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Abstract

This paper compares two data parallel languages, ZPL and HPF, in terms of programming style and

performance. The results show that for eight programs from a number of standard benchmark suites,

ZPL generally outperforms HPF, and ZPL expresses problems at higher levels of abstraction, yielding

programs that are shorter, less error prone and easier to maintain. ZPL's better performance comes from

its clean expression of parallelism that allows for better compiler analysis.

1 Introduction

ZPL is a new data parallel array language designed at the University of Washington to provide high per-

formance parallel computation for all MIMD parallel computers [7]. HPF was recently de�ned by the High

Performance Fortran Forum to provide \data parallel programming" and \top performance on MIMD and

SIMD computers" [4, p.1]. With such similar ambitions, it is natural to compare the two languages. This

paper compares ZPL and HPF, concentrating on performance and programming style.

Though their high-level objectives are similar, the languages have dissimilar design goals:

ZPL Design Goal: to design from �rst principles a language maximizing performance and

portability. Indeed, ZPL is the data parallel subset of a more general parallel language, Advanced

ZPL,
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which is based on an e�cient parallel machine model and programming model [10] with

demonstrated performance and portability [6].

�
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HPF DesignGoal: \to develop extensions to Fortran that provide support for high performance

programming on a wide variety of machines : : :" [4, p.vii]. The HPF Forum included groups with

large installed Fortran bases, vendors intending to support Fortran on their parallel hardware,

and researchers developing compilation technology for Fortran sources.

Thus, ZPL is a new language focused on the best practical way to express parallelism, while HPF is a new

language extension focused on the best practical way to extract performance|particularly parallelism|from

Fortran. There are numerous e�ects that these two design goals have had on their respective languages, but

one is immediate: To use ZPL, it is necessary to write a new program; to use HPF, it may be possible to

embellish an existing Fortran program.

Since HPF provides Fortran compatibility while ZPL does not, is a comparison of these languages fair

or even sensible? Yes, for the following reason: For problems where no Fortran program exists, either ZPL

or HPF can be used to solve the problem. The comparison presented here thus applies to the case of writing

new parallel programs. The evidence presented will favor ZPL over HPF, for the programs will likely run

faster and be easier to understand and maintain. As a crude measure of readability, the SIMPLE benchmark

is 2400 lines of Fortran 77 without HPF directives but only 500 lines in ZPL [7]. The discussion in Section 4

illustrates this point more clearly.

In cases where a Fortran program exists, our experience suggests that the e�ort to understand it well

enough to select the proper HPF annotations can be comparable to the e�ort required to rewrite it in ZPL.

Moreover, after adding HPF directives, considerable e�ort can be required to restructure a Fortran program

to get good parallel performance [3]. After this e�ort, the HPF approach is �nished, if the performance is

satisfactory, while the ZPL program must be validated to show it equivalent to the original Fortran. Tools

can assist in this validation [1], and the additional e�ort is generally repaid in better performance and a

cleaner, more easily maintained program.

2 A Brief Introduction to HPF

HPF was designed by the High Performance Fortran Forum in 1993 [4]. HPF extends sequential Fortran by

adding data decomposition directives that do not change the semantics of the program, but serve as hints to

the compiler to improve performance. Thus HPF provides data parallelism by adding data decomposition

information to sequential programs. HPF programmers can also use the FORALL statement to identify loops

that can execute in parallel. HPF directives can be added to programs written in either Fortran 77 or

Fortran 90. In this paper, we refer to programs written in either Fortran 77 or Fortran 90 simply as HPF

programs.

To illustrate the basics of the language, Figure 1 shows fragments of HPF code. The declaration of the

array a is shown followed by a data distribution directive. This directive, pre�xed by the special characters

HPF$, will have the e�ect of allocating a rectangular block of the array to each processor. Following are two

alternative ways of updating the elements of an array with the average of their four nearest neighbors. In

2



the �rst case the FORALL statement is used to direct that all iterations can be performed in parallel. In the

second case array indices are used, which specify the portion of the array that is to be referenced in the

computation. Both schemes allow the programmer to specify computation at a larger granularity than is

possible in basic F77. Larger units of computation are more e�ciently performed in parallel.

Further examples of HPF program segments are given below.

REAL a(0:n+1,0:n+1)

!HPF$ DISTRIBUTE a(BLOCK,BLOCK)

!

! The Jacobi kernel

!

! Variant 1: use FORALL statement

FORALL (i=1:n, j=1:n) a(i,j) = (a(i-1,j)+a(i+1,j)+a(i,j-1)+a(i,j+1))/4

!

! Variant 2: use array assignment

!

a(1:n, 1:n) = (a(0:n-1,1:n) + a(2:n+1,1:n) + a(1:n,0:n-1) + a(1:n,2:n+1))/4

Figure 1: HPF program fragments for the Jacobi iteration.

3 A Brief Introduction to ZPL

ZPL is an array language with the standard data types (e.g. real, integer, char), dense arrays of arbitrary

dimension, the usual arithmetic and logical operators which can be applied to either scalars or point-wise

to arrays, parallel pre�x operators (e.g. reduction and scan), and the standard control structures (if, for,

while, etc.), including recursion. The language has sequential semantics. There are no parallel directives,

and all concurrency is derived by the compiler from the semantics of the language constructs. Our current

compiler is implemented as a source-to-source translator that produces machine independent ANSI C code,

which is then compiled on the target machine (via the native C compiler) and linked with a machine-speci�c

library to produce executable code. Performance that matches hand-coded, explicitly parallel C code has

been demonstrated on both shared and distributed memory parallel computers [8].

ProgramWalk-through. Perhaps the quickest introduction is to walk-through a ZPL program. Figure 2

shows the ZPL code for the 4-point Jacobi computation [11]. The program begins by de�ning two problem-

speci�c con�guration variables, n and epsilon, and their default values (line 2-3). These defaults can be

overridden at load time from the command line.

Next, a region is declared (line 5). Regions are rectilinear sets of array indices that are fundamental

to ZPL programming. In line 13 the region speci�er [R] is used to declare two n � n arrays of real's.

Speci�cally, the A and Temp arrays are declared to have the indices f1..ng � f1..ng. In line 16 the region

speci�er [R] de�nes the indices over which computation takes place: The elements of A are initialized to

0.0 for the indices in R. Naming regions in this manner is a syntactic convenience which simpli�es compiler

analysis because the regions do not change during a program's execution. ZPL also supports dynamic regions
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1 program Jacobi;

2 config var n: integer = 512; -- Configuration defaults

3 epsilon: real = 0.000001;

4

5 region R = [1..n, 1..n]; -- Declarations

6

7 direction north = [-1, 0];

8 east = [ 0, 1];

9 west = [ 0,-1];

10 south = [ 1, 0];

11

12 procedure Jacobi();

13 var A, Temp: [R] real;

14 err: real;

15 begin

16 [R] A := 0.0; -- Initialization

17 [north of R] A := 0.0;

18 [east of R] A := 0.0;

19 [west of R] A := 0.0;

20 [south of R] A := 1.0;

21

22 [R] repeat -- Body

23 Temp := (A@north+A@east+A@west+A@south)/4.0;

24 err := max\abs(A-Temp);

25 A := Temp;

26 until err < epsilon;

27 [R] writeln(A); -- Print the result

28 end;

Figure 2: ZPL program for the Jacobi iteration.

in which the region's size can change at runtime. For example, [1..n, i] is a region consisting of the i

th

column of an index space, where the value of i is bound at runtime.

Line 17 shows how boundary conditions can be initialized using the of operator to refer to neighboring

regions. Using the direction vector north, de�ned to be [-1, 0] in line 7, [north of R] is a region whose

indices are disjoint from R and o�set from it by north, i.e. [north of R] = [0, 1..n]. (More precise

de�nitions can be found in the literature [5].) Line 17 not only initializes the northern border of A, but also

implicitly allocates storage for this border region.

The program body computes the Jacobi iteration using a repeat statement (lines 22-26). Since the

statement is pre�xed by the region speci�er [R], all array operations within it apply to indices in R. The

averaging of each element's four nearest neighbors is accomplished in line 23 using the @ operator. A@north

is an array of the same size and shape as R but with indices that are computed by adding the north vector

to each index, i.e. A@north includes the 0

th

row of A but not the n

th

row of A. The scalar operations in

line 23 are applied to corresponding elements of each array. Thus, the statement

Temp := (A@north + A@east + A@west + A@south) / 4.0;

succinctly produces the 4-point stencil average for all elements in A. Line 24 shows the application of the

scalar subtraction operation to array operands (A - Temp), the promotion of a scalar procedure (abs())

that is applied to each element of an array, and the use of the maximum reduction operator (maxn) to �nd

the largest element of an array within a region. Notice that code which uses scalars within the scope of a
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region, e.g. the until clause (line 26), is una�ected by that region and operates in the usual (sequential)

manner. Many interesting and powerful features of the language are omitted for the sake of brevity. For

more details, see the ZPL Programmer's Guide [11] and the ZPL Reference Manual [5].

Parallel Execution. Arrays declared over regions are called parallel arrays because they are the mecha-

nism for achieving parallelism. In the ZPL programming model, parallelism is not expressed via loops [10].

Instead, ZPL derives concurrency from parallel array and parallel pre�x operations. By default, parallel

arrays are distributed in a block allocation for 1D and 2D arrays; higher dimensional arrays are distributed

across two dimensions. Thus, to increment the elements of a parallel array A, for example, one simply

writes A := A+1. Indexing is neither needed nor allowed

2

, and full concurrency is achieved as each processor

increments its block of A.

By adopting a clear de�nition of which constructs do and do not provide concurrency, and guaranteeing

that they are executed as de�ned, ZPL programmers have an unambiguous picture of the parallelism in their

code. This is not the case in HPF, where obscure details of the source program can disable parallelization by

the compiler [3]. It is for this reason that Fortran compilers must often be accompanied by parallelization

tools designed to help the programmer restructure their code for parallelism. Such parallelization tools are

not needed in ZPL because the parallelism is clear from the source program.

The Context. As noted earlier, ZPL is the data parallel subset of a more general MIMD parallel language,

Advanced ZPL, which is now being implemented. (Since ZPL is self-contained, it is reasonable to treat ZPL

as a stand-alone language.) As a sublanguage of Advanced ZPL, ZPL derives two crucial bene�ts:

(a) Any features not available in ZPL can be written in Advanced ZPL and included in the program as

required. This allows for a simple ZPL language design, without great concern for \completeness." For

example, ZPL provides a default \block" partitioning of arrays. Advanced ZPL provides full control

over memory allocation, so this default can be overridden.

(b) Advanced ZPL has been created from �rst principles, and has a well speci�ed machine model (the

CTA) and a well speci�ed programming model (Phase Abstractions) [10]. These foundations have

simpli�ed the development of ZPL and the construction of its machine independent compiler.

Clearly, advantage (a) awaits completion of the Advanced ZPL compiler. Advantage (b) is the topic of the

remainder of this paper.

2

ZPL also provides indexable arrays, called indexed arrays, that are replicated on each processor (as are scalars) and thus

are not a source of concurrency.
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4 Di�erences In Programming Style

Though both ZPL and HPF are data parallel languages, programs written for the same task in each language

can be more than just syntactically di�erent, for the languages employ di�erent conceptual mechanisms to

express the parallelism. This section compares ZPL and HPF code fragments of three programs from the

Applied Parallel Research (APR) xHPF Benchmark Suite [9]:

� Relaxation loop from PDE1|illustrates very similar approaches, but ZPL expresses it more mnemon-

ically.

� Invocation of vrand() from Embar|ZPL uses direct data parallelism, while in HPF, a serial loop is

parallelized.

� Boundary updates fromShallow|another case where ZPL raises the conceptual level above Fortran 90's

array assignments.

PDE1. The PDE1 benchmark is a 3D Poisson solver using red/black successive over-relaxation written in

the Fortran 90 style of HPF. This iterative stencil calculation is a classic example of a computation that is

easily parallelized.

The inner loops of the HPF and ZPL versions of PDE1 are given in Figure 3. There are strong sim-

ilarities between the two: Both loop from 1 to iter, and both use masking (with/without in the ZPL,

where/elsewhere in the HPF) to select the proper values of array U to update. What is striking is the

clarity of the ZPL code in comparison to the HPF.

DO NREL=1,ITER

WHERE(RED(2:NX-1,2:NY-1,2:NZ-1))

!

! RELAXATION OF THE RED POINTS

!

U(2:NX-1,2:NY-1,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

ELSEWHERE

!

! RELAXATION OF THE BLACK POINTS

!

U(2:NX-1,1:NY-2,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

END WHERE

ENDDO

for nrel := 1 to iter do

/* Relax the red points */

[I with Red] U := factor*(hsq*F+U@top+U@bot+U@left+

U@right+U@front+U@back);

/* Relax the black points */

[I without Red] U := factor*(hsq*F+U@top+U@top+U@left+

U@right+U@front+U@back);

end;

Figure 3: Red/black relaxation loop from HPF and ZPL versions of PDE1.

Much of the clarity comes from the region construct. The region speci�er I in ZPL encapsulates the

same information as the triple, 2:NX-1, 2:NY-1, 2:NZ-1, which speci�es an array slice in HPF, except the
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region applies to all arrays in a statement while the slice must be speci�ed for each individual array. Because

this \interior" region is used throughout the computation, it is both convenient and conceptually simplifying

to declare it once and use it symbolically thereafter.

The improved readability of the ZPL code reduces the potential for errors. In the ZPL solution di�erent

things look di�erent|in this case using di�erent direction and region names|whereas all of the HPF slices

look similar except for easily obscured details such as a -2 or a -3. To illustrate this point, an error has

been introduced into the \black half" of each loop. How di�cult is each error to �nd?

Embar. Embar is a NAS parallel benchmark kernel that \generates pairs of Gaussian random deviates

(according to a speci�c scheme) and tabulates the number of pairs in successive square annuli" [2]. Embar

is considered \embarrassingly parallel" because it requires very little communication. This benchmark is

interesting as an upper bound on FLOPS rates for parallel computers.

Of interest here is the way in which ZPL and HPF specify the computation's \unlimited" concurrency.

Embar generates pseudo-random numbers in independent batches, with the i

th

batch (1 < i � nn) seeded

by a number of the form 2*(i-1)*nk, for an instance-speci�c constant nk.

In the HPF version of Embar (written in the Fortran 77), the subroutine that produces a batch of random

pairs, vrand, is called in a loop

DO 500 i = 1 , nn

CALL vrand((i - 1) * nk * 2, x, 2 * nk, ...)

. . .

gc = gc + 1

. . .

500 CONTINUE

Each call �lls the array x with 2*nk random numbers. This code is logically sequential, but by adding a

directive to the compiler, separate calls can be executed concurrently. In APR HPF, the compiler-speci�c

directive, capr$ do par, precedes the loop. More generally, HPF would identify this \loop parallelism" by

the INDEPENDENT directive to assert that the loop's iterations could be executed concurrently. Since di�erent

iterations would all be assigning to the same array x, the NEW modi�er would have to be included to specify

additional storage for x (and other variables) for each concurrent iteration. This does not quite solve the

problem, since there is some tabulation code, e.g. gc = gc+1, following the call to accumulate counts which

does require interaction among the iterations. Special attention (beyond the scope of this discussion) is

required to ensure that the concurrent execution preserves the intended semantics.

To achieve concurrent execution of the batches in ZPL, the programmer simply sets up a one dimensional

region

region B = [1..nn];

corresponding to the number of batches planned, declares arrays
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var Seed: [B] integer; -- seed for each batch

Gc: [B] integer; -- global count of "good" pairs in each batch

to have that number of items, and initializes Seed with the proper values

[B] Seed := 2 * (Index1-1) * nk;

This array expression uses the compiler generated constant Index1, which is an array containing the indices

of B, that is, 1, 2, . . ., nn, to produce the batch initializations. Now, the RandPairs() procedure, which

has been written to expect scalar arguments, is applied to the array Seed

[B] Gc := RandPairs(Seed, nk, ...)

causing RandPairs() to be called in parallel for all batches. An array of values, being the independent

contributions to the tabulation of each parallel call, is returned by the function into Gc. These values are

simply added by a sum reduction, gc:=+nGc, to complete the computation.

Thus, ZPL achieves concurrency by directly applying the principles of data parallelism, while the HPF

solution decorates the original program to direct the compiler to perform the loop iterations concurrently.

In HPF, careful attention must be paid to memory usage to ensure that concurrent execution of separate

iterations does not cause unintended interactions but does cause the intended interactions.

Shallow. The Shallow benchmark, a �nite-di�erence calculation to predict weather using the shallow-

water equations, illustrates how ZPL and HPF handle periodic boundary conditions. Here, the ZPL code

is compared to a Fortran 90 style HPF program from APR [9]. This program contains arrays with periodic

boundaries, so each array is allocated an extra row and column that is kept equal to the row or column on

the opposite edge.

Figure 4 shows the HPF and ZPL code to update the boundaries of m+1 � n+1 arrays. Each of the �rst

six lines of the HPF code (on the left) copies the �rst row of an array to the last row of the same array.

The next six lines copy the �rst column to the last column, and the last six lines copy the upper left corner

item to the lower right. The right side of Figure 4 shows how ZPL uses the wrap statement to copy items

from one side of an array to the other. For example, given region I = [1..m, 1..n] and direction east

= [0,1], the statement

[east of I] wrap U; -- copy first column into last column

assigns to the region [east of I] (that is, [1..m, n+1]) the data from the same-sized region on the opposite

end of the array, namely, the region [1..m, 1]. The programmer's intent is evident from the text, reducing

the chance for error. Thus, ZPL raises the level of abstraction by providing a direct solution for periodic

(and mirrored, using reflect) boundary computations. This is another instance where ZPL programmers

de�ne names for indices once and thereafter need not worry about getting them right.
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uold(m + 1,:n) = uold(1,:n)

vold(m + 1,:n) = vold(1,:n)

pold(m + 1,:n) = pold(1,:n)

u(m + 1,:n) = u(1,:n)

v(m + 1,:n) = v(1,:n)

p(m + 1,:n) = p(1,:n)

CAPR$ DO PAR on POLD<:,1>

uold(:m,n + 1) = uold(:m,1)

vold(:m,n + 1) = vold(:m,1)

pold(:m,n + 1) = pold(:m,1)

u(:m,n + 1) = u(:m,1)

v(:m,n + 1) = v(:m,1)

p(:m,n + 1) = p(:m,1)

uold(m + 1,n + 1) = uold(1,1)

vold(m + 1,n + 1) = vold(1,1)

pold(m + 1,n + 1) = pold(1,1)

u(m + 1,n + 1) = u(1,1)

v(m + 1,n + 1) = v(1,1)

p(m + 1,n + 1) = p(1,1)

/* Periodic Continuation */

[south of I] wrap U, Uold, V, Vold, P, Pold;

[east of I] wrap U, Uold, V, Vold, P, Pold;

[se of I] wrap U, Uold, V, Vold, P, Pold;

Figure 4: Setting boundary conditions in HPF and ZPL versions of Shallow.

5 Performance Comparison

ZPL has been used to solve real-world problems including a hierarchical fast N-body solver, a synchronous

routing simulator, a conjugate gradient program for sparse matrices, and a simulation of bacteria formation,

but for these programs direct comparisons with HPF are di�cult to obtain. Thus, we use the APR xHPF

Benchmark Suite [9]|currently the only published set of comprehensive HPF performance results|as the

basis for comparison.

5.1 Methodology

Of the �fteen benchmarks in the xHPF suite, we compare ZPL results against eight of the top HPF performers

on the Intel Paragon and the Cray T3D (See Table 1). To produce comparable results, we translated each

of the benchmarks to ZPL as directly as possible, in each case timing the same portions of code, consuming

the same inputs, and producing the same outputs as the original HPF programs.

3

The HPF performance

numbers are those published in March, 1995 by Applied Parallel Research (APR) for their commercial HPF

compiler [9].

The ZPL results were gathered on the San Diego Supercomputing Center's (SDSC) Paragon and the

Arctic Region Supercomputing Center's (ARSC) Cray T3D, while the HPF results used the Paragon at

NASA's Ames Research Center (Ames) and the Cray T3D at the Pittsburgh Supercomputing Center (PSC).

The machines are similarly con�gured, as shown in Table 2.

3

Interestingly, the HPF version of PDE1 contains a bug|the mask is initialized to consist of parallel red and black planes

instead of a 3D checkerboard|reinforcing our complaint that HPF's slice notation is error-prone.
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nature of

name origin description communication

Embar NAS Embarrassingly parallel Global Sum

Grid APR Grid relaxation Nearest Neighbor

Ora SPEC Ray tracing Global Sum

PDE1 GENESIS 3D red/black SOR Nearest Neighbor

Scalgam LANL Monte Carlo transport Global Sum

Shallow NCAR 2D �nite di�erence calculation Nearest Neighbor

Swm256 SPEC Version of Shallow Nearest Neighbor

Tomcatv SPEC 2D Grid generation Nearest Neighbor

X42 APR Fourth order di�erencing Nearest Neighbor

Table 1: Summary of Benchmarks

Machine nodes CPU clock rate memory/node OS

ARSC T3D 128 Alpha 150MHz 64 MB UNICOS 8.0.2.2/MAX 1.2.0.2

PSC T3D 512 Alpha 150MHz 64 MB UNICOS 8.0.3/MAX 1.2.0.3

SDSC Paragon 416 i860 50MHz 16 MB OSF/1 R1.2.4

Ames Paragon 208 i860 50MHz 32 MB OSF/1 R1.2 (patch # unknown)

Table 2: Hardware Con�guration.

5.2 Results and Discussion

Figure 5 shows the speedup for each of the eight benchmarks. Raw execution times are given in Table 3.

Each plot shows curves for HPF (blue lines) and ZPL (red lines) speedups on the T3D (solid lines) and the

Paragon (dashed lines). For each benchmark and machine, both the HPF and ZPL curves use the same

sequential time to compute speedup, where speedup on P processors is the best sequential time divided by

the execution time of the HPF or ZPL program on P processors. This best sequential time is the fastest

of the following: (a) sequential Fortran 77 execution time, (b) HPF execution time for P=1, or (c) ZPL

execution time for P=1.

A detailed comparison of HPF and ZPL compilation techniques is not possible because the languages are

di�erent. With this constraint in mind, the remainder of this section comments on the relative performance

of the languages and explains why ZPL generally outperforms APR's HPF compiler and identi�es some of

ZPL's performance shortcomings.

To summarize the data in Figure 5, the ZPL programs delivered greater speedup compared to their

HPF counterparts for a substantial majority of the experiments. ZPL is unambiguously superior on both

machines for half of the benchmarks: Embar, Swm256, PDE1 and X42 (Figure 5(a)-(d)). Embar is, perhaps,

most signi�cant since it was developed to bound the performance of parallel computations [2]. For Shallow

(Figure 5(e))|a larger single precision version of Swm256 in which only the inner loops are timed|both ZPL

and HPF match until P=32, where there is an advantage for HPF on the T3D and where the HPF Paragon

entry is unexpectedly superlinear, suggesting a possible transcriptional error. Grid and Ora (Figure 5(f)-(g))

show conicting data, with ZPL consistently superior for Ora on the T3D and for Grid on the Paragon,
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Figure 5: Speedup on the Paragon and T3D.

while HPF is superior for the other comparisons. Finally, the two languages were comparable in Tomcatv

until P=32 on the T3D where there was an advantage for HPF.

We believe that much of the performance advantage of ZPL comes from the use of regions, which allows

the compiler to exploit a simple dependence-based algorithm to determine when and where communication

is needed. The runtime overhead is small since each process can cache information that indicates when

communication is necessary. HPF's more general semantics, in which arrays can change representation on

every procedure call, would likely require extremely sophisticated analysis to achieve the same performance.

Another ZPL advantage is in the compilation of reduction operations. The ZPL compiler produces e�-

cient code for collective communication, as evidenced by its nearly linear speedup for the Embar benchmark

in 5(a). No compiler analysis is required to recognize parallel pre�x or reduction operators since they are
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primitives in the language. Though HPF provides intrinsic functions for collective communication, none of

the benchmarks in the xHPF benchmark suite use them. In the Embar benchmark, for example, the HPF

code embeds a reduction in other parallel code, making recognition and parallelization di�cult, while the

ZPL code distinguishes the reduction operator for the compiler.

Three e�ects, which are largely by-products of the small benchmark problem sizes, explain the cases

where the ZPL speedup is lower.

In Tomcatv ZPL uses dynamic regions to implement the tridiagonal systems solver. Though these are not

as e�cient as static regions, ZPL optimizes the code extensively. Thus, ZPL and HPF perform equivalently

for all experiments, except P=32 on the Cray T3D. At this point the problem solved per processor consists of

only eight data points whose computation is not su�cient to amortize the overhead of manipulating dynamic

regions. The speci�c problem, initialization of dynamic regions, could be further optimized, but problems

are rarely this small.

The Grid benchmark measures both the computation and the program's I/O. The present ZPL I/O

implementation is ine�cient in that it uses a \token passing" scheme to guarantee that all data is written

out consistently and in row major order. Though the I/O is not an issue for the Paragon, the faster clock

of the T3D exposes this e�ect. Future ZPL runtime systems will include parallel I/O and will likely exploit

vendor-provided routines.

Finally, the ZPL compiler emits ANSI C, which is compiled using the native compiler of the parallel

machine, while HPF emits Fortran. In experiments to understand the performance of Shallow, we have

found that for extremely small loops, sequential F77 code outperforms the equivalent sequential C code by

as much as a factor of two. This e�ect vanishes for larger loops, and in any case the ZPL compiler's aggressive

optimizations compensate for Fortran's advantage. But, the timed portion of Shallow is composed entirely

of small loops, and this, with the small data when P=32, explains the Cray data point.

6 Conclusions

We have shown that ZPL leads to higher level programs that are more mnemonic and readable than HPF,

while still typically achieving better performance. These properties of code readability are extremely im-

portant since software engineers report that program maintenance represents 70% of software costs. This

number may be conservative for long-lived scienti�c codes, and in any case raises the question of whether

perpetuating an existing Fortran code is economic.

This is the �rst comparison between ZPL and HPF, and to our knowledge the �rst performance compar-

ison of any language to HPF. We acknowledge that it is early in the compiler development cycle for both

languages, and we expect that both will continue to improve. The ZPL compiler e�ort began in late March

1993, which is roughly when the HPF design was frozen and HPF compiler development could commence in

earnest. Of course, Fortran compilation and loop parallelization have been studied for years. More extensive

tests are needed, for larger numbers of processors, for a wider array of computers, and most signi�cantly, for

12



more substantial applications, but these results represent an important �rst step.
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Embar seq p = 1 2 4 8 16 32

Cray HPF time 6.589 | | | | | |

T3D speedup 1.00 0.81 1.62 3.23 6.37 12.35 23.29

ZPL time 5.025 2.516 1.271 0.646 0.341 0.207

speedup 1.27 2.62 5.18 10.20 19.32 31.83

Intel HPF time 14.904 | | | | | |

Paragon speedup 1.00 0.99 1.94 3.77 6.84 10.68 15.96

ZPL time 13.474 6.754 3.392 1.716 0.885 0.476

speedup 1.11 2.21 4.39 8.69 16.84 31.31

Swm256 seq p = 1 2 4 8 16 32

Cray HPF time 113. 80.65 47.64 27.68 17.46 11.68 10.68

T3D speedup | 1.00 1.69 2.91 4.62 6.90 7.55

ZPL time 84.949 49.934 26.889 17.262 10.850 8.968

speedup 0.95 1.62 3.00 4.67 7.43 8.99

Intel HPF time 193. 231. 122. 66.13 37.46 23.14 15.46

Paragon speedup | 0.84 1.58 2.92 5.15 8.34 12.48

ZPL time 236.281 122.886 63.340 34.173 18.675 11.295

speedup 0.82 1.57 3.05 5.65 10.33 17.09

PDE1 seq p = 1 2 4 8 16 32

Cray HPF time 3.296 5.3 2.8 2.2 1.25 0.78 0.68

T3D speedup 1.00 0.62 1.18 1.50 2.64 4.23 4.85

ZPL time 5.459 2.935 1.575 0.971 0.580 0.346

speedup 0.60 1.12 2.09 3.39 5.68 9.53

Intel HPF time 3.145 5.1 2.67 1.73 1.03 0.67 0.53

Paragon speedup 1.00 0.62 1.18 1.81 3.05 4.69 5.93

ZPL time 4.207 2.276 1.226 0.755 0.454 0.275

speedup 0.75 1.38 2.57 4.17 6.93 11.44

X42 seq p = 1 2 4 8 16 32

Cray HPF time 10.75 7.64 4.08 2.28 1.12 0.59 0.35

T3D speedup | 0.47 0.88 1.57 3.21 6.08 10.26

ZPL time 3.590 1.830 0.906 0.544 0.263 0.166

speedup 1.00 1.96 3.96 6.60 13.65 21.63

Intel HPF time 27.87 14.96 13.22 3.96 2.06 1.11 0.61

Paragon speedup | 0.98 2.22 3.70 7.11 13.19 24.00

ZPL time 14.641 7.280 3.671 1.875 0.955 0.469

speedup 1.00 2.01 3.99 7.79 15.33 31.22

Shallow seq p = 1 2 4 8 16 32

Cray HPF time 132.8 80.31 40.53 20.97 10.77 5.79 3.3

T3D speedup | 0.77 1.53 2.96 5.76 10.71 18.80

ZPL time 62.028 33.335 17.109 9.534 5.409 3.704

speedup 1.00 1.86 3.63 6.51 11.47 16.75

Intel HPF time 165.6 193.9 99.85 49.47 25.71 13.13 4.5

Paragon speedup 1.00 0.85 1.66 3.35 6.44 12.61 36.80

ZPL time 208.413 104.499 52.340 26.253 13.864 7.051

speedup 0.79 1.59 3.16 6.31 11.94 23.49

Grid seq p = 1 2 4 8 16 32

Cray HPF time 33.34 33.4 16.91 8.67 4.45 2.34 1.37

T3D speedup 1.00 1.00 1.97 3.85 7.49 14.25 24.34

ZPL time 36.019 18.186 9.367 4.854 2.615 1.626

speedup 0.93 1.83 3.56 6.87 12.75 20.50

Intel HPF time 51.046 51.1 25.8 13.3 7.11 4.01 2.78

Paragon speedup 1.00 1.00 1.98 3.84 7.18 12.73 18.36

ZPL time 51.541 25.947 13.270 6.813 3.726 2.467

speedup 0.99 1.97 3.85 7.49 13.70 20.69

Ora seq p = 1 2 4 8 16 32

Cray HPF time 50.25 48.93 24.45 12.33 6.11 3.06 1.53

T3D speedup | 0.71 1.42 2.81 5.69 11.34 22.68

ZPL time 34.698 17.351 8.677 4.340 2.173 1.090

speedup 1.00 2.00 4.00 8.00 15.97 31.83

Intel HPF time 58.00 56.40 46.20 23.30 11.80 5.70 5.70

Paragon speedup | 1.00 1.22 2.42 4.78 9.89 9.89

ZPL time 109.011 54.516 27.268 13.636 6.821 3.457

speedup 0.52 1.03 2.07 4.14 8.27 16.31

Tomcatv seq p = 1 2 4 8 16 32

Cray HPF time 41.68 31.59 16.26 8.71 4.64 2.89 1.59

T3D speedup | 0.97 1.88 3.51 6.59 10.58 19.23

ZPL time 30.580 15.287 8.049 4.466 2.883 2.353

speedup 1.00 2.00 3.80 6.85 10.61 13.00

Intel HPF time 91.27 98. 49.81 25.67 13.45 7.4 4.45

Paragon speedup | 0.91 1.79 3.48 6.65 12.08 20.08

ZPL time 89.376 44.889 23.295 12.316 6.922 4.406

speedup 1.00 1.99 3.84 7.26 12.91 20.29

Table 3: Performance Results Summary
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