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Abstract
We address the problem of maximizing the speedup of an individual parallel job through the selection

of an appropriate number of processors on which to run it. If a parallel job exhibits speedup that increases
monotonically in the number of processors, the solution is clearly to make use of all available processors.
However, many applications do not have this characteristic: they reach a point beyond which the use of
additional processors degrades performance. For these applications, it is important to choose a processor
allocation carefully.

Our approach to this problem is to provide a runtime system that adjusts the number of processors
used by the application based on dynamic measurements of performance gathered during its execution.
Our runtime system has a number of advantages over user specified fixed allocations, the currently most
common approach to this problem: we are resilient to changes in an application’s speedup behavior due
to the input data; we are able to change the allocation in response to speedup behavior that varies during
the lifetime of the application; and, finally, we are able to make separate processor allocation decisions for
relatively fine-grained phases of the computation, rather than being restricted to a single allocation for all
phases.

This work has been done in the context of shared memory multiprocessors, such as the KSR-2 on which
we ran our experiments, and for iterative parallel applications, those for which the bulk of the execution is
driven by an outer sequential loop. Using both hand-tuned applications from the SPLASH benchmarks and
compiler-parallelized applications from the Perfect Club benchmarks, we show that automatic, dynamic
selection of processor allocations can reliably determine allocations that match the best possible static
allocation, and has the potential to find allocations that outperform any static allocation.

1 Introduction

We consider the problem of maximizing the speedup of an individual parallel job through selection of the
number of processors on which it runs. We imagine that the operating system has made a partition of P
processors available for use by the job. The application’s goal is to determine the number of processors, no
greater than P , that it should actually use to maximize its realized speedup on this run; unused processors are
then released back to the system.

We address this goal by proposing and evaluating experimentally a runtime system that (a) takes dynamic
measurements of application overheads, (b) uses these to estimate current application speedup, and (c) adjusts
the number of processors used by the application in an attempt to maximize speedup. The technique we
develop is meant to replace the currently common practice of leaving processor allocation decisions to the
user of the parallel program: rather than requiring the user to specify the number of processors on which a
job is to be run as part of its submission, the runtime system determines that number automatically. Besides
the advantages of this approach in terms of convenience, it enjoys a number of potential advantages in terms
of performance:
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� It may not be possible a priori to determine the best allocation. Since application performance may
vary significantly as a function of input data, both historical performance data and performance data
obtained from test runs may be unreliable.

� No static allocation may be optimal during the full execution of the job. An application may exhibit dif-
ferent speedup characteristics as its execution evolves over long intervals of time. For such applications,
dynamic adjustments of processor allocations can lead to better performance.

� No single allocation may be optimal for each phase of execution, even during relatively short intervals
of time. Applications may consist of multiple phases with different speedup characteristics. For such
applications, execution of the phases using different allocations may provide better performance than
any fixed allocation.

Our runtime system employs a simple search procedure as the basis of its actions. The search technique
is an adaptation of the method of golden sections [11], which is an efficient technique to find the maximum
of a unimodal function1. The primary modifications to this technique are to account for the fact that
speedup functions, of course, are not necessarily unimodal. However, measurements of a large variety of
parallel benchmarks, including both finely tuned hand-coded programs and compiler-parallelized sequential
programs, show that speedup functions are relatively smooth and, over fairly substantial ranges of processors,
locally unimodal [13]. Therefore, we rely on the golden sections technique to find the optimum allocation
over a local subinterval, and on our heuristic extensions to locate the local subinterval in which the global
maximum lies.

Of course, we cannot rely on a priori specifications of the speedup behavior of the application, as these
are even more difficult for the user to determine than the allocation providing maximum speedup. Therefore,
we rely on runtime measurements of application performance to estimate current speedup, and use these to
guide the search.

As will become clear below, our approach requires that the application be able to adjust to changes in its
processor allocation at runtime. While in the abstract this is possible in both shared memory and message
passing systems (as long as the frequency of changes is not too high), in practice most existing applications
have been written using a simple, static form of data and work partitioning, since they had no reason to
anticipate dynamic adjustment of the number of allocated processors. As it was easier to modify shared
memory applications to include the kind of dynamic scheduling required, our work has been done in that
domain, and more specifically on a fifty processor KSR-2.

For our search procedure to be successful, it is essential that comparisons of the efficiency measurements
made at one processor allocation with those taken at another be meaningful. Since instantaneous efficiency
measures reflect the characteristics of only a small section of the full application code, performing such
comparisons can be problematic. This difficulty could be resolved by measuring efficiency over long intervals
of time (although it would be difficult to determine what constituted a sufficiently long time for an arbitrary
application). However, this would have the disadvantage that each step of the search would take a long time,
thus limiting its effectiveness in reducing job run time.

Instead of using this generic approach, we exploit a characteristic shared by a large variety of scientific
parallel applications. In particular, we consider only iterative parallel applications2. An iterative application
is one in which the majority of the execution is driven by a sequential loop (whose body may be entirely
general, involving the execution of many parallel phases, subroutine calls, etc.). For such applications, we
estimate speedups for individual iteration executions. Thus, the execution of a single iteration provides a
basis by which to reasonably compare the performance of the application as processor allocations are varied.
Further, empirical evidence shows that successive iterations tend to behave similarly, so that the measurements
taken for a particular iteration are good predictors of future behavior.

1For our purposes, a function f(x) is unimodal over an interval [a; b] if there is some x

�

2 [a; b] such that f(x) is monotone
non-decreasing in [a; x

�

] and monotone non-increasing in [x

�

; b]

2This is not as severe a constraint as it may seem, as a large number of scientific applications are iterative. In [13], we found that
five of the ten SPLASH applications and all seven of the Perfect Club applications we could compile are iterative. Furthermore, we
believe that, with some modifications, our algorithm could also be applicable to non-iterative applications that use general runtime work
organization paradigms, such as work heap [1, 12, 19].
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We call the process by which an application determines for itself the best number of processors to use
self-tuning. In what follows, we develop three approaches to self-tuning of increasing sophistication. In the
first, we simply use our search procedure to identify a good processor allocation at the beginning of execution,
and then use that allocation for the remaining lifetime of the execution. In the second, we perform the search
procedure repeatedly, either at fixed intervals or in response to a dramatic change in measured efficiency
(indicating that a phase change has occurred). Finally, we show how processor allocation decisions could be
made for each parallel phase occurring within a single iteration.

The remainder of the paper is organized as follows. Section 2 discusses the applications that we use and
documents our experimental platform. Section 3 discusses the runtime measures used by our search procedure.
Section 4 defines the basic self-tuning schemes we employ, and Section 5 examines their performance
experimentally. Section 6 extends the basic schemes to allow more fine grained scheduling decisions, and
examines the implications to performance. Section 7 discusses related work. Section 8 concludes the paper.

2 The Experimental Environment

In this section, we document our hardware and software infrastructure, and describe the set of applications
used in our work.

2.1 Hardware and Software Platform

All measurements were done on a Kendall Square Research KSR-2 COMA shared memory multiprocessor.
Our machine consists of fifty 40MHz dual-issue proprietary processors, partitioned into two clusters of 26 and
24, respectively. Each processor is connected to a 256-KByte data cache, 256-KByte instruction cache, and 32-
MByte attraction memory. Processors in each cluster, and the clusters themselves, are connected by separate
1-GByte/second slotted ring networks. The attraction memories cooperate to implement a sequentially
consistent, globally-shared address space. A processor stalls when attempting to access a memory location
that either is not present in its caches, or is present but not in the required state (e.g., exclusive ownership is
required for a write operation).

Each node in the KSR-2 contains a hardware monitoring unit, called the event monitor, that tracks
information such as cache misses and processor stall time. This information is made available to the system
and user jobs through a set of read-only registers.

The KSR-2 runs a variant of the OSF/1 UNIX operating system. We use the KSR KAP preprocessor
to parallelize sequential applications, and the KSR PRESTO runtime system and CThreads [4], an efficient
user-level threads package, as the vehicles of parallelism. We instrument CThreads using the KSR-2’s event
monitor to perform runtime efficiency measurements.

2.2 Applications

Table 1 describes the applications used in our experiments, including the type, origin, a characterization of
the run length, and a brief description of each. As mentioned in Section 1, we restrict ourselves to considering
only iterative applications. The SPLASH applications of this class exhibit sufficiently similar behavior that
we were able to simplify (and shorten) our experiments by selecting only those listed in Table 1. Although
we were unable successfully to compile all of the Perfect Club codes using the KSR KAP compiler, all of
those that did compile produced an iterative structure, and all such are listed in Table 1.

Our application suite, then, consists of three hand-coded parallel and seven compiler-parallelized appli-
cations. All applications are iterative and, except for Barnes, have slowdown points that are less than the
maximum number of processors on our experimental system. (Basic speedups for these applications are
shown in Figures 2 and 3, in Section 5, where we examine the performance of our approach.) In our exper-
iments, Barnes and ARC2D were run for only fifty iterations because otherwise runs would have taken too
long to complete. The Perfect Club applications and USAero were run on their default data sets.
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Name Type Source #Iterations Runtime Description

Grav hc Academic 200 343 N-body simulation.
Barnes hc SPLASH2 50 5500 Barnes-Hut N-body simulation.
MP3D hc SPLASH 200 276 Simulation of rarefied hypersonic flow.
ADM cps Perfect Club 720 432 Hydrodynamic simulation with mesoscale hy-

drodynamic model.
ARC2D cps Perfect Club 50 8583 Analysis of fluid flow problems using Euler

equations.
DYFESM cps Perfect Club 1000 192 Analysis of symmetric anisotropic structures.
FLO52 cps Perfect Club 150 378 Analysis of transonic inciscid flow past an airfoil

using unsteady Euler equations.
QCD cps Perfect Club 2000 172 Simulation of gauge theory using a Monte

Carlo-based algorithm.
TRACK cps Perfect Club 100 1404 Tracking of moving targets based on sensor

inputs.
USAero cps Industry 1620 3350 CFD computation.

Table 1: Benchmark Applications (hc = hand-coded, cps = compiler-parallelized sequential). #Iterations is
the number of iterations for which the program executes; Runtime is the execution time in seconds on a single
processor.

To avoid loss of efficiency due to dynamic adjustment of processor allocations, we modified all hand-coded
applications to dynamically match the number of threads to the number of processors at the beginning of
each iteration [18]. For compiler-parallelized applications, we were able to insert this change into the KSR
PRESTO runtime system, and so required no changes to the compiler. All applications were changed to
indicate to the runtime system when a new iteration was begun.

3 Runtime Measurements

A number of different runtime metrics can be appropriate for self-tuning, including execution time and
efficiency. In this study, we have chosen to use efficiency because it is directly related to speedup (which
itself is not directly measurable). For example, changes in efficiency from one iteration to another signify
corresponding changes in speedup, whereas differences in the time to execute two iterations do not necessarily
mean that speedup has changed, since the base execution times of the iterations may be different. To calculate
efficiency, we directly measure overheads that cause loss of efficiency, and subtract these from 1.0.

It is well known that loss of efficiency in shared memory systems arises from:

� Parallelization overhead. Parallel programs may incur computational overheads that are not present in
sequential programs such as per-processor initialization, work partitioning, synchronization, etc.

� System overhead. Parallel programs may incur additional system overhead when running on multiple
processors because of per-processor system events, such as page faults, clock interrupts, etc.

� Idleness. Parallel programs may periodically allow assigned processors to idle because of load imbal-
ance, synchronization constraints, etc.

� Communication. Parallel programs are constructed of threads of execution that may need to com-
municate with each other. If data required by an executing thread is not immediately available, it
must be acquired. On shared memory systems, such as our KSR-2, such communication is required,
for example, when data does not currently reside in the local cache, or is not in an appropriate state.
Processors in many shared memory systems stall in this situation, that is, they execute no instructions
until the remote data becomes available.
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We have shown previously [13] that we can accurately predict application efficiency by measuring only
system overhead, idleness, and processor stall; parallelization overhead is typically small. Thus, we require
only estimates of the other three components to accurately assess efficiency.

On the KSR-2, we rely on a combination of hardware and software support to measure system overhead,
idleness, and processor stall. The per-node event monitors available on the KSR-2 maintain three critical
hardware counters: elapsed wallclock time, elapsed user mode execution time, and accumulated processor
stall. Thus, measuring system overhead and processor stall is simply a matter of reading these three registers
at the beginning and end of each iteration. Measuring idleness is only slightly more involved: we instrument
the CThreads synchronization code to keep elapsed idle time using the wallclock hardware counter. (This
approach assumes that all application synchronization takes place through calls to the CThreads library,
rather than through direct manipulation of shared variables.) Our idleness measurement scheme is relatively
overhead free because idleness accounting is performed when the processor would otherwise not be doing
any useful work.

We rely on the application to call appropriate runtime routines at the beginning and end of each iteration.
For this study, we have inserted these calls into each application in our application suite by hand. In
many instances, however, we believe that it would be possible for compilers to automatically detect iterative
behavior and insert the calls to the runtime system appropriately. Jeremiassen [6] has shown that it is possible
to automatically detect phase behavior for many hand-coded applications. For our application suite, only
FLO52 had a non-obvious iterative structure: its useful iterative loop is hidden in an outer loop that drives the
program to solve multiple data sets. In cases like these, compilers may have to rely on programmer hints to
identify the central iterative structure.

4 Algorithms for Self-tuning

In this section, we describe a family of self-tuning algorithms that assumes no knowledge of application
structure other than the fact that the application is iterative.

4.1 A Basic Self-Tuning Algorithm

We start with two assumptions:

� Speedup is a function of a single variable; S(p) : I ! R, where the domain is [1; P ].

� S(p) can be evaluated for any p, 1 � p � P , by measuring the efficiency E(p) of any one iteration and
solving S(p) = p�E(p).

Under these assumptions, self-tuning reduces to a single variable optimization problem, albeit with one
unusual characteristic: evaluations of S(p) have different costs for different values of p. Thus, multiple
evaluations of S(p) at p’s far away from the optimal value can lengthen the very execution that we are trying
to minimize.

We base our current implementation of self-tuning on a simple optimization technique, the method of
golden sections [11], which searches for the maximum of a function over a finite interval by iteratively
computing function values and narrowing the interval in which the maximum may occur. The golden sections
technique is applicable to intervals over which the function is unimodal. Figure 1 illustrates two typical steps
in the iteration, which involves the successive narrowing of an interval in which the maximum must fall. At
each step, the function’svalues at four points are known. By comparing the values of the four points, and using
the fact that there is a single local maximum, the interval of interest can be narrowed by eliminating either the
leftmost ([a; b]) or rightmost ([c; d]) subintervals. The efficiency of the technique comes from choosing the
locations of the interior sample points so that they can be reused in going from one iteration to the next, thus
requiring only a single new sample function value at each step.
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Our adaptation of this technique begins by executing one iteration using all P available processors. This
allows us to estimate S(P ). Since speedups can never be superlinear3, we know that the globally best number
of processors must fall in [S(P ); P ]. Our search therefore starts in this interval. We compute the probe
points within this interval given by the golden ratio, and execute an iteration under each. Since we know
that S(S(P )) is no greater than S(P ), we need not run an iteration with S(P ) processors: the bound on the
speedup at that number of processors is sufficient to carry out the golden sections search.

From this point, our search is identical to golden sections, with the exception that we have to handle function
evaluations that indicate that the speedup function over the interval of current interest is not unimodal. When
this occurs, we choose the largest subinterval of the current interval for which the estimated speedups are
conformal with a unimodal function, and which contains the largest speedup found so far. While this procedure
is not guaranteed to choose the correct interval, it has worked well in practice.

This search procedure converges quickly. At the start, three evaluations are required to compute the four
required values; the procedure terminates when these four values are adjacent. The maximum number of
evaluations required is therefore 3 + dlog

GR

4

P

e, where GR is the golden ratio (� 0:618). For reference, at
most 9 evaluations are required at P = 50, and at most 10 evaluations at P = 100.

4.2 Refining the Basic Self-Tuning Approach

The self-tuning algorithm just described makes three assumptions, the validity of which affect its ability to
find good allocations:

� Assumption 1: the speedup function of an application is stable over long intervals of time. The basic
self-tuning procedure assumes that the speedup values it sees at the beginning of the job’s execution are
good representations of the job’s behavior for the indefinite future. In practice, this is not always true:
an application’s speedup can change slowly but significantly as it executes. Thus, the allocation found
by self-tuning at the beginning of an application’s execution may not be the appropriate allocation later
in the execution.

� Assumption 2: the speedup characteristics of individual iteration executions are stable over short
intervals of time. Even if speedup does not change substantially over long periods of time, speedup
varies to some degree from iteration to iteration for all applications. Such variations, which we call
jitter, can cause basic self-tuning to converge to a sub-optimal number of processors.

� Assumption 3: the search procedure employed will locate the locally unimodal interval in which
the global maximum speedup occurs, even for speedup functions that contain many locally unimodal
subintervals. Especially at the beginning of the search, probe points can be widely separated. This can
cause the search to exclude the interval in which the global maximum occurs.

3This is a direct consequence of our method of calculating efficiency, which is to subtract measured inefficiencies from 1.0.
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In practice, we found that although the first two assumptions were violated in our environment, the third
was not. In theory, though, self-tuning could be extended in several ways to deal with erroneous exclusion of
the correct interval. Possible extensions include randomly evaluating S(p) outside the current search interval,
employing a covering technique [17] by evaluating S(p) at regular intervals within [S(P ); P ], etc. We did not
implement either of these extensions because our basic algorithm did not encounter any difficulties of this sort
in our experimental environment. Therefore, it would have been impossible to evaluate the cost effectiveness
of the proposed modifications.

Violationsof assumptions 1 and 2, which we found to have a noticeable detrimental impact on performance,
can be addressed by re-running the search procedure a number of times during the execution of a job. Such
re-evaluation of the search would elicit adaptation to slowly evolving speedup behavior, and would allow us
to escape from unfortunate search results obtained on any one attempt.

There are two approaches to deciding when to rerun the search procedure. In one, re-execution of the
search is initiated only when the difference between the recently measured efficiency of the application and
the efficiency measured for this allocation (during the last search procedure) differ by more than a threshold
amount. This approach, which we call change-driven self-tuning, is intended to minimize the overhead of
re-executions of the search procedure by triggering them only when it appears likely that there has been a
genuine change in the application’s behavior.

The second approach is simply to rerun the search procedure periodically, that is, after every fixed number
of iterations has been completed. This approach, which we call time-driven self-tuning, is intended to allow
us to limit the damage caused by any single search that converges to a grossly incorrect allocation.

Both these approaches, as well as the basic self-tuning procedure, are examined in the performance results
presented in the next section.

5 Performance

In this section, we evaluate the performance of three variants of our self-tuning algorithm. The three
implementations are:

� Basic: Run self-tuning once at the beginning of the execution.

� Change-driven: The basic algorithm as above, but reinitiate self-tuning whenever a significant change
in speedup is detected.

� Time-driven: The change-driven algorithm as above, but in addition, restart self-tuning every 100
iterations. If a restarted search settles on the same number of processors as before, double the wait until
the next restart.

Figure 2 depicts the speedup curves of hand-coded applications when run under each of the four possible
processor allocation disciplines: no tuning (use all available processors), basic self-tuning, change-driven self-
tuning, and time-driven self-tuning. Figure 3 depicts similar curves for compiler-parallelized applications.

These figures provide the context for the following set of observations regarding the behavior of runtime
self-tuning processor allocation policies.

Self-tuning imposes very little overhead. This can be seen by examining the curves for applications with
good speedup: Grav and Barnes in Figure 2, and ARC2D in Figure 3. These applications continue to exhibit
good speedup even when using (all forms of) self-tuning, with the curves for the self-tuning policies falling
close to or on top of the original (no tuning) speedup curves.

Basic self-tuning often significantly improves performance over no tuning. While self-tuning — basic
or otherwise — can do little to aid the three aforementioned well-performing applications, basic self-tuning
significantly improves speedup for all of the remaining applications (with the exception of USAero, discussed
next). This improvement can be seen by comparing the no tuning and basic self-tuning curves for MP3D in
Figure 2, and for all applications except USAero in Figure 3.
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Figure 2: Speedup of hand-coded applications.

Change-driven self-tuning can significantly improve performance over basic self-tuning. As mentioned
in Section 4.2, basic self-tuning is fairly static in that once an allocation is chosen, it remains unchanged for
the lifetime of the job. If the job’s speedup characteristics change over time, this rigid allocation choice can
result in poorer performance than could be gained by reevaluating the choice when the change is noticed. As
seen in Figure 3, the performance of USAero, an application whose speedup does change with time, is indeed
enhanced by such change-driven self-tuning.

Time-driven self-tuning is not useful for the applications we studied. As discussed in Section 4.2,
time-driven self-tuning is meant to address the situation in which jitter in consecutively measured iteration
efficiencies causes the search procedure to choose poorly. For the applications available to us, this jitter
appears to be small enough so that this basic instability in the search procedure does not cause problems;
given this, periodically initiating self-tuning imposes overhead that yields performance poorer than gained
via either basic or change-driven self-tuning.

The performance benefit of self-tuning can be limited by the cost of probes. As stated previously, self-
tuning imposes little overhead on applications that achieve good speedup. For such applications, S(P ) is
reasonably close to P , implying that the interval searched by the self-tuning procedure ([S(P ); P ]) is fairly
small. Furthermore, the cost of probing (evaluating speedup) at various points within the interval is quite
small, because speedups at those points are quite good. Applications that achieve poor speedup, on the other
hand, suffer because S(P ) is not close to P , implying that [S(P ); P ] is large. Furthermore, the cost of
probing points within the interval is large because speedups at those points are poor. For this reason, although
applications with poor speedup (most of those in Figure 3) are helped in the large by self-tuning, speedup does
degrade somewhat due to the cost of the self-tuning procedure. That this degradation is due mainly to the
cost of searching can be seen by considering the curves for QCD and TRACK in Figure 3. QCD runs many
more iterations than do the other applications (see Table 1), so the cost of the search procedure consumes a
smaller fraction of execution time. In the case of TRACK, the slope of its slowdown is not as steep as that
of the other applications. Therefore, probing at the slow points has a less detrimental impact on TRACK’s
runtime than it does on that of the other applications.
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Figure 3: Speedup of compiler-parallelized applications.
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We have seen that a fairly simple procedure can be used to achieve performance that is in all cases very
near that achievable by statically choosing, with oracular knowledge, the perfect number of processors on
which the application should be run. The schemes described so far are, however, fairly coarse-grained in that
they settle for long periods on a single number of processors. In the next section, we investigate whether
performance can be further improved by using more information about program structure to choose processor
allocations at finer granularity.

6 Multi-phase Self-tuning

The self-tuning methods described above choose a single number of processors to be used during each
iteration. The iterations of some applications, however, are composed of multiple parallel phases, each of
which may have a distinct ideal number of processors to use when executing. In this section we explore the
possible advantages of such multi-phase self-tuning.

In the discussion that follows, a phase corresponds to a specific piece of code, e.g., a parallel loop in a
compiler-parallelized code, or a subroutine in a hand-parallelized program. Each phase may be executed
zero or more times per iteration, depending on the outcome of conditional expressions and sequential loops
contained within a single iteration. We assume that on each entry to and exit from a phase, the runtime system
is provided with the unique ID of the phase.

Let there be N phases in an iteration. The phase allocation problem is to find a vector (p
1

; p

2

; :::; p

N

) that
maximizes performance, where phase n executes on p

n

processors. Clearly, the techniques presented in the
previous section are special cases where p

i

= p

j

for 1 � i; j � N .

There is an obvious approach to the solution of the phase allocation problem that simply extrapolates from
the basic self-tuning technique: we merely apply self-tuning to each phase independently, using exactly the
same search technique as before. We call this approach independent multi-phase self-tuning. The advantage
of this technique is its simplicity, and the assurance that the procedure converges quickly. The disadvantage
is that the final allocation vector may give performance that is far from optimal because it is based on the
premise that the performance of each phase depends only on its own allocation and not on the allocations
for any other phases. In practice, this is not the case because the allocation in phase n dictates a problem
partitioning, and that partitioning affects the amount of communication required in phase n+1, even for fixed
p

n+1

.

To account for the relationship of the performance in one phase to the allocation decisions made for other
phases, a more complicated search procedure is required. In particular, we propose a randomized search
technique, called inter-dependent multi-phase self-tuning, based on simulated annealing [7].

6.1 Inter-dependent Multi-Phase Self-Tuning

The basic operation of this technique is to choose an initial candidate allocation vector, to evaluate the
performance at this vector, to select a modified vector to consider, to evaluate performance at the modified
vector, and then to accept or reject the modified vector as the new candidate vector based on the outcome.

In somewhat more detail:

� Choosing an initial candidate allocation vector. In practice, it is important to avoid candidate vectors
that yield poor performance, as these can greatly lengthen the execution time we are attempting to
minimize. Our approach to finding a good initial candidate is to begin by performing the basic self-
tuning search described earlier. This yields an allocation vector (obtained by using the single fixed
allocation found by that procedure for all phases) that should be nearly optimal among such fixed
vectors. We run the application for one iteration using this fixed allocation vector, and measure the
efficiencies of each phase during that execution, using these to estimate phase speedups. We use the
ratio of the speedup of each phase to the overall iteration speedup as a multiplier for that phase’s initial
processor allocation; that is, the initial allocation for phase n, p1

n

, is the fixed number of processors
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found by the initial search procedure times that ratio. The initial candidate vector for our randomized
search is then (p

1

1

; p

1

2

; :::; p

1

N

).

� Selecting a new candidate vector. After running for one iteration at the currently chosen candidate
vector, a new candidate vector must be selected. This is done by first randomly selecting some fraction
of the N elements in the original vector. (In our experiments, we selected 40% of the N elements.)
These k elements are then modified by randomly choosing a value near their values in the original
vector. That is, for the next iteration i, pi

n

is selected by randomly choosing a value near p1
n

.

� Evaluating and accepting new candidate vectors. A new candidate vector is evaluated by running under
it for one iteration, measuring the total iteration efficiency, and using this to estimate iteration speedup.
If that speedup is higher than that for the previous candidate vector, the new vector becomes the current
candidate; if speedup is instead lower, we randomly decide whether or not to accept the new vector
as the current candidate. This randomized acceptance of seemingly unpromising candidates is a key
aspect of simulated annealing approaches, as it allows them to escape from local optima in order to find
a better, global optimum.

� Terminating the search. Presently, we terminate the search after a fixed number of iterations. Once the
search has terminated, we adopt for further iterations the iteration vector that resulted in the highest
iteration speedup. (Note that this is not necessarily the final candidate vector, because of the randomized
acceptance procedure.)

We now compare the performance of the two multi-phase self-tuning algorithms to that given by no
self-tuning and basic self-tuning.

6.2 Performance

Multi-phase self-tuning obviously requires that applications’ gross iterations exhibit internal phase structure.
While all of the compiler-parallelized applications exhibit this, of the hand-coded applications, only Grav
has multiple significant phases of execution within a single iteration. To illustrate the potential advantages of
the multi-phase schemes, Figure 4 compares the speedup of Grav under the multi-phase schemes to using no
self-tuning and basic self-tuning; Grav’s behavior using both small and large data sets is shown.
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Figure 4: Multi-phase Speedup.

We see that the multi-phase techniques are able to achieve performance not realizable by any fixed
allocation. This occurs for two reasons. First, two of Grav’s five phases have performance that falls off
sharply once a relatively modest number of processors is reached, while the others are able to use all available
processors. By allowing each phase to choose a distinct allocation, we are able to obtain near optimal
performance in each phase, whereas any fixed allocation would have to make a number of compromises.

Second, successive phases of Grav do not exhibit a very tight data coupling. This is the result of this
implementation’s use of a very simple work queue paradigm, so that the assignment of work to processors
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in each phase is relatively random. We speculate that if a more careful work assignment were performed, at
least some of the advantage of multi-phase self-tuning over basic self-tuning would disappear.

This speculation is borne out by preliminary results for the compiler-parallelized codes, not given here.
Multi-phase self-tuning failed to outperform basic self-tuning in any of these codes. Examination of these
applications, which use block scheduling of parallelized loops to processors, shows that successive parallel
phases reference overlapping sets of data. This overlap, in conjunction with the block scheduling, means that
there is a disadvantage to scheduling successive phases on differing number of processors, because of the
communication penalty this induces.

Our current work includes further examination of this question. In particular, it may be that a phase
allocation search technique that takes this effect into account (and so changes the allocations of consecutive
phases in similar ways) would find profitable allocations that our purely random search technique did not.

Finally, we note that inter-dependent self-tuning yields better performance than independent self-tuning.
This shows that, even for an application where the dataflow relationships of one phase to the next are quite
weak, attempting to converge to an appropriate allocation for one phase without regard to decisions being
made for other phases results in poor final choices. This further motivates our continuing work to refine the
inter-dependent search approach.

7 Related Work

Many researchers have studied the use of application characteristics by processor schedulers of multipro-
grammed systems. This work differs from ours in that its goal is to determine an appropriate allocation to
each of several simultaneously scheduled jobs, typically with the goal of minimizing average response time.
Majumdar et. al. [9], Chiang et. al [3], Leutenegger and Vernon [8], Sevcik [15, 16], Ghosal et. al. [5],
Rosti et. al. [14] and others have proposed using application characteristics such as efficiency, speedup,
and average parallelism to improve the performance of static processor schedulers. More recently, Brecht
[2] has proposed that application characteristics such as efficiency and execution time can profitably be used
by dynamic processor schedulers as well. All of these studies, however, assume the availability of accurate
historical performance data, provided to the scheduler simultaneously with job submission. Furthermore,
they focus on overall system performance, as opposed to the performance of individual applications.

McCann et. al. [10] have proposed a dynamic scheduler that uses application provided runtime idleness
information to dynamically adjust processor allocations to improve processor utilization. Although the
performance of individual applications can improve because each is likely to receive more processor time under
this dynamic allocation policy, this occurs only in the context of a multiprogrammed system. Furthermore,
lack of parallelism is the only source of inefficiency they consider.

8 Conclusions

We have proposed a technique to automatically regulate the number of processors used in the execution of
a parallel program so as to maximize its speedup for that run. Our approach relies on the ability to measure
program inefficiencies resulting from load imbalance, contention for shared critical sections, communication,
etc. We have shown how such measurements can conveniently be performed by a runtime system for both
hand-coded and compiler-parallelized programs.

We have demonstrated that simple search procedures, guided by the runtime measurements, can automat-
ically select appropriate numbers of processors on which to run applications. Our approach thus relieves the
user of the burden of determining the precise number of processors to use for each input data set. Additionally,
because our runtime technique has the ability to adjust to changes in the optimal processor allocation as it
evolves during the execution of the program, and as well to allocate differing numbers of processors over short
intervals of execution of different pieces of code, it has the potential to outperform any statically specified
allocation.
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Finally, we believe that self-tuning is especially promising for compiler-parallelized applications. For
these applications, the compiler must determine which loops contain sufficient work for it to be worthwhile
executing them in parallel. Due to the difficulty of making this determination statically, the compiler must
either be conservative or else be subject to a high possibility of a mistake. Our system allows this decision to
be delayed until runtime, and gathers enough information to make a correct decision.
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