
Using Runtime Measured Workload

Characteristics in Parallel Processor Scheduling

Thu D. Nguyen, Raj Vaswani, and John Zahorjan

Department of Computer Science and Engineering, Box 352350

University of Washington

Seattle, WA 98195-2350 USA

Technical Report UW-CSE-95-10-01

Using Runtime Measured Workload Characteristics in Parallel

Processor Scheduling

Thu D. Nguyen, Raj Vaswani, and John Zahorjan

Department of Computer Science and Engineering

University of Washington, Seattle, WA 98195

October 23, 1995

Abstract

We address the design of practical scheduling policies for scalable, shared memory multi-

processors. In particular, we propose and evaluate experimentally processor allocation policies

that use information about parallel job execution characteristics in making their decisions. In

contrast to existing processor allocation work, which for the most part has relied on perfect

information supplied before job execution, we require no a priori information, instead relying

on runtime measurement of executing jobs.

The experimental results we present validate the following observations:

� The use of runtime measurements of workload characteristics can signi�cantly improve

performance relative to disciplines that are oblivious to these characteristics, even given the

inherent inaccuracies in the measurements and the overhead of the dynamic reallocations

that approaches based on them require.

� Runtime measurements are su�cient for the scheduler to achieve performance surprisingly

close to that possible when perfect, a priori information is available.

� The primary performance loss, relative to the use of a priori information, is due to the

transient poor decisions of the scheduler as it acquires information on the running appli-

cations, rather than to the overhead of measurement itself.

Additionally, we consider both interactive environments, in which a response time directed

scheduler is appropriate, and batch environments, in which maximizing useful instruction through-

put is the primary goal.

Our experiments are performed on a prototype implementation running on a 50-node KSR-2

shared memory multiprocessor. A �nal novel aspect of our work is the use of both hand and

compiler parallelized programs in our test workloads.

1 Introduction

It seems intuitively clear that knowledge of job characteristics is an advantage to a processor sched-

uler in any computer system. For example, in both sequential and parallel machines, estimates of

basic job length allows some bias towards shortest-job-�rst, leading to reduced average response

times.

This paper considers the use of information on job speedup and e�ciency in the scheduling of

parallel jobs on parallel machines. There has been considerable work on this topic in the past. A

great deal of this work has been involved with the interesting question of how best to schedule jobs

1

when given perfect information about speedup, a fundamental attribute of parallel workloads (e.g.,

[21, 8, 3, 2], among many others). While it would be useful to understand how to best schedule a set

of jobs given a priori information on their speedups, such information is di�cult, if not impossible,

to specify accurately in practice

1

because of the sensitivity of job performance to the input data set

and to the relative locations of allocated processors on the machine's interconnection network.

As an example, consider the MP3D application from the SPLASH [23] benchmark suite when run on

the KSR-2 multiprocessor. The KSR-2 has an interconnection network that is a hierarchy of rings.

The basic communication time between two rings is roughly six times that for communication within

any one. Because of this, MP3D, which has poor locality, achieves optimal speedup at a number of

processors that depends strongly on the location of those processors. In particular, if all processors

are located on a single ring, MP3D peaks at 12 processors. If allocated processors are split across two

rings, performance peaks at 24 processors. In both the cases that the user requests 12 processors,

but the ones allocated are on two rings, and the user requests 24 processors, but they are all on

one ring, the achieved speedup is roughly half that of the actual optimum. Thus, even historical

information on job performance is not su�cient for the user to provide accurate information on the

optimum number of processors to allocate in its next execution.

The purpose of this paper is to determine whether runtime measurements can be obtained su�ciently

cheaply, and with su�cient accuracy, to be used in making scheduling decisions in a way that

approaches the performance attainable when omniscient a priori information is available, but without

requiring that information. Taken in this context, this paper describes work intended to address the

way in which realizable schedulers might make use of information on job characteristics, focusing

particularly on job speedup and e�ciency.

While at �rst glance it would appear that runtime measurements of job behavior are clearly useful,

the actual situation is considerably more complicated, especially in parallel systems. In particular,

the value of runtime measurements to parallel processor allocation policies depends on the answers

to the following questions.

� How can speedup and e�ciency be measured at runtime with acceptably high accuracy and low

overhead?

� Do parallel applications have su�ciently stable characteristics that their recent past is a good

indicator of the near future? (For example, given the well known phase behavior of these

workloads, one might reasonably guess that this is not the case.)

� How can the measures taken when an application is run on p processors be used to estimate

its performance when run on q?

� Do the costs of the potentially many reallocations required in the searches (which are inherent

in this approach) to �nd appropriate �nal allocations outweigh the bene�ts?

Our goal is to help answer these questions.

We begin by presenting a scheme that allows the runtime estimation of speedup and e�ciency, at

low overhead. The key to our approach is the measurement of the primary sources of ine�ciency:

communication, idleness due to competition for critical sections and load imbalance, and system

overheads.

We then consider how to use the information so obtained in making scheduling decisions. We

examine two distinct scenarios: interactive systems, where minimizing response time is the goal,

1

Of course, supercomputer users running the same application repeatedly on similar data sets are accustomed to

providing this information, based on the performance of prior runs. However, at the very least this is an inconvenience.

At the worst, apparently insigni�cant changes in the data set may in fact have a substantial e�ect on the optimum

allocation, although this could go undetected by the user.

2

and batch systems, where maximizing the rate at which useful work is completed is the goal. Both

kinds of computing already have signi�cant roles on existing large scale parallel platforms [7]. For

the interactive environment, we use measured e�ciencies to guide adjustment of the number of

processors given to each running job, attempting to maximize its speedup. For batch environments,

our scheduler allocates processors in an attempt to maximize current system e�ciency.

Evaluation of the extent to which runtime measurements can be used to help the scheduler is done

through the execution of benchmark programs on prototype implementations running on a KSR-2.

The benchmarks we use are taken from the SPLASH [23] and Perfect [1] benchmark suites, the best

benchmarks available to us for this work.

Our central result is that the use of runtime measurements of job behavior can improve scheduler

performance substantially, despite the inevitable noise in the gathered data and the overheads in-

volved in its use, and that such schedulers can approach the performance attainable when perfect

information on job speedups is available a priori.

1.1 Outline

In the next section we discuss our techniques for measuring job speedup and e�ciency characteristics

at runtime. Section 3 presents a response time oriented scheduler that makes use of these measure-

ments, and experimental results for it. In Section 4 we turn to the problem of scheduling batch work

to maximize its completion rate, again proposing a policy that employs runtime measurements and

evaluating its performance experimentally. Section 5 concludes our work.

2 Measuring Job Speedup and E�ciency at Runtime

2.1 What We Measure

One approach to using measured job characteristics in formulating scheduling policies is to exploit

general, long-term characteristizations of the workloads (e.g., [12]). An example of this from se-

quential systems is the use of feedback scheduling: the success of this approach is implied by the

empirical validity of the assumption that a job that has run for a long time is likely to continue

running for a proportionally long time. Exploiting workload characteristics in this way does not

require runtime measurements of individual job characteristics.

A second approach is to use historical information from previous executions of individual jobs to

provide job-speci�c information when the job is submitted. Finding and determining how to exploit

such long-term characterizations for production parallel workloads is an important topic, and has

been an aspect of much work in this area (e.g., [8, 20, 22, 3]).

In this paper we concentrate on a third approach, using the speci�c, recently measured character-

istics of the currently running jobs to optimize performance for the speci�c workload in execution.

(Sobalvarro and Weihl [24] take a similar approach in an attempt to relax the constraints of co-

scheduling.) As we will show, this approach can o�er substantial bene�ts. It also has the advantage

of being applicable independently of long-term production workload characteristizations, which is

especially important in light of the nascence of production parallel programming: many of these long-

term properties are likely to change in response to new hardware architectures, to improvements in

parallelizing compiler technologies and runtime support systems, and to a continuing expansion in

the diversity of applications run on parallel platforms.

The particular job characteristics we use, and so must measure, are speedup and e�ciency. These are

obviously key aspects of parallel job execution, and so seem like good candidates for use in making

3

scheduling decisions. In the next subsection, we explain how we obtain them through runtime

measurement.

2.2 Obtaining Runtime Measurements of Speedup and E�ciency

The basic parallel job characteristics we wish to exploit are speedup and e�ciency. While these

measures are normally applied to the complete execution of an application (for example, speedup on

P processors is the time to complete divided by the time to complete on a single processor), to be

useful in our work we must take a more short-term view. In particular, we wish to measure speedup

or e�ciency over the fairly short-term past, with the intention of relying on it as a predictor of the

near-term future. We therefore use the terms speedup and e�ciency in this (more instantaneous)

sense.

While speedup and e�ciency are of course intimately related, in practice one (e�ciency) is rather

easily measured, whereas the other (speedup) is not. Imagine trying to estimate speedup directly by

measuring the time required to complete some identi�able unit of application work. If we take that

measurement when the application is running on P processors, we have no way to roll the application

state back and remeasure when running on a single processor. The best we can do is to measure

the next similar unit of work; in the common case of applications with an iterative structure, we

might measure the next iteration, for instance. Unfortunately, the amount of work inherent in the

application can vary from iteration to iteration, and so we have no way to determine if comparing

times from separate iterations is valid.

Because of this di�culty, we instead measure e�ciency, or more precisely, we measure the ine�cien-

cies due to overheads and subtract these from 1.0. When speedup information is required, we then

infer it from our e�ciency estimate.

It is well known that loss of e�ciency in shared memory systems arises from a combination of

parallelization overhead (e.g., per-processor initialization, work partitioning, and synchronization),

system overhead (e.g., events such as page faults and clock interrupts), idleness (e.g, due to load

imbalance, synchronization constraints, and sequential portions of execution) and communication.

Our experience with a wide variety of benchmark programs shows that we can accurately predict

application e�ciency by measuring only system overhead, idleness, and communication; paralleliza-

tion overhead is typically small. Thus, we require only estimates of the other three components to

accurately assess e�ciency.

On the KSR-2, we rely on a combination of hardware and software support to measure system

overhead, idleness, and communication costs. The KSR-2 has per-node event monitors that maintain

three critical hardware counters: elapsed wallclock time, elapsed user mode execution time, and

accumulated processor stall

2

. Thus, measuring system overhead and communication is simply a

matter of reading these three registers periodically. Measuring idleness is only slightly more involved:

we instrument the Cthreads synchronization code [4] to keep elapsed idle time using the wallclock

hardware counter. Our idleness measurement scheme is relatively overhead free because idleness

accounting is performed when the processor would otherwise not be doing any useful work.

2

On shared memory systems, such as the KSR-2, communication is required whenever data does not currently

reside in the local cache, or is not in an appropriate state. Processors in many shared memory systems stall in

this situation, that is, they execute no instructions until the remote data becomes available. Thus, processor stall

corresponds to communication cost. On message passing machines, measuring performance loss due to communication

would be even more straightforward, requiring only software support

4

2.3 The Interval of Measurement

There are two possible approaches to choosing measurement intervals: doing so in a way that is

transparent to the application, and relying on application assistance. Obviously, the application

independent approach is preferable, if it can be made to work.

The simplest application independent measurement technique is to take samples at �xed intervals.

However, choosing the interval over which a single measurement is taken is a di�cult problem. On

the one hand, for the individual samples to be reliable, the measurement interval must be long

enough that the job completes a representative sample of its computation. On the other hand, long

intervals increase the latency of the scheduler in responding to changes.

Our experience with the benchmark programs indicates that this application independent approach

is not su�ciently accurate to be useful: there is no �xed interval that is suitable across these

applications. While it might be possible to design a dynamic scheme for choosing an appropriate

interval independently for each application, we have not yet pursued this approach. Instead, we rely

on what we argue is an acceptable level of application involvement.

The measurement interval we use is an application \iteration." Iterative program structures are

very common in parallel applications. For example, the overwhelming majority of the applications

in our benchmark suites have an inherently iterative structure; in particular, there is an outermost

sequential loop that drives the execution. We don't require this, however. At a minimum, what

we do require is that there be some identi�able point in the application's execution where it can

indicate that a unit of work has been completed. For example, in a fairly coarse grained application

employing user level threads as the basis of parallel execution, iterations might be de�ned to be the

work between the kernel thread's dequeueing and subsequent enqueueing (or termination of) a user

level thread.

We rely on the application to call appropriate runtime routines at the beginning and end of each

iteration. For this study, we have inserted these calls into each application in our application

suite by hand. In many instances, however, we believe that it would be possible for compilers to

automatically detect iterative behavior and insert the calls to the runtime system appropriately. For

example, Jeremiassen [9] has shown that it is possible to automatically detect phase behavior for

many hand coded applications.

2.4 Use of Job Length Predictions in Scheduling

Application characteristics other than speedup and e�ciency certainly are also important in schedul-

ing policy design. One such characteristic is remaining execution time, which might be predictable by

measuring acquired execution time, or number of processors used, or amount of memory consumed, if

it were known that these measurable quantities had some reliable correlation to (the unmeasurable)

future execution time. Many previous works have hypothesized the existence of such correlations,

and have considered them when evaluating their policies (e.g., [11] and [3], among other). Feitelson

and Nitzberg [7] present evidence that there is such a correlation for execution time consumed and

number of nodes used, at least for one production installation. (Because they measured a message

passing machine, in which processors and memory are allocated together, it is di�cult to determine

from their data whether a similar correlation holds for memory use alone.)

In the work presented here, we do not attempt to make use of these predictions. Rather, we assume

that some other mechanism, such as the feedback scheduling employed in sequential systems, is used

for this purpose. (Parsons and Sevcik [18] present the design and evaluation of two such schemes, for

example.) We consider the workload mixes we schedule to be the subset of a larger job mix chosen

for current execution by such a mechanism.

5

3 Interactive Environments: Improving Response Time

In this section, we describe and evaluate a scheduling policy designed to improve mean response time

in interactive environments through the use of runtime gathered job characterizations. This new

policy is called ST-EQUI. Before presenting it, we �rst describe the baseline dynamic equipartition

policy from which ST-EQUI is derived.

3.1 The Equipartition Policy: EQUI

The basic scheduling policy on which we build is dynamic equipartition [25], which we call EQUI.

Under EQUI, each currently executing job is allocated an equal number of processors. Processor

reallocations take place at job arrival and departure times. EQUI is representative of the space

sharing approach to processor allocation that has been found to perform well for multiprogrammed

shared-memory multiprocessors [25, 14], and exempli�es schemes actively used in such environments

[10].

We have used the EQUI policy as our baseline despite two common objections to it (and other

dynamic policies). The �rst is that the cost of periodic processor reallocations is too high. We do

not �nd this to be the case in practice. The basic kernel path cost of reallocating a processor on our

poorly-tuned system is about 5 milliseconds. In addition to this, processor reallocations cause some

loss of cache state, and so entail a cache re�ll overhead. However, this cost is not large, especially

relative to the rate at which reallocations take place, even for the KSR's 32 megabyte local caches.

The second common objection to dynamic policies is that parallel applications often rely on having

a �xed number of processors available to them during their entire execution. This dependence stems

from the implementation of application level work partitioning in a static way, often based on the

number of processors available to the job when it �rst begins execution. For instance, a compiler

parallelized code might make a single decision at program initialization time about how many threads

to use in executing parallel loops; the program will then run very poorly if the actual number of

processors available changes.

While it is true that existing parallel applications often rely on the number of available processors

being �xed, we have found that they do so needlessly, that is, this reliance is an artifact of environ-

ments in which the programs were developed (which made this �xed allocation guarantee) rather

than on some fundamental requirement of the software. For example, we were able to successfully

transform all of our benchmark applications to accommodate changes in processor allocation with

little di�culty. In the case of the compiler parallelized codes, this was done by a simple change to

the threads library that is their target. In the case of the hand coded programs, simple changes in

the selection of the number of threads to use was su�cient.

One limitation of our quick conversion of these programs, though, is that we have implemented

application level dynamic scheduling only at the level of iteration boundaries: the applications

examine and adjust to the number of available processors each time they begin an iteration, but

do not do so while executing any one iteration. It is clearly possible to do much more dynamic

scheduling (see, for example, [19, 6, 13]); we did not do so because of the very large incremental

implementation cost relative to our more restrictive change, and because we anticipated that the

additional bene�ts of this added exibility at the application level would be quite modest.

3.2 Using Runtime Measurements: ST-EQUI

The speci�c policy we propose to take advantage of runtime measured speedup characteristics is

called ST-EQUI. At the highest level, each job is allocated an equal number of processors, just

6

as with EQUI. However, each time a reallocation takes place, each a�ected job engages in a self-

tuning procedure by which it estimates how many of its allocated processors it should actually use

to maximize its current speedup. The self-tuning is performed by repeatedly adjusting the number

of processors the application uses and measuring its resulting e�ciency. From those measurements

the application infers its speedup under the current allocation decision, and potentially attempts to

adjust the allocation in a way that will improve it.

The advantage of ST-EQUI over EQUI arises when at least some jobs determine that they are better

o� using fewer than their fair share of processors. In this case, they release their processors back

to the system, which reallocates them as equally as possible among those jobs that can pro�tably

make use of more than their fair share. It is reasonable to expect the jobs to release these processors

because they have no incentive to keep them (they have determined that they run more slowly using

them than without them). Additionally, in any system charging for resource use, there is a positive

incentive to release excess resources.

The disadvantages of ST-EQUI relative to EQUI are that reallocations, and their associated costs,

are more frequent, and that there is potentially considerable overhead associated with the search

procedure followed during self-tuning. To understand better the source of that overhead, we next

present the self-tuning procedure in somewhat more detail.

3.2.1 Self-Tuning

We present here an overview of the self-tuning procedure we employ. Comprehensive details can

be found in [16], which examines the use of this technique in a static (essentially uniprogramming)

environment.

Self-tuning is based on a simple optimization technique, the method of golden sections [15], which

searches for the maximum of a unimodal function over a �nite interval by iteratively computing

function values and narrowing the interval in which the maximum must occur. In our case, the

function to be maximized is job speedup. Evaluating the function value at p involves running the

job for a single iteration using p processors, measuring the resulting e�ciency, and inferring from

it the job's speedup at p. The initial interval of interest in the search is 1 to P , the number of

processors currently available for use by this job.

There are two basic problems we must address in using golden sections for our purpose. The �rst

is that speedup functions are not, in general, unimodal. We address this in a simple, greedy way.

When the results of the function evaluations in the current interval of interest demonstrate that

the function is not unimodal, we reduce the interval of interest to the largest contained subinterval

that includes the maximum speedup value observed so far and for which the known speedup values

are conformal with a unimodal function. The experiments in [16] show that this procedure works

remarkably well, nearly always converging to a near optimal value.

The second problem we face is one of e�ciency. While the golden sections method converges in a

number of probes proportional to the log of the interval length, the cost of an individual probe can

be quite large (if the job has poor speedup at the probed number of processors). We address this by

exploiting the assumption that speedups cannot be superlinear

3

. In particular, we begin self-tuning

by executing one application iteration using all P available processors. This allows us to estimate

S(P), the job's speedup with P processors. Since speedups can never be superlinear, we know that

the globally best number of processors must fall in [S(P); P]. Our search therefore starts in this

interval. We use the same observation at later points in the search: the lower bound of the current

interval of interest must always be no smaller than the largest speedup so far observed.

3

In fact, this property holds by de�nition in our system, since we estimate e�ciency by measuring ine�ciencies

and subtracting them from 1.0.

7

3.2.2 Implementation of Self-Tuning

We have implemented the code required to perform self-tuning in the Cthreads library. Thus, the

self-tuning procedure is independent of the speci�c application to be run. Additionally, there is

no code development overhead involved in using it: the application programmer simply links his

program with the modi�ed version of Cthreads.

3.3 Performance

To evaluate whether runtime measurements are su�ciently accurate for use in making scheduling

decisions, and to illustrate the bene�ts of self-tuning as just described, we compare the multipro-

gramming performance of three policies:

� EQUI. The dynamic equipartition policy described in Section 3.1. EQUI serves as a baseline

for the performance of an achievable policy.

� ST-EQUI. The EQUI policy augmented with self-tuning (Section 3.2).

� AP-EQUI. AP-EQUI operates in the same way as ST-EQUI, except that it uses perfect a priori

information on job speedup rather than imperfect runtime estimates. Given this information,

AP-EQUI needs to reallocate processors only at job arrival and departure times. When it real-

locates, it gives each job no more processors than the number that maximizes its throughput.

Distinctions in performance between AP-EQUI and ST-EQUI serve to illustrate the impact of

errors in our runtime measurements, as well as the overhead of dynamic self-tuning.

We next describe the workload used to exercise these policies.

3.3.1 Workload

As explained in Section 1, we are interested in a diverse workload composed of both hand-coded

(SPLASH) and compiler-parallelized (Perfect) applications.

Our previous detailed study of these applications [17] made clear that these programs could be

divided into three broad classes:

� Good speedup. Most of the hand-coded applications fall into this class, which is characterized

by fairly good speedup that rises monotonically as the job receives processors. Some of these

applications exhibit slowdown beyond a certain number of allocated processors.

� Poor speedup. Almost all of the compiler-parallelized applications fall into this class, which is

characterized by nearly negligible speedup at most processor values. Most of these applications

exhibit slowdown beyond a certain number of allocated processors.

� Erratic speedup. This class consists of applications whose speedup is irregular, e.g., it varies

over time, or its curve exhibits multiple local maxima. Such behavior can be observed in both

hand-coded and compiler-parallelized applications [17].

Because it is clearly infeasible to run experiments with all possible combinations from our benchmark

suites, we instead use our taxonomy to reduce the number of jobs that must be considered. In

particular, we chose to select a single application from each of the three classes as the representative

of that class, speci�cally, the application from each class exhibiting the best speedup. Thus, we

choose Barnes from the SPLASH suite to exemplify good speedup, FLO52 from the Perfect codes

8

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processors

Barnes (Sequential execution time = 5600 secs)

Barnes speedup

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processors

FLO52 (Sequential execution time = 375 secs)

FLO52 speedup

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processors

MP3D (Sequential execution time = 250 secs)

MP3D speedup

Figure 1: Speedup Characteristics of the Representative Jobs

to exemplify poor speedup, and MP3D from the SPLASH suite to exemplify erratic speedup. The

measured speedup curves for these applications are given in Figure 1.

Next, we chose to set a maximum multiprogramming level of four, reasoning that (a) given our

50-processor machine, higher multiprogramming levels would increase processor demand to an ex-

tent that would render allocation decisions trivial, and (b) such a limit is prevalent in practice,

since memory constraints dictate that only a relatively small number of jobs can be allowed to run

concurrently. This decision is supported by the measurements in [7], which indicate that a multipro-

gramming levels of 2, 3, and 4 are the three most common during daytime hours in their production

environment.

Thus, given the three representative applications and a maximum multiprogramming level of four,

we constructed and evaluated all 31 of the possible workload mixes containing more than a single

job type. Figures 2{4 show job response time for 10 of these 31 workload mixes. We now discuss

the performance of these workload mixes when running under the three processor allocation policies

previously described.

 barnes barnes

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes mp3d

0.
0

0.
5

1.
0

1.
5

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Figure 2: Response Time Results at Multiprogramming Level = 2. (Grey bars are results for EQUI;

black bars are results for ST-EQUI; results are normalized with respect to AP-EQUI)

9

3.3.2 Performance Results

Figures 2, 3, and 4 depict the performance of a representative sample of the workload mixes under

the EQUI and ST-EQUI policies for multiprogramming levels 2, 3, and 4 respectively. Response

times under these two policies are shown normalized to those under AP-EQUI (the horizontal line

on each graph). These results lead us to the following observations.

 barnes barnes flo52

0.
0

0.
5

1.
0

1.
5

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes barnes mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes mp3d mp3d

0.
0

0.
4

0.
8

1.
2

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 flo52 flo52 mp3d

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 flo52 mp3d mp3d

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 mp3d mp3d mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Figure 3: Response Time Results at Multiprogramming Level = 3. (Grey bars are results for EQUI;

black bars are results for ST-EQUI; results are normalized with respect to AP-EQUI)

� The policy using runtime measurement (ST-EQUI) outperforms the similar policy that does

not (EQUI).

This e�ect arises because all jobs can bene�t by participating in cooperative processor alloca-

tion. In scenarios with high demand for processors (e.g., all jobs request their equipartition

share), ST-EQUI behaves exactly as does EQUI, so its performance is no worse. However, in

scenarios with more complex processor demands, ST-EQUI performs much better than does

EQUI: jobs exhibiting slowdown points run faster by shedding excess processors that only

degrade their performance; jobs exhibiting good speedup can then use these processors to run

faster as well.

� The policy using runtime measurements (ST-EQUI) performs nearly as well as the policy

provided perfect a priori information (AP-EQUI) in most cases.

10

 barnes barnes barnes flo52

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes barnes barnes mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes barnes flo52 flo52

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes barnes mp3d mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes flo52 flo52 mp3d

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes flo52 mp3d mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Figure 4: Response Time Results at Multiprogramming Level = 4. (Grey bars are results for EQUI;

black bars are results for ST-EQUI; results are normalized with respect to AP-EQUI)

The di�erence between the performance of the two policies stems mainly from the overhead of

self-tuning, which ST-EQUI must accept as the price of determining at runtime the jobs' pro-

cessor needs (i.e., of obviating a priori information). This overhead is, as described in Section

3.2.1, the cost of running for some time at processor allocations that yield poor performance.

(See also [16].) Despite this, with few exceptions, ST-EQUI performs nearly as well as does

AP-EQUI.

We also observe that for each of the three jobs types, there are some workload mixes in which

the jobs perform better than under AP-EQUI. The reason for this is the one alluded to in

the example in the introduction: the number of processors that maximizes a job's speedup

depends on which processors are allocated. Because AP-EQUI must be provided a single

allocation target, and can not adjust to which processors are allocated as reallocations take

place, ST-EQUI is able to outperform it on occasions when jobs are sensitive to processor

placement.

� Dynamic policies incur some cost.

Consider the performance of the Barnes jobs in the various workloads. The di�erence between

the performance of ST-EQUI and that of AP-EQUI occurs because ST-EQUI consistently

provides Barnes with a lower allocation (averaged over the job's lifetime) than does AP-EQUI.

ST-EQUI is unable to provide the full desired allocation because: (a) although the other

jobs in the mix might eventually yield processors to Barnes, these processes arrive slowly,

at a rate limited by the pace of the other jobs' self-tuning, and (b) vagaries in the search

procedure applied by self-tuning can result in the other jobs' holding slightly more processors

than actually desirable, denying Barnes these processors. Note that although the idealized

AP-EQUI incurs neither of these costs, the �rst (and more signi�cant) one is a problem for

11

EQUI as well | delay in processor arrival is a source of overhead for all practical processor

allocation policies.

We have shown that ST-EQUI enjoys a clear performance advantage over EQUI, without requiring

a priori knowledge of application needs (as is the case for AP-EQUI). Furthermore, the policy is

fair in the sense that it does not discriminate among job classes: it simply responds to the jobs'

own requests to release/acquire processors, giving each job equal weight in the attempt to minimize

response time. In the next section, we discuss relaxing this fairness in the interest of maximizing

overall system e�ciency.

4 Batch Environments: Improving System E�ciency

In batch environments, such as are common for overnight runs of large parallel applications, the

critical performance measure is not response time, but rather the rate at which useful work can be

completed; the higher this rate, the larger the workload that can processed in a �xed amount of

time. In these environments, the goal of the scheduler is to maximize system e�ciency, the sum

of the parallel e�ciencies of all processors. In this section, we describe and evaluate a scheduling

policy with this goal.

4.1 The EQUAL-EFF Policy

The policy we propose, EQUAL-EFF, employs a heuristic in attempting to maximize system e�-

ciency: it tries to partition the processors among the currently executing jobs in a way that results in

all jobs having about equal current e�ciencies. The intuitive motivation for this is that reallocating

processors from a currently executing job with low e�ciency to one with high e�ciency is very likely

to improve overall system performance; the limiting case of this process is equal e�ciency allocation.

Additionally, it is possible to �nd a procedure to compute equal e�ciency allocations that is both

simple and has low overhead, and that makes decisions that tend to require only small reallocations

(if any) at successive scheduling moments. We show below that allocating for equal e�ciency also

results in near optimal system e�ciences in practice.

Allocations under EQUI-EFF are computed in a simple, greedy way. We begin by noting that

maximizing system e�ciency is equivalent to maximizing the sum of the speedups of the running

jobs (since speedup is equal to average e�ciency times number of processors). Let S

j

(p) be the

estimated speedup of job j on p processors. At each scheduling moment, we begin with the base

case that all processors are unallocated, and then hand out the available processors to jobs one by

one. Let p

j

be the number of processors allocated to job j at some point in this process. We hand

the next processor to that job for which S

j

(p

j

+ 1) � S

j

(p

j

) is maximum, so long as this value is

positive. We stop allocating when either there are no remaining unallocated processors or no job is

estimated to have a positive bene�t from additional processors. Note that this procedure guarantees

that each job is allocated at least one processor, so that no job can be starved.

This procedure gives the scheduler a set of target allocations for the jobs. If those targets di�er from

the current allocations, processors are moved among the jobs to achieve the new targets.

There is one di�culty in implementing this process in practice: we do not have available the full

speedup functions for the applications. Rather, we have the presumably accurate value measured

for the most recent allocation, as well as potentially out of date information obtained for previous

allocations. To overcome this problem, we employ a simple analytic speedup function, taken from

[5], as a substitute for the jobs' actual speedups. We parameterize the speedup function for job j

12

so that it intersects the speedup estimate obtained in the most recent measurement interval. Our

allocation scheme then walks along these speedup curves.

This procedure uses only the most recent e�ciency estimate, ignoring those obtained earlier. The

motivation for that is that job e�ciency can be a�ected by which processors are allocated, not

just how many are allocated. Because old allocations may have consisted of substantially di�erent

processors than the current set (and so than the next set likely to be allocated), we distrust this old

information.

4.2 Preliminary Modelling Results for EQUAL-EFF

Before implementing our prototype of EQUAL-EFF, we �rst evaluated the extent to which equal-

izing job e�ciencies maximizes system e�ciency, using an extensive set of simple simulations. The

inputs to the simulations were the measured speedup curves of the applications; the outputs were

total system e�ciency. We ran the allocation procedure described above using the known speedup

curves and compared the system e�ciencies obtained to those for OPT-EFF, a policy that allocates

processors optimally (for this measure). We computed the OPT-EFF allocations and performance

measures using a simple dynamic program, taking the same speedup curves as inputs. For N jobs

running on P processors, the dynamic program requires time O(NP

2

).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-Barnes-FLO52

System efficiency under OPT-EFF
System efficiency under EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-FLO52-FLO52

System efficiency under OPT-EFF
System efficiency under EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-FLO52-MP3D

System efficiency under OPT-EFF
System efficiency under EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-MP3D-MP3D

System efficiency under OPT-EFF
System efficiency under EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-FLO52

System efficiency under OPT-EFF
System efficiency under EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-MP3D

System efficiency under OPT-EFF
System efficiency under EQUAL-EFF

Figure 5: Modelled Results for EQUAL-EFF and OPT-EFF

Figure 5 shows the system e�ciencies obtained by these simulations for a representative set of

workload combinations, as well as the optimal system e�ciencies computed for OPT-EFF by the

dynamic program. In all cases, the greedy scheme employed by EQUAL-EFF comes very close to

the optimum, with the largest di�erences occurring only for very small numbers of processors.

Based on the results of this simple model, we were motivated to continue to the prototype implemen-

tation of EQUAL-EFF. The results obtained from experiments with that prototype are presented

next.

13

EQUI EQUAL ST-EQUI ST-EQUAL

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes flo52

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL ST-EQUI ST-EQUAL

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes mp3d

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL ST-EQUI ST-EQUAL

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes barnes mp3d

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL ST-EQUI ST-EQUAL

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes flo52 flo52

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL ST-EQUI ST-EQUAL

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes mp3d mp3d

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL ST-EQUI ST-EQUAL

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes flo52 mp3d

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

Figure 6: System E�ciency Results (Multiprogramming Level = 3).

4.3 Experimental Performance Results

We evaluate the use of runtime measured job characteristics in improving scheduling in a batch

environment by considering four related policies:

� EQUI. The basic dynamic equipartition policy (Section 3.1).

� EQUAL-EFF. The equal e�ciency heuristic policy (Section 4.1).

� ST-EQUI. The self-tuned equipartition algorithm, which was designed to reduce response times

(Section 3.2).

� ST-EQUAL-EFF. The EQUAL-EFF policy with the addition that each job also engages in

self-tuning, releasing processors when it determines that it has been assigned more than it can

pro�tably use.

The performance results under these policies are compared against those predicted by OPT-EFF.

Because OPT-EFF is computed o�ine, it does not capture any of the overheads that are inevitable

in scheduling in practice, exaggerating its optimism.

We assessed performance with workloads composed of the same representative jobs as were used

in the Section 3. However, we used a single multiprogramming level of 3 in all experiments (a

reduction from the maximum of 4 considered for the interactive environment) to reect the likely

larger size of jobs submitted for batch execution. (This change is supported by the measurements

in [7].) Additionally, we present here results only for those workloads that include a Barnes job, the

representative from the class of jobs having good speedup. Workloads without Barnes are relatively

uninteresting, as there are 50/3 processors available to each job under simple equipartition, and this

14

Load Job EQUI EQUAL-EFF ST-EQUI ST-EQUAL-EFF

Barnes-FLO52 Barnes 0.29 0.43 0.20 0.41

FLO52 0.20 0.30 0.35 0.29

Barnes-MP3D Barnes 0.32 0.38 0.34 0.38

MP3D 0.34 0.37 0.36 0.38

Barnes-Barnes-FLO52 Barnes 0.32 0.44 0.43 0.44

FLO52 0.05 0.22 0.31 0.23

Barnes-Barnes-MP3D Barnes 0.35 0.44 0.37 0.44

MP3D 0.30 0.22 0.32 0.21

Barnes-FLO52-FLO52 Barnes 0.21 0.31 0.24 0.29

FLO52 0.30 0.41 0.53 0.46

Barnes-MP3D-MP3D Barnes 0.18 0.28 0.23 0.36

MP3D 0.55 0.44 0.63 0.36

Barnes-FLO52-MP3D Barnes 0.23 0.31 0.23 0.29

FLO52 0.14 0.20 0.27 0.23

MP3D 0.31 0.23 0.33 0.26

Table 1: Job Throughput Rates (jobs/ minute).

number exceeds the number that can be used pro�tably by the other two representative jobs in our

mixes. For this reason, as well as space limitations, we therefore omit these results in what follows.

Figure 6 presents the experimental results we obtained. From them, we draw conclusions similar to

those in Section 3.3.2.

� Policies using runtime measurements can greatly outperform those without access to such in-

formation.

This is supported by comparing the results for EQUAL-EFF and ST-EQUAL-EFF scheduling

to those for EQUI.

� Policies using runtime measurements can approach the performance of policies with access to

perfect information a priori.

For all workloads, the performance of the equal e�ciency policies is within 20% of those for

the overly optimistic OPT-EFF.

� The primary policy-induced loss of e�ciency is the cost associated with the allocation search

procedure.

In the cases where EQUAL-EFF and ST-EQUAL-EFF fail to approach closely the (theoret-

ical) optimal performance of OPT-EFF, further examination revealed that it was because of

overhead associated with the search procedure, rather than because the search was settling on

poor �nal allocation choices.

4.4 Starvation

Because the EQUAL-EFF policy attempts to maximize throughput without regard to fairness, it is

natural to wonder if jobs with poor speedup characterstics are starved under this discipline. Table 1

shows the job throughput rates (in jobs/minute) for each job class under our test workload mixes.

If starvation were a problem in practice, we would expect to see sharp drops in throughputs for

FLO52 and MP3D when comparing an equal e�ciency policy to an equipartition policy. The fact

that this does not happen is a reection of the equal e�ciency policies' guarantee that every job be

given at least one processor.

15

5 Conclusions

Our goal in this paper was to determine if parallel processor allocation policies could be built to

exploit runtime measurements of application performance. If so, such policies could replace a reliance

on a priori speci�cation of job characteristics, a troublesome and error prone task.

For a number of reasons, it was not obvious whether runtime measurements would be useful to

parallel schedulers: it was not clear how to obtain those measurements; it was uncertain if recent

measurements would be good indicators of future behavior; measures taken for an application with

an allocation of p processors are not easily interpreted when considering changing the allocation

to q processors; and the use of runtime measures requires dynamic allocation schemes, and their

concomitant reallocation overheads.

We have formulated policies for both interactive and batch oriented parallel environments that

make use of information obtained by runtime measurement of application characteristics. Given

the convenience of these policies for the user of the system, their resilience to changes in program

behavior due to phase changes within a single run or to changes in datasets between runs, their

good performance, and the evidence of our prototype that practical implementations are possible,

we believe that the availability of runtime measurements is an important factor to be considered in

parallel processor allocation policy design.

References

[1] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Rolo�, A. Sameh, E. Clementi,

S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Scharzmeier, K. Lue, S. Orszag,

F. Seidl, O. Johnson, R. Goodrum, and J. Martin. The PERFECT Club Benchmarks: E�ective

Performance Evaluation of Supercomputers. The International Journal of Supercomputer Applications,

3(3):5{40, 1989.

[2] T. B. Brecht and K. Guha. Using Parallel Program Characteristics in Dynamic Processor Allocation

Policies. Technical report, Department of Computer Science, York University, in preparation.

[3] S.-H. Chiang, R. Mansharamani, and M. Vernon. Use of Application Characteristics and Limited

Preemption for Run-to-Completion Parallel Processor Scheduling Policies. In Proceedings of ACM

SIGMETRICS Conference, pages 33{44, May 1994.

[4] E. C. Cooper and R. P. Draves. C Threads. Technical Report CMU-CS-88-154, Department of Computer

Science, Carnegie-Mellon University, June 1988.

[5] L. Dowdy. On the Partitioning of Multiprocessor Systems. Technical report, Vanderbilt University,

June 1988.

[6] D. L. Eager and J. Zahorjan. Chores: Enhanced Run-Time Support for Shared-Memory Parallel

Computing. ACM Transactions on Computer Systems, 11(1):1{32, Feb. 1993.

[7] D. G. Feitelson and B. Nitzberg. Job Characteristics of a Production Parallel Scienti�c Workload on

the NASA Ames iPSC/860. In Job Scheduling Strategies for Parallel Processing, IPPS '95 Workshop,

pages 337{360. Springer, Apr. 1995.

[8] D. Ghosal, G. Serazzi, and S. Tripathi. The Processor Working Set and Its Use in Scheduling Multi-

processors. IEEE Transactions on Computers, 38(3):408{423, March 1989.

[9] T. E. Jeremiassen and S. J. Eggers. Reducing False Sharing on Shared Memory Multiprocessors Through

Compile-Time Analysis. In Proceedings of the 7th SIGPLAN Symposium on Principles and Practice of

Parallel Processing, Sept. 1995.

[10] Kendall Square Research Inc., 170 Tracer Lane, Waltham, MA 02154. KSR/Series Principles of Oper-

ation, 1994.

[11] S. Majumdar, D. Eager, and R. Bunt. Scheduling in Multiprogrammed Parallel Systems. In Proceedings

of ACM SIGMETRICS Conference, pages 104{113, May 1988.

16

[12] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in Multiprogrammed Parallel Systems. In

Proceedings of the ACM SIGMETRICS Conference, pages 104{113, May 1988.

[13] E. Markatos and T. LeBlanc. Using Processor A�nity in Loop Scheduling on Shared-Memory Multi-

processors. IEEE Transactions on Parallel and Distributed Systems, 5(4):379{400, Apr. 1994.

[14] C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor Allocation Strategy for Multipro-

grammed, Shared Memory Multiprocessors. ACM Trans. on Computer Systems, 11(2):146{178, May

1993.

[15] G. P. McCormick. Nonlinear Programming. John Wiley & Sons, Inc., 1983.

[16] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing Speedup Through Self-Tuning of Processor

Allocation. Technical Report UW-CSE-95-09-02, Department of Computer Science and Engineering,

University of Washington, Sept. 1995.

[17] T. D. Nguyen, R. Vaswani, and J. Zahorjan. On Scheduling Implications of Application Characteristics.

Technical report, Department of Computer Science and Engineering, University of Washington, in

preparation.

[18] E. W. Parsons and K. C. Sevcik. Multiprocessor Scheduling for High-Variability Service Time Dis-

tributions. In Job Scheduling Strategies for Parallel Processing, IPPS '95 Workshop, pages 127{145.

Springer, Apr. 1995.

[19] C. Polychronopoulos and D. Kuck. Guided Self-Scheduling: A Practical Scheduling Scheme for Parallel

Supercomputers. IEEE Transactions on Computers, C-36(12):1425{1439, Dec. 1987.

[20] S. Setia, M. Squillante, , and S. Tripathi. Processor Scheduling on Multiprogrammed, Distributed

Memory Parallel Systems. In Proceedings of ACM SIGMETRICS Conference, pages 158{170, May

1993.

[21] K. Sevcik. Characterizations of Parallelism in Applications and Their Use in Scheduling. In Proceedings

of ACM SIGMETRICS Conference, pages 171{180, May 1989.

[22] K. C. Sevcik. Application Scheduling and Processor Allocation in Multiprogrammed Parallel Processing

Systems. Performance Evaluation, 19(2-3), 1994.

[23] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-Memory.

Computer Architecture News, 20(1):5{44, 1992.

[24] P. G. Sobalvarro and W. E. Weihl. Demand-Based Coscheduling of Parallel Jobs on Multiprogrammed

Multiprocessors. In Job Scheduling Strategies for Parallel Processing, IPPS '95 Workshop, pages 106{

126. Springer, Apr. 1995.

[25] A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory

Multiprocessors. In Proceedings of the 12th ACM Symposium on Operating System Principles, pages

159{166, December 1989.

17

