or nearby array elements

�

This material is based upon work supported by the National Science Foundation (Grants CCR-9123308 and CCR-9200832),

the Washington Technology Center, and Digital Equipment Corporation (the External Research Program and the Systems

Research Center).

occur closer together in time than they would under the original program order. A number of techniques

that follow this approach can be found in the literature [11, 10, 2, 18, 15, 14].

This paper focuses on a less widely studied approach: restructuring arrays. Data locality is improved by

selecting the layouts of the array elements to better match the order of the accesses. For example, we might

choose between row-major and column-major layouts (as well as possibly other layouts) depending on the

access pattern exhibited in the loop. In general, the goal is that under the new array layouts, elements that

are placed in the same cache line would be accessed within a shorter period of time than they would under

the original layouts. A di�erent form of data structures reorganization has been used to reduce false sharing

on shared-memory multiprocessors [8, 12].

Array restructuring is attractive in several ways. First, it is not constrained by loop-carried dependences

or imperfect loop nesting, which complicate and sometimes frustrate loop restructuring. Moreover, given a

loop nest that accesses multiple arrays, each array can be restructured independently for optimal locality,

whereas restructuring the loop nest unavoidably a�ects accesses to all arrays and therefore may necessitate

some tradeo�s. On the other hand, unlike loop restructuring, the array restructuring decisions made in

one loop nest can signi�cantly a�ect successive loop nests. This can be addressed by choosing a globally

advantageous layout, or by dynamically restructuring array data between loop nests.

The problem addressed in this paper can be stated as follows: Given a loop nest that accesses one or more

multidimensional arrays, how should elements of these arrays be laid out in memory so as to improve spatial

locality? We make no assumption on the loop structure: for example, it can be perfectly or imperfectly

nested. We focus on, but do not restrict ourselves to, loop nests in which array indexing expressions are

a�ne functions of the loop variables. A�ne indexing expressions allow us to analyze the access patterns and

determine appropriate array layouts within a linear framework.

Our approach to solving this problem hinges on linearly transforming array index vectors. The linear

transformation determines the memory layouts of array elements. By choosing it properly, we can enhance

the spatial locality exhibited by the array accesses in the loop nest while preserving the loop structure and

avoiding extra overhead to locate elements in the restructured arrays. Our general transformation subsumes

previous techniques that are, in principle or in practice, restricted to the permutation of array dimensions

[9, 3]. Such generality is useful in the optimization of banded matrix computations, for example [3]. We have

implemented our technique in the SUIF compiler [17], an experimental parallelizing compiler form Stanford.

In this paper, we present our array restructuring techniques and report experiments to evaluate their e�ect

on performance. Our results show that array restructuring can substantially speed up loop execution and

compares favorably to alternative approaches.

In addition to restructuring loops and restructuring arrays, a compiler might also restructure both si-

multaneously [9, 3]. Although this hybrid approach is potentially more powerful than the other two, how

to e�ciently and fully exploit its potential is still unclear. We will return to this question in Section 7,

after presenting array restructuring, and discuss the roles of pure loop and array restructuring in the hybrid

approach.

The rest of this paper is organized as follows. Section 2 presents the framework on which our array re-

structuring techniques are based. Section 3 discusses how to optimize for data locality within this framework

by �nding a suitable transformation of array index vectors. In Section 4, we discuss the problem of mapping

the transformed index vectors to scalar addresses, which is made non-trivial by the more sophisticated forms

of array restructuring that we might perform. Section 5 explains how non-a�ne array accesses are handled.

Experimental results are reported in Section 6. In Section 7, we reconsider the di�erent approaches to local-

ity optimization, and how they compare and interact. Section 8 summarizes related work. Finally, Section 9

concludes this paper.

2

2 Array Restructuring

In this section, we discuss how to restructure an array by means of a linear transformation of index vectors,

and how such a transformation a�ects the code of loop nests accessing the restructured array. We assume for

the moment that the transformation has already been chosen. The question of how to choose it to enhance

locality is the subject of the next section.

The discussion throughout this section is illustrated by the simple example in Figure 1. First, we brie
y

describe an intuitively obvious array transformation that would improve the data locality of the example

loop. The upper half of the diagram shows the original and transformed codes. Using this simple array

transformation as a speci�c example, we then discuss our array restructuring framework in general. The

matrices in the lower half of the diagram pertain to this discussion and are explained later in this section.

 DO i2 = 1, 100

DO i1 = 1, 200 DO i1 = 1, 200

 DO i2 = 1, 100

A =
1

0

0

1
TA =

0

1

1

0
0

T =

array restructuring
X[100,200]

 X[i2,i1] = ...

1

1

 X2[i1,i2] = ...

X2[200,100]

0

Figure 1: Simple Example of Array Restructuring

In Figure 1, a double loop accesses a two-dimensional array called X, assumed to be in row-major order.

The original code, shown on the left, has poor spatial locality because the loop nest accesses the row-major

array X by column. Consecutive iterations of the inner loop access elements that are far apart in memory,

whereas adjacent elements are accessed by di�erent iterations of the outer loop. A remedy through array

restructuring is, in e�ect, to transpose the array X and rewrite the array indexing expressions to correspond

to the new layout. The transformed code, shown on the right, accesses the row-major array X2 | the

transpose of X | row by row. This code exhibits better spatial locality than the original version.

With this example, we now discuss our array restructuring framework. First, let us relate an iteration

vector and the index vector of the element accessed by the iteration. Consider an access made by a perfectly

nested loop to an array X, such as the access in Figure 1. Let n be the number of loop levels and m

the number of array dimensions. Suppose that all the array indices are a�ne functions of loop variables

1

.

Denoting the iteration vector by i and the index vector of the accessed element by v, we have

v = Ai+ a (1)

where the m� n matrix A, called the access matrix , and the m-dimensional vector a are constants speci�c

to this access. Each row of A and of a correspond to one dimension of the array index vector. In Figure 1,

for example, the original access matrix A is shown below the original code; the constant vector a happens

to be zero and is not shown.

1

An a�ne function is a linear combination of its arguments plus a constant, such as f(x; y; z) = 2x+ 3y � z + 7.

3

The key idea of our array restructuring techniques is to transform the index vectors with an invertible

linear mapping. Elements of the restructured array are stored in row-major order according to their trans-

formed, rather than original, index vectors. The mapping must be invertible because otherwise multiple

array elements might be assigned the same location in the restructured array. Formally, each vector v in the

original array index space is mapped to a unique vector v

0

in the transformed array index space by

v

0

= Tv (2)

where T , which we call the index transformation matrix , is an m�m nonsingular matrix. The transformed

index vector v

0

, instead of the original v, is used to index the restructured array, whose elements are stored

in row-major order. In Figure 1, for example, we transpose the original array by multiplying any original

index vector v with the matrix T shown in the middle to obtain a transformed index vector v

0

, which is

then used to index the row-major restructured array X2. This particular matrix T , in e�ect, exchanges the

two dimensions of v. It should be noted, however, that a transposition, or any permutation of more than

two array dimensions, is only a special case. This framework allows us to apply the arbitrary invertible

linear transformation that best enhances locality. In some cases, such as many banded matrix computations,

simple transformations like permuting array dimensions are not su�cient.

Array restructuring requires only small changes to the code implementing the loop nest. In particular,

it has no e�ect on the loop structure, including loop headers, bounds, and nesting. Only the array accesses

are a�ected.

Array restructuring does not make the transformed array accesses less e�cient than the original ones,

despite the appearance of an extra level of indirection in the preceding discussion. Conceptually, the original

array X is replaced by another array X2. To access a certain element of X, we need to compute the

transformed index vector v

0

from the original v and use v

0

to index the corresponding X2 element instead.

This view makes it appear that array index computation has to be done in two steps: one to compute v from

the iteration vector and one to compute v

0

from v. However, in practice this is not necessary since v

0

can in

fact be expressed directly in terms of the iteration vector i:

v

0

= T (Ai+ a) = (TA)i+ (Ta) (3)

where TA and Ta can both be computed at compile time or, at worst, outside the loop nest at run time.

The extra level of indirection between the two index vectors therefore exists only in concept but not in

practice. For instance, in Figure 1, the original access X[i2,i1] (access matrix A =

h

0 1

1 0

i

) is transformed

to X2[i1,i2] (transformed access matrix TA =

h

1 0

0 1

i

). The two array index expressions are simply

interchanged, as expected. Furthermore, since the array indexing expressions after array restructuring, like

the original ones, are a�ne, a compiler can apply the usual code optimizations to eliminate most of the

indexing cost.

To summarize, we have presented the framework for our array restructuring techniques and discussed the

implications to the generated code, especially the code for array accesses.

Two questions remain. The �rst, obvious question is how to choose a transformation, speci�cally an

index transformation matrix T , that optimizes locality for a given set of array accesses. This is discussed

in Section 3. The second question is more subtle. To access an array element identi�ed by a given index

vector, we need to compute from that index vector the scalar address at which the element is stored in

memory. This is normally easy. However, the issue is complicated by the more sophisticated forms of array

restructuring that we might apply. We explain these complications and present our solution in Section 4.

4

3 Choosing an Index Transformation

Given a set of array accesses in a loop nest, we want to restructure the arrays so as to improve the data

locality exhibited by these accesses. Speci�cally, we focus on spatial locality, since temporal locality is

inherently independent of whatever array restructuring we might perform. We have already presented the

framework for our array restructuring techniques. Its essence is to linearly transform index vectors by means

of a nonsingular index transformation matrix. The transformation matrix for each array is chosen based on

the pattern of the accesses to that array.

This section discusses how to choose an appropriate transformation matrix given the array accesses.

First, we formulate the problem: we list a number of requirements for the desired transformation matrix

and explain why they are necessary. Then, we present our solution: we describe an algorithm to �nd a

transformation matrix that meets these requirements. To simplify the following discussion, we �rst consider

a restricted case: a single access (to the array in question) in a perfectly nested loop. At the end of this

section, we outline how to handle cases without these two restrictions.

3.1 Requirements for Index Transformation Matrix

Given a single array access, with access matrix A, in a perfectly nested loop, we wish to �nd an index

transformation matrix T for the array so as to enhance the spatial locality exhibited by this access. In this

section, we state two requirements for T and explain the rationale behind them, leaving to the next section

the question of how to �nd such a matrix. The �rst requirement concerns the form of the transformed access

matrix TA and is intended to enhance locality. The second requirement concerns the transformation matrix

T itself and is motivated by implementation issues.

3.1.1 Transformed Access Matrix

The index transformation matrix T allows us to turn the original access matrix A into the transformed access

matrix TA. To optimize for locality by a suitable choice of T , we need to relate the locality exhibited by an

access to the forms of its access matrix. With this relationship, we can express the goal to improve locality

in terms of the desired form of the transformed access matrix TA | the �rst of our two requirements for T .

Speci�cally, the focus is on the nonzero structures of these matrices.

We use the example in Figure 2 to aid the following discussion, as well as discussion in following sections.

Di�erent parts of this �gure will be explained as they become relevant to our discussion. This code, adapted

from [14], implements a symmetric rank 2k update (SYR2K) for banded matrices. (SYR2K is one of the

Level 3 Basic Linear Algebra Subprograms [5].) The original and transformed codes are shown at the top,

the access and transformation matrices in the middle, and graphical depictions of array layouts at various

stages of transformation at the bottom. This �gure shows the restructuring of array X. (Since the access

patterns to arrays X and Y are identical, array Y is similarly restructured. Array Z is not restructured.)

The upper and lower access matrices represent respectively the �rst and second accesses to X.

We consider �rst why the original code has poor locality, then how the problem relates to the nonzero

structure of the access matrix, and �nally how locality can be improved by transforming the access matrix.

We focus on the �rst access to X (X[j-k+b,k]). The problem with the second access is similar, but we

ignore it for the moment since we currently assume only a single array access.

The �rst access exhibits poor spatial locality mainly because consecutive iterations of the innermost

loop read array elements that are far apart in memory (assuming row-major storage). These elements are

5

 DO j = ...

 DO k = ...

 Z[j-i,i] += X[j-k+b,k] * Y[i-k+b,k]

 X[i-k+b,k] * Y[j-k+b,k]

 X[i+b,k] * Y[j+b,k]

DO i = ...

 DO j = ...

 DO k = ...

 Z[j-i,i] += X2[j+b,k-j-b] * Y2[i+b,k-i-b]

 X2[i+b,k-i-b] * Y2[j+b,k-j-b]

 Z[j-i,i] += X[j+b,k] * Y[i+b,k]

DO i = ...

 DO j = ...

 DO k = ...

Transformation

LEGEND:

k

i/j

i/j

k

k

i/j

DO i = ...

Matrix

1

0

-1

1

0

0

-1

1

0

0

1

0

1

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0

1

-1

A=(0,0)

1

-1

0

0

0

1

Access

Matrix

TA =A =

B = TB =

S =

STA =

STB =

T =

Enclosing parallelogramRange parallelogram Enclosing box (rejected)

1

1

1

0

0

1

1

-1

Dimension 2

Dimension 1Dimension 1

Dimension 2 Dimension 2

Dimension 1

C

B

F

B

D

A=(0,0) E

D

FC

B

C

D

EA=(0,0)

Figure 2: Example: Banded SYR2K

separated by almost an entire row, which most likely would occupy multiple cache lines. The accesses

in consecutive iterations therefore cannot reuse the same cache line. Simple array transformations like

permuting array dimensions do not solve the problem, as we shall see below.

The diagram at the bottom left of Figure 2 depicts this problem graphically. This diagram shows the

original array index space with the �rst array dimension vertical and the second horizontal. The shaded

region represents valid index vectors for array X. As execution goes through iterations of the innermost loop

(the k-loop), the access moves through the array index space in the direction marked k, crossing one row

per iteration. This indicates poor spatial locality. Simply storing the array in column-major order o�ers

little help since the k-direction crosses columns as well. Spatial locality would improve, however, if the array

6

index space were transformed in such a way that the k-direction becomes horizontal. A horizontal k-direction

means that iterations of the innermost loop access elements in the same row (which are stored contiguously

in memory, assuming row-major storage) and therefore implies better spatial locality.

We can also view this problem from the perspective of the nonzero structure of the access matrix A

(the upper one in Figure 2, since we are discussing the �rst access). The innermost loop corresponds to the

rightmost column in the access matrix. As execution proceeds from one iteration to the next, the iteration

vector i is incremented in the last dimension and thus the index vector of the accessed element (v = Ai+ a)

changes by A's rightmost column. This column determines the k-direction in the diagram. Since the �rst

position of this column is nonzero, consecutive iterations access elements in di�erent rows of the array. If,

however, we could make the corresponding position in the transformed access matrix TA zero, then iterations

of the innermost loop would access elements in the same row and spatial locality would be much better.

Therefore, to improve spatial locality, we require that the transformation matrix T eliminate this �rst

nonzero in A's rightmost column. Figure 2 shows such a T and the resultant TA, with the corresponding

code shown in the middle. (Note that this code is not �nal; the �nal version, shown on the right, has

undergone further changes that will be explained later in this paper.) We can also state this requirement in

terms of the column's height , de�ned as the position (counted from the bottom) of the column's top nonzero:

The height of A's rightmost column, namely 2, is too large; we wish to reduce it to 1 in TA. In other words,

we want to
atten the rightmost column.

In general, the key requirement for the index transformation matrix T is that the height of TA's rightmost

column is 1. (Strictly speaking, we are concerned about the rightmost nonzero column. All zero columns of

A can be ignored when we choose T because they never a�ect our choice: any nonsingular transformation

matrix would transform a zero column to a zero column.) In other words, the transformation should eliminate

all nonzeros in A's rightmost column, except one in the last position. If this column is brought into such

a form, array elements accessed by consecutive iterations would be much closer together than if there are

nonzeros in higher positions of the column. In particular, if this single nonzero in the last position of the

column is 1 or -1, as is often the case, those array elements are contaguous.

So far, we have focused on the rightmost column of the access matrix because it corresponds to the

innermost loop, which is most important for locality optimizations. To maximize spatial locality, it is

desirable to
atten the other columns as well. However, with an invertible linear transformation, we cannot

arbitrarily
atten an arbitrary set of columns. In Figure 2, for example, since A's rightmost column

h

�1

1

i

is transformed to

h

0

1

i

, A's middle column

h

1

0

i

, being linearly independent of

h

�1

1

i

, cannot possibly be

transformed to

h

0

x

i

, regardless of x and regardless of our particular choice for T . Therefore, when choosing

the index transformation matrix T , we always seek �rst and foremost to
atten A's rightmost column (to a

height of 1), and
atten other columns to the left in decreasing priority.

In summary, our �rst requirement for the index transformation matrix T is that it reduces the heights

of A's columns | the rightmost column to a height of 1 and others to the left as much as possible but in

decreasing priority.

3.1.2 Unimodular Index Transformation Matrix

In addition to the desired form of TA just discussed, we require, without loss of generality, that T itself

be unimodular. (A unimodular matrix is an integral matrix whose determinant is either 1 or -1.) This

requirement is motivated by two implementation issues: e�cient array index computation and e�cient

memory usage. They lead to two conditions that are satis�ed if and only if T is unimodular.

7

� We want to keep array index computation e�cient: it must involve only integers. This is guaranteed

if T (and hence the transformed access matrix TA) is integral.

� We do not want to allocate unneeded memory: the transformed index space must not have \unoccupied

holes" | a memory location that is allocated, because it corresponds to an integral vector in the

transformed index space, but does not store an element, because it does not correspond to an integral

vector in the original index space. For this purpose, we require that T maps the set of all integral

vectors to the set of all integral vectors. In other words, every integral vector in the transformed index

space is the image of some integral vector in the original index space. This is guaranteed if T

�1

is

integral.

In short, we want both T and T

�1

to be integral. This is true if and only if T is unimodular. See Lemma 1

in Appendix A for a proof.

Restricting to unimodular matrices does not cause a loss of generality in the search for a locality enhancing

index transformation matrix. This is because if there is a non-unimodular matrix, say T , such that the

columns of TA have the desired heights, there is also a unimodular matrix, say U , such that the corresponding

columns of UA and TA have the same heights. (A proof for the existence of such a unimodular matrix is given

in Lemma 2 in Appendix A.) A search restricted to unimodular matrices would exclude the non-unimodular

T but still include the unimodular U , which is equally good in terms of our optimization criteria.

3.2 Finding an Index Transformation Matrix

Given an access matrix A, the requirements for the index transformation matrix are summarized as follows:

a unimodular matrix that
attens A's columns | the rightmost column to a height of 1 and others to the

left as much as possible. We now outline an algorithm for �nding such a matrix.

The algorithm consists of two steps. In the �rst, we �nd a nonsingular (but not necessarily unimodular)

matrix R such that RA has the desired form in terms of the heights of its columns. In the second, we

compute from R a unimodular matrix U such that corresponding columns of UA and RA have the same

heights. We can choose U as the index transformation matrix because it meets both our requirements: U is

unimodular and UA, like RA, has the desired form.

Our algorithm to �nd R in the �rst step resembles the Gaussian elimination algorithm for inverting

nonsingular matrices. The key is to transform the access matrix A into the desired form using a systematically

constructed series of elementary row operations (i.e., scaling a row, exchanging two rows, or adding a multiple

of one row to another). Any series of elementary row operations transformsA to QA, whereQ is a nonsingular

matrix determined by the operations but independent of A. Thus, if QA has the desired form, Q can serve

as our R. The detailed algorithm to construct an appropriate series of row operations and compute the

corresponding Q e�ciently can be found in Appendix B.

Computing U from R in the second step hinges on �nding the Hermite normal form [16] of R. Let H be

this Hermite normal form. We choose U = H

�1

R. The proof of Lemma 2 in Appendix A shows that this U

is unimodular and corresponding columns of UA and RA have the same heights. An algorithm to �nd the

Hermite normal form of a nonsingular matrix is in the literature [16].

3.3 Multiple Accesses in Imperfectly Nested Loops

Finally, we brie
y discuss how to handle cases that do not satisfy the two simplifying restrictions imposed

at the beginning of this section: single access and perfect loop nesting.

8

To handle multiple accesses to the same array, we merge columns from the individual access matrices

into a combined access matrix and �nd a transformation to
atten its columns as we do for a single access

matrix. In the combined access matrix, columns are ordered according to the potential performance gain of

attening a column: the rightmost column is the one for which we expect the greatest bene�t, as in the case

of a single access matrix. Currently, we use a heuristic measure based on the loop level(s) to which a column

corresponds. Roughly speaking, the deeper is the loop level, the more important (for performance) it is to

atten the column. With this heuristic measure, the combined access matrix degenerates to the single access

matrix when there is only one access.

When constructing the combined access matrix from columns of individual access matrices, certain kinds

of columns are treated specially. Zero columns are omitted. They are transformed to zero columns regardless

of the transformation matrix, and so we need not consider them when choosing the transformation matrix.

Moreover, columns that are scaled versions of one another are treated as one because their images have the

same height under any transformation matrix. For the example in Figure 2, the combined access matrix for

array X would be

h

1 �1

0 1

i

, with

h

�1

1

i

on the right because it corresponds to the innermost loop in both

individual access matrices.

Accesses in imperfectly nested loops are handled similarly. Conceptually, all individual access matrices

(for accesses at various loop levels to the array in question) are augmented on the right with zero columns

so that they have the same number of columns. In practice, the added zero columns have no e�ect because

the algorithm ignores all zero columns anyway.

Our method can be similarly extended to handle multiple loop nests. We can treat them as if they were

enclosed by an imaginary loop with only one iteration. To represent this, a zero column is added to the left

of all access matrices, but this has no e�ect in practice. The basic optimization strategy remains the same:

atten the columns most important for locality. The set of loop nests grouped together for analysis might

range from a single loop nest, a series of consecutive loop nests that are always executed together (what one

might call a \basic block" of loop nests), or all loop nests in a procedure or beyond. A future direction of

our investigation is grouping loop nests to achieve an optimal tradeo� between locality within a group and

dynamic restructuring overhead incurred at group boundaries.

All the above discussion applies to accesses to the same array. If a loop nest accesses di�erent arrays,

each array is restructured independently.

4 Mapping The Transformed Index Vector to A Scalar Address

To access an array element identi�ed by a given index vector, we need to determine from that vector a scalar

address at which the element is stored in memory. Index vectors are normally mapped to scalar addresses

by means of an a�ne function, which can be e�ciently evaluated at the time of access. How to compute this

a�ne mapping function from array bounds is well understood. However, the issue is complicated by some

of the more sophisticated forms of array restructuring that we might apply. In this section, we explain the

problem and present our solution.

4.1 The Problem

To understand why it is non-trivial to compute a mapping function from transformed index vectors to scalar

addresses, let us �rst brie
y review how index vectors are traditionally mapped to addresses, assuming row-

major storage. An array speci�cation normally includes (perhaps implicitly) a lower bound and an upper

9

bound for each dimension, which delimit the range of valid index values in that dimension. As depicted in

the bottom left diagram in Figure 2 for the original array X, the bounds for all dimensions together de�ne

a rectangular box in the index space for valid index vectors: Each integral point in the box identi�es an

array element. These points are numbered in lexicographic order (since we assume row-major storage) by

an a�ne function computed from the array bounds: (u

2

� l

2

+ 1)(x

1

� l

1

) + (x

2

� l

2

), where l

k

, u

k

, and x

k

are respectively the lower bound, upper bound, and index value in the k-th dimension. This can be easily

generalized to more array dimensions.

Now we consider the problem of mapping transformed index vectors to addresses | to number valid

transformed index vectors in lexicographic order by means of an a�ne function. Again, we assume that

elements are stored in row-major order, as we did in Section 3.

This problem is trivial if the index transformation merely permutes the array dimensions. Components of

a valid transformed index vector must fall within the original, similarly permuted array bounds. The region

for valid transformed index vectors therefore remains a rectangular box. We can compute an index-to-address

mapping from the permuted array bounds in the same way as in the traditional case.

For more general index transformations, however, the problem is beyond the scope of the traditional

method, which applies only if valid index vectors are delimited by a rectangular box. In Figure 2, for example,

the valid transformed index vectors are delimited by a parallelogram (the deeply shaded ABCD in the middle

diagram) rather than a rectangular box. This parallelogram, which we call the range parallelogram, is the

image of the rectangular box representing the original array bounds (ABCD on the left) under the index

transformation T .

To help explain our solution, presented in the next section, let us �rst consider a straightforward but

unsatisfactory solution. We could enclose the range parallelogram with a rectangular box, as illustrated by

the dashed box in Figure 2. We can compute an index-to-address mapping for this enclosing box in the

traditional manner. This mapping would number valid transformed index vectors, corresponding to integral

points within the range parallelogram and thus also within the enclosing box, in lexicographic order. However,

this technique wastes memory. It allocates memory as if all integral points in the enclosing box correspond

to array elements. Since the enclosing box often does not bound the range parallelogram tightly (except

in the trivial case where the range parallelogram is itself a rectangular box, i.e., the index transformation

simply permutes the array dimensions), a large portion of the allocated memory is not used. In Figure 2,

for example, only the deeply shaded region inside the dashed box corresponds to array elements; memory

allocated for the rest of the dashed box is unused.

In short, the traditional method of computing an a�ne index-to-address mapping requires that valid index

vectors are delimited by a rectangular box. It does not directly apply to our case because our transformed

index vectors might be delimited by a parallelogram (the range parallelogram) rather than a rectangular

box. A simple solution is to enclose the range parallelogram with a rectangular box, but this wastes memory.

In the next section, we show how to arrive at a better solution using this as a starting point.

4.2 Our Solution

We now present our solution to the problem of mapping transformed index vectors to scalar addresses. It

builds on the simple but unsatisfactory solution previously discussed. In the interest of space, we do so only

intuitively, at the risk of some simpli�cations.

Instead of enclosing the range parallelogram directly with a rectangular box, we enclose it tightly with

a parallelogram (e.g., the lightly shaded AFCE in the middle diagram in Figure 2) that can be further

transformed (through S in Figure 2) to a rectangular box (AFCE on the right) without jeopardizing the

10

locality optimizations already performed. There are three aspects to this that �t together to solve our

problem. First, the enclosing parallelogram is further transformed to a rectangular box. This allows us to

compute an index-to-address mapping for this rectangular box and combine that mapping with the other two

a�ne mappings | the locality optimizing index transformation (T) discussed earlier and the transformation

(S) mentioned here | into one a�ne mapping directly from the original index vector to a scalar address.

Second, the additional transformation must not, of course, jeopardize prior optimizations. For example,

although we could always revert to the original array bounds (which form a rectangular box) using T

�1

as

the additional transformation, this is unacceptable because it e�ectively undoes prior optimizations. Third,

to conserve memory, the region enclosing the range parallelogram should bound the latter as tightly as

possible. Using a parallelogram rather than a rectangular box gives us greater
exibility to achieve this.

We now outline how such an enclosing parallelogram is chosen. We �rst discuss the two-dimensional case

with reference to the example in Figure 2 and then the higher-dimensional case in more general terms.

Recall that we look for an enclosing parallelogram that can be further transformed to a rectangular

box without jeopardizing prior optimizations. In two dimensions, this condition is satis�ed if the enclosing

parallelogram has a pair of horizontal sides. For example, in the middle diagram of Figure 2, the enclosing

parallelogram AFCE, which has two horizontal sides, is transformed to the rectangular box AFCE on

the right if we slide each row leftward in proportional to its vertical distance from the origin (point A).

This transformation, represented by the matrix S, meets both conditions. First, it maps the enclosing

parallelogram to a rectangular box by making the former's slanted sides vertical while keeping the horizontal

sides horizontal. Moreover, it preserves prior optimizations because it keeps horizontal vectors horizontal.

As we saw earlier, making the k-direction, which corresponds to the innermost loop, horizontal is key to

good spatial locality. The �rst transformation T makes the k-direction horizontal; the second transformation

S keeps it that way.

To �nd a tight enclosing parallelogram with horizontal sides, we apply the Fourier-Motzkin algorithm

[16] to the range parallelogram and select for each dimension the closest pair of parallel lines from those

generated by the algorithm. The two chosen pairs de�ne the enclosing parallelogram.

In general, the enclosing parallelogram is de�ned by pairs of parallel hyperplanes that tightly bound the

range parallelogram between them. There is one pair for each array dimension. In geometric terms, the

pair for the k-th dimension must be parallel to the (k + 1)-th dimension, (k + 2)-th dimension, etc., but

not the k-th dimension. When there are only two dimensions, this condition means that one pair (for the

�rst dimension) must be parallel to the second dimension but not the �rst, whereas the other pair (for the

second dimension) must not be parallel to the second dimension. In Figure 2, the former must be horizontal,

whereas the latter must not be horizontal (but may be vertical or slanted), just as we saw before. In algebraic

terms, the region bounded by the pair of hyperplanes for the k-th dimension is

b

k

� x

k

+

k�1

X

j=1

c

jk

x

j

� d

k

(4)

where b

k

, c

jk

, and d

k

are constants and b

k

� d

k

. These hyperplane pairs are selected in the same way as in

the two-dimensional case.

We look for such a parallelogram because it can always be transformed to a rectangular box without

jeopardizing previous optimizations. The transformation involves a unit lower-triangular matrix (i.e., a

lower-triangular matrix with all 1's on the main diagonal), such as S in Figure 2. Because S is lower-

triangular, columns of STA must have the same heights as corresponding columns of TA. In other words,

the additional transformation S preserves the e�ect of prior optimizations, which seek to keep the heights of

TA's columns low and thus achieve good spatial locality.

To sum up, we compute an index-to-address mapping for transformed index vectors by �rst �nding

11

a special form of parallelogram to tightly enclose the range parallelogram. We require that the enclosing

parallelogram can be further transformed to a rectangular box through a transformation that does not nullify

the locality improvement of prior transformations. Once the enclosing parallelogram and the additional

transformation have been found, we can merge the various intermediate a�ne mappings into one that maps

the original index vector directly to an address, thus eliminating the cost of calculating the intermediates at

run time.

5 Handling Non-a�ne Accesses

We have so far assumed that all array index expressions are a�ne functions of loop variables, thus allowing

analysis and transformation of array accesses in a linear framework. While a�ne accesses are most common,

we wish to make our technique as generally applicable as possible: the presence of non-a�ne accesses among

a�ne ones should not frustrate the application of our technique despite its focus on the a�ne case.

In this section, we show that our techniques can handle non-a�ne index expressions as well. Two issues

are discussed. First, we show that the mechanism of array restructuring | transforming array accesses with

a given index transformation | applies as easily and e�ciently to non-a�ne accesses as it does to a�ne

ones. Second, we consider the policy aspect | selecting the index transformation itself | and discuss how

the analysis accomodates non-a�ne index expressions.

5.1 Applying an Index Transformation

We �rst consider the runtime overhead of computing a transformed index vector when indexing expressions

are non-a�ne. Recall that the original and transformed index vectors (v and v

0

respectively) are related by

v

0

= Tv (see (2)). In the a�ne case v

0

, like v, can be expressed directly in terms of the iteration vector i

with the help of simpli�cations that exploit the associativity of matrix multiplication (see (3)). As a result,

v

0

can be computed as e�ciently at run time as v. In the non-a�ne case, however, similar simpli�cations

are not possible. Thus, it might appear that, with array restructuring, additional computation is needed to

calculate Tv from v. In fact, this is not necessary.

When indexing expressions are non-a�ne, the original index vector v is computed explicitly. From v,

the address of the accessed element, d, can be calculated directly without �rst computing v

0

. Without array

restructuring, the relationship between d and v is simply

d = �v + �

0

(5)

where the constant m-dimensional row vector � (m being the number of array dimensions) and the constant

scalar �

0

together represent the index-to-address mapping. If array restructuring is applied, the address d is

related to the transformed index vector v

0

via another linear transformation, represented by the matrix S,

and an index-to-address mapping that maps the doubly transformed index vector (denoted v

00

here) to the

address. In other words,

v

00

= Sv

0

and d = �v

00

+ �

0

(6)

Combining this equation with v

0

= Tv, we can express the address d in terms of the original index vector v

as follows:

d = �v

00

+ �

0

= (�S)v

0

+ �

0

= (�ST)v + �

0

(7)

In both cases, the address d equals the dot product of a constant vector (�ST or �) and the original

index vector v plus a constant scalar o�set (�

0

or �

0

). The constants in the two cases might be di�erent,

12

but they are all loop-invariant. At each access inside the loop nest, essentially the same code can be used to

calculate the element's address. Therefore, even for non-a�ne accesses, array restructuring does not incur

any indexing overhead beyond what would be needed anyway.

5.2 Choosing an Index Transformation

We now consider how to select an index transformation matrix T when some accesses are non-a�ne. The

strategy is to extract as much information as we can from non-a�ne index expressions and ignore what we

cannot analyze. Note that the inability to fully analyze the array accesses never makes the transformed

program incorrect. At worst, we choose a transformation that does not improve locality as expected. In

contrast, loop restructuring based on a partial dependence analysis may lead to an erroneous program.

One simple approach to analyzing non-a�ne index expressions is to treat them as the sums of a�ne and

non-a�ne terms and consider only the former. Recall that for a�ne accesses, the accessed element's index

vector (v) is related to the iteration vector (i) by v = Ai+ a, where the matrix A, called the access matrix,

and the vector a are loop-variant. For non-a�ne accesses, we can separate the a�ne and non-a�ne terms

in the index expressions and represent the latter by a vector-valued function f(i):

v = Ai+ a+ f(i) (8)

For example, consider the access X[i2,im[i1]], adapted from a two-dimensional fast Fourier transform

(FFT) code (see Section 6). The second array index, which involves the indirection table im, is non-a�ne.

The access is represented by

v =

�

0 1

0 0

� �

i

1

i

2

�

+

�

0

0

�

+

�

0

im(i

1

)

�

Completely a�ne accesses or completely non-a�ne accesses are just special cases: The former correspond to

an f(i) always equal to zero and the latter to an A and a that are zero.

Having isolated the a�ne terms, we can choose the index transformation based on the access matrix A

alone, as just discussed. In our example, from the column

h

1

0

i

in A we know that the innermost loop

iterations access di�erent rows, causing poor spatial locality for a row-major array. To alleviate the problem,

we would
atten the column with T =

h

0 1

1 0

i

, in e�ect transposing the array.

This might not be good enough, however, if the second, non-a�ne array index also varied with the

innermost loop variable i2 (although fortuitously this is not the case here). We would know nothing about

how the second index varies if the non-a�ne terms are just ignored. In our approach, we extract more

information from the non-a�ne terms. To explain our technique, let us �rst brie
y review, in the a�ne case,

what information is needed to select the index transformation and how that information is obtained. We

then generalize to the non-a�ne case.

In Section 3.1.1, we looked for the direction in which the array access moves in the index space or,

equivalently, the change in the index vector as execution goes through the innermost loop, as well as similar

information for the other loops. The index transformation matrix was chosen to
atten these vectors.

A�ne index expressions readily yield the needed information because they are linear combinations, with

loop-invariant coe�cients, of loop variables.

We are looking for the same kind of information in the non-a�ne case. To obtain that information,

we treat index expressions as linear combinations, with loop-invariant coe�cients, of loop variables and

quasi variables | non-a�ne expressions varying with one or more loop variable. For example, in the access

13

X[i2,im[i1]], the expression im[i1] is a quasi variable that varies with i1. (Non-a�ne sub-expressions

that are identical up to a constant factor are treated as multiples of the same quasi variable rather than

distinct quasi variables. For instance, X[i2+4*im[i1],2*im[i1]] contains two occurences of one quasi

variable im[i1], not two quasi variables 4*im[i1] and 2*im[i1].) The index vector v is expressed in terms

of the iteration vector i and the quasi iteration vector q, composed of the quasi variables:

v = Ai+ a+Bq (9)

where the loop-invariant matrix B, called the quasi access matrix , contains the coe�cients of the non-a�ne

terms in the array index expressions. For the access X[i2,im[i1]], we have

v =

�

0 1

0 0

��

i

1

i

2

�

+

�

0

0

�

+

�

0

1

�

[im(i

1

)]

From this equation we can deduce the change in the index vector between consecutive iterations, though

less precisely than in the a�ne case. Speci�cally, as execution goes through the innermost loop, for exam-

ple, both the loop variable and quasi variables varying with it, if any, change. The columns in A and B

corresponding to these variables indicate how the index vector would change accordingly. (This knowledge

is imprecise, though, because we do not analyze exactly how each quasi variable varies but only which loop

variable(s) it varies with.) Therefore, we try to
atten all such columns, rather than only the one from

A as in the a�ne case. If the loop variable is not involved in any non-a�ne expression, it corresponds to

no column in B and thus only its column in A is considered. In our example, the inner loop corresponds

to only the column

h

1

0

i

from A, and the outer loop to the column

h

0

1

i

from B. By choosing T as

h

0 1

1 0

i

, we transform the access to X2[im[i1],i2], which exhibits better spatial locality than the original.

Measurements of the performance impact of this transformation are reported in Section 6.

6 Performance

We have implemented our array restructuring technique in the SUIF compiler [17] and performed a number

of experiments to evaluate their e�ectiveness. The results are reported in this section. We �rst study the

performance impact of array restructuring by itself. Then, array restructuring is compared with common

loop restructuring techniques. Finally, we discuss how it interacts with loop tiling.

6.1 Experiments

We have implemented our array restructuring technique in the SUIF compiler [17]. For each loop nest,

the compiler analyzes how arrays are accessed, chooses the index transformations, and modi�es the array

accesses. The compiler also generates calls to our runtime system, which dynamically restructures array

data between loop nests when needed. We assume all arrays to be in a canonical layout on procedure entry

and restore them on exit if necessary. This allows procedures that have been transformed by our compiler to

be linked with separately compiled procedures that have not. The compiler outputs C code, which is then

compiled by the native C compiler.

The experiments were done on a DEC3000 Model 400 workstation running DEC OSF/1 [4, 6]. The

workstation is based on the DEC Alpha architecture. It has two levels of cache for data: an on-chip, write-

through, 8 KB data cache, and an o�-chip, write-back, 512 KB uni�ed cache shared by instructions and data.

Both levels of cache are direct-mapped. Cache blocks are 32 bytes long. On a read miss in the �rst-level

14

cache, 5 CPU cycles are required to read the accessed data from the second-level cache and another 5 cycles

to �ll the rest of the cache line. A write miss adds another 5 cycles. On a miss in the second-level cache,

it takes 24 cycles to read the accessed data from main memory and another 6 cycles to �ll the other half of

the cache line.

Nine loop nests were used in the experiments.

The �rst is a matrix multiply (MATMUL), as shown in Figure 3. This form of the loop nest has good

temporal locality and is the most straightforward implementation of the mathematical de�nition. Our

compiler in e�ect decides to store C and A in row-major order and B in column-major order.

DO i = 1, N

DO j = 1, N

DO k = 1, N

C[i,j] = C[i,j] + A[i,k] * B[k,j]

Figure 3: MATMUL | Matrix Multiply

The second loop nest, adapted from [14], implements a symmetric rank 2k update (SYR2K) for banded

matrices. We have already discussed this loop nest extensively as our running example in Section 3 and

Section 4.

The other loop nests come from the seven NASA kernels in the SPEC benchmark suite: MXM, GMTRY,

CFFT2D, CHOLSKY, BTRIX, VPENTA, and EMIT. We measured the performance for di�erent problem

sizes to study how array restructuring scales. Most of the sizes we used are larger than those of the original

benchmarks because the original ones are often too small for locality optimizations to have any signi�cant

e�ect: execution takes only fraction of a second and the data �t entirely in the cache.

Some loop nests in these kernels are not a�ected by array restructuring because our compiler estimates

that there is little or no performance gain and therefore decides not to apply any transformation. To focus

on the e�ect of array restructuring, we measured and report here the performance of only the a�ected loop

nests in each kernel (which, as it happens, are also the most time-consuming ones). It should be noted,

however, that we always compiled and executed the entire kernel and veri�ed that the performance of the

supposedly una�ected loop nests, though not reported, indeed did not change noticeably.

Speci�cally, in CHOLSKY, one loop nest computes the Cholesky decompositions of multiple banded ma-

trices, and a second one performs triangular solves for multiple right-hand sides with these decompositions.

This paper reports the performance of the latter. CFFT2D computes a two-dimensional fast Fourier trans-

form (FFT) on a two-dimensional array of complex numbers in four phases. We focus on the two for which

the canonical layout would lead to poor locality. GMTRY sets up equations for a vortex method solution

and solves them with Gaussian elimination. We focus on the Gaussian elimination. None of EMIT's loop

nests is transformed. Therefore, no results are reported here.

6.2 Array Restructuring

This section reports experiments that evaluate our array restructuring technique by itself. We consider the

execution times as well as the memory overheads.

15

6.2.1 Execution Times

In this section, we study the performance impact of array restructuring, focusing on how it a�ects loop

execution time and the impact of any runtime data restructuring that may be required. Results are shown

in Figure 4.

For MXM, BTRIX, and VPENTA, our compiler �nds index transformations that would improve locality

but decides not to apply them because it estimates that the performance bene�t does not justify the runtime

restructuring overhead. In these experiments, however, we temporarily suspended the cost analysis so

that our compiler applied those transformations anyway. This allows us to learn more about how array

restructuring a�ects performance,

In all the loop nests except MXM, array restructuring signi�cantly reduces loop execution times for

problems of di�erent sizes. In most of these loops, execution time is roughly halved. The performance

improvement for SYR2K is even more dramatic: the loop execution time falls by over 80%. MXM, however,

is an exception. It is a highly optimized, hand-tuned implementation of multiplying two matrices. Array

restructuring neither improves nor degrades its performance.

The impact of the runtime restructuring overhead is small for most of these loop nests, and it is expected

to remain small in even larger problems. In the cases of MATMUL, SYR2K, GMTRY, and MXM, this

overhead is negligible compared with the loop execution time for all the problem sizes we have measured.

In fact, it is so small that in Figure 4 the curve for loop execution time alone and the one that includes the

restructuring overhead are indistinguishable. For CFFT2D and CHOLSKY, the overhead is non-trivial, but

the bene�ts of restructuring the array data far outweigh the costs.

For these six loop nests, we expect the amount of computation to grow as fast as, if not faster than, the

restructuring overhead, as shown in Table 1. Therefore, the performance impact of the overhead would be

even smaller, relative to actual computation, in problems larger than those we have measured. Also, in our

current implementation, array data are restructured by a generic runtime routine. We expect the overhead

to decrease if the generic routine were replaced by specialized, compiler-generated code.

Loop nest Problem size parameters Computation Overhead

MATMUL Matrix order (N) O(N

3

) O(N

2

)

SYR2K Matrix order (N) and bandwidth (B) O(NB

2

) O(NB)

GMTRY Matrix order (N) O(N

3

) O(N

2

)

CFFT2D Array dimension (N) O(N

2

logN) O(N

2

)

CHOLSKY Matrix order (N), etc. O(N) O(N)

MXM Matrix order (N) O(N

3

) O(N

2

)

BTRIX Array dimensions (J , K, L) O(JKL) O(JKL)

VPENTA Matrix orders (A, B) O(AB) O(AB)

Table 1: Scaling with Problem Size

For BTRIX and VPENTA, as in the others, array restructuring reduces loop execution times signi�cantly.

However, the runtime restructuring overhead, if required, is also substantial. Overall performance improves

only marginally. Larger problems are expected to behave similarly because the restructuring overhead and

the amount of computation grow at the same rate, as shown in Table 1.

In summary, we found in these experiments that array restructuring can reduce loop execution time

signi�cantly. A runtime overhead may be incurred when there is no single array layout that matches the

access patterns in separate loop nests and data have to be dynamically restructured. In many cases, this

16

overhead is outweighed by the performance gain. Our compiler's cost-bene�t analysis has correctly identi�ed

those cases where it is not.

6.2.2 Memory Overhead

Table 2 lists the amounts of memory required by the original and restructured arrays. The �gures are for

the largest problems reported in the previous section and include only arrays that are restructured.

Size of Size of

Loop nest Original Array(s) (MB) Restructured Array(s) (MB) Change (%)

MATMUL 0.95 0.95 0

SYR2K 6.10 6.41 +5

GMTRY 0.95 0.95 0

CFFT2D 8.00 8.00 0

CHOLSKY 9.54 9.54 0

MXM 0.95 0.95 0

BTRIX 11.6 11.6 0

VPENTA 6.10 6.10 0

Table 2: Memory Overhead

From Table 2, we see that the elements are stored almost as compactly in the restructured as in the

unrestructured arrays in all our experiments. For all but one of the loop nests, the restructured and unre-

structured arrays have exactly the same size. For SYR2K, the restructured arrays are at most 5% larger

than the corresponding unstructured arrays, depending on the bandwidth of the banded matrices.

6.3 Comparing Array Restructuring and Loop Restructuring

To study how array restructuring compares with loop restructuring techniques, we manually transformed

the loop nests used in earlier experiments and measured the execution times of the restructured loop nests.

For each loop nest, we carefully selected, with the help of experimentation, what we believe to be the

best sequence of loop transformations, such as loop permutation, reversal, skewing, scaling, fusion, and

distribution

2

. For all the loop nests except CHOLSKY (which we further discuss below), a sophisticated

optimizing compiler should be able to identify and apply these transformations.

The results are shown in Figure 5. All execution times are for the largest problems reported in Section 6.2.

For each loop nest, the execution times are normalized with respect to that of the original loop.

Let us consider these loop nests in turn. They can be roughly divided into four categories.

For CFFT2D, which implements a two-dimensional FFT, there is no obvious way to restructure the loop

nest for better locality, whereas restructuring the arrays speeds up execution signi�cantly. Previous work on

loop restructuring did not perform any optimizations on this loop nest [13, 19] or reported no performance

improvement [2]. Loop restructuring is frustrated by imperfect loop nesting and non-a�ne array indexing

expressions that involve indirection arrays. Neither of these, however, prevents us from restructuring the

2

Loop tiling is not included here. The next section studies how it interacts with these loop transformations and with array

restructuring.

17

array. The loop execution time is halved. The overall performance gain is substantial despite a modest

restructuring overhead at run time.

For MATMUL, SYR2K, MXM, and CHOLSKY, array restructuring compares favorably with loop re-

structuring in terms of performance.

� In MATMUL (see Figure 3), interchanging the middle and innermost loops increases performance,

but not as much as transposing array B. Previous work found this loop interchange to be optimal for

overall locality [14, 11], and our experiments with all six possible loop permutations also con�rm this.

However, it sacri�ces some temporal locality in the accesses to C, the product array, for much better

spatial locality in the accesses to B, one of the two operand arrays. It does improve performance, but

array restructuring achieves even better performance because we gain spatial locality without losing

temporal locality. Runtime restructuring overhead, even if needed, is trivial, as we saw earlier.

� As for SYR2K, adapted from [14], array restructuring reduces execution time to 15% of the original,

compared with about 25% for loop restructuring. This loop nest is particularly di�cult to optimize

because of its complex access pattern. The restructured loop nest that we used is obtained using

the technique in [14]

3

. As in the case of MATMUL, array restructuring achieves better performance

because it needs not trade temporal locality for gains in spatial locality.

� The performance of MXM (a highly optimized, hand-tuned implementation of multiplying two matri-

ces) is not changed by array restructuring. Performance worsens, however, if the loops are permuted

to an order that would appear optimal for locality if the manual optimizations in the original code

were absent and that, in fact, yields the best performance among the �ve possible orders other than

the one in the original loop nest.

� For CHOLSKY, array restructuring improves performance slightly more than a carefully chosen series of

loop transformations (including loop permutation, distribution, and fusion) that amounts to completely

rewriting the imperfectly nested loop. Although these are merely standard transformations, it seems

questionable whether this combination can be automatically selected with existing techniques. (Carr

et al., who work on improving locality with such loop transformations, report no performance gain

for this loop nest [2].) In earlier experiments not reported here, we observed signi�cant performance

degradation when only some of the loop transformations were applied.

For GMTRY, BTRIX, and VPENTA, array restructuring and loop restructuring achieve comparable

performance improvement, although data restructuring overhead at run time, if needed, might put array

restructuring at a disadvantage. In all these routines, appropriate loop permutations improve performance

substantially. Almost all the loop nests of interest are perfectly nested and have simple loop-carried depen-

dence patterns. Thus, it should be easy for most loop restructuring techniques to automatically identify

the optimization in each case. Array restructuring can achieve comparable performance gains by permuting

the array dimensions. However, since such routines are typically only part of a program, the arrays might

have to be restructured dynamically. In the cases of BTRIX and VPENTA, this overhead would make array

restructuring unattractive.

For EMIT, the original code is already highly optimized for data locality. We have not performed any

optimization on this routine. Neither have several others who have experimented with it [13, 2, 19]. No

performance results are reported here.

To sum up, we have compared the performance of array restructuring with that of some common loop

restructuring techniques. One loop nest that de�es loop restructuring is optimized by restructuring the

3

The restructured loop nest given in [14] contains loop bounds and array indices with integer divisions. We manually

transformed the loop nest further, without reordering the iterations, to eliminate these divisions.

18

array instead. In other cases, array restructuring improves performance as much as or sometimes more than

loop restructuring. In most of the loop nests we have examined, runtime data restructuring overheads are

outweighed by performance gains, if not negligible. In some cases, however, they are too high for array

restructuring to bene�t performance if arrays have to be restructured dynamically.

6.4 Array Restructuring and Tiling

In this section, we study how array restructuring interacts with tiling, a powerful locality optimization

technique with wide applicability [18]. We manually tiled the innermost loop(s) of three versions of each loop

nest wherever appropriate: the original version, the one after array restructuring, and the loop transformed

version used in earlier experiments. Each tiled loop nest's execution time was measured for a range of tile

sizes.

The results are shown in Figure 6. All execution times are for the largest problems reported in Section 6.2.

In each graph, the largest tile size equals the number of iterations in the loop being tiled (except in the case

of SYR2K). For these tile sizes, the tiled loop nest has the same access pattern as the untiled version. In

some graphs, we show horizontal lines, without individual data points, that represent the execution times

of the untiled loop nests. This is done when tiling brings no improvement over what prior loop or array

restructuring has achieved. (We con�rmed it in each case by performing the tiling anyway and examining

the resultant performance curves.) No results are reported for CFFT2D because its imperfect loop nesting

and non-a�ne array indexing expressions would prevent the application of tiling by a compiler.

First, from Figure 6 we see that tiling generally speeds up the original loop nests, but the improvement

depends on the tile sizes. Small tiles could cause excessive loop overhead while large tiles would degrade

locality. With array restructuring, performance is less sensitive to tile sizes, provided that they are not too

small. Therefore, in addition to performing array restructuring by itself, we can also apply it with tiling to

reduce the potential performance impact of mistakenly choosing an inappropriately large tile size. The two

techniques can always be applied together because array restructuring never changes the loop structure and

therefore never makes an originally tilable loop nest untilable.

Second, we observe in Figure 6 that array restructuring, with or without tiling as appropriate, consistently

achieves comparable or shorter loop execution times than either tiling the original loop nests or tiling the

manually restructured loop nests. Except for BTRIX and VPENTA, this remains the case even when runtime

restructuring overhead is taken into account.

7 Restructuring Loops, Arrays, or Both

As mentioned earlier, in order to improve the locality exhibited by nested loops with array accesses, a

compiler might restructure the loops, the arrays, or both. In this section, we discuss how these three

approaches compare and how they are related, in particular what roles the �rst two might play in the third,

hybrid approach.

Array restructuring has a number of advantages compared with loop restructuring, as we brie
y discussed

in Section 1. First, array restructuring is not constrained by loop-carried dependences or imperfect loop

nesting. It can be applied even when dependence information is limited, imprecise, or non-existent, whereas

lack of precise information or complicated loop structures or dependences, common in many large-scale

programs, often frustrates automatic application of sophisticated loop transformations [19]. Second, given

a single loop nest that accesses multiple arrays, we can restructure each array for optimal locality without

sacri�cing the locality exhibited by accesses to the other arrays. Loop restructuring, on the other hand,

19

always a�ects accesses to all arrays. Third, when a compiler cannot �nd one layout that is optimal for every

loop nest accessing a given array, it still has the option of dynamically restructuring the array data between

loop nests. Dynamic restructuring, despite its runtime overhead, may be preferable to a mismatch between

the array layout and the access patterns in some of the loop nests.

A major limitation of array restructuring is that it a�ects only spatial locality. Therefore, it cannot

be used to improve temporal locality. However, for the very same reason, it also never degrades temporal

locality. This property can be used to advantage in a hybrid approach that combines both loop and array

restructuring, as suggested below.

Restructuring both loops and arrays at once is potentially more powerful than restructuring either loops or

arrays alone. However, it is not yet clear how this potential can be fully and e�ciently exploited. Ideally, the

compiler should simultaneously decide how to restructure each array and loop nest to achieve optimal locality

for the entire program. So far, this has proven to be too di�cult. Cierniak and Li discussed a framework that

can represent and evaluate a rich set of array and loop transformations [3]. However, �nding the resultant

general optimization problem too hard, they select speci�c transformations to apply to individual loop nests

by exhaustively searching an a priori subset of the possibilities allowed by their framework [3]. Exhaustive

searching can become prohibitively expensive because its cost grows exponentially with the number of arrays

and loops analyzed. This limits how many options can be explored within a reasonable amount of time, even

with heuristic pruning of unpromising options.

An alternative to exhaustive searching is to iteratively optimize along design space dimensions one at a

time, until the solution does not improve any further. This approach can consider in�nitely many options

and direct the search where an optimum seems most likely. Although a global optimum is not guaranteed,

this strategy is commonly used and is often e�ective in tackling otherwise intractable optimization problems.

For our problem of improving data locality, the overall algorithm would alternate between phases of loop

restructuring, given �xed array layouts, and array restructuring, given �xed loop structures.

One important advantage of this strategy is that it leverages the many existing, proven loop restructur-

ing techniques, as well as array restructuring techniques like those we have presented here. In this context,

however, existing loop restructuring techniques should be adapted to focus on temporal locality, rather than

spatial locality or both. The rationale is based on the fact that array restructuring a�ects only spatial but

not temporal locality while loop restructuring a�ects both. If we optimize for both types of locality when

restructuring loops alone, we may have to trade some temporal locality for gains in spatial locality. Such a

compromise becomes much less attractive when spatial locality can be improved by array restructuring with-

out harming temporal locality . Moreover, the lost temporal locality can never be recovered by restructuring

the arrays.

In short, array restructuring and loop restructuring each has its own strengths and limitations, which

would make one or the other more e�ective in enhancing data locality in any given situation. Moreover, both

kinds of restructuring techniques can contribute to a hybrid approach that is potentially more powerful.

8 Related Work

Various loop restructuring techniques to improve data locality have been proposed. Kennedy and McKinley

developed a cost model to guide the selection of loop permutation transformations for enhancing data locality

[11]. They also studied the use of loop fusion and distribution for this purpose [10]. Carr et al. reported

an extensive performance study of these techniques [2]. Wolf and Lam use loop tiling, which combines

stripmining and loop permutation, to increase the likelihood of reusing cached data in the innermost loops

[18]. Li and Pingali proposed a linear algebraic framework for loop transformation [15]. Based on that

20

framework, Li also developed algorithms for selecting loop transformations to enhance locality and reduce

false sharing, especially in banded matrix applications [14].

Data restructuring has also been used to improve spatial locality and reduce false sharing on shared-

memory multiprocessors.

Ju and Dietz reduce cache coherence overhead by permuting array dimensions and by loop permutation

[9]. They restrict their array restructuring options to permutations of array dimensions, which are subsumed

by the linear mappings in our approach. On the other hand, they consider both array and loop restructuring

while we focus on array restructuring.

Cierniak and Li propose a linear algebraic framework integrating control and data transformations to

enhance locality and reduce false sharing [3]. Their framework allows index-to-address mappings to be any

linear mapping, but in practice they restrict attention to those that, in e�ect, represent di�erent permutations

of array dimensions and exhaustively search the design space for an optimal solution. By contrast, we consider

more general data transformations, select one algorithmically, and focus on array restructuring.

Anderson et al. restructure arrays to improve spatial locality and reduce false sharing on shared-memory

multiprocessors [1]. Given a data distribution, they place array elements assigned to the same processor

together in memory. In e�ect, the compiler computes a data distribution as if compiling for a distributed-

memory machine and, for each array, uses contiguous regions of the shared address space as the \local

memories" of individual processors. The array layout on each individual processor is not further optimized

for locality. We, on the other hand, optimize array layouts for single-processor execution, whether on a

uniprocessor or on one processor of a shared-memory multiprocessor.

Jeremiassen and Eggers transform array data structures to reduce false sharing [7, 8]. Their work di�ers

form ours in several ways. First, they focus on coarse-grain, explicitly parallel programs while we are

concerned with both sequential and parallelized loops. Second, their goal is to reduce false sharing while we

primarily aim to improve spatial locality. Third, their data transformations mainly apply to one-dimensional

arrays and are more ad hoc, whereas ours are designed for multidimensional ones and based on a general

mathematical framework for access pattern analysis.

Leung and Zahorjan dynamically restructure arrays to reduce false sharing and improve spatial locality

in runtime parallelized loops [12]. Since this work focuses on runtime parallelized loops for which the access

patterns are irregular, the index-to-address mapping is represented by a runtime generated indirection table

rather than a parametric form like a linear mapping. Therefore, array accesses incur extra indexing overhead.

9 Conclusion

Compilers increasingly have to optimize for data locality in order to achieve high performance. A compiler

might do this by restructuring loops or the arrays they access. While only loop restructuring can improve

temporal locality, array restructuring is more
exible: it is not constrained by imperfect loop nesting or

loop-carried dependences; multiple arrays accessed by a single loop nest can be restructured independently

for optimal locality; arrays can be dynamically restructured to match the access patterns at di�erent points

in program execution.

We have presented techniques to restructure arrays for locality. Our techniques are based on an invertible

linear transformation of array index vectors, which is represented by an index transformation matrix. Such a

linear transformation is much more general than simply permuting the array dimensions. We have developed

algorithms to choose an index transformation matrix that would improve the spatial locality exhibited by

a given set of array accesses in a loop nest. Our analysis places no restrictions on the loop structure or

21

dependence pattern. We focus on those cases where the array index expressions are a�ne functions of loop

variables, but our techniques also apply to non-a�ne cases. Therefore, these techniques are applicable to a

wide class of loop nests.

Results of performance experiments with our implementation show that array restructuring technique

can improve loop execution performance substantially. Restructuring overhead at run time, even if needed,

is often outweighed and sometimes even overwhelmed by the reduction in loop execution times. Moreover,

array restructuring has achieved comparable, and in some cases superior, performance compared with many

common forms of loop restructuring. Furthermore, when used with tiling, it can make performance less

sensitive to the choice of the tile size.

A Mathematical Proofs

Lemma 1 Let T be a nonsingular matrix. Both T and T

�1

are integral if and only if T is unimodular.

Proof: First consider the \if" part. If T is unimodular, it is integral by de�nition. Its inverse T

�1

is

also unimodular [16] and thus integral by de�nition.

Now, we turn to the \only if" part. Since T is integral, jT j is an integer. Since T is nonsingular, jT j 6= 0.

Thus, the absolute value of jT j must be at least 1. Similarly for T

�1

. jT j and jT

�1

j are reciprocals of each

other. Therefore, they must be either 1 or -1. Because T is integral and jT j is either 1 or -1, T is unimodular

by de�nition.

Lemma 2 Let R be a rational nonsingular matrix. There exists a unimodular matrix U such that for any

matrix A, corresponding columns of RA and UA have the same heights (i.e., the top nonzeros in each pair

of corresponding columns are in the same row).

Proof: Since R is nonsingular, it is of full row rank. There exists a unimodular matrix V such that

RV (denoted H from now on) is in Hermite normal form [16]. The inverses of V and of H both exist. For

V , this is because V is unimodular and therefore, by de�nition, nonsingular [16]. For H , the reason is that

H = RV and both R and V are nonsingular.

Let U = H

�1

R. We now show that U is unimodular and columns of UA have the same heights as

corresponding columns of RA. First, note that

H = RV

) H

�1

(H) = H

�1

(RV)

) I = (H

�1

R)V = UV

Thus, U is the inverse of a unimodular matrix V and for that reason also unimodular [16]. Second, for any

matrix A,

UA = (H

�1

R)A = H

�1

(RA)

Since H is in Hermite normal form, it is by de�nition lower-triangular and therefore so is its inverse H

�1

.

The corresponding columns UA and RA have the same heights. This completes the proof.

22

B Computing an Index Transformation from the Access Matrix

Earlier in Section 3.2, we outline how to �nd an index transformation matrix to optimize for spatial locality

given an access matrix A. The procedure consists of two steps. In the �rst step, we compute a nonsingular

matrix that
attens A's columns as far as possible. In this section, we show an algorithm to �nd such a

matrix.

The key to our algorithm is to �nd a series of elementary row operations (i.e., scaling a row, exchanging

two rows, and adding a multiple of one row to another) that transforms A to the desired form. It is

a well-known fact in linear algebra that any series of elementary row operations can be represented by a

nonsingular matrix, sayQ: the operations transformA toQA for any matrix A. Therefore, after transforming

A appropriately with such operations, our algorithm returns the corresponding Q. Furthermore, we need

not record the series of operations and then somehow compute Q. Instead, Q can be calculated e�ciently

by applying the operations to the identity matrix as they are selected. This yields the matrix Q in the end

because the operations transform the identity matrix I to QI , which is, of course, equal to Q.

The main issue is selecting the appropriate elementary row operations. This is done by the algorithm

shown in Figure 7. Each iteration performs two related tasks: choosing a target column to
atten and

actually
attening it with elementary row operations. We �rst explain the �rst and second iterations of the

algorithm and then generalize to other iterations.

In the �rst iteration (where r = m), we �nd the rightmost nonzero column | the column that we wish

to
atten most, as discussed in Section 3.1.1 | and reduce its height to 1 with elementary row operations.

Speci�cally, the algorithm picks the rightmost column that has nonzeros in any of the rows 1 through m.

Suppose this is the c

1

-th column in A. Then, our algorithm uses elementary row operations to place a

nonzero in the bottommost (i.e., m-th) row and eliminate all other nonzeros above it in the target column,

thus reducing the height to 1. The same operations are applied to R, which has been initialized as the

identity matrix. R will become the transformation matrix in the end.

Thus, the elementary row operations chosen by the �rst iteration
atten column c

1

to the desired height,

namely 1. From this point onward, the column remains unchanged even though subsequent iterations perform

more elementary row operations. These operations involve only rows 1 through m � 1 since r � m � 1 in

these iterations, and so have no e�ect on column c

1

, which contains only zeros in those rows.

In the second iteration (where r = m � 1), we again select the column that we want to
atten most.

However, we exclude columns with only zeros in rows 1 through m � 1 because, as just mentioned, these

columns are not a�ected by whatever elementary row operations we might apply in the second and subsequent

iterations. One of these excluded columns is column c

1

, which we want to preserve rather than modify because

it is already in a desired form. The others, if any, are scaled versions of column c

1

. Their images under a

certain linear transformation are determined by the image of column c

1

, regardless of what the particular

transformation might be. Since in the �rst iteration we have chosen the image of column c

1

, the images of

these other columns are already �xed, even when the transformation is still incomplete. Therefore, these

columns, like column c

1

itself, are not considered any further.

Having chosen a target column (c

2

), the second iteration uses elementary row operations to
atten it to

a height of 2. A nonzero is placed in the (m� 1)-th position and all nonzeros above are eliminated. It would

be even better for locality if the height were reduced to 1, but this is impossible with an invertible linear

transformation, as explained below.

The remaining iterations work similarly. In general, after k iterations have been completed, k target

columns (c

1

, c

2

, ..., c

k

) have been chosen, and column c

j

has been
attened to a height of j. The columns

in the original A fall into two categories: those that are linear combinations of the original columns c

1

, ...,

23

c

k

and those that are linearly independently of them. (Before the �rst iteration, all columns belong to the

latter.) These two sets of columns are treated di�erently.

The (k + 1)-th iteration excludes the �rst set | columns that are linear combinations of c

1

through c

k

.

This is because the images of the linear combinations are already �xed once we have chosen the images of

the columns c

1

through c

k

, even though the transformation is still incomplete. There is no point in any

attempt to transform the former di�erently. After the k-th iteration, all these columns have nonzeros only

in the last k positions. By this property the (k + 1)-th iteration identi�es and excludes them.

Among the columns in the second set (which have at least one nonzero in the �rst r positions), the (k+1)-

th iteration picks a target column c

k+1

and reduces its height to k + 1 using elementary row operations.

k+1 is the lowest height we can achieve with an invertible linear transformation. For the sake of argument,

suppose we could in fact go further. Then, the images of the target columns c

1

through c

k+1

would all have

heights k or less. These k + 1 vectors span a vector space of k or fewer dimensions because they contain

nonzeros only in the last k positions. They are linearly independent because the corresponding columns

in the original A are linearly independent and the transformation is invertible. However, it is impossible

to �nd more than k linearly independent vectors in a k-dimensional vector space, let alone one with fewer

dimensions.

References

[1] Jennifer M. Anderson, Saman P. Amarasinghe, and Monica S. Lam. Data and computation transfor-

mations for multiprocessors. In Proceedings of Fifth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, July 1995.

[2] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizations for improving data

locality. In Proceedings of Sixth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 252{262, October 1994.

[3] Michal Cierniak and Wei Li. Unifying data and control transformations for distributed shared memory

machines. In Proceedings of ACM SIGPLAN '95 Conference on Programming Language Design and

Implementation, June 1995.

[4] Digital Equipment Corporation, Maynard, MA. DEC 3000 Model 400/400S AXP Technical Summary,

November 1992.

[5] J. Dongarra, J. Du Croz, S. Hammarling, and I. Du�. A set of level 3 basic linear algebra subprograms.

ACM Transactions on Mathematical Software, pages 1{17, March 1990.

[6] Todd A. Dutton, Daniel Eiref, Hugh R. Kurth, James J. Reisert, and Robin L. Stewart. The design of

the DEC 3000 AXP systems, two high-performance workstations. Digital Technical Journal, 4(4), 1992.

[7] Susan J. Eggers and Tor E. Jeremiassen. Eliminating false sharing. In Proceedings of the 1991 Interna-

tional Conference on Parallel Processing, August 1991.

[8] Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing on shared memory multiprocessors

through compile time data transformations. In Proceedings of Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, July 1995.

[9] Y.-J. Ju and H. Dietz. Reduction of cache coherence overhead by compiler data layout and loop

transformation. In Proceedings of the Fourth International Workshop on Languages and Compilers for

Parallel Computing, pages 344{358, August 1991.

24

[10] K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data locality via loop

fusion and distribution. In Proceedings of the Sixth International Workshop on Languages and Compilers

for Parallel Computing, August 1993.

[11] Ken Kennedy and Kathryn S. McKinley. Optimizing for parallelism and data locality. In Proceedings

of 1992 International Conference on Supercomputing, 1992.

[12] Shun-Tak Leung and John Zahorjan. Restructuring arrays for e�cient parallel loop execution. Technical

Report 94-02-01, Department of Computer Science and Engineering, University of Washington, 1994.

[13] Wei Li. Compiling for NUMA Parallel Machines. PhD thesis, Cornell University, Ithaca, NY, August

1993.

[14] Wei Li. Compiler cache optimizations for banded matrix problems. In Proceedings of 1995 International

Conference on Supercomputing, 1995.

[15] Wei Li and Keshav Pingali. A singular loop transformation framework based on non-singular matrices.

In Proceedings of the Fifth International Workshop on Languages and Compilers for Parallel Computing,

August 1992.

[16] Alexander Schrijver. Theory of Linear and Integer Programming. Series in Discrete Mathematics. Wiley,

1986.

[17] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K. Tjiang, S. W.

Liao, C. W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF: An infrastructure for research

on parallelizing and optimizing compilers. SIGPLAN Notices, 29(12):31{37, December 1994.

[18] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Proceedings of ACM

SIGPLAN '91 Conference on Programming Language Design and Implementation, pages 30{44, June

1991.

[19] Michael Edward Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Department of

Computer Science, Stanford University, August 1992.

25

100 200 300 400 500

Matrix order

0

10

20

30

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

MATMUL

20 40 60 80 100

Matrix bandwidth

0

50

100

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

SYR2K

100 200 300 400 500

Matrix order

0

5

10

15

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

GMTRY

256 512 768 1024

Array dimension

0

2

4

6

8

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

CFFT2D

100 200 300 400 500

Matrix order

0

10

20

30

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

CHOLSKY

100 200 300 400 500

Matrix order

0

5

10

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

MXM

20 40 60 80

Matrix order

0

10

20

30

40

50

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

BTRIX

100 200 300 400

Matrix order

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

VPENTA

Original loop
Loop execution only
Loop execution + overhead
(if needed)

(Some curves are not visible
because they are obscured by others.)

Figure 4: Performance with and without Array Restructuring

26

MATMUL SYR2K MXM CFFT2D CHOLSKY BTRIX GMTRY VPENTA
0.0

0.5

1.0

1.5

2.0

E
xe

cu
ti

on
 t

im
e

(n
or

m
al

iz
ed

) Original loop
Restructuring overhead, if needed
Array restructuring
Loop restructuring

N
/A

Figure 5: Comparing Array and Loop Restructuring

27

0 100 200 300 400 500

Tile size

0

10

20

30

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

MATMUL

0 100 200 300 400 500

Tile size

0

5

10

15

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

GMTRY

0 100 200 300 400 500

Tile size

0

5

10

15

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

MXM

0 20 40 60 80

Tile size

0

10

20

30

40

50

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

BTRIX

0 100 200 300 400

Tile size

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

VPENTA

0 100 200 300 400 500

Tile size

0

10

20

30

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

CHOLSKY

0 100 200 300 400

Tile size

0

50

100

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

SYR2K

Tiled
Loop restructured and tiled
Array restructured and tiled

(If tiling is not applicable, execution times
for untiled loops are shown as horizontal
lines without data points.)

Figure 6: Array Restructuring and Tiling

28

Input: A = access matrix

Output: R = Nonsingular matrix that flattens A's columns

m = number of rows in A

R = m-dimensional identity matrix

for r = m downto 1 do

/* Choose target column to flatten. */

Find rightmost column of A with nonzero(s) between rows 1 and r.

if no such column then

return

else

Let column c be the column found.

endif

/* Flatten target column. Top nonzero will be in row r. */

/* `Pivot' to make A[r,c] nonzero. Update R accordingly. */

if (A[r,c] = 0) then

Find a nonzero element among A[1..r,c]. Suppose it is A[s,c].

Exchange row r and row s in matrix A.

Exchange row r and row s in matrix R.

endif

/* Eliminate nonzeros in column c above row r. Update R accordingly. */

for t = 1 to r-1 do

Multiply row r in A by A[t,c]/A[r,c] and subtract from row t in A.

Multiply row r in R by A[t,c]/A[r,c] and subtract from row t in R.

endfor

endfor

Figure 7: Computing an Index Transformation from the Access Matrix

29

